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Abstract

Implementing a positive correlation between the natural frequencies of nodes and their connectivity
on asingle star graph leads to a pronounced explosive transition to synchronization, additionally
presenting hysteresis behavior. From the viewpoint of network connectivity, a star has been
considered as a building motif to generate a big graph by graph operations. On the other hand, we
propose to construct complex synchronization dynamics by applying the Cartesian product of two
Kuramoto models on two star networks. On the product model, the lower dimensional equations
describing the ensemble dynamics in terms of collective order parameters are fully solved by the
Watanabe-Strogatz method. Different graph parameter choices lead to three different interacting
scenarios of the hysteresis areas of two individual factor graphs, which further change the basins of
attraction of multiple fixed points. Furthermore, we obtain coupling regimes where cluster
synchronization states are often present on the product graph and the number of clusters is fully
controlled. More specifically, oscillators on one star graph are synchronized while those on the other
star are not synchronized, which induces clustered state on the product model. The numerical results
agree perfectly with the theoretic predictions.

1. Introduction

A broad range of example systems shows synchronization properties as the interaction between units change,
e.g. birds flocking, male fireflies flashing together, heart beating of mother and fetal, neurons in the brain,
cardiac and respiratory system [1, 2]. One of traditional models to simulate synchronization dynamics is the
Kuramoto phase oscillator model, which still attracts much attention in the literature [3-6].

In the traditional Kuramoto model, as the coupling strength increases, a transition from an incoherent to a
coherent state takes place generically at a critical value of A, after which the interacting units follow the same
dynamical behavior. This macroscopic appearance of synchronization is often described by an order parameter r
which is normalized to r € [0, 1]. Namely, a small value of r &~ 0 corresponds to an incoherent state, while a
large value of r close to 1 indicates a high degree of synchrony. Both the natural frequencies of oscillators and the
coupling strength determine the synchronization transition properties. As first pointed in [7], in most cases the
transition is second-order like, with the order parameter r growing continuously when the coupling strength
passes the critical threshold A, of synchronization [8]. On the other hand, abrupt discontinuous transitions to
synchronization have been recently reported in both all-to-all coupling [3, 9] and complex network topologies
[10-15] where an infinitesimal variation of the coupling strength gives rise to a macroscopic explosive transition
to synchronization. In the study of explosive sync, the transition from an initially incoherent to a coherent state
is referred to as forward continuation curve when the coupling strength is progressively increased and the
corresponding critical coupling is termed as A/ . In contrast, the desynchronization transition from an initially
coherent to an incoherent state is called backward continuation curve when the coupling is decreased and the
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critical coupling is denoted as AY. In addition, a clear hysteresis area has been observed between these
synchronization and desynchronization processes, which is further denoted as S = A/ — AL

Recently, star graphs have been applied to understand the global explosive behavior of the order parameter r
which shed insights for other cases of more general heterogeneous network settings [10, 13, 16]. The two
fundamental results of explosive synchronization (discontinuity and hysteresis) have been delineated by the
Watanabe-Strogatz (WS) approach [17, 18]. More specifically, the exact nonlinear equation for the order
parameter r of the high dimensional coupled system has been explicitly obtained and the different synchronized
states correspond to different steady states of the equation. Furthermore, different stability conditions of
coexisting fixed points in the parameter space lead to the hysteresis behavior and the discontinuous transitions
in both the forward and backward continuation curves [16].

From the viewpoint of network topologies, star graphs are considered as building motifs to generate a big
graph by several graph operations, e.g. Cartesian product, direct tensor product and strong product [19, 20].
For example, the Cartesian product of graphs is a commutative, associative binary operation on graphs [21]. It
has many useful properties, most of which can be derived from the factors. Furthermore, several multilayer
network properties have been obtained by graph product operations [20]. On the other hand, from the
viewpoint of dynamics on top of networks, it remains largely undisclosed that the synchronization process is
obtained by similar graph product operations except some discussions on eigenspectra [22, 23]. In our work
[24], we have provided a novel framework to obtain a canonical Kuramoto model by the Cartesian product
operation from two independent factor graphs. In this earlier work, we focused on the Cartesian product for
two basic network graphs of star and ring where we found a mixture state of both an explosive transition to
sync in the forward curve and a continuous desynchronization transition in the backward curve. This mixture
state of synchronization transitions cannot be easily observed in a single factor graph. However, the lower
dimensional equations for the order parameters of the Cartesian product model have not been discussed in
the literature.

In this work, we provide a more general dimension reduction treatment of the WS ansatz to the Cartesian
product model, obtaining fully solved lower dimensional dynamical solutions of multiple fixed points for the
order parameters. The stability of each fixed point has been obtained by a linear analysis. Comparing to the case
of a single star graph, the results are richer depending on the interaction between the hysteresis areas of the two
independent factor stars. In addition, cluster synchronization solutions have been obtained for the product
model. A cluster synchronized state represents that the network evolves into subsets of oscillators in which
members of the same cluster are synchronized, but members of different clusters are not [25, 26]. Together with
Chimera states [27-29], cluster synchronization is one of most interesting partial synchronization scenarios that
has attracted both theoretical and experimental studies [30, 31]. Recently, a computational group theory has
been developed to characterize the emergence and stability conditions of cluster synchronization [26]. More
specifically, one has to identify the set of symmetries of the network of interest by discrete algebra routines [25]
or by approximation techniques when there are system parameter mismatches [32, 33]. Then the nodes of the
network are partitioned into M clusters, which yields disjoint sets of nodes when all of the symmetry operations
are applied to permute one from the other. Importantly, the dynamics of oscillators in each disjoint set is
essentially unchanged by the permutations, forming a cluster of synchronized oscillators. Once the clusters are
identified, the stability of the clusters can be further analyzed by the corresponding variational equations of the
system. Differently from the literature, we emphasize that the proposed cluster synchronized behavior in this
work are synthetic states that are constructed from the dynamics of two independent subgraphs by means of
Cartesian graph operation, which therefore provides a novel ‘bottom-up’ framework to generate more
complicate dynamics encountered in complex systems.

