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Abstract
Implementing a positive correlation between the natural frequencies of nodes and their connectivity
on a single star graph leads to a pronounced explosive transition to synchronization, additionally
presenting hysteresis behavior. From the viewpoint of network connectivity, a star has been
considered as a buildingmotif to generate a big graph by graph operations. On the other hand, we
propose to construct complex synchronization dynamics by applying theCartesian product of two
Kuramotomodels on two star networks. On the productmodel, the lower dimensional equations
describing the ensemble dynamics in terms of collective order parameters are fully solved by the
Watanabe–Strogatzmethod.Different graph parameter choices lead to three different interacting
scenarios of the hysteresis areas of two individual factor graphs, which further change the basins of
attraction ofmultiplefixed points. Furthermore, we obtain coupling regimeswhere cluster
synchronization states are often present on the product graph and the number of clusters is fully
controlled.More specifically, oscillators on one star graph are synchronizedwhile those on the other
star are not synchronized, which induces clustered state on the productmodel. The numerical results
agree perfectly with the theoretic predictions.

1. Introduction

Abroad range of example systems shows synchronization properties as the interaction between units change,
e.g. birdsflocking,malefirefliesflashing together, heart beating ofmother and fetal, neurons in the brain,
cardiac and respiratory system [1, 2]. One of traditionalmodels to simulate synchronization dynamics is the
Kuramoto phase oscillatormodel, which still attractsmuch attention in the literature [3–6].

In the traditional Kuramotomodel, as the coupling strength increases, a transition from an incoherent to a
coherent state takes place generically at a critical value ofλc, after which the interacting units follow the same
dynamical behavior. Thismacroscopic appearance of synchronization is often described by an order parameter r
which is normalized to rä[0, 1]. Namely, a small value of r≈0 corresponds to an incoherent state, while a
large value of r close to 1 indicates a high degree of synchrony. Both the natural frequencies of oscillators and the
coupling strength determine the synchronization transition properties. Asfirst pointed in [7], inmost cases the
transition is second-order like, with the order parameter r growing continuously when the coupling strength
passes the critical thresholdλc of synchronization [8]. On the other hand, abrupt discontinuous transitions to
synchronization have been recently reported in both all-to-all coupling [3, 9] and complex network topologies
[10–15]where an infinitesimal variation of the coupling strength gives rise to amacroscopic explosive transition
to synchronization. In the study of explosive sync, the transition from an initially incoherent to a coherent state
is referred to as forward continuation curvewhen the coupling strength is progressively increased and the
corresponding critical coupling is termed as lc

f . In contrast, the desynchronization transition from an initially
coherent to an incoherent state is called backward continuation curvewhen the coupling is decreased and the
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critical coupling is denoted as lc
b. In addition, a clear hysteresis area has been observed between these

synchronization and desynchronization processes, which is further denoted as l l= -S c
f

c
b.

Recently, star graphs have been applied to understand the global explosive behavior of the order parameter r
which shed insights for other cases ofmore general heterogeneous network settings [10, 13, 16]. The two
fundamental results of explosive synchronization (discontinuity and hysteresis) have been delineated by the
Watanabe–Strogatz (WS) approach [17, 18].More specifically, the exact nonlinear equation for the order
parameter r of the high dimensional coupled systemhas been explicitly obtained and the different synchronized
states correspond to different steady states of the equation. Furthermore, different stability conditions of
coexisting fixed points in the parameter space lead to the hysteresis behavior and the discontinuous transitions
in both the forward and backward continuation curves [16].

From the viewpoint of network topologies, star graphs are considered as buildingmotifs to generate a big
graph by several graph operations, e.g. Cartesian product, direct tensor product and strong product [19, 20].
For example, the Cartesian product of graphs is a commutative, associative binary operation on graphs [21]. It
hasmany useful properties, most of which can be derived from the factors. Furthermore, severalmultilayer
network properties have been obtained by graph product operations [20]. On the other hand, from the
viewpoint of dynamics on top of networks, it remains largely undisclosed that the synchronization process is
obtained by similar graph product operations except some discussions on eigenspectra [22, 23]. In our work
[24], we have provided a novel framework to obtain a canonical Kuramotomodel by the Cartesian product
operation from two independent factor graphs. In this earlier work, we focused on the Cartesian product for
two basic network graphs of star and ringwhere we found amixture state of both an explosive transition to
sync in the forward curve and a continuous desynchronization transition in the backward curve. Thismixture
state of synchronization transitions cannot be easily observed in a single factor graph. However, the lower
dimensional equations for the order parameters of the Cartesian productmodel have not been discussed in
the literature.

