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Abstract
Many high-dimensional complex systems exhibit an enormously complex landscape of possible
asymptotic states. Here, we present a numerical approach geared towards analyzing such systems. It is
situated between the classical analysis withmacroscopic order parameters and amore thorough,
detailed bifurcation analysis.With ourmachine learningmethod, based on random sampling and
clusteringmethods, we are able to characterize the different asymptotic states or classes thereof and
even their basins of attraction. In order to do this, suitable, easy to compute, statistics of trajectories
with randomly generated initial conditions and parameters are clustered by an algorithm such as
DBSCAN.Due to itsmodular andflexible nature, ourmethod has awide range of possible applications
inmany disciplines.While typical applications are oscillator networks, it is not limited only to
ordinary differential equation systems, every complex system yielding trajectories, such asmaps or
agent-basedmodels, can be analyzed, as we showby applying it theDodds–Wattsmodel, a generalized
SIRS-model,modeling social and biological contagion. A second order Kuramotomodel, used, e.g. to
investigate power grid dynamics, and a Stuart–Landau oscillator network, each exhibiting a complex
multistable regime, are shown aswell. Themethod is available to use as a package for the Julia
language.

1. Introduction

Multistability is a universal phenomenon of complex systems.Whether it is hysteresis effects in physics, the
human brain [1, 2], gene expression networks [3], in human perception [4], power grids [5] or the climate
system [6–9], almost every sufficiently complex systemhas amultitude of stable asymptotic states and
bifurcations that occurwhen control parameters are changed.Most traditionalmethods of bifurcation analysis,
such as AUTO [10] rely on tracking states by continuation of the integration, and become increasingly
challenging for high-dimensional systems. Further, for high-dimensional systems, often one is alsomore
broadly interested in classes of asymptotic states such as synchronized versus unsynchronized states of oscillator
network or states that share a common symmetry. Here, we fill a gap between a coarse analysis withmacroscopic
order parameters andmore thorough bifurcation analysis.

Ourmachine learning approach,Monte Carlo Basin BifurcationAnalysis (MCBB), based on random
sampling and clusteringmethods, resolves different classes of asymptotic behavior into clusters. Rather than
studying the existence of states and orbits on the one hand, or only tracking changes in a single order parameter
on the other, our approach learns which type of attractors aremost dominant in terms of the volume of their
basin of attraction, and quantifies the changing size of the basin of attraction of each of these classes as a function
of a control parameter. This provides new insights into the bifurcation structure ofmultistable high-
dimensional systems. Thus, we can regardMCBB as away to interpolate between detailed studies of asymptotic
bifurcations tracking every change in asymptotic structure on the one hand, and statistical physics using
specialized order parameters to study themacroscopic behavior at the other end.

First wewill introduce themethod and the idea behind it in the following section. Then, the algorithmwill be
explained in section 2.4. A number of paradigmatic examples that showcase thewide variety of possible real
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world applications: theDodds–Wattsmodel of social and biological contagion, a network of second order
Kuramoto oscillators, used e.g. tomodel power grids and a network of Stuart–Landau oscillators, of importance
formany chemical and biological systems, will follow in section 3. Lastly, these results and the performance and
applicability of the presentedmethodwill be discussed in section 4.

2.Method

Weaim to learn those classes of similar attractors of a high-dimensional system that collectively have the largest
basin of attractionwith respect to ameasure of initial conditions ρ0. Further we intend to understand how they,
and their basin volumes, change as a function of a parameter p in a range Ip. A class of attractors  should denote
an equivalence class of attractors, including at different p, that have similar invariantmeasures.

To do sowewill interpret ρ0 as a probability distribution.We can then draw initial conditions from ρ0 and
parameters from Ip and simulate the system to generate trajectories. Assuming ergodicity, the tail of the
trajectories then sample the invariantmeasures on the attractors.We then use these tail samples to estimate
whether the invariantmeasures were drawn fromare similarmeasure in the sense of the defining equivalence of
our classification. This waywe identify clusters among the tail samples that are drawn from the same class. By
then computing the number of samples in each cluster drawn at a particular p (or a small interval around it), we
provide an estimate for the relative size of the basin of attraction of a class at p. Further we can use the samples to
study how themembers of the class change as p changes.

A key step here is the definition of similarity of invariantmeasures. Comparing all tail samples to each other
is a potentially prohibitively expensive step. Further, in high dimensional systemswith a large number of
asymptotic states wemight be interested in coarser classes of behavior. Thereforewe typically define the
similarity between clusters in terms of statistics of the invariantmeasures that can easily be estimated using the
tail samples.

Tomake this ideamore precise we need to define how to determine that two asymptoticmeasures are
similar.We begin by outlining the formal quantities under investigation.

2.1. Classes of attractors and their basin volumes
We investigate a complex systemwith systemparameter p yielding a trajectory x(t; x0, p) for initial conditions x0.
This can be an ordinary differential equations system ( ) = F t px x, ; or amap ( )=+ F px x ;n n1 . If this is a
sufficiently well behaved dynamical system, themeasure ρ0 will asymptotically evolve into r¥, a linear
combination of invariantmeasures r on the attractors  of the systemwith linear expansion coefficents b

( )år r=¥


 b . 1

Aswe vary the parameter p, the set of attractors and invariantmeasures of the systemwill change aswell.
Given a notion of similarity of invariantmeasures we define equivalence classes of asymptotic states  . Denoting
p those elements of the equivalence class that occur for the systemparameter p, we have a parameterized space
ofmeasures for each class. Assuming that there are only finitelymany at each p, the elements of the space of
measures of a class are given as linear combinations of r with coefficents c

( ) ( )år r=
Î


 


p c , 2

p

Wecan then decompose r¥ into a linear combination of such ( )r p at each pwith coefficients ( )b p :

( ) ( ) ( ) ( )år r=¥


 p b p p . 3

Herewe assume ( )r = p 0 and ( ) =b p 0 if the class is empty at p.
Whenwe sample from the parameters Ip and initial conditions ρ0, then run the system, the resulting

trajectories will have probability ( )b p to asymptotically sample an invariantmeasure in  .