The outline of this paper is as follows: in section 2, we introduce the Cartesian product model from two
independent star graphs and provide the WS ansatz. In section 3, we show the steady state solutions of the
ensemble order parameters and their respective stability conditions. Numerical simulation are presented in
section 4. Finally, our main conclusions are summarized in section 5.

2. Cartesian product of two Kuramoto models on stars

We consider the dynamics of two independent star networks of N; , leaf nodes and a central hub. The degree of a
node is the number of connections it receives. So, the degree of the leaf nodes equals one and the degree of the
central hub equals N. The equations of motion are described by
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Figure 1. Schematic illustration of Cartesian product of two stars. Phase of node (ik) on G, O G is defined as ¢y = g&ED + cpf) .An
example is shown by node indexi = 2 of G, and k = 1 of G,, whichis denoted by (21) on G; O G,.

gi(l) = w; + /\sin(eg) — 051)), for i=1,2, -, N,

G N, (1)
1 9}51) = Biw + glizsin(egl) _ 9%1)),
NS
and
6.7 = w4+ Asin(@? — 09), for k=1,2, -, Ny,
Gz: (2)

: Ao
0 = Bows + ﬁzﬁ > sin(@P — 65),

2 k=1

where w , is the natural frequency of the leaves, A is the overall coupling strength, and (3 , is a parameter
controlling the frequency mismatch between the hub and the leaves [16]. In this model, 3, , > 1 mimicsa
positive correlation between the hub’s natural frequency and its degree, i.e. the hub of larger degree has a larger
frequency than that of aleafnode [10, 13]. The parameter (3 , helps to understand a more general effect besides
the network degrees. In addition, we consider a lower dimensional dynamics in the thermodynamic limit
N;, — 00,0 the normalization is necessary to make sense of the limit, otherwise the hub would rotate
infinitely fast.

Following [16], we introduce the phase differences as

A = 00— o0, P = 0 — 0, ®

In addition, the order parameters of the two independent networks are defined as

, 1o 1
z(t) = n(1)e®® = —3 e, 2(1) = n(H)el®® = — 3 eidl’, 4
M i=1 N, k=1

where is the bold fonti is for the imaginary unit throughout this paper. Then the original models (equations (1),
(2)) are rewritten as the following compact forms

G ¢V = (1-Bws — BiAIm(z (1) — Asin(pl)), fori=1,2, -, N, (5)

Gr $,? = (1-B)w, — BadIm(z:(1) — Asin(p?), fork =1,2, -+, Na. (6)

For individual factor graphs, the order parameters of equations (4) represent the mean-field coupling terms in
the above compact equations (5), (6).

The Cartesian product of the two stars G; and G, are schematically shown in figure 1. Meanwhile, we use the
notation (ik) to represent the index of node on the product G; [ G,. In addition, on the Cartesian product
graph, the phase of the node (ik) is defined as ¢, = 5051) + <p§(2) . Note that the definition of the phase of the
node on the product graph as the summation of the respective phases on the factor subgraphs yields the
canonical equations of the Kuramoto model on G; [0 G, [24]. Furthermore, with the commutative and
associative properties of the phase summation of the Cartesian product operation, we easily generalize the
present results to the case of n factor subgraphs [24].

3
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In addition, the order parameter of the Cartesian product model is defined as

: 1 M.
Z(t) = r(t)e@(t) = Zzel'ﬂm. (7)
1N2 i=1k=1

In a full analogy, we note that the above definition of Z(¢) preserves the mean-field coupling properties. In the
present framework of phase summation, the right-hand side of equation (7) can be further expanded, which
yields Z(f) = z,(t) z,(¢). Namely, the order parameter on G; [J G; is the product of two factor graphs. The
summation rule of phases can be generalized to the case of more than two factor graphs straightforwardly, while
preserving that the order parameter Z is the product of subgraphs. For instance, given three factors G;, G, and
Gs, the order parameter R of the product G; [ G, [0 G3isR = R R,R;5 [24].

With the above phase definition, the time derivatives of the phases ;) on the Cartesian product
G; O Gy are

dou _ del”  de?

= +
dr dt dr

=1 - Bw + (1 — Bw, — BAIm(z (1) — BodIm(z (1) — Asin(plV) — Asin(p?) (9

®)

=A-PF)wi + (1-0r)w; — BiAnsin®; — Gr A sin®, + i%(ew?)—e‘i@fg)) + i%(eiW(kZ)—e‘iW(kZ))
(10)
gt 4 fe e freiel g el 4 preiol?, (1

where f* are the complex conjugates of f. The fand g, , are further defined as
A . .
f= 1;, g = Aw — Bidsin®y, g, = Aw, — Bodnsin®;, Aw; = (1 — Bhw, Aw, = (1 = Brws. (12)

Note that, in equation (9), theterm (1 — 3)w; + (1 — [,)w, represents the natural frequency of the oscillator
onthe product G; [J G,, while the rest terms are the coupling [24].