In this work, we provide amore general dimension reduction treatment of theWS ansatz to theCartesian
productmodel, obtaining fully solved lower dimensional dynamical solutions ofmultiplefixed points for the
order parameters. The stability of eachfixed point has been obtained by a linear analysis. Comparing to the case
of a single star graph, the results are richer depending on the interaction between the hysteresis areas of the two
independent factor stars. In addition, cluster synchronization solutions have been obtained for the product
model. A cluster synchronized state represents that the network evolves into subsets of oscillators inwhich
members of the same cluster are synchronized, butmembers of different clusters are not [25, 26]. Togetherwith
Chimera states [27–29], cluster synchronization is one ofmost interesting partial synchronization scenarios that
has attracted both theoretical and experimental studies [30, 31]. Recently, a computational group theory has
been developed to characterize the emergence and stability conditions of cluster synchronization [26].More
specifically, one has to identify the set of symmetries of the network of interest by discrete algebra routines [25]
or by approximation techniqueswhen there are systemparametermismatches [32, 33]. Then the nodes of the
network are partitioned intoM clusters, which yields disjoint sets of nodes when all of the symmetry operations
are applied to permute one from the other. Importantly, the dynamics of oscillators in each disjoint set is
essentially unchanged by the permutations, forming a cluster of synchronized oscillators. Once the clusters are
identified, the stability of the clusters can be further analyzed by the corresponding variational equations of the
system.Differently from the literature, we emphasize that the proposed cluster synchronized behavior in this
work are synthetic states that are constructed from the dynamics of two independent subgraphs bymeans of
Cartesian graph operation, which therefore provides a novel ‘bottom-up’ framework to generatemore
complicate dynamics encountered in complex systems.

The outline of this paper is as follows: in section 2, we introduce theCartesian productmodel from two
independent star graphs and provide theWS ansatz. In section 3, we show the steady state solutions of the
ensemble order parameters and their respective stability conditions. Numerical simulation are presented in
section 4. Finally, ourmain conclusions are summarized in section 5.

2. Cartesian product of twoKuramotomodels on stars

Weconsider the dynamics of two independent star networks ofN1,2 leaf nodes and a central hub. The degree of a
node is the number of connections it receives. So, the degree of the leaf nodes equals one and the degree of the
central hub equalsN. The equations ofmotion are described by
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whereω1,2 is the natural frequency of the leaves,λ is the overall coupling strength, andβ1,2 is a parameter
controlling the frequencymismatch between the hub and the leaves [16]. In thismodel,β1,2>1mimics a
positive correlation between the hub’s natural frequency and its degree, i.e. the hub of larger degree has a larger
frequency than that of a leaf node [10, 13]. The parameterβ1,2 helps to understand amore general effect besides
the network degrees. In addition, we consider a lower dimensional dynamics in the thermodynamic limit

 ¥N1,2 , so the normalization is necessary tomake sense of the limit, otherwise the hubwould rotate
infinitely fast.

Following [16], we introduce the phase differences as

j q q j q q= - = -, . 3i i h k k h
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In addition, the order parameters of the two independent networks are defined as
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where is the bold font i is for the imaginary unit throughout this paper. Then the originalmodels (equations (1),
(2)) are rewritten as the following compact forms

j b w b l l j= - - - =G z t i N: 1 Im sin , for 1, 2, , 5i i1
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For individual factor graphs, the order parameters of equations (4) represent themean-field coupling terms in
the above compact equations (5), (6).

TheCartesian product of the two starsG1 andG2 are schematically shown in figure 1.Meanwhile, we use the
notation á ñik to represent the index of node on the product G G1 2. In addition, on theCartesian product

graph, the phase of the node á ñik is defined asj j j= +á ñik i k
1 2( ) ( ) . Note that the definition of the phase of the

node on the product graph as the summation of the respective phases on the factor subgraphs yields the
canonical equations of theKuramotomodel on G G1 2 [24]. Furthermore, with the commutative and
associative properties of the phase summation of theCartesian product operation, we easily generalize the
present results to the case of n factor subgraphs [24].

Figure 1. Schematic illustration of Cartesian product of two stars. Phase of node á ñik on G G1 2 is defined as j j j= +á ñik i k
1 2( ) ( ) . An

example is shown by node index i=2 ofG1 and k=1 ofG2, which is denoted by á ñ21 on G G1 2.

3

New J. Phys. 21 (2019) 123019 ZChen et al



In addition, the order parameter of theCartesian productmodel is defined as
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In a full analogy, we note that the above definition ofZ(t) preserves themean-field coupling properties. In the
present framework of phase summation, the right-hand side of equation (7) can be further expanded, which
yieldsZ(t)=z1(t) z2(t). Namely, the order parameter on G G1 2 is the product of two factor graphs. The
summation rule of phases can be generalized to the case ofmore than two factor graphs straightforwardly, while
preserving that the order parameterZ is the product of subgraphs. For instance, given three factorsG1,G2 and
G3, the order parameterR of the product  G G G1 2 3 isR=R1R2R3 [24].