2.2. Similarity of asymptoticmeasures
The key challenge tomake this idea operational is to define a notion of similarity.Wewill approach this
challenge to define a computable pseudometric in the following. Let us first consider an extremal case: A linear
response of asymptoticmeasures suggests to identify ( )r p and ( )r + D p p as belonging to the same class if
they are connected by a smooth continuumofmeasures. That is, the difference between themvanishes smoothly
in an appropriate sense asΔp goes to zero, e.g. in the sense of [11, 12].When sampling trajectories, we can build
clusters of samples by requiring some discrete notion of this continuity, ensuring that it converges to the right
continuumcondition in the appropriate limit.
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Taking classes built up in this way puts usfirmly in the realmof bifurcation analysis.Wewould resolve every
potential difference in asymptotic states. As noted above thismight not be desirable when the number of
asymptotic states is large, and designing a discrete similaritymeasure on the high dimensional space that is not
prohibitively expensive to evaluate is not straightforward.

Going into the other extreme are order parameters.We could consider ( )r p and ( )r + D p p as similar if
they lead to the same order parameter up to some finite bound. This would place us directly into the realmof
statistical physics, but requires us to know alreadywhatmeaningful order parameters for our system are.

Generally speakingwe build the classes bymaking use of some pseudometric on the space ofmeasures built
from aweighted sumof differences of statistics Sk(ρ) of themeasures. The sampled trajectories then provide us
with away to estimate these statistics, and thus the pseudometric distance between the underlying invariant
measures:

( ) ∣ ( ) ( )∣ ( )år r r r= -D w S S, . 4i j

k
k k

i
k

j

Specifically wewill show that for the examples considered in this paper it is sufficient to track themean and
the variance of themeasures, encoding the position and size of the attractor in phase space:

• The position of the attractor:

= á ñrE xk k

• The size of the attractor:

( )= á - ñrx EVar ,k k
2

i

where rk denotes themarginal distribution on systemdimension k.
We further consider the histograms of these statistics over the dimensions of the system. This is particularly

useful when the system consists ofmany identical elements, and it allows us to identify asymptotic states related
by permutation symmetry. This is critical for the application to networked systems, for example a dynamical
systemon a fully connected networkwill have a symmetry group Sn. Amore detailed discussion of the technical
aspects are given in the next section.

Dependent of the investigated systems, other statistics, such as highermoments or entropymeasures can be
used as well. Our implementation of the algorithmprovides aflexible framework for this purpose (see
appendix A).

2.3. Clustering
Finally, we construct clusters of samples from the estimates of the distance ofmeasures. Again following the
argument from the previous section, wewant to identify two samples as from the same class of asympotic states if
there is a smooth reponse of the distancemeasure between them (see figure 1).We can require that the observed
distance is (up to a factor) afinite scaling of the linear response of the asymptotic state to the parameter change.
For every samplewith a parameter p iwe continue the integrationwith dp pi where

(∣∣ ∣∣)( ) ( )d » < - >p p pminj
i j

i should be a typical parameter spacing, leading to samples from themeasure r i .

Then, we compare the difference ( )r rD ,i j between trial i and jwith the difference to the results of the
continuation of the integration ( )d r r= D ,i

i i . If the former ismuch larger we assume that there is no direct
continuation between the states. Two states are then in the same cluster if there is a chain of states
connecting them.

Instead of this computationally intensive continuation studywe can also try to extract sensible values for the
distance between samples directly from the data. This leads then to a constant response size parameter òDB for all
trials that is ideally a specific percentile ( ( ))dQ pk i of the distribution of actual responses di .Whenwe
incorporate the parameter proximity constraint with aweightwp in the distance calculation aswell, the new
condition then reads

∣ ( ) ( )∣ ∣ ∣ ( )( ) ( )r rå - + - < 

i j

w S S w p p

and are connected if

. 5k k k
i

k
j

p
i j

DB

Such a criterion is part of density based clustering algorithms such asDBSCAN [13]whichwe can thus use to
distinguish the different classes of asymptotic states given a certain set of suitable statistics. If a single, constant
threshold like òDB is used, it also allows us to vary this threshold in order to resolve different classes of asymptotic
finer or coarser: if we choose a large òDBmany similar asymptotic states will be grouped into a single cluster that
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corresponds to a broad class of asymptotic states. Contrary, a smaller òDBwill result inmore different clusters,
hence resolving the asymptotic statesfiner. Figure 1 schematically illustrates that: as long as this constant
threshold is smaller than theminimal distance between trajectories of the two asymptotic states in question, they
will be resolved into different clusters.

Crucially, all steps described here can be performed in a time that scales atmost quadratic in the system
dimension. Thismeans that high dimensional systems are amenable to being studied in this way.

2.4. Algorithm
Wenowdescribe the algorithm that implements the ideas described above inmore detail.

MCBB is amodular algorithm:most steps can bemodified to suit the dynamical system in question.
Algorithm1 summarizes this procedure and in the following a detailed description of every step is given.