The above phase equation (11) has exactly the form such that the WS ansatz can be applied. The WS
approach [34, 35] is applicable for systems of identical oscillators driven by a common force. More specifically,
in the product model of equation (11), identical oscillators g; + & are driven by the arbitrary complex
feirl” + fei?t” + c.c., where c.c. are the complex conjugates.

Next, the basic idea is to expand the model system (equation (11)) in terms of the global variables of z;, z, and
Z. Therefore, we first consider the relationship

0, . .
a(e‘%w) = 1e‘<¢5’1)+’*’(k2))¢<ik> (13
= if el e 2 i+ g) el il e (1)

Furthermore, in the formulation presented in [17, 18], we need to introduce a series of Mébius transformations
that expand the exponential functions in the above polynomial in terms of the order parameters. Importantly,
we introduce

a(t) + i€+

el — .
1+ (1) el o)

15)

Similar Mobius transformations of other terms have been included in the appendix. Note that the variables of €;
are constants. Remarkably, in the case of a uniform distribution of &; , the global variables a1 , and &; ;. do not
enter the equation for z; , and Z[16, 17]. Thus, the equation for Zis a closed equation that fully describes the
dynamics of the system (equation (11)), and therefore in the following, we focus on the discussion on Z only.
Furthermore, it has been shown in [36, 37], for N} ; — o0 and the uniform distribution of constants of motion
& the WS variables z;, z, coincide with the local Kuramoto mean-field, namely yielding the Ott—Antonsen
(OA) ansatz [38—40].

Putting these Mbius transformations into the two sides of equation (14), we obtain the following
relationship by equalizing the non-exponential terms of the two sides of the equations (13), (14).

hz + Ha =if (zln + 223) + i(g + &azn + iff (@ + 2). (16)

Asithasbeen proved in [24], the order parameter Z of the Cartesian model is the product of the order parameters
of the two independent factors, namely, Z = z,z,. Then, we have Z = 7z, + 7 2,. Therefore, in terms of the
global variables Z, the phase equation equation (11) is expressed as

4
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Z=ia+2)(Z+f" +ilg + g2 (17)

Considering the definition of the order parameter Z = re'® (equation (7)), we obtain the following two
nonlinear coupled equations for the global order parameter in the complex plane

F=f(r, @) = —r1(1 — r9)cos D, + irz(l — 1)cos By, (18)

d=g(r,®) =1 - Bywi+ (1 — B)w, — Bidrsin®; — B, An sin B,
2 2
_ Msinq)l _ Msin%. (19)
2n 2n

3. Steady states of the product model

There are three steady states of the nonlinear coupled system (equations (18), (19)), namely,

1. Full synchronization of r; = r, = 1,

2.Non-synchronization of &; = :t% and ¢, = :I:%,

3. Cluster synchronized state of r; = land &, = :I:g (or by symmetryr, = land & = j:g)

In the following subsections, we get the explicit expressions for the global order parameter Z of the Cartesian
product model in terms of Z = z;z,. To this end, we first denote the forward critical coupling threshold values
for the two independent factors following the notations of [ 16]:

fi_BGi—Dwr f (Ba— Dwy
A= — W=, (20)
26, + 1 V26, + 1
and two backward critical coupling thresholds
b — (B — 1)401) b — (B2 — 1)w2‘ Q1
B+ 1 B2+ 1

In addition, we consider 3; , > 1 which implement positive correlations between the node frequency and its
associated number of connections [16]. In other words, the following inequalities do hold always

A s b AR S Al 22)

which further ensure that the hysteretic areas exist for both independent star graphs, namely, Sg, = M= b
and S, = Mo — 2,

3.1. Full synchrony for the product modelr;, = r, = 1
In this case, equations (18), (19) are simplified as

(1 - Bpw — (1 + B)Asin®, = 0, (23)
(1 — ﬁz)wz — (1 + ﬁz)ASinq)z = 0. (24)
Since 31 5, wi > and A are positive, the solutions P , exist only if ’ ((117@;);\1 land ‘ - i;))“;z < 1. Note that
1 2.

this corresponds to the existence of the phase locking manifold [13], which therefore ylelds the critical coupling
for the backward continuation curves as A\’ and A%, respectively. In this case, the solutions of z; and z, are easily
obtained as

72 = ‘(afcs‘n[umn] for A > )\Cl, (25)

(1
z = ‘(amm[ 1+W] for A > A\, (26)

Furthermore, keeping in mind the condition of ® = ®; + ®,, and therefore the solution of the product model
has the following expression

. [a=8pwr . [a-8yw2
1(arcsm[ (EST)) ]+arcsm[ (ESIS)Y ])’ for \ > max{ )\fl’ )\?2} (27)

L=zz=e
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3.2. Non-synchrony for the product model &, = £ and &, = +7
Inserting the steady states of &; = :l:g and &, = j:g into equations (18), (19), we obtain