With the above phase definition, the time derivatives of the phases já ñik on the Cartesian product
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where f * are the complex conjugates of f. The f and g1,2 are further defined as

l
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Note that, in equation (9), the term (1−β1)ω1+(1−β2)ω2 represents the natural frequency of the oscillator
on the product G G1 2, while the rest terms are the coupling [24].

The above phase equation (11) has exactly the form such that theWS ansatz can be applied. TheWS
approach [34, 35] is applicable for systems of identical oscillators driven by a common force.More specifically,
in the productmodel of equation (11), identical oscillators g1+g2 are driven by the arbitrary complex

+ +j jf fe e c.c.i ii k
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, where c.c. are the complex conjugates.
Next, the basic idea is to expand themodel system (equation (11)) in terms of the global variables of z1, z2 and

Z. Therefore, wefirst consider the relationship
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Furthermore, in the formulation presented in [17, 18], we need to introduce a series ofMöbius transformations
that expand the exponential functions in the above polynomial in terms of the order parameters. Importantly,
we introduce
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SimilarMöbius transformations of other terms have been included in the appendix.Note that the variables of ξi,k
are constants. Remarkably, in the case of a uniformdistribution of ξi,k, the global variablesα1,2 and ξi,k do not
enter the equation for z1,2 andZ [16, 17]. Thus, the equation forZ is a closed equation that fully describes the
dynamics of the system (equation (11)), and therefore in the following, we focus on the discussion onZ only.
Furthermore, it has been shown in [36, 37], for  ¥N1,2 and the uniformdistribution of constants ofmotion
ξi,k, theWS variables z1, z2 coincidewith the local Kuramotomean-field, namely yielding theOtt–Antonsen
(OA) ansatz [38–40].

Putting theseMöbius transformations into the two sides of equation (14), we obtain the following
relationship by equalizing the non-exponential terms of the two sides of the equations (13), (14).

+ = + + + + +z z z z f z z z z g g z z f z zi i i . 161 2 2 1 1
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As it has been proved in [24], the order parameterZ of theCartesianmodel is the product of the order parameters
of the two independent factors, namely,Z=z1z2. Then, we have = +Z z z z z1 2 1 2

   . Therefore, in terms of the
global variablesZ, the phase equation equation (11) is expressed as
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Considering the definition of the order parameter = FZ rei (equation (7)), we obtain the following two
nonlinear coupled equations for the global order parameter in the complex plane
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3. Steady states of the productmodel

There are three steady states of the nonlinear coupled system (equations (18), (19)), namely,

1. Full synchronization of r1=r2=1,

2.Non-synchronization of F =  p
1 2

and F =  p
2 2

,

3. Cluster synchronized state of r1=1 and F =  p
2 2

= F =  pror by symmetry 1 and2 1 2( ).
In the following subsections, we get the explicit expressions for the global order parameterZ of theCartesian
productmodel in terms ofZ=z1z2. To this end, wefirst denote the forward critical coupling threshold values
for the two independent factors following the notations of [16]:
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In addition, we considerβ1,2>1which implement positive correlations between the node frequency and its
associated number of connections [16]. In other words, the following inequalities do hold always
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3.1. Full synchrony for the productmodel r1=r2=1
In this case, equations (18), (19) are simplified as
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Furthermore, keeping inmind the condition of F = F + F1 2, and therefore the solution of the productmodel
has the following expression
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3.2. Non-synchrony for the productmodel F =  p
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Note that both z1,2 exist only if b w b l- +1 2 11,2 1,2 1,2( ) hold. Furthermore, both ‘+’ and ‘−’ are possible
if (β1,2−1)ω1,2�(β1,2+1)λ, while‘−’is possible if (β1,2−1)ω1,2>(β1,2+1)λ. In consequence, the
expression of the global order parameter of the productmodelZ=z1z2 has several different cases while
considering = r z 11,2 1,2∣ ∣ . Depending on the relationship between l l<c

f
c
f1 2 or l l>c

f
c
f1 2, wewill have

different solutions forZ and the details are omitted here for the simplification purpose, whichwill be
summarized in section 3.4.