2.4.1. Setup
Weaim to distinguish different classes of asymptotic states by using clustering algorithms on sets ofmeasures
that each evaluate one of theNMonteCarlo trials. Given a dynamical system such as an ordinary differential
equation system ( ) = F t px x, ; or amap ( )=+ F px x ;n n1 with Î x Nd, we drawN initial conditions ( )x i

0 from
the distribution IC andN parameter values ( )p i from the distribution p. Inwhat follows, wewill use uniform
distributions for IC and p. In appendix B the dependence on the distributions is briefly discussed.While we
willmostly focus on systemswith one parameter dimension, it is in principal also possible to investigate systems
withmore than one parameter dimension. In particular setupswith two varying parameters can provide useful
insights into the dynamics of the investigated systems.However, results for systemswith three ormore
parameter dimensions are harder to visualize andwill need exponentiallymore trial runs to create sufficient
density in the parameter space. In contrast, just as for basin stability, the number of necessary samples does not
scale with the dimension of the space of initial conditions.

2.4.2. Integration
Subsequently, the system is solved for all of theN drawn configurations ( )( ) ( )px ,i i

0 . The integration time has to be
set appropriately to the system, so that the asymptotic states are reached. After discarding the transient, the
system is integrated for a sufficiently long time.While in theory, this choice of a suitable integration time and
transient time is highly non-trivial, in practice, one should have prior knowledge about the time scales of the
system. Inmost situations choosing these times at reasonably large values and checking them for individual
trajectories is sufficient. Amore sophisticated approachwill be discussed in futurework.

In case of very long transients, if the systemhas not truly converged, wemay instead observe the basins of
attraction ofmetastable states. See for example [14] for a related discussion of such basins. In this case the result
will depend on simulation time.

The Julia package providedwith this paper (see appendix A) usesDifferentialEquations.jl [15] to solveODE
systems. The library automatically chooses appropriate solvers, such as Tsit5 or Vernermethods [16, 17]. Even
though thesemethods feature an adaptive stepwidth during integration, we save the trajectories at a constant
stepwidth, so that the results of allN trials are saved at the same time steps.We then consider the sample
provided by a setfinal fraction of the trajectory.

Figure 1. Schematic illustration of an example dynamicwith stable asymptotic states (solid blue lines) and unstable asymptotic states
(dashed blue lines). Two trials i and j are classified as belonging to the same asympotic state if they are connected via a common òDB-
neighborhood.
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2.4.3. Evaluation of the integration
On each of the tail samples generated this waywe evaluate a set of statistics, typically we consider some number
Ns of statistics per systemdimensionNd. These include per default the position and size of the attractor as the
mean and standard deviation of the tail sample.Other statistics are possible aswell, though. Thus, we obtainN
matrices of statistics Si each (Nd×Ns) sizedwith elements Si kl, .

2.4.4. Clustering
Formost clustering algorithms a distancematrix between all samples is needed. This (N×N) distancematrix
can be computed from the S si with two different approaches. First, by calculating

∣ ∣ ∣ ∣ ( )( ) ( )å å= - + -+D w S S w p p , 6ij
l

N

l
k

N

i kl j kl N
i j

, , 1

s d

m

where eachmeasure is weightedwithwi. The parameter values can be included in the distancemetric with
weight +wN 1m

to ensure that similar asymptotic states with strongly different parameter values are distinguished
from each other. The other possibility is tofirst fit a one-dimensional histogram Hi k, to each statistic k across all
systemdimensions. This is advantageouswhen symmetric configuration of asymptotic states should not be
distinguishedwhich is often the case for networks of identical units. The distancematrix then followswith a
suitable histogramdistance ( ) H H,H i k j k, , such as the 1-Wassersteinmetric with

( ) ∣ ∣ ( )( ) ( )å= + -+D w H H w p p, . 7ij
k

N

k H i k j k N
i j

, , 1

m

m

When all Hi k, for one specific statistic k share the same binning and norm, the 1-Wassersteinmetric can be
computed very efficiently from the empirical CDFof each histogram. The choice of theweightsw depends on
the statistics used and the expected asymptotic states. Generally, a good first guess is to give highermoments
such as variance and non-normalitymeasures lowerweight than themean. Given the distancematrix, a
clustering algorithm such asDBSCAN [13], is used. DBSCANclassifies all points that can be reached through a
common òDB-area as one cluster. Estimating an appropriate òDB parameter is a non-trivial task and there are
different possibilities. In [13] the authors recommend to use the k-nearest neighbor (kNN) distance,more
specifically the 4NNdistance and use the value of the 4NNdistance at the first visual knee in the ordered 4NN
distance graph of all data points as òDB. Another, yet similar possibility is to use themedian of the cumulative
kNNdistance, where k is a certain percentage of all points, e.g. 0.5%. As explained in section 2, the òDB can also be
estimated by continuing the integration and tracking the response ofD. In the examples we have studied, this
yields similar values like themore empirical kNN-basedmethods, but is computationallymore expensive. This
is why the kNN-basedmethods are preferred for the estimation of the parameter. Fundamentally there is no
‘right’ choice of òDB, in combinationwith the choice of distancemeasures it determines howfinelywewant to
distinguish tail samples.While the choice of statistics andweights determines what aspects we look at, òDB
provides uswith an overall resolution that we can vary. As the clustering step at this point is very quick, it is easy
to scan a variety of values.Wewill see an example in section 3.3where two clusters that are somewhat similar are
no longer resolved as we increase òDB. Density-based clustering algorithms such asDBSCAN are sensible to
outliers. Input that is strongly dissimilar to all other data is classified as an outlier. For our purpose, this will
typically happenwhen an explosion ofmultistability,many different, yet dissimilar, asymptotic states occur.