(A + 1
(1= B F gian 5 2 o, 28)
i
(A + 73
(1 = B)wr F BaAn F AL+ ) 0. (29)
21'2
Considering the fact that z; , = 1,e®2 = +in,or r, = Fiz H, we get
—1 + —1 2 — (2 1)\
2= 7i(/31 ywr £ VB — DwP — @6 + DX for (B — Dwr > V2B T I, (30)
QB+ DA
—1 + —1 22 1N
g = 2= D ‘/[g; +)1L)”§\] @6 + DX o) By — Dwy = 28, + 1A (1)
2

Note thatboth z; , existonlyif (81, — 1)wiy = /2012 + 1 Ahold. Furthermore, both ‘4’ and ‘—’ are possible
if (812 — Dwiy < (Brz + DA, while ‘= ispossibleif (61, — Dw;, > (612 + 1)A. In consequence, the
expression of the global order parameter of the product model Z = z,z, has several different cases while
considering 11, = |z 5| < 1. Depending on the relationship between At < A2or A/ > A%, we will have
different solutions for Zand the details are omitted here for the simplification purpose, which will be
summarized in section 3.4.

3.3. Cluster synchronized statesof r; = 1and &, = :I:g

We focus on the discussion on the case of r;, = 1and @, = i%, while the symmetric case of r, = 1 and

D, = :I:g shows a full analogy. In this case, we have the following two equations in order to obtain the steady
states, namely

(I - B)w— A+ B)Asind, =0, (32)
a—mm¢@M¢3Q?@:a (33)
2
From equation (32), we get
2 = el D, only if (8, — Den < (1 + B)A. (34)
From equation (33), we obtain
Q:_g@—nmisz—DMP—Q&+DM,MQ%_mh>ﬁE:TX 35)

26, + DA

Both ‘4’ and ‘— are possible for z, if (3, — 1)w, < (8, + 1)A, while only ‘—’is possible for z, if
(B, — Dw, > (B, + 1A The order parameter Z for the product model is Z = z;z, again with different
expressions depending on 3; , and w ,, which will be summarized in section 3.4.

3.4. Intermediate summary of steady states
Note that the critical coupling thresholds A%, M, A% and M- subdivide the coupling strength into five
subintervals. All solutions for Z of the product model have been summarized in the following when A% < Al
When switching the notations of the two factor subgraphs G, and G,, we obtain the case of Al < A which is in
a full analogy as we summarized below. Therefore, we only focus on A% < A% < A, In this case, we further
have three subcategories as illustrated in figure 2, depending on the critical value of \2. From the viewpoint of
hysteresis areas of Si;, and Sg,, these three subcategories correspond respectively to Sg, N Sg, = &,
S¢, N Sg, = T,and Sg, C Sg,.

All possible solutions are expressed in terms of the product of the two subgraphs, namely, Z = z;z,. The
respective existence regimes of Zare illustrated in figures 2(a)—(c).

Q26+ DA

| B = Dwr = V1B — DwnP — @B + DX
(2B, + DA

7 - [_i(ﬁl — Dw; — \/[(51 — Dw? — QB + 1)/\2]

(36)
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(a) (b) (f)
—@ ® l ®
22 wn M
(@) Se1NSez=9 (b) SeiNSez#0 (C) Se1 € Se2
Se2 Se2 | S2 |
Se1
Za. Za ,,,,,,, Za. Zﬂ Zﬂ
L - I 13 R R o

Figure 2. Schematic illustration of different Z solutions, depending on the three choices of )\[2. Namely, (a) S¢, N S, = @, (b)
SN Sg, = @,and (c) Sg; C Sg,. The critical coupling threshold values of the product model in each case have been highlighted by
squared notations.

Lo = l_i(ﬂl — Dw — \/[(ﬁl — Dw? — QB+ 1))@]

Q26+ DA
) 7i(52 — Dw, + \/[(52 —Dw P = @26+ DX
26,4+ DA
g _i(ﬁl — Duwy + \/[(ﬁl — Dwl* — 26+ DN
" Q4+ DA
| 4B = Dws = 1B — DwaP — 28+ DX
26+ DA
g _i(ﬁl — Dw; + \/[(51 — Dw P — Q6+ DN
" Q@B+ DA
| B = Dwr + V1B — DwsP — @6 + DX
2B+ DA

7, = | P Den VIGD@lP — @8+ DX | e[ 2]
26+ DA

7, = | 4PVt NIGDl — @A DX | e 257
261+ DA

Za7 — ei arcsin[((lli?l);;\l] . _i(ﬁZ_l)WZ + \/[(62_1)“)2]2 - (2ﬁ2 + 1))\2
2B+ DA

iarcsin[
A— 1+/
ag = € A+8pA

o] | B Dws — B Dwal — @2+ DX
(26, + DA
Zsl,z)“ _ iarcsin[%}li?jll))jl] . ei al’CSin[i(:]:?fz))Kz]

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

Note that in the case of figure 2(a), the solutions of Z,,,, Z,,, Za,, Z,,> Z,, and Z,, do not exist. Additionally, the

solutions Z , |
in the next section.

3.5. Linear stability analysis
Accordingly, we obtain the stability of each fixed point (equations (36)—(43)). Therefore, we first obtain the
Jacobian matrix of the system (equations (18), (19)) which is expressed as

correspond to four synchronous states, showing different stability conditions as we summarize

7
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Table 1. Fixed points of the order parameters with their stability and
meaning for figure 2(a).