3.3. Cluster synchronized states of r1=1 and F =  p
2 2

We focus on the discussion on the case of r1=1 and F =  p
2 2

, while the symmetric case of r2=1 and

F =  p
1 2

shows a full analogy. In this case, we have the following two equations in order to obtain the steady

states, namely

b w b l- - + F =1 1 sin 0, 321 1 1 1( ) ( ) ( )

b w b l
l

-
+

=r
r

r
1

1

2
0. 332 2 2 2

2
2

2

( ) ( ) ( ) 

From equation (32), we get

b w b l= - +
b w
b l

-
+ z e , only if 1 1 . 34i

1
arcsin

1 1 1

1 1 1
1 1 ( ) ( ) ( )( )( )

( )
⎡⎣ ⎤⎦

From equation (33), we obtain

b w b w b l
b l

b w b l= -
-  - - +

+
- +z i

1 1 2 1

2 1
, for 1 2 1 . 352

2 2 2 2
2

2
2

2
2 2 2

( ) [( ) ] ( )
( )

( ) ( )

Both ‘+’ and ‘−’ are possible for z2 if (β2−1)ω2�(β2+1)λ, while only ‘−’ is possible for z2 if
(β2−1)ω2>(β2+1)λ. The order parameterZ for the productmodel isZ=z1z2 againwith different
expressions depending onβ1,2 andω1,2, whichwill be summarized in section 3.4.

3.4. Intermediate summary of steady states
Note that the critical coupling thresholds l l l, ,c

b
c
f

c
b1 1 2 and lc

f2 subdivide the coupling strength into five
subintervals. All solutions forZ of the productmodel have been summarized in the followingwhen l l<c
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b

c
b1 2 which is in

a full analogy as we summarized below. Therefore, we only focus on l l l< <c
b

c
b

c
f2 1 1. In this case, we further

have three subcategories as illustrated infigure 2, depending on the critical value of lc
f2. From the viewpoint of

hysteresis areas of SG1
and SG2

, these three subcategories correspond respectively to Ç = ÆS SG G1 2
,

Ç ¹ ÆS SG G1 2
, and ÌS SG G1 2

.
All possible solutions are expressed in terms of the product of the two subgraphs, namely,Z=z1z2. The

respective existence regimes ofZ are illustrated infigures 2(a)–(c).
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Note that in the case offigure 2(a), the solutions of Za1
, Za2

, Za3
, Za4

, Za7
and Za8

do not exist. Additionally, the
solutions Zs1,2,3,4

correspond to four synchronous states, showing different stability conditions aswe summarize
in the next section.

3.5. Linear stability analysis
Accordingly, we obtain the stability of eachfixed point (equations (36)–(43)). Therefore, we first obtain the
Jacobianmatrix of the system (equations (18), (19))which is expressed as

Figure 2. Schematic illustration of differentZ solutions, depending on the three choices of lc
f2. Namely, (a) Ç = ÆS SG G1 2 , (b)

Ç ¹ ÆS SG G1 2 , and (c) ÍS SG G1 2. The critical coupling threshold values of the productmodel in each case have been highlighted by
squared notations.
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The stability is studied by inserting each steady state solution into the trace and determinant of the Jacobian
matrix (equation (45)). Due to the lengthy of the derivation, we only summarize the stability of the fixed points
and the corresponding physicalmeaning according to the three subcategories as illustrated infigures 2(a)–(c),
which are respectively shown in tables 1–3.

Note that the fixed points of Zs1,2,3,4 correspond to four synchronous states of different stabilities which are
determined by the products from zs1

and zs2
. Taking figure 2(a) as an example (table 1), ++Zs1( ) is a stable sink if

both zs1
and zs2

are positive real values, and --Zs2( ) is an unstable source if both zs1
and zs2

are negative real

Table 1. Fixed points of the order parameters with their stability and
meaning for figure 2(a).

Fixed point Stability Existence region Physicalmeaning

++Zs1( ) Sink l l> c
b1 Coherent state

--Zs2( ) Source l l> c
b1 Coherent state

+-Zs3( ) Sink or

source

l l> c
b1 Coherent state

-+Zs4 ( ) Sink or

source

l l> c
b1 Coherent state

Za1 Center l l< c
f2 Asynchronous

state

Za2 Saddle l l l< <c
b

c
f2 2 Separatrix

Za5 Center l l l< <c
b

c
f2 1 Cluster sync

Za6 Saddle l l l< <c
b

c
f1 1 Separatrix

Table 2. Fixed points of the order parameters with their stability and
meaning forfigure 2(b).

Fixed point Stability Existence region Physicalmeaning

++Zs1( ) Sink l l> c
b1 Coherent state

--Zs2( ) Source l l> c
b1 Coherent state

+-Zs3( ) Sink l l> c
b1 Coherent state

-+Zs4 ( ) Source l l> c
b1 Coherent state

Za1 Center l l< c
f2 Asynchronous state

Za2 Saddle l l l< <c
b

c
f2 2 Separatrix

Za3 Saddle l l l< <c
b

c
f1 2 Separatrix

Za4 Saddle l l l< <c
b

c
f1 2 Separatrix

Za5 Center l l l< <c
b

c
f2 1 Cluster sync

Za6 Saddle l l l< <c
b

c
f1 1 Separatrix

Za7 Saddle l l l< <c
b

c
f1 2 Separatrix

Za8 Center l l l< <c
b

c
f1 2 Cluster sync
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values. On the other hand, +-Zs3( ) is either a stable sink or an unstable source if zs1
is a positive real value and

zs2
is a negative real value. Respectively, -+Zs4( ) is either a stable sink or an unstable source if zs1

is a negative
real value and zs2

is a positive real value. The annotations of other two cases of tables 2 and 3 have similar stability
conditions.