2.4.5. Evaluation of the clustering
The clustering algorithm  thus returns the cluster assignments

({ }) ( )= C S 8i

whichmap each of theN trials to one of theNC clusters with [ ]ÎC N1,i C being the number of this cluster for
trial i. The cluster assignmentsC enable us to further analyze the system in question. First of all we can track the
size of the basin of each class of asympotic states for changing parameters and thus quantify bifurcations and
multistability within the system. This is done by computing the amount of trials within a parameter window
[ ]p p;min max and sliding this windowover the complete parameter range. For each cluster i, thus our estimator

for the relative basin volume at parameter ˆ ( )p b p,
i

is

ˆ ( ) ∣∣ ∣∣ ∣∣ ∣∣ ( )( ) ( )å=b p CL CL , 9i
p

j

N

j
p

i

C

{ ∣( ) ( [ ])} ( )( ) ( )= = Ç ÎCL j C i p p p; . 10i
p

j
j

min max

In order to further assess the dynamics of each class of asymptotic sets, the statistics are subdivided into the sets
belonging to each of the clusters as well. This waywe can track, for example, how the position or size of samples
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in a cluster change as a function of p. Investigating solutions of typical trajectories within each cluster can provide
insights as well. In section 3 examples of such analysis are shown.

All in all, the twomain parameters of themethod are theweightsw of the distance calculation and the
clustering parameter, in case ofDBSCAN òDB. As a default forw, we take = = =w w w1, 0.5, 1E pVar . In the
section 3wewill explain inmore detail for every systemwhywe chose theweights presented. For the clustering
parameter, an estimate with the kNNdistance or a response analysis ismade and if needed this value is increased
(decreased) if onewants to resolvemore (fewer) clusters. As formostMonte Carlomethods, the number of trials
N should be chosen sufficiently large so that the results are independent from it. A reasonable test is therefore to
run the experiment twice: if the results differ qualitatively, one has to increaseN.

The computational complexity ofMCBB verymuch depends on the system in question. Themost expensive
parts of the approach areN times integrating the system and the computation of the distancematrix. The
integration scales with ( · ) N Nd for sparsely coupled systems, whereas the integration ofmore densely coupled
systems scales with higher powers ofNd. The computation of the distancematrix scales with ( ) N 2 and is
typically the bottleneck only for systems that integrate very fast and very largeN.

Algorithm1.MonteCarlo Basin BifurcationAnalysis (MCBB)

1:Given:A system ( ) = F tx x p, ; with systemdimensionNd (can be anODE system but also amap)
2:Given:A set ofNs statistics { } on the components of trajectories  Nt (e.g.mean and variance)
3:Given:Adistribution IC of the initial conditions and parameters p

4:for ¬i N1, do

5:SampleN initial conditions x0 from r0 andN parameter values p

6:Solve system for a long trajectory ( )tx p;

7:for ¬dim N1, ddo
8:for ¬meas N1, sdo

9:computematrix of statistics ( ( ))= S x ti dim meas meas dim, , on the tail of the trajectories.

10:end for
11:end for
12:end for
13:Obtained:N ( )´N Nd s -matrices Si

14:Compute ( )´N N -sized distancematrix D of all Si to each other.

15:Density-based clustering (e.g. DBSCAN) of D

16:Analyze clustermemberships and statistics  for each cluster dependent on the parameter values p

3. Results

MCBB is amethod that can be applied to awide range of dynamical systems. Both, systemswith discrete and
with continuous state spaces are possible to investigate, as are systemswith discrete and continuous time
evolution. Typical applications are networks of oscillators aswill be shown in the following, but also discrete
agent-basedmodels withmodels such as theDodds–Wattsmodel. Every system that returns a trajectory given an
initial condition and parameter can in principal be analyzedwithMCBB. In the following theDodds–Watts
model, Kuramoto oscillator networks and Stuart–Landau oscillator networkswill be investigatedwithMCBB.
The source code of all these results is available in theGitHub repository of the accompanying software
implementation.

3.1.Dodds–Wattsmodel
TheDodds–Wattsmodel of social and biological contagion [18, 19] is a generalization of contagionmodels such
as the SIS and SIRmodel [20, e.g.]. Given is a population ofNI individuals that are connected to all other
individuals. Each of the individuals is either in the susceptible (S), infected (I) or recovered (R) state and has a
memory of doses they receivedwithin the lastT time steps Dt i, . Thus, showcasing the ability ofMCBB to also
deal with systemswithfinite delays ormemories. At each time steps each individual i comes into contact with
another individual j that is randomly selected from all other individuals. If j is infected, i receive a dose dwith
exposure probability p. The amount of the dose d is drawn from a distribution f (d). The dose adds to the dose
memory Dt i, of i at time step t so that = å - + ¢D dt i t T

t
t i, 1 , . If the dosememory of an individual exceeds the dose

threshold di*, it becomes infected. Latter dose threshold di* is drawn froma distribution ( )g d* . As soon as Dt i,

drops below the threshold, the individual recovers with probability r at each time step. A recovered individual
becomes susceptible againwith probability s. One gets the classic SISmodel for example for the configuration
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( ) ( ) ( ) ( )d d= = - = - =s g d d f d d T1, 1 , 1 , 1* * with p and r as free parameters. Formore details on the
model, see [19]. For thisNI dimensionalmodel with discrete states [ ]Îs S I R, ,i t, and discrete time

[ ]Ît t1, 2, .., N wedirectly evaluate the count of susceptibleN(S) and infected statesN(I)within the time
evolution of each individual asmeasures for the algorithm. As shown by [19], there are several configuration
which possessmultistable regimeswhere also amixed populationwithN(I) unequal 0 orNI can be stable.

