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A sustainable and just future, envisioned by the UN’s 2030 Agenda for Sustainable

Development, puts agricultural systems under a heavy strain. The century-old quandary

to provide ever-growing human populations with sufficient food takes on a new dimension

with the recognition of environmental limits for agricultural resource use. To highlight

challenges and opportunities toward sustainable food security in the twenty first century,

this perspective paper provides a historical account of the escalating pressures on

agriculture and freshwater resources alike, supported by new quantitative estimates of

the ascent of excessive human water use. As the transformation of global farming into

sustainable forms is unattainable without a revolution in agricultural water use, water

saving and food production potentials are put into perspective with targets outlined

by the Sustainable Development Goals (SDGs). The literature body and here-confirmed

global estimates of untapped opportunities in farmwater management indicate that these

measures could sustainably intensify today’s farming systems at scale. While rigorous

implementation of sustainable water withdrawals (SDG 6.4) might impinge upon 5% of

global food production, scaling-up water interventions in rainfed and irrigated systems

could over-compensate such losses and further increase global production by 30%

compared to the current situation (SDG 2.3). Without relying on future technological

fixes, traditional on-farm water and soil management provides key strategies associated

with important synergies that needs better integration into agro-ecological landscape

approaches. Integrated strategies for sustainable intensification of agriculture within

planetary boundaries are a potential way to attain several SDGs, but they are not yet

receiving attention from high-level development policies.

Keywords: sustainable development goals, environmental boundaries, social boundaries, food security, water

management, environmental flow requirements, sustainable intensification

1. A CHALLENGE FOR HUMAN INGENUITY

1.1. Conundrums of Settled Life
Agriculture is the foundation of all cultures. The defining characteristics of human rise are two
major transitions, the Neolithic revolution (10,000–5,000 yr BP) and the Industrial Revolution
(1,700–2,000 yr AD) (Harari, 2014; Schellnhuber, 2015). Through the prehistoric shift from
foraging to farming—humans learned to domesticate plants and animals for food, livestock as a
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labor substitute, and invented storage—humanity tipped the
comparative advantage and entered Neolithic times, which
sustained larger human populations and might form the largest
historical step-up in human culture (Grigg, 1974; Diamond,
2002). Thereby freed up human capital was the cornerstone of
sedentism and elaborate social systems (nations, credit, markets,
advanced communication), key to early cities (Weisdorf, 2005).
Since its very beginning, quandaries in food availability have
characterized human development. But with the capacity of
social learning and building knowledge across generations,
human societies have implemented—first by chance or trial
and error—a long series of ingenious achievements to nourish
their ever-increasing populations (Henrich and McElreath, 2003;
De Fries et al., 2012). Maintaining soil fertility (e.g., through
human manure, and later guano, and ground animal bones),
introducing new crops (e.g., the potato’s ascent as a staple in
Europe), and the ancient trick to defeat water limitation (qanats,
rainwater harvesting, and irrigation systems) set the scene for the
race between food production increase and population growth:
human populations grew to 900 million by 1800 (Grigg, 1974;
Postel, 1999; Ellis, 2011). Mankind has settled down and the
question changed from how much space a given number of
people need for self sufficiency—in Paleolithic times people
hunted and gathered over vast areas—to how many people can
live off a given piece of land (Schellnhuber, 2015).

The second major agricultural upswing occurred in the course
of the industrialization of England, ignited around 1800 and
spreading quickly around the world. Pivotal innovations in
technology such as an improved version of the Chinese iron
plow and the seed drill, paired with land enclosure and new crop
rotation systems, increased agricultural production dramatically
and are seen as a cause of the Industrial Revolution across sectors
(Thomas, 2005; DeFries, 2014). Subsequently, the industrial
fixation of inorganic nitrogen (proliferation of the Haber-Bosch
process), and the replacement of human and animal labor with
fossil fuel, accompanied by major increases in life expectancy,
fueled a population explosion and far-reaching demographic
upheaval. By the mid of the 19th century only 20% of the
population employed in the agricultural sector could free 80% of
human capital to forge ahead with other sectors (Grigg, 1974).