4.Numerical results

Now,we followmainly the simulation routines as presented in [16, 24] and have numerically simulated the
model equations (1), (2) by using a fourth order Runge–Kutta integrator with the integration step h=0.01.
When the couplingλ=0, the initial conditions (ICs) are uniformly distributed over the interval [−π,π]. Then
the coupling is increased by a step sizeΔλ=0.02 and the ICs for the couplingλ+Δλ are the final states when
coupling equals toλ as suggested in [10, 13]. ThefirstT=105 steps are discarded as transients and the nextT
iterations are used to estimate the order parameter.We consider the time average of the order parameter

= å =z z i
T i

T1
1∣ ( )∣  . Note that this average is useful as the asynchronous fixed points of the order parameter are

centers, and so the order parameter in the asynchronous regime shows oscillatory behavior.
There are two equivalentways to implement the dynamics of theCartesian productmodel: (i)WesimulateG1

andG2 (equations (1), (2)) simultaneously,while phase dynamics of theproductG1G2 simply follows the
Cartesian product summation rule of the corresponding phases. (ii)Wesimulate theCartesianmodel
equation (11), directly. TheODE integrator is performed forN1+N2 phase oscillators in the former case, yielding
a better computation efficiency than that of the latter case that is integrated forN1N2 oscillators. The additional
requirement for the second simulationmethod is thatwehave to obtain the connectivitymatrix of the product
model, in particular, the adjacencymatrix of G G1 2 is theKronecker sumof the adjacencymatrices ofG1 and
G2, namely, = ÅA A AG G G G1 2 1 2( ) ( ) ( ). Throughout thiswork,wehaveobtained the same results for these
two slightly differentwaysof numerical simulations. In the examples below,we chooseN1=N2=100.

For a better understanding of theproduct effects on synchronization transitions, we choose the parameters
such that both the forward andbackward critical coupling thresholds ofG1 donot vary among the three cases of
figures 2(a)–(c), namely,β1=9,ω1=1.2, which yieldl = 0.96c

b1 ,l = 2.202c
f1 , and =S 1.242G1

. In the case of

G2, we chooseβ2 andω2 such thatlc
b2 isfixed as 0.48, butlc

f2 is changed in such away that, respectively, represents
the three different regimes that are illustrated infigures 2(a)–(c). Note that our theoretical predictions obtained by
the lower dimensional dynamics of theproductmodel agree verywellwith thenumerical simulations.

4.1. Case Aoffigure 2(a)
Thefirst case offigure 2(a) is implemented by choosing parameters β2=3 andω2=0.96, which yield
l = 0.48c

b2 , l = 0.726c
f2 , and =S 0.246G2

, namely l l l l< < <c
b

c
f

c
b

c
f2 2 1 1. In this case, the two hysteresis areas

SG1
and SG2

arewell separated, leading to Ç = ÆS SG G1 2
as shown infigures 3(a), (b). Therefore, on the product

model G G1 2, we observe two separated hysteresis areas as well, which are shown infigures 3(c), (d). In
particular, starting from the incoherent state onG1 andG2 whenλ=0, the productmodel remains incoherent
until l = 0.726c

f2 . Note that whenG2 experiences a jump at lc
f2 to the coherent state as zoomed infigure 3(d),

however, the productmodel keeps incoherent sinceG1 is in an incoherent state. The forward continuation curve
of the productmodel follows the incoherent solution ofG1 until the critical coupling value of l = 2.202c

f1

showing a jump to full synchronization. The backward continuation curve of the productmodel drops to an

Table 3. Fixed points of the order parameters with their stability and
meaning forfigure 2(c).

Fixed point Stability Existence region Physicalmeaning

++Zs1( ) Sink l l> c
b1 Coherent state

--Zs2( ) Source l l> c
b1 Coherent state

+-Zs3( ) Sink l l> c
b1 Coherent state

-+Zs4 ( ) Source l l> c
b1 Coherent state

Za1 Center l l< c
f1 Asynchronous state

Za2 Saddle l l l< <c
b

c
f2 1 Separatrix

Za3 Saddle l l l< <c
b

c
f1 1 Separatrix

Za4 Saddle l l l< <c
b

c
f1 1 Separatrix

Za5 Center l l l< <c
b

c
f2 1 Cluster sync

Za6 Saddle l l l< <c
b

c
f1 1 Separatrix

Za7 Saddle l l l< <c
b

c
f1 2 Separatrix

Za8 Center l l l< <c
b

c
f1 2 Cluster sync
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incoherent state at l = 0.96c
b1 (figure 3(c)) becauseG1 loses synchronization first, whileG2 keeps sync. Reducing

the couplingλ further,G2 loses synchronization at l = 0.48c
b2 , which yields the second drop to an even lower

order parameter as zoomed infigure 3(d). From the viewpoint of global behavior, the hysteresis area of the
product G G1 2 is determined byG1, namely, =S SG G G1 2 1