In particular we are investigating the two configurations: (A)with
( ) ( )d= = = = - =N T r g d d s1000, 12, 1, 3 , 1I and (B)withNI=1000

( ) ( ) ( ) ( )d d d= - + - + - = =g d d d d T r0.075 1 0.4 2 0.525 12 , 20, 1and s=1. The number of initially
infected individuals is drawn from auniformdistributed between 0 andNI.We evolve the system for 1000 time
steps fromwhichwe regard thefirst 800 time steps as the transient. Configuration (B) is roughly similar to the
SISmodel but with a dosagememory of 20 steps and a dosage threshold distribution so that roughly half of the
population is quite resilient against becoming infected. For both configurationsN=5000 trajectories with
random initial conditions and parameter values were computed. As both of themeasures are equally important,
we choosewI=wS=1 andwp=0, so thatwe do not use the parameter value in the distance calculation. The
distanceDwas constructed using histograms of the statistics as described in section 2.4.

Based on a visual inspection of a 4NN-distance graph, the clustering parameter òDB=0.15was chosen for
configuration (A). Figure 2 shows the results of the analysis. Similar to the results reported in [19], we see for
such a configuration a bifurcation occur around p≈0.4. For values larger than this the fully infected state
becomes stable. Its basin of attraction quickly grows, but the fully healthy state remains stable aswell with a very
small basin of attraction for large p values.

Configuration (B) exhibits a slightlymore complex structure asfigure 3 reveals in accordancewith the results
in [19]. Additionally, figure 3 features sliding histograms aswell. These can be helpful to identify the dynamics of
the clusters. For each sliding parameter window a histogram isfitted to allmeasure results within this window.
These histograms are then plotted directly next to each so that we can visualize changes of themeasures within
each cluster for changing parameter values. In the case of theDodds–Wattsmodel wherewemeasure the
fraction of time an individual agent was infected and susceptible, these are predominantly either 1 or 0 asmost
agents are either infected or susceptible thewhole time. Figure 3(A) shows the behavior of the system. For small
values p only the fully healthy state is stable (see alsofigure 3(B)). Thefirst bifurcation occurs around p=0.3
when amixed state (MS), for which susceptible and infected individuals coexist, becomes stable. Its basin of
attraction quickly grows, while the healthy state remains stable butwith a very small basin of attraction. Figure 3
shows that for growing p the amount of infected individuals rises. Eventually, around p=0.7 a fully (or almost
fully) infected state becomes stables. Asfigure 3(D) shows directly at the bifurcation point not all individuals of
the fully infected state are infectedwhich is the case for larger p. Comparing the results to these reported in [19]
we see that the fully infected and theMS are indeed two distinctive stable branches of the system and thus
rightfully classified byMCBB into two separate clusters.

Figure 2.Approximate relative basin volume of the two different classes of asymptotic states, fully infected (blue) and fully healthy
(red), for configuration (A) of theDodds–Wattsmodel. The colored areas in the plot represents the basin volume of the respective
state. Computed by using a sliding parameter window over the clustering results (see section 2.4), a window length of 0.05 and an
offset of 0.01were used.
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3.2. Kuramoto networks
TheKuramotoModel is one of the fundamental examples of synchronization theory and network science. The
versionwith inertia has been used in a variety of contexts,most importantly tomodel nodes in power grids
[21–26]. In the transition towards globally stable synchronization, the Kuramotomodel with inertia exhibits an
extreme formofmultistability, with a large number of attractors. Studying the dominant patterns of
synchronization in the transition regionwas one of themotivating questions for the development ofMCBB.

The system is given by the equations

( ) ( )



f w
w w f f

=
=  - - å -K A

,

1 0.1 sin , 11
i i

i j ij i j

with equallymany+1 and−1. ForK=0 the oscillators rotate freely withω=±10. AsK increases
synchronization starts to occur in the network. AtK=10 the system typically synchronizes completely with
ωi=0.While a large number of works have studied the stability of this synchronous state as a function of the
local network topology [24, 26–36], comparatively little is known about the intermediate regime.

As themain dynamics is in the frequency, wewill only consider the frequency dimensions in the analysis
here. Figure 4(a) shows the network onwhich the oscillators are coupled. It is a random regular graph forwhich
every node has degree k=3. The statistic wewill use on the asymtptotic state are the positions of the frequency
of all the nodes and the distance is D computed according to equation (6). The results shown are forN=25 000
trajectories.

Figure 3. (A)Approximate relative basin volume of the different asymptotic states of configuration (B) of theDodds–Wattsmodel. It
exhibits a fully infected (blue), fully healthy (red) andmixed state (green). Computed by using a sliding parameter window over the
clustering results (see section 2.4), a window length of 0.05 and an offset of 0.01were used.

Figure 4. (A)Network structure of the investigatedKuramoto system. Red nodes have a negative drive (minus sign in equation (11))
and blue nodes a positive one. (B)The basin bifurcation diagram for the systemwith the synchronized, partially synchronized and
synchronized regimes.
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The basin bifurcation structure, with distances calculated from the per-dimensionmean of the frequency, is
given in figure 4(b).We see that forK=0 the oscillators rotate freely, the frequencies are located atω=±10.
This state persists, until its basin starts to shrink fromK=1 onward. In the intermediate regimemost of the
asymptotic states occur. These are classed together in the outlier cluster here,meaning that they occur so
infrequently that not enough samples can be obtained for a statistical treatment. This shows that the basin
structure isn’t dominated by one transitional state but an explosion ofmulti-stability occurs. However, the basin
bifurcation diagram also shows two states that achieve a higher basin in the transition region. Each of these
clusters occurred inmore than 0.5%of the total runs, and peaks at taking upmore than 10%of the basin volume
at some p.

If we look a bit deeper into these clusters, we find that they represent partial synchronization, inwhich a
region of the network is synchronized, while all other oscillators still rotate at their natural frequency figure 5.