Fixed point Stability Existence region Physical meaning
Za(++) Sink A > )\fl Coherent state
Zs(——) Source A > /\ICJl Coherent state
Zs3(+—) Sink or A > )\fl Coherent state
source
Zsa(—+) Sink or A > /\IC’1 Cobherent state
source
Za Center A< )\[2 Asynchronous
state

Zay Saddle A2 <A< YA Separatrix
Zas Center )\1(’2 <A< /\{1 Cluster sync
Zas Saddle /\IC’1 <A< )\cfl Separatrix
Table 2. Fixed points of the order parameters with their stability and
meaning for figure 2(b).
Fixed point Stability Existence region Physical meaning
Za(++) Sink A > )\?1 Coherent state
Zs(——) Source A > /\f‘ Coherent state
Z3(+—) Sink A > )\IC" Coherent state
Zsa(—+) Source A > /\f‘ Coherent state
Zal Center A< /\{2 ) Asynchronous state
Zas Saddle )\Ic’z <A< A{z Separatrix
Za3 Saddle <A< 22 Separatrix
Zay Saddle M) < YA Separatrix
Zas Center /\f2 <A< )\{‘ Cluster sync
Zas Saddle )\f,'l <A< )\{1 Separatrix
Za7 Saddle /\i’1 <A< /\cf2 Separatrix
Zag Center A< pYa Cluster sync

of of

or 00

J , (45)
Jg g
or 09

where fand g are the right-hand side of the system (equations (18), (19)). The elements of ] are the following:

of [%(1 — rf)cos ®;, — A\nyny cos @2][%(1 — rzz)cos o, — Anin cos CDI]

> (46)
or %71(1 — 13)cos @, — Arfr, cos Py + %rz(l — 1)cos @, — Ariry cos ,
ﬁ _ [Ar(1 — rf)sin @] [\ (1 — r$)sin ®,] )
od 201 — r)sin®, + 2Mn(1 — Dsind,’
og  [Brsins G5, 4 e ]
i
ar in @ . b) (48)
Or —PiAnsin®; — @ - DAsind, _ BaAr sin®, — @’gﬂ
£
dg [—51>\r1 cos Py — )\(ITJ;HZ)COS @1][—ﬂ2)\rz cos®, — )\(127262)‘305 @2]
) (49)

2 2
oo — B3 A, cos D, — % cos®, — BiAncosP; — w cos P,
2

Ul

The stability is studied by inserting each steady state solution into the trace and determinant of the Jacobian
matrix (equation (45)). Due to the lengthy of the derivation, we only summarize the stability of the fixed points
and the corresponding physical meaning according to the three subcategories as illustrated in figures 2(a)—(c),
which are respectively shown in tables 1-3.

Note that the fixed points of Z;; , 5 4 correspond to four synchronous states of different stabilities which are
determined by the products from z, and z;,. Taking figure 2(a) as an example (table 1), Z; (4-+) is a stable sink if
both z; and z;, are positive real values, and Z, (— —) is an unstable source if both z, and z,, are negative real

8
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Table 3. Fixed points of the order parameters with their stability and

meaning for figure 2(c).

Fixed point Stability Existence region Physical meaning
Za(++) Sink A > )\fl Coherent state
Zs(——) Source A > )\IE" Coherent state
Zs3(+—) Sink A > )\fl Coherent state
Zsa(—+) Source A > )\f‘ Coherent state
Zal Center A< )\{1 Asynchronous state
Zas Saddle /\?2 <A< )\cf‘ Separatrix
Za3 Saddle A< A Separatrix
Zay Saddle A< M Separatrix
Zas Center /\f.’2 <A< )\{‘ Cluster sync
Zas Saddle )\f,'l <A< )\{1 Separatrix
Zaz Saddle M X< Y2 Separatrix
Zag Center /\f1 <A< /\Cf2 Cluster sync

values. On the other hand, Z;(4—) is either a stable sink or an unstable source if z, is a positive real value and
z, is a negative real value. Respectively, Zs,(—+) is either a stable sink or an unstable source if z,, is a negative
real value and z,, is a positive real value. The annotations of other two cases of tables 2 and 3 have similar stability
conditions.

4, Numerical results

Now, we follow mainly the simulation routines as presented in [16, 24] and have numerically simulated the
model equations (1), (2) by using a fourth order Runge—Kutta integrator with the integration step h = 0.01.
When the coupling A = 0, the initial conditions (ICs) are uniformly distributed over the interval [—, 7]. Then
the coupling is increased by a step size AX = 0.02 and the ICs for the coupling A + A\ are the final states when
coupling equals to A as suggested in [10, 13]. The first T = 10’ steps are discarded as transients and the next T
iterations are used to estimate the order parameter. We consider the time average of the order parameter

|lzl| = %ZiT: 11z (@) |. Note that this average is useful as the asynchronous fixed points of the order parameter are
centers, and so the order parameter in the asynchronous regime shows oscillatory behavior.

There are two equivalent ways to implement the dynamics of the Cartesian product model: (i) We simulate G;
and G, (equations (1), (2)) simultaneously, while phase dynamics of the product G, G, simply follows the
Cartesian product summation rule of the corresponding phases. (ii) We simulate the Cartesian model
equation (11), directly. The ODE integrator is performed for N; + N, phase oscillators in the former case, yielding
abetter computation efficiency than that of the latter case that is integrated for N, N, oscillators. The additional
requirement for the second simulation method is that we have to obtain the connectivity matrix of the product
model, in particular, the adjacency matrix of G; O G; is the Kronecker sum of the adjacency matrices of G; and
G,, namely, A(G; O G;) = A(Gy) @& A(G,). Throughout this work, we have obtained the same results for these
two slightly different ways of numerical simulations. In the examples below, we choose N; = N, = 100.