.
In this case, the cluster synchronized states on the productmodel are found in both the forward and

backward transition processes. In particular, in the coupling regime l l l< <c
f

c
f2 1 of the forward transition,G1

is in an incoherent state, whileG2 is in a coherent one, which yields the cluster sync states on the productmodel.
In a full analogy in the coupling regime l l l< <c

b
c
b2 1 of the backward transition process,G1 is again incoherent

whileG2 is coherent, showing cluster sync dynamics. Themicroscopic details of these cluster synchronized states
will be further illustrated in section 4.4.

4.2. Case B offigure 2(b)
The second case offigure 2(b) is implemented by choosing the parameters b = 132 andω2=0.56, which yield
l = 0.48c

b2 , l = 1.293c
f2 and =S 0.813G2

, namely l l l l< < <c
b

c
b

c
f

c
f2 1 2 1. In this case, Ç ¹ ÆS SG G1 2

as shown

infigures 4(a), (b), namely, lc
f2 is inside the hysteresis area ofG1. In the forward transition process from an

initially incoherent state atλ=0, the productmodel G G1 2 remains an incoherent state until l = 1.293c
f2

whenG2 experiences the first jump at to a coherent state of =z 12  (as shown infigures 4(c), (d)). Note,
however, that when the coupling is further increased in the interval l l l< <c

f
c
f2 1, the G G1 2 keeps the

incoherent state sinceG1 is incoherent. The productmodel shows the second jump at l = 2.202c
f1 whenG1 is

synchronized aswell. The backward transition is the same as the case offigure 2(a), namely, the productmodel
loses synchronization by the first jump down at l = 0.96c

b1 , after whichG1 is incoherent butG2 is coherent.
Reducing the coupling further to l = 0.48c

b2 ,G2 loses synchronization leading to the second jumpdown to an
even lower level of the incoherent state of the productmodel. The global hysteresis area of G G1 2 is
determined by the subgraphG1, l l=S ,G c

b
c
f

1
1 1[ ].

Figure 3.Theoretical and numerical results for the casefigure 2(a), showing the order parameters for (a) subgraphG1, (b)
subgraphG2, (c) productmodel G G1 2 and (d) zooming of the rectangular area of (c). In the numerical simulations, the forward
and backward continuation curves are, respectively, denoted by open circles and triangles. Theoretical solutions of stable steady states
are represented by continuous lines while unstable solutions are denoted by dashed curves. The predictions for critical coupling
threshold values are annotated by vertical arrows. The upward headed arrows are for the forward continuationwhile the downward
headed arrows are for the backward curve. Line colors for steady states are: Za1 red bold; Za2 blue dashed; Za3 red dashed; Za4 pink
dashed; Za5 light blue bold; Za6 green dashed; Za7 light blue dashed; Za8 black bold; Zs1,2,3,4 blue bold.
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In the forward transition process on the productmodel, the cluster sync states are observed in the coupling
regime l l l< <c

f
c
f2 1 sinceG1 is incoherent whileG2 is coherent. The cluster sync scenario for the backward

transition process is the same as figure 2(a) in the coupling regime of l l l< <c
b

c
b2 1, whereG1 is incoherent but

G2 is coherent.
The stability analysis of steady states of the productmodel suggests that there are further stable cluster

synchronized solutions of za5
and za8

in the coupling regime l l l< <c
b

c
f1 2, which are not easily observed by the

previous traditional ways of implementing the forward transition process on both subgraphsG1 andG2

simultaneously (or the backward transition process respectively). In contrast, these clustered states are obtained
by the product of the forward curve ofG1 with the backward curve ofG2 transition processes, which leads to the
solution za5

, or the product of the backward ofG1 with the forward ofG2 transition processes, which leads to za8
.

Both cluster sync solutions are, respectively, highlighted by filled diamond and triangle dots infigures 4(c), (d).

4.3. CaseCoffigure 2(c)
The third case offigure 2(c) is implemented by choosing the parameters b = 602 and w = 0.4962 , which yield
l = 0.48c

b2 , l = 2.66c
f2 and =S 2.18G2

, namely l l l l< < <c
b

c
b

c
f

c
f2 1 1 2. In this case, ÍS SG G1 2

as shown in
figures 5(a), (b).