To understand how these intermediate clusters lose stability asK increases, we can consider the size of the
asymptotic states considered infigure 6.Herewe see that the size of the attractor increases asK increases. In
otherwords, the frequency itself starts to oscilate around a stable average frequency. This suggests an interesting
insight into the behavior for the transition regime. AsK increases some neighboring oscillators couple and
synchronize. As the attractor of the partially synchronized (PS) state grows, the oscillators at non-synchronized
nodes spendmore andmore time far from their natural frequency. Eventually theywould have to spend
considerable time close to the frequency of a synchronized component that they couple to and get entrained.

To verify that these are themechanisms that drive the transition, and to understandwhich network
properties enable early partial synchronized states, is beyond the scope ofMCBB and this paper. However, the

Figure 5.Analysis of the Clusters exhibiting no synchronization (A) and partial synchronization (B). (A) and (B) are sliding histogram
plots, similar tofigure 3 and show themeans of the frequencies over all nodes as histograms depending on the coupling parameter. (C)
and (D) show themean frequency of each individual oscillators over all samples in the cluster for cluster 2 (left) and cluster 3 (right).

Figure 6. Sliding histogramplot similar to figure 5.Here, the standard deviation of all frequency time series is showndepending on the
coupling parameter.
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basinmap of the bifurcation transition that is revealed by this approach provides immediate and crucial insights
into how the basin structure and the structure of the attractors themselves change in the transition. In particular
it reveals that the attractors do notmove, but growuntil they lose stability.

3.3. Stuart–Landau oscillator networks
Another paradigmatic type of oscillator is the Stuart–Landau oscillator which can bewritten as

( ∣ ∣ ) ( ) l w= + -z z zi , 122

where lÎ z , is the bifurcation parameter andω is its eigenfrequency. Originally found by Lev Landau and
later derived by Stuart andWatson [37–39] to describe the transition to disturbance in hydrodynamics, it is also
a normal formof the Andronov–Hopf bifurcation and hencewidely applicable and of great importance inmany
fields [40]. Coupling Stuart LandauOscillator can lead to several interesting phenomena.Most importantly
oscillator quenching in the formof AmplitudeDeath andOscillatorDeath (OD) [41, 42, e.g]. An other
interesting phenomena areChimera states [43, 44, e.g.]. These are states of systems of coupled identical
oscillators that exhibit a inhomogeneous pattern inwhich phase-locked states coexist with drifting states. To
applyMCBB for Stuart–Landau systems, we use the configuration of [45] as it prominently features amultistable
regimewith travelingwave (TW), oscillation death (OD) andwhat the authors refer to as stable amplitude
chimera dynamics. In this setupNN Stuart–Landau oscillatorwith identical eigenfrequencyω are coupled by
attractive coupling to itsP1 nearest neighbors and repulsive coupling to itsP2 nearest neighbors with the
following equations:
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where ( )R x is the real part and ( )I x the imaginary part of x.We can also investigate this setupwith the coupling
mediated on twoWatts–Strogatz random graphs [46], one for the repulsive and one for the attractive coupling.
With the rewiring probability pr=0, we get the same equation as above, for ¹p 0r we expect changes in the
dynamic.

3.3.1. Parameter configuration
Wechoose the same parameter configuration as in [45]: w = = =N P2, 100, 1N 1 and =P 222 . In our
experiments we vary =K r P N, N2 2 and pr.We use random initial conditionswith real and imaginary part
uniformly distributed between−1 and 1 (in contrast to the cluster initial conditions used for some calculations
in [45]) and varyK from1.8 to 2.5. As per dimensionmeasures we usemean and standard deviation. Since the
Stuart–Landau oscillators are complex valued, allmeasures are applied separately to the real and imaginary part.
Fromour a priori knowledge about Stuart–Landau oscillators, we know that their asymptotic states will exhibit
different kinds of oscillatory behavior, thus it is a good choice to put the largest weight on the standard deviation.
We choose = = =w w w0.25, 1, 1E pSD and runN=15 000 trials that are integrated from t0=0 to tf=200.
Thefirst 70%of this time span are regarded as the transient and are not used for the evaluation. Thefirst
experiment is performedwith pr=0 and r2=0.22 and the distanceD is calculated using histograms according
to equation (7).

3.3.2. Varying the coupling
After running the experiment and calculating the distancematrixD, the associated 4-dist graph exhibits the knee
point at around 0.01.We slightly decreased this value to 0.009 and 0.008 in the reported results. Figures 7(A) and
(B) show these results for the approximate relative basin volume. Similar to the results reported in [45]we see a
multistable regime, inwhichTWdynamics are prevalent forK<1.95 andODdynamics are forK>2.2. In
between there are various states inwhich some oscillators showOD-like behavior and others exhibit a
synchronized oscillation.We thus prefer to refer to these kinds of states as PS states. Importantly, the PS states
are amixture ofmany similarly PS states and not just a single asymptotic state. If we choose a larger òDB like in
figure 7(A), the states with full OD and the PS states with only few PS oscillators and otherwisemostlyOD
dynamics aremerged into one cluster (OD+PS). For smaller òDB they are separated into two distinct clusters
(figure 7(A)). One particular structured andmore common kind of PS states can be found for 1.9<K<2.0. As
figure 8 shows, these states are highly regular stationarywaves, interrupted by oscillators exhibitingOD,we thus
refer to these states as regularly clustered stationarywave states (RCSW). Aside from thesemore regular
dynamics, there are all kinds of differentMS betweenwave-like dynamics and oscillation death.Many are so
dissimilar to each other that they fall into the outlier cluster. The outlier cluster has themostmembers during the
transitions fromTWtoPS via RCSWatK≈2.0 and at the transition betweenODandPS atK≈2.2. A handful
of smaller clusters with less than 60members (or 0.4%of all trials)were neglected. They contain PS states with
more similarities to each other than to those in the outlier cluster.We identified these dynamics by further
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analyzing the statistics within each cluster. Figure 8 shows example plots and sliding histogramplots for two of
these clusters. TheRCSW statesmostly oscillate and thus almost all oscillators have amean of zero and a
constant standard deviation different from zero.We see that these histograms change little for different coupling
values. The cluster is very homogeneouswith almost allmembers looking like the example shown infigure 8(C).
The PS cluster, on the other hand, ismuchmore inhomogenous. Itsmembers have in common thatmost of the
oscillators exhibit OD, thus asfigure 8 confirms, they exhibit nonzeromeans, with both positive and negative
valueswhile having a vanishing standard deviationwhich corresponds to the typical stablefixed points ofOD
dynamics. Figure 8(D) shows one example, the amount of oscillators still exhibiting a synchronized oscillators is
different within the cluster, though. Additional results for the other clusters can be found in the appendix.