For abetter understanding of the product effects on synchronization transitions, we choose the parameters
such that both the forward and backward critical coupling thresholds of G; do not vary among the three cases of
figures 2(a)—(c), namely, 8; = 9, w; = 1.2, whichyield /\’C’l = 0.96, )\[1 = 2.202,and Sg, = 1.242.Inthe case of
G, we choose 3, and w;, such that A% is fixed as 0.48, but A2 is changed in such a way that, respectively, represents
the three different regimes that are illustrated in figures 2(a)—(c). Note that our theoretical predictions obtained by
the lower dimensional dynamics of the product model agree very well with the numerical simulations.

4.1. Case A of figure 2(a)

The first case of figure 2(a) is implemented by choosing parameters 3, = 3 and w, = 0.96, which yield

A2 = 0.48, A2 = 0.726,and S, = 0.246, namely A2 < M < AB < M In this case, the two hysteresis areas
Sg, and Sg, are well separated, leading to S, N Si, = @ as shown in figures 3(a), (b). Therefore, on the product
model G; O G,, we observe two separated hysteresis areas as well, which are shown in figures 3(c), (d). In
particular, starting from the incoherent state on G; and G, when A = 0, the product model remains incoherent
until A2 = 0.726. Note that when G, experiences a jump at A% to the coherent state as zoomed in figure 3(d),
however, the product model keeps incoherent since G is in an incoherent state. The forward continuation curve
of the product model follows the incoherent solution of G, until the critical coupling value of A = 2.202
showing a jump to full synchronization. The backward continuation curve of the product model drops to an
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Figure 3. Theoretical and numerical results for the case figure 2(a), showing the order parameters for (a) subgraph G, (b)

subgraph G, (¢) product model G; O G, and (d) zooming of the rectangular area of (c). In the numerical simulations, the forward
and backward continuation curves are, respectively, denoted by open circles and triangles. Theoretical solutions of stable steady states
are represented by continuous lines while unstable solutions are denoted by dashed curves. The predictions for critical coupling
threshold values are annotated by vertical arrows. The upward headed arrows are for the forward continuation while the downward
headed arrows are for the backward curve. Line colors for steady states are: Z,, red bold; Z,, blue dashed; Z,, red dashed; Z,, pink
dashed; Z,; lightblue bold; Z, green dashed; Z,, light blue dashed; Z,, black bold; Zj; , , , blue bold.

incoherent state at A = 0.96 (figure 3(c)) because G, loses synchronization first, while G, keeps sync. Reducing
the coupling \ further, G, loses synchronization at \> = 0.48, which yields the second drop to an even lower
order parameter as zoomed in figure 3(d). From the viewpoint of global behavior, the hysteresis area of the
product G; O G, is determined by G, namely, S;,06, = Sg,-

In this case, the cluster synchronized states on the product model are found in both the forward and
backward transition processes. In particular, in the coupling regime \> < \ < M of the forward transition, G,
isin an incoherent state, while G, is in a coherent one, which yields the cluster sync states on the product model.
In a full analogy in the coupling regime A% < A < Ab of the backward transition process, G is again incoherent
while G, is coherent, showing cluster sync dynamics. The microscopic details of these cluster synchronized states
will be further illustrated in section 4.4.

4.2. Case B of figure 2(b)

The second case of figure 2(b) is implemented by choosing the parameters 5, = 13 and w, = 0.56, which yield
A = 0.48, \2 = 1.293 and S¢, = 0.813, namely A < A\ < \: < M. Inthiscase, Sg, N S, = @ asshown
in figures 4(a), (b), namely, )\{2 is inside the hysteresis area of G;. In the forward transition process from an
initially incoherent state at A = 0, the product model G, [J G, remains an incoherent state until A2 = 1.293
when G, experiences the first jump at to a coherent state of ||z, || = 1 (as shown in figures 4(c), (d)). Note,
however, that when the coupling is further increased in the interval \2 < A < A, the G, O G, keeps the
incoherent state since G is incoherent. The product model shows the second jump at Al = 2.202 when G, is
synchronized as well. The backward transition is the same as the case of figure 2(a), namely, the product model
loses synchronization by the first jump down at A% = 0.96, after which G, is incoherent but G, is coherent.
Reducing the coupling further to A = 0.48, G, loses synchronization leading to the second jump down to an
even lower level of the incoherent state of the product model. The global hysteresis area of G; O G, is
determined by the subgraph Gy, Sg, = [A%, AJ].
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A

Figure 4. Similar caption as figure 3, but for the case figure 2(b). In the coupling regime A% < A < M2, the abnormal cluster
synchronized states z,; and z,, are respectively highlighted by filled diamond and triangle dots in (c), (d).

In the forward transition process on the product model, the cluster sync states are observed in the coupling
regime A2 < A < Misince G, is incoherent while G, is coherent. The cluster sync scenario for the backward
transition process is the same as figure 2(a) in the coupling regime of A < A < A, where G, is incoherent but
G, is coherent.