This case shows a different forward transition process compared to the previous two cases. In particular, the
productmodel G G1 2 is incoherent untilG1 experiences a jump at l = 2.202c

f1 to a higher level of incoherent

state thatG1 is coherent butG2 remains incoherent.When the coupling is further increased to l = 2.66c
f2 ,

G G1 2 is fully synchronized becauseG2 undergoes the second jump to synchronization. The backward
transition process is the same as in the previous two cases offigures 2(a), (b) since both critical values lc

b1 and lc
b2

are not affected. The productmodel loses sync by thefirst jump down at l = 0.96c
b1 and then by the second jump

at l = 0.48c
b2 to a lower level of incoherent state. The global hysteresis area of G G1 2 is l l,c

b
c
f1 2[ ]. This size is

larger than that of the singleG1 subgraph because of the product effect fromG2.
In the forward transition process, the cluster synchronized states are observed in the coupling regime

l l l< <c
f

c
f1 2 sinceG1 is synchronized butG2 is not. Again because there are no changes for lc

b1 nor lc
b2, the

cluster sync scenario is observed in the coupling regime of l l l< <c
b

c
b2 1 of the backward transition process.

Figure 4. Similar caption as figure 3, but for the casefigure 2(b). In the coupling regime l l l< <c
b

c
f1 2, the abnormal cluster

synchronized states za5 and za8 are respectively highlighted by filled diamond and triangle dots in (c), (d).
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Note again that the productmodel is obtained by performing theCartesian operation on the forward
continuation curves ofG1 andG2 simultaneously (or the backward curves).

Furthermore, the stability analysis suggests further cluster synchronized solutions in the coupling regime of
l l l< <c

b
c
f1 1 which are similar to the results as presented infigure 4(d). In this particular coupling interval, we

obtain the steady state of za5
when performing theCartesian product on the forward continuation process ofG1

with the backward process ofG2. On the other hand, za8
is achieved by the product of the backward process ofG1

with the forward process ofG2, which are highlighted in figures 5(c), (d).

4.4.Microscopic views of cluster synchronized behavior
Wehave obtained cluster synchronized states in all three cases above. These states are generated in the coupling
regimewhere one subgraph is synchronized, while the other subgraph is not. In this subsection, we numerically
show themicroscopic details of these states on the productmodel.

First, on the productmodel each node is denoted by á ñ = =ik i k
N N

1, 1
,1 2 (equations (5), (6)). For an illustration

purpose, we relabel the oscillators as = - + = =m i N k1 k
N

i
N

2 1 1
2 1{[( ) ] } , which leads to Îm N N1, 1 2[ ], for

instance,mä[1,N2] corresponds to indices á ñ =k1 k
N

1
2 andmä[N2+1, 2N2] is for indices á ñ =k2 k

N
1

2 , etc. In the
following numerical example, we chooseN1=N2=9.Hence there areN1N2=81 oscillators on the product
model. In addition, we report only the case of l l l< <c

f
c
f2 1 of the forward transition (infigure 3) and other

cases offigures 4 and 5 show the same clustered states.
We focus on the coupling regimewhenG1 is not synchronizedwhileG2 is synchronized, which is

implemented by random ICs forG1 while identical ICs forG2. Namely, the oscillatorsj =i N1, ,i
1

1( )( )  are not

synchronized, but the oscillatorsj =k N1, ,k
2

2( )( )  are synchronized.When implementing theCartesian

product operation, the phase differences between the ith oscillatorji
1( ) onG1 and all other oscillators

j =k N1, ,k
2

2( )( )  onG2 are fixed to the same value, all of them are locked to the phase lockingmanifold [13].
Therefore,N1 differentji

1( ) oscillators onG1 lead toN1 clusters of synchronized states, which are shown by the
temporal phase profile infigure 6(a). TheN1 cluster synchronized state has been observed for the coupling
regime l l l< <c

f
c
f2 1 as shown infigure 6(b).

Figure 5. Similar caption as figure 3, but for the casefigure 2(c). In the coupling regime l l l< <c
b

c
f1 1, the abnormal cluster

synchronized solutions of za5 and za8 are respectively highlighted by filled diamond and triangle dots in (c), (d).
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If the coupling strength is in a regime thatG1 is synchronizedwhileG2 is not, we obtain anN2 clustered
synchronization state. Again for illustration purpose, we relabel the oscillators as = - + = =n k N i1 i

N
k
N

1 1 1
1 2{[( ) ] }

which helps to visualize theCartesian product operation in the following.On the productmodel, the phase
differences between the kth oscillatorjk

2( ) onG2 and all other oscillatorsj =i N1, ,i
1

1( )( )  onG1 are constants,
forming one clustered state. Therefore,N2 asynchronous phase oscillators yieldN2 clustered synchronization
states on the productmodel.