3.3.3. Varying the coupling and amount of coupled neighbors
Similarly to the additional setup in [45], we can also investigate this systemwith two varying parameters with
MCBB. First, we choose to varyK, the coupling, and r2, the relative amount of neighbors the oscillators are

Figure 7.Cluster diagramof the Stuart–LandauOscillator networkwith pr=0 for two different values of the clustering parameter
òDB. For (A) òDB=0.009 and for (C) and (D) òDB=0.008.MCBB resolves the different classes of asymptotic states: travelingwave
(TW), regular clustered stationary waves (RCSW), (full) oscillation death (OD) andmixed partial synchronized / oscillation death
(PS) states.When increasing òDB states in whichmost (but not all) oscillators exhibit OD,while the remaining few oscillators are
synchronized (PS) and the states inwhich all oscillators exhibit OD (OD) aremerged to one cluster (OD+PS). Thewindow size used is
0.025 and the offset is 0.01.

Figure 8. Introspective analysis of the two of the clusters also shown infigure 7. Plots (A), (B), (E), (F) are sliding histogramplots. For
each slidingwindowof coupling valuesK, the respectivemeasures of trajectories within the said cluster are plotted as a histogram in y-
direction. (A)–(C) inspect the RCSWcluster. (A), (B) Show themean and the standard deviation of the RSCWcluster. (C) and (D) are
example trajectories from the respective clusters. (E), (F) Show themean and standard deviation of the PS cluster.
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coupled to repulsively. Figure 9 shows similar clusters of similar asymptotic behavior as in the one-dimensional
setup.We see that TWdynamics are present only for smallK and large r2 values, whileOD+PS dynamics are
present even for smallK values when r2 is small. For very small r2 there is also a desynchronized (DS) cluster.
Most notably the distinctive RCSW type dynamics are only present for r2>0.1 and its basin becomes larger for
larger r2 values.

3.3.4. Rewiring of the network
14Whenwe start to randomize the coupling by rewiring it according to the scheme ofWatts–Strogatz random
graphs, we get the results presented infigure 10.Here, we added the outlier cluster together with several smaller
clusters that all exhibitmixed, PS, partiallyODdynamics to theMS cluster. The range ofK for which these kinds
of dynamics appear gets wider when the rewiring pr increases. TWdynamics appear less for larger pr values.
RSCW type dynamics do not appear whenwe rewire the network.

Figure 9.Results from the setupwith two parameters, varying the amount of coupled neighbors r2 and the coupling strengthK.

Figure 10.Results from the setupwith two parameters, varying rewiring pr of theWatts–Strogatz randomgraph thatmediates the
repulsive coupling and the coupling strengthK.
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4.Discussion

Given a complex system, such as aODE system, like theKuramoto and Stuart–Landau networks demonstrated
in sections 3.2 and 3.3, or amap like theDodds–Wattsmodel presented in section 3.1,MCBB is able to analyze
and quantify which classes of asymptotic states are occuring. As demonstratedwith the paradigmatic example
systemsMCBB is awidely applicable approach. It is suitable to analyze the behavior of every high-dimensional
system that returns a trajectory, be it agent-basedmodels such as theDodds–Wattsmodel orDifferential
equations like theKuramoto and Stuart–Landau networks. The knownbifurcations of these systemswere
reproduced byMCBB as shown for examplewith theDodds–Wattsmodel. Additionally, it enables us to reveal
clusters of qualitatively similar asymptotic states for all these systems as the results investigated in section 3.3
show. It does successfully identify the sizes of the basins of themost important asymptotic states even in
transition regimes, what a traditional bifurcation analysis can not reveal. For theKuramoto systemwe see how
andwhen the basins of the unsynchronized states shrinks and how the basins of the completely synchronized
states emerges.We also get an insight into the transition between these states, as we can see how the size of the
states increases before they destabilize. Hence, for theKuramotomodel it provides an intuitive way of visualizing
the synchronization process.When applyingMCBB to a Stuart–Landau system the different asymptotic
behaviors, TW states, oscillator quenching phenomena such asOD andmixed stated, are classified in different
clusters and interesting dynamics such as RCSW states are revealed and their basins quantified.

The analysis can always be fine tuned by changing the clustering parameters to resolve the asymptotic states
finer or coarser. Additionally, theweights of the distance calculation provide anothermean of adjustment. The
flexible nature of themethod also allows for experimentationwith the statistics used to evaluate the trajectories
and the exact clustering algorithm. In particular various entropy-based statistics seempromising to use.While
designing themethodwe already used the per dimensionKullback–Leibler divergence of the time series to the
Gaussianmeasure ( ( ) )r r= EKLG D , Vari

G
i i iKL as a statistic to track structural changes of investigated systems.