Although populations doubled over the past 50 years, to
now almost 7.5 billion (Population Reference Bureau, 2016), the
latest “pivot” (DeFries, 2014) of agricultural industrialization—
the Green Revolution—was capable of tripling stable crop
production with only a 30% increase in cultivated land area
(FAO, 2002; Pingali, 2012). Propelled by Norman Borlaug, a
large-scale program of plant breeding (high-yielding varieties
such as hybrid corn and dwarf wheat, but also shortening of the
growing period), modern agricultural systems (mechanization
and rigorous application of chemical fertilizer), and above all,
the systematic expansion of irrigation, improved especially wheat
yields significantly (DeFries, 2014). From Mexico spreading
to Pakistan, India, and other countries, food security greatly
improved and millions of people were saved from starvation,
most notably in the developing world. The amount of food
produced surpassed the amount required for each person and
resulting decreased prices dramatically improved energy and

protein consumption, much for the poor, but even at global scale
from 2200 kcal cap−1d−1 in 1960 to 2700 kcal cap−1d−1 in 2000
(IFPRI, 2010). This success rests upon concerted investments
in agronomic research, infrastructure, and market development.
Most importantly, however, it would not have been realized
without large-scale water appropriations for irrigation from new
and often nonrenewable sources (Postel, 1999; Cassman and
Grassini, 2013).

The ever-expanding quest to feed human populations did
not come without repeated devastating setbacks. Settled life,
dense populations, and stratified societies gave rise to crowd
diseases, conflicts, and famines (Diamond, 2002). For instance,
during Ireland’s Great Famine in the 1840s potato blight attacks
ravaged the nationwide dependency on a single potato variety—
Ireland’s population fell by 25% (Curran and Fröling, 2010).
In the long run, though, mankind developed solutions and
proved successful to stretch continuously the number of people
to survive. However, the question if human ingenuity will
proceed to circumvent future quandaries in the tightening
water-food nexus toward future food security keeps alive a
long-running dispute.

1.2. Growing Societies in Face of
Environmental Limits
The bottleneck of planetary finite resources has been recognized
already by Thomas R.Malthus in the late eighteenth century, who
predicted catastrophic side effects with humanity’s expansion
(Malthus, 1798). Since then the paradigm of supposedly
inevitable “limits to growth” fostered prominent support (e.g.,
Ehrlich, 1968; Meadows et al., 1972). This worldview is contested
by Julian Simon, the classic protagonist of the theory that
technological and social progress will not only continue to
stretch food abundance, but make it infinite—the ultimate
resource would therefore not be oil or water, but human
ingenuity (Ruttan, 1971; Simon, 1981). Both beliefs, however,
prove incapable of describing historical broader perspectives.
The Neo-Malthusian (Aligica, 2009) score of dire predictions
of famine underestimate the ability of human societies to adapt
and change, and thus overcome chronic food deficiencies as
demonstrated by the actual course of history—Julian Simon
won on the bet against Paul Ehrlich (Sabin, 2013). But Simon’s
complacent idea that people are resource creators, not destroyers,
neglects already profound and potentially irreversible human
alterations of Earth-system functioning (Millennium Ecosystem
Assessment, 2005).With the need to provide food, anthropogenic
forces transformed the terrestrial biosphere, from mostly natural
landscapes to predominantly anthropogenic biomes (Figure 1A).
By the year 2000, 39% of ice-free land surface were turned
into agricultural land or settlement, and only 25% remain
natural (Ellis et al., 2010). This has critical implications for the
diversity, composition, and life-supporting functioning of global
ecosystems, and is not least a significant contributer to climate
change (e.g., Tilman, 1999; Foley et al., 2005; Barnosky et al.,
2011; Hartmann et al., 2013; Campbell et al., 2017). Although
the Green Revolution-driven intensification held back more
extensive land conversion to agriculture (Stevenson et al., 2013),
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FIGURE 1 | Historical transitions in human land and water use. (A) Shows schematic stages of historical anthropogenic land-use transitions (redrawn from Foley