The stability analysis of steady states of the product model suggests that there are further stable cluster
synchronized solutions of z,_ and z,, in the coupling regime A% < \ < )\, which are not easily observed by the
previous traditional ways of implementing the forward transition process on both subgraphs G, and G,
simultaneously (or the backward transition process respectively). In contrast, these clustered states are obtained
by the product of the forward curve of G; with the backward curve of G, transition processes, which leads to the
solution z,,, or the product of the backward of G, with the forward of G, transition processes, which leads to z,,.
Both cluster sync solutions are, respectively, highlighted by filled diamond and triangle dots in figures 4(c), (d).

4.3. Case C of figure 2(c)

The third case of figure 2(c) is implemented by choosing the parameters 3, = 60 and w, = 0.496, which yield
2 = 0.48, M = 2.66 and Sg, = 2.18, namely A2 < \b < A< AL Inthis case, S¢, € Sg, asshownin
figures 5(a), (b).

This case shows a different forward transition process compared to the previous two cases. In particular, the
product model G; [0 G, is incoherent until G, experiences a jump at A = 2.202 to a higher level of incoherent
state that G, is coherent but G, remains incoherent. When the coupling is further increased to \> = 2.66,

G; O G, is fully synchronized because G, undergoes the second jump to synchronization. The backward
transition process is the same as in the previous two cases of figures 2(a), (b) since both critical values A% and A%
are not affected. The product model loses sync by the first jump down at A\ = 0.96 and then by the second jump
at A% = 0.48 to alower level of incoherent state. The global hysteresis area of G; [J G, is [A%, \%2]. This size is
larger than that of the single G, subgraph because of the product effect from G,.

In the forward transition process, the cluster synchronized states are observed in the coupling regime
M < X < M:since G is synchronized but G, is not. Again because there are no changes for A nor A, the
cluster sync scenario is observed in the coupling regime of \> < A < A% of the backward transition process.
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Figure 5. Similar caption as figure 3, but for the case figure 2(c). In the coupling regime A < \ < M, the abnormal cluster
synchronized solutions of z,; and z,, are respectively highlighted by filled diamond and triangle dots in (c), (d).

Note again that the product model is obtained by performing the Cartesian operation on the forward
continuation curves of G; and G, simultaneously (or the backward curves).

Furthermore, the stability analysis suggests further cluster synchronized solutions in the coupling regime of
A< X < Mrwhich are similar to the results as presented in figure 4(d). In this particular coupling interval, we
obtain the steady state of z,, when performing the Cartesian product on the forward continuation process of G,
with the backward process of G,. On the other hand, z,, is achieved by the product of the backward process of G,
with the forward process of G,, which are highlighted in figures 5(c), (d).

4.4. Microscopic views of cluster synchronized behavior

We have obtained cluster synchronized states in all three cases above. These states are generated in the coupling
regime where one subgraph is synchronized, while the other subgraph is not. In this subsection, we numerically
show the microscopic details of these states on the product model.

First, on the product model each node is denoted by (ik>fi’f)’i: | (equations (5), (6)). For an illustration

purpose, we relabel the oscillatorsas m = {[(i — 1)N, + k],f’;l } f\i » whichleadsto m € [1, NN, for
instance, m € [1, N] corresponds to indices <1k>kN;1 andm € [N, + 1,2N,]is for indices <2k>£’i1, etc. Inthe
following numerical example, we choose N = N, = 9. Hence there are N1 N, = 81 oscillators on the product
model. In addition, we report only the case of A2 < A < M of the forward transition (in figure 3) and other
cases of figures 4 and 5 show the same clustered states.

We focus on the coupling regime when G; is not synchronized while G, is synchronized, which is
implemented by random ICs for G, while identical ICs for G,. Namely, the oscillators <p§1) (i =1,---,Ny) arenot
synchronized, but the oscillators cpf) (k = 1,---,N,) are synchronized. When implementing the Cartesian
product operation, the phase differences between the ith oscillator @ED on G, and all other oscillators
@E{z) (k = 1,---,N,) on G, are fixed to the same value, all of them are locked to the phase locking manifold [13].
Therefore, N, different @51) oscillators on G lead to N clusters of synchronized states, which are shown by the
temporal phase profile in figure 6(a). The N cluster synchronized state has been observed for the coupling
regime A2 < A < M asshown in figure 6(b).
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Figure 6. Cluster synchronized state which is constructed from two factor graphs of an incoherent G, and a coherent G,. (a) Temporal
phase profile for coupling strength A = 1.35. (b) Snapshot of instantaneous phases for the coupling interval M2 < A < M. The
critical coupling of M =2202is highlighted by the vertical dashed line.

Ifthe coupling strength is in a regime that G is synchronized while G, is not, we obtain an N, clustered
synchronization state. Again for illustration purpose, we relabel the oscillatorsas n = {[(k — 1) N} + i ]fil kNil
which helps to visualize the Cartesian product operation in the following. On the product model, the phase
differences between the kth oscillator cpf) on G, and all other oscillators cpgl) (i = 1,---,N)) on G, are constants,
forming one clustered state. Therefore, N, asynchronous phase oscillators yield N, clustered synchronization
states on the product model.