This was especially useful for relatively low-dimensional systems. The curve entropy [47] of the complete
trajectorywas tested aswell. Additionally, we also experimentedwith a distance between histograms of the
covariancematrices as a statistic. This expands variance-based sizemeasure to also take cross-correlations
between the dimensions into considerationwhich could be useful for systems that exhibitmultiple possible
cross-correlations structures in the asymptotic states that otherwise behave similar, e.g. different kinds of
collective oscillations. For the example systems presented here, it was however sufficient to only use the position
and size of the attractors asmeasures. Additionalmeasures were not necessary to resolve the different classes of
asymptotic states. This should not stop experimentationwith additionalmeasures though, as some of them are
already implemented in the accompanying software as well with further additional ones easy to add.

Aside from the approximate basin volume and the sliding histograms shown in this paper, it is also possible
to further investigate the clusters found by the clustering algorithm, e.g. by analyzingwhich kind of initial
conditions lead to certain class of asymptotic states or by analyzing how each dimension is changingwith the
control parameters separately and not in histogram form. These options are already implemented in the Julia
package (see appendix A) andmore could be envisioned in the future.

It is further possible to extend themethod to systemswith unknown background parameters that adhere to
certain distribution and additional control parameters or forcings, such as some climatemodels whichwill be
further discussed in futurework.

While this work focused on introducing themethod and testing it with paradigmaticmodels, we believe that
this opens the door to studying awide variety of systems in novel ways.We expect that themethodwill be fruitful
in diverse contexts where amix ofmultistability and high dimensional behavior are important.Most notable
among thosewould be biological networks and climate systems. Already the three examples presented here,
showcase the broad possibilities ofMCBB formany interdisciplinary fields, be it disease and opinion spreading
(Dodds–Wattsmodel), power grid dynamics (Kuramoto network) or chemical and biological systems (Stuart–
Landau network).

A distinct limit of the approach is that it is only able to detect and track stable solutions of the investigated
systems.Unstable solutions are not accessible withMCBB. A further important avenue of investigation is to
study themathematical properties of the algorithmdescribed here inmuchmore detail. In particular it would be
highly desirable to understand the convergence properties of the algorithm.We also suspect that there is
considerable scope for improving the clustering bymaking use of information from the continuation, rather
than reverting to a standard density based algorithm.One other avenue of investigationwherewewill improve
themethod further is to use the statistics of the tail sample we record in order to trackwhen the integration has
reached the asymptotic regime in a suitable sense.

MCBBprovides an excellent way to visualize the complex behavior of systemswhere a traditional
bifurcation analysis is often not useful or difficult to implement. It resolves themost important classes of
asymptotic states and enables the user to track the size of its basins along changing parameters.
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AppendixA. Julia package

The algorithm is implemented in Julia. It can be installed directly from theGitHub repository https://github.
com/maximilian-gelbrecht/MCBB.jl/. This librarymakes heavy use of Julia’s DifferentialEquations.jl library
[15]. There is an extensive documentation available that explains the packagewithmany examples that is linked
in the page of the repository.

Appendix B.Dependence on the distribution of the initial conditions

Often there is a natural choice, given the parametrization and coordinates used, for the distribution of the initial
conditions, and it is typical in basin studies to use a uniform distribution in a box.However, there is no a priori
reason to expect that the limit of infinite box size converges, but experience shows that often plausible ranges for
the box are naturally given by the system and the results do not depend heavily on box size (or even on
substituting a normal distribution for the box). To further investigate this, we changed the distribution of the
initial conditions of the frequencies of the second order Kuramotomodel which is presented in section 3.2.
Figure B1 shows results for uniformdistributionswith different bounds ([ ]p p- , , as shown in themain text of
the article, [−5π,π] and [−10π, 10π]) and a normal distributionwithmean 0 and standard deviationπ. All other
parameters (e.g. the clustering parameter òDB) are kept constant. Qualitatively the results are very similar: they
show an unsynchronized regime (violet), a fully synchronized regime (blue) and several PS states. Quantitatively
they differ. The broader the distributions of the frequencies gets, the later the fully synchronized states becomes
the only existing asymptotic states. This behavior can be expected froma second orderKuramoto system: with
initial frequencies very far apart from each other, it will synchronize less well.

Figure B1.Results for the second order Kuramotowith different distributions of initial conditions.
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AppendixC. Logisticmap

While designed for high-dimensional systems,MCBBwill also still work in the fringe case of a one-dimensional
system such as the logisticmap ( )= -+x rx x1n n n1 . Figure C1 shows the approximate relative basin volume
computedwithMCBB compared to the bifurcation diagram. It was computed using themean, standard

FigureC1.Basin volume and bifurcation diagramof a logisticmap.

FigureD1. Further analysis on the clusters also shown infigure 7. (A), (B), (E), (F)Are slidingwindowhistogramsfits of the denoted
measures for trials with parameters within the respective window. (C) and (D) are example trajectories of trials within these clusters.
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deviation andKullbach-Leibler divergence asmeasures with theweights 1, 0.5 and 0.5. Themajor bifurcation
points are reproduced as do the stable regions inside the chaotic regime form seperate clusters, whilemost of the
chaotic regime is grouped into to distinct clusters, one before and one after the larger stable region
around r≈3.8.

AppendixD.More results

Additionally to the results presented in section 3, one can also further inspect the other clusters found byMCBB
for the Stuart–Landau systems. This is done infiguresD1 andD2. The Julia package (see section appendix A) also
allows for further other visualizations and inspections of themeasures and the clusters. The documentation of
the package explains these inmore detail.
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