et al., 2005). Over the course of the 20th century, (B) shows the expansion of areas equipped for irrigation (dashed line, left axis; based on Siebert et al., 2015) along

with absolute amounts of human water use and consumption (colored wedges, right axis). Water use and consumption (i.e., a fraction of water use) is separated for

irrigation (own model simulations) and other sectors including industrial, domestic, and livestock (based on Flörke et al., 2013). Non-renewable groundwater use is

based on simulations from Wada et al. (2016b). Unsustainable water use, that is, the transgressions of environmental flow requirements and non-renewable

groundwater use, is highlighted as negative volumes (see the Appendix for LPJmL model simulation details).

it came at the cost of profound environmental consequences
(Pingali and Rosegrant, 1994). Monocultures accompanied with
chemical fights against evolving pests and diseases impair
biodiversity and human health (Eddleston et al., 2002; Goulson
et al., 2015). More synthetic fertilizer is applied in agriculture
than is fixed naturally in all terrestrial ecosystems together, with
widespread effects on water quality and coastal and freshwater
ecosystems (Smil, 1991; Galloway and Cowling, 2002; Mekonnen
and Hoekstra, 2015). Among the most pervasive factors,
freshwater depletion, dam construction, and river diversion—in
the first place to quench the thirst of irrigation (Figure 1B)—have
transformed the hydrologic cycle of the Earth to the degree that
approximately 25% of the world’s major rivers no longer reach
the ocean (Gleick, 2003; Molden, 2007). The extent of the world’s
wetlands has collapsed to one third (Gardner et al., 2015), and
half of all accessible freshwater is used for human needs (Postel
et al., 1996; Vörösmarty et al., 2005).

The Holocene provides a stable and largely benign
environment for humanity, but agricultural intensification
became a local to global driver of critical influences on Earth-
system processes (Matson, 1997; Foley et al., 2005; Millennium
Ecosystem Assessment, 2005; IAASTD, 2009; Campbell et al.,
2017). Humans emerged as a planetary force, which is considered
as a new geologic epoch, the Anthropocene (Crutzen, 2002),
increasing the risk to push the Earth system into a post-Holocene
state with characteristics that potentially undermine system
resilience and human well-being (Monastersky, 2015; Steffen
et al., 2016). Such risks have been acknowledged by defining
critical environmental limits to anthropogenic influences on
the Earth system (e.g., Petschel-Held et al., 1999; Lenton et al.,
2008), formulated later as “Planetary Boundaries” (Rockström

et al., 2009). As a precautionary principle, the nine Planetary
Boundaries—absolute biophysical thresholds or limits—
delineate the safe operating space for humanity, and thus
sustainable long-term prosperity (Steffen et al., 2015). Although
such numbers are difficult to quantify and to some degree
still lack conceptional scrutiny, the concept marks actionable
policy targets and thus provides a valuable tool for planetary
stewardship. The central evidence of the framework is clear and
striking: (i) there is only marginal room for additional expansion
and conventional intensification of agriculture, and (ii) current
over-exploitation must be reset to maintain future capacities for
human development.

1.3. The Twin-Challenge: People and Planet
Not all countries benefited equally from historic resource use
and intensification, severe disparities in human deprivation
remain. As of today, more than 2 billion people are affected by
water stress, which hinders economic and social development
(ECOSOC, 2016a). Mainly as a result of vulnerable and low-
yielding farming systems, 800 million people remain chronically
undernourished, 160 million children suffer stunted growth, and
>10% of the world’s population still live in extreme poverty
(<US$1.90 cap−1d−1) (FAO et al., 2015; ECOSOC, 2016a).
Such realities underline that agriculture is still at the center of
sustainable development (Brundtland Commission, 1987), even
though it is clear that tackling hunger and malnutrition is not
only about the amount of food produced.