5.Discussion

In summary, we have provided theWS ansatz to the lower dimensional dynamic equationswhich describe the
high dimensional Cartesian productmodel that is reconstructed from two independent Kuramotomodels on
star subgraphs ofG1 andG2 by graph operation. The order parameters describing different synchronization
states of the productmodel are expressed byfixed points of the lower dimensional equations. Furthermore, the
steady states of the order parameterZ and their respective stabilities have been delineated theoretically. Our
numerical simulations agree verywell with the theoretical results.

In the case of a single star graph, there is only one discontinuous explosive transition to synchronization in
the forward process. In contrast, two explosive jumps in the forward curve have been observed in the product
model. Thefirst jump corresponds to a local scale of synchronization of one subgraph onlywhile the other
subgraph is not synchronized. The second jump is for the global synchronization for both subgraphs. Between
these two jumps, cluster synchronized behavior has beenwidely obtained, which provides complementary
insights for the understanding of cluster synchronization. In the literature,many versions of cluster
synchronization scenarios have been reported in various settings, for instance, for unidirectional coupling, time
delays and some special network structures [41, 42]. Some numerical algorithms are required to identify
synchronized clusters [43] or using graph partitions [44]. Recently, computational group theory has been
proposed to characterize cluster synchronization, which hinges on the decomposition of the networked nodes
into clusters with the help of network symmetries [25, 26].

In contrast to the literature, cluster synchronized states in this work are reconstructed by theCartesian
product operationwhich is performed from two independent star networks of phase oscillators. In the product
model G G1 2, the clustered states arewidely observed, especially in the coupling regimeswhere one factor
graph is synchronizedwhile the other factor graph is not. Note that such clustered states are realized for the case
that bothG1 andG2 are in a forward continuation transition processes (or both are on the backward processes).
Furthermore, the linear stability analysis offixed points identifies further cluster synchronized states that are
realized by theCartesian product of the forward transition process ofG1 and the backward process ofG2 (or the
vise versa).We emphasize that the cluster synchronization solutions are synthetic states which are obtained by
graph product operations. Furthermore, we easily get the number of clusters which is determined by the number
of asynchronous oscillators of one factor graphs. As it has been demonstrated in [26], there are six symmetries in
a star of identical oscillators. One interesting butmaybe challenging task is to study how these group symmetries
changewhen performing Cartesian operations from two subgraphs of stars.

Figure 6.Cluster synchronized state which is constructed from two factor graphs of an incoherentG1 and a coherentG2. (a)Temporal

phase profile for coupling strengthλ=1.35. (b) Snapshot of instantaneous phases for the coupling interval l l l< <c
f

c
f2 1. The

critical coupling of l = 2.202c
f1 is highlighted by the vertical dashed line.
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In our earlier work of theCartesian productmodel on a star and a ring subgraphs [24] (e.g.G1 is a star andG2

is a ring), we focused on disclosing a hybrid state of an explosive forward synchronization transition and a
continuous backward desynchronization transition. Furthermore, the critical coupling thresholds for
synchronization transitions are obtained by the necessary conditions of synchronized solutions in the linearized
equations. In contrast, theWSmethod provides lower dimensional nonlinear equations for the ensemble order
parameterZ. However, in the product of a star and a ring subgraphs, theWSdimension reduction technique can
not be applied straightforwardly since the complex commondriving force of equation (11) can not bewritten
down explicitly. Therefore, it remains to be challenging to obtain lower dimensional equations for such a case of
Cartesian product of arbitrary subgraph structures.

TheCartesian product of graphs is a commutative, associative binary operation on graphs [21] andmost of
properties can be derived from the factors. Furthermore, in this work a single star graph ismodeled by a
population of identical units when introducing the phase difference between the hub and leaf nodes. Therefore,
dimension reduction techniques likeWS andOA can be applied straightforwardly. TheCartesian product
model of two star graphs provides an easyway to build a big graph of theKuramoto phase dynamics. The
product operation can be further performed recursively forG1 andG2 or based onmore than two subgraphs (i.e.
Gn, n�3), which is one of the interesting topics for futurework. In such cases, we expect that cluster
synchronized states on the product can be easily constructed sincemore combinations of synchronization and
desynchronization transition processes of subgraphs are involved. Therefore, graph product operations provide
a ‘bottom-up’ frameworkwhichmay generatemuch complicate dynamics that are observed in complex
systems.
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Appendix.Möbius transformations

AllMöbius transformations are provided below that are necessary for equations (13), (14)
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Note that the variables of ξi,k are constants. In addition, in the case of uniformdistribution of ξi,k, the global
variablesα1,2 and ξi,k do not enter the equation for z1,2 andZ [16, 17]. Using these transformations, we can
obtain the equation (16) by equalizing the non-exponential terms of the two sides of the equations (13), (14).
More specifically, the non-exponential termof the left-hand side of equation (13) reads
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and, respectively, that of the right-hand side of equation (14) is
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By equalizing the above two terms, we obtain
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