5. Discussion

In summary, we have provided the WS ansatz to the lower dimensional dynamic equations which describe the
high dimensional Cartesian product model that is reconstructed from two independent Kuramoto models on
star subgraphs of G; and G, by graph operation. The order parameters describing different synchronization
states of the product model are expressed by fixed points of the lower dimensional equations. Furthermore, the
steady states of the order parameter Z and their respective stabilities have been delineated theoretically. Our
numerical simulations agree very well with the theoretical results.

In the case of a single star graph, there is only one discontinuous explosive transition to synchronization in
the forward process. In contrast, two explosive jumps in the forward curve have been observed in the product
model. The first jump corresponds to alocal scale of synchronization of one subgraph only while the other
subgraph is not synchronized. The second jump is for the global synchronization for both subgraphs. Between
these two jumps, cluster synchronized behavior has been widely obtained, which provides complementary
insights for the understanding of cluster synchronization. In the literature, many versions of cluster
synchronization scenarios have been reported in various settings, for instance, for unidirectional coupling, time
delays and some special network structures [41, 42]. Some numerical algorithms are required to identify
synchronized clusters [43] or using graph partitions [44]. Recently, computational group theory has been
proposed to characterize cluster synchronization, which hinges on the decomposition of the networked nodes
into clusters with the help of network symmetries [25, 26].

In contrast to the literature, cluster synchronized states in this work are reconstructed by the Cartesian
product operation which is performed from two independent star networks of phase oscillators. In the product
model G; O G,, the clustered states are widely observed, especially in the coupling regimes where one factor
graph is synchronized while the other factor graph is not. Note that such clustered states are realized for the case
thatboth G, and G, are in a forward continuation transition processes (or both are on the backward processes).
Furthermore, the linear stability analysis of fixed points identifies further cluster synchronized states that are
realized by the Cartesian product of the forward transition process of G; and the backward process of G, (or the
vise versa). We emphasize that the cluster synchronization solutions are synthetic states which are obtained by
graph product operations. Furthermore, we easily get the number of clusters which is determined by the number
of asynchronous oscillators of one factor graphs. As it has been demonstrated in [26], there are six symmetries in
astar of identical oscillators. One interesting but maybe challenging task is to study how these group symmetries
change when performing Cartesian operations from two subgraphs of stars.
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In our earlier work of the Cartesian product model on a star and a ring subgraphs [24] (e.g. Gy isa star and G,
is aring), we focused on disclosing a hybrid state of an explosive forward synchronization transition and a
continuous backward desynchronization transition. Furthermore, the critical coupling thresholds for
synchronization transitions are obtained by the necessary conditions of synchronized solutions in the linearized
equations. In contrast, the WS method provides lower dimensional nonlinear equations for the ensemble order
parameter Z. However, in the product of a star and a ring subgraphs, the WS dimension reduction technique can
not be applied straightforwardly since the complex common driving force of equation (11) can not be written
down explicitly. Therefore, it remains to be challenging to obtain lower dimensional equations for such a case of
Cartesian product of arbitrary subgraph structures.

The Cartesian product of graphs is a commutative, associative binary operation on graphs [21] and most of
properties can be derived from the factors. Furthermore, in this work a single star graph is modeled by a
population of identical units when introducing the phase difference between the hub and leaf nodes. Therefore,
dimension reduction techniques like WS and OA can be applied straightforwardly. The Cartesian product
model of two star graphs provides an easy way to build a big graph of the Kuramoto phase dynamics. The
product operation can be further performed recursively for G; and G, or based on more than two subgraphs (i.e.
G,, n > 3), which is one of the interesting topics for future work. In such cases, we expect that cluster
synchronized states on the product can be easily constructed since more combinations of synchronization and
desynchronization transition processes of subgraphs are involved. Therefore, graph product operations provide
a ‘bottom-up’ framework which may generate much complicate dynamics that are observed in complex
systems.
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Appendix. Mobius transformations

All Mobius transformations are provided below that are necessary for equations (13), (14)

[2() + € TR 5 (1) 4 €7+

(OO = (e el = ik e )
[1 + z5(t)el & MR 1 4 2¥(t) el +a®)
i€P+on () €@+ a2
el O+2600) — il (0 (eie)2 — zi(t) + e . 1 [22(t) + e -k<2> 2] , (A2)
1+ Zl*(t)el(fi +au(t) [1+ Z;‘(t)el(fk +a2(t))]2
i€+ (1) i(€P+ (1)
PP O+eP®) — pieN(1)ie? () — z(t) +e ! 7(1) + et (A3)

1+ z¥(p) el o) 1 4 2K (p) el +aa)

Note that the variables of §;  are constants. In addition, in the case of uniform distribution of §; ;, the global
variables a; , and &; ; do not enter the equation for z; , and Z[16, 17]. Using these transformations, we can
obtain the equation (16) by equalizing the non-exponential terms of the two sides of the equations (13), (14).
More specifically, the non-exponential term of the left-hand side of equation (13) reads

42+ 5z (A4)
1+ Zl*ei(qﬂJra](t))]Z[l + Z;ei(£}<2)+a2(t))]2 > .
and, respectively, that of the right-hand side of equation (14) is
if (22 + 225) +ilg + g2z + i@ + 2) A5
1+ Zl*ei(qUJral(t))]Z[l + Zz*ei(gg(zhraz(t))]z : .
By equalizing the above two terms, we obtain
4z + Hha = if (2lz + 223) + i(g + &) az + if (@ + ). (A.6)
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