Sustainable development in the Anthropocene takes more
than environmental sustainability. Equally important are social
and economic foundations for human development (Tibbs, 2011;
Raworth, 2012b; Griggs et al., 2013). Raworth (2012a) added such
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social boundaries to the Planetary Boundary concept, creating
a non-trivial subspace, the “safe and just space for humanity.”
The right to food therefore depends on environmental integrity
(World Social Science Report, 2016). Figure 2A illustrates this
idea for the two dimensions food production and water use
(i.e., water withdrawals), providing the conceptual framing for
this article.

In the vein of integrating social needs and environmental
limits, a set of Sustainable Development Goals (SDGs)
was stipulated by the United Nations in September 2015
(United Nations, 2015a). The 2030 Agenda for Sustainable
Development—relevant to developed and developing nations
alike—is a transformative and ambitious global vision for
sustainability, eradication of hunger, and poverty. As a follow-up
of the partly successful Millennium Development Goals1, they
now focus more prominently on environmental integrity,
integrating the three dimensions of sustainable development:
nested environmental, social, and economic sustainability,
based on closely interwoven goals and targets (ICSU, 2015).
This new direction—integrating people and the planet—is an
important step forward as the SDGs now acknowledge that food,
livelihoods and natural resource management can no longer be
looked at separately (FAO, 2016). They stipulate a sustainable
and resilient food production system (target 2.4) and sustainable
water withdrawals (target 6.4) as agreed goals among all nations.
On the same page, however, target 2.3 aims at doubling both
agricultural productivity and incomes of smallholder farmers by
2030, in support of target 2.1, that is, hunger eradication and
food security. This lays out a bold and seemingly conflicting
agenda. Although there was effort in providing an indicator
framework for progress monitoring (ECOSOC, 2016b), many of
the environment-related targets and indicators are insufficiently
defined, not backed by available data, and remain vague (Griggs
et al., 2014; ECOSOC, 2016b).

The strong rise in the human population is likely not to
level off until 2050, by which time it is expected to have
reached 9–10 billion (UNFPA, 2013; United Nations, 2015b). The
unprecedented confluence of socio-economic global mega-trends
such as economic growth and urbanization lead to substantial
changes in consumption patterns and more varied, high-quality
diets and thus resource requirements. This results in suggestions
that crop calorie production needs to be increased by 60-100%
in the forthcoming decades to eradicate hunger (IAASTD, 2009;
Alexandratos and Bruinsma, 2012; Valin et al., 2014; Searchinger
et al., 2018). Competition for water, land, and energy will
intensify, which further complicates the challenge of closing the
global food gap and will test the resilience of local to global
food systems (Godfray et al., 2010; Foley et al., 2011; Foresight,
2011; Searchinger et al., 2013). The current slowing down of
historic yield increases (Ray et al., 2012) is expected to face
adverse impacts through unabated climate change, which is likely
to exacerbate food insecurity particularly among the poorest
by increasing water stress and hydro-climatic variability (Lobell

1The target of global poverty reduction was reached five years ahead of schedule,
yet more than a billion people still live in extreme poverty today. Shortfalls remain
in achieving the targets related to food security (United Nations, 2016).

FIGURE 2 | Farm water management as a key factor in bridging the

water-food gap. (A) Illustrates the concept of the safe and just operating

space for humanity delineated by an environmental and social boundary. The

environmental boundary is illustrative for various Planetary Boundaries, such

as freshwater use, land use, or climate change. The social boundary marks the

threshold of an agreed social foundation. Pathways going beyond the

(Continued)
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FIGURE 2 | current situation highlight a conventional resource-based (solid

line) and a sustainable intensification option (dashed line). (B) Details the same

concept for the water–food case explicitly and outlines the pathway envisioned

in the 2030 Agenda for Sustainable Development, i.e., resetting current

freshwater overdraft while simultaneously doubling agricultural productivity. (C)

quantifies effects on global caloric food production when policies in line with

sustainable withdrawals (SDG 6) were implemented. Option 1 rigorously

maintains EFRs (based on Jägermeyr et al., 2017); option 2 additionally

exploits farm water management opportunities (see Appendix); option 3

incorporates additional measures such as soil fertility management, additional

irrigation expansion, and food waste reduction to close the food gap by 2050

(e.g., Gerten et al., 2020).

et al., 2008; Wheeler and von Braun, 2013; Cisneros et al., 2014;
Porter et al., 2014; Rosenzweig et al., 2014). Climate changemight
further limit the potential for intensification of production (Pugh
et al., 2016), paired with the present degradation of ecosystems,
poses a threat to the long-term sustainability and the potential
reprint of the Green Revolution’s success (Pingali, 2012).

With humans established as a planetary force, the question is:
Does a safe and just space for humanity exist, as delineated by
the complex line of SDG targets? Under which conditions does it
exist, and how would a viable path look like to reach it? After all,
achieving global food security against a background of climate
change and increasingly scarce freshwater resources, without
jeopardizing Earth system functioning (Figure 2A), remains one
of the grand challenges for the twenty first century (e.g., Tilman
et al., 2002; Foley et al., 2011; Godfray and Garnett, 2014;
Rockström et al., 2017; Searchinger et al., 2018).

2. WATER AS KEY FACTOR: BETWEEN
SCARCITY AND OPTIMISM

Freshwater contributes fundamentally to human well-being and
to the resilience of social-ecological systems. While maintaining
ecosystem functions, water is inextricably linked to poverty
reduction, economic growth, food security—and therefore at the
very core of sustainable development (World Water Assessment
Programme, 2015b). Water is central to attaining most, and
arguably all, of the SDGs (ECOSOC, 2016a). It comes down
to water, because global freshwater resources are scarce and
heterogeneously distributed across populations and inequalities
exist in water access (Carr et al., 2015; Mekonnen and Hoekstra,
2016). Between 1960 and 2005, the percentage of the world
population under chronic water stress (<1,000 m3/cap/yr)
increased from 9% to 35% (Kummu et al., 2010). As the total
freshwater demand across sectors to meet SDG targets (SEI,
2005; World Water Assessment Programme, 2015b) is projected
to increase by a global 55% by 2050, in some countries even
by 100%, global freshwater resources are put under progressive
pressure (Vörösmarty et al., 2005; Gleick and Palaniappan, 2010;
Flörke et al., 2013; Cisneros et al., 2014; Porkka et al., 2016). In the
end, due to its complex and trans-boundary nature, freshwater
resourcesmay be regarded as evenmore valuable than oil—which
comes with alternatives, but water might not (Kabat, 2013).

In view of the SDG agenda, agricultural water use stands out
twice. First, over-exploitation and pollution of global freshwater

resources is the number-one reason to the degradation of
ecosystems, with far-reaching consequences across the world.
Effective means to reset overuse and conserve, protect, and
enhance aquatic ecosystems at larger domains are yet to be
identified. Second, freshwater is an irreplaceable element of
growing food. Worldwide doubling of agricultural productivity
appears beyond reach without a profound revolution in
agricultural water management. The SDG agenda confidently
builds upon opportunities associated with water management in
both irrigated and rainfed agriculture that, however, are yet to
be devised (Figure 2B).

2.1. Irrigated Farming—Ratchet and
Hatchet
Irrigation expansion was a major contributor to the Green
Revolution, especially in Asia. Over the last 50 years irrigated
area roughly doubled (Siebert et al., 2015; FAO, 2017) and
today a quarter of total harvested cropland is under irrigation,
producing ∼40% of global cereals (Portmann et al., 2010).
Irrigation heavily sustains global agricultural production and
contributes to food security worldwide. But it comes at a steep
price for the ecosystem. Irrigation is the single largest user of
freshwater, accounting for roughly 70% of total withdrawals,
and over 90% in the world’s least-developed countries (Gleick
et al., 2009; World Water Assessment Programme, 2015a).
Water resources are increasingly depleted for human needs,
not only, but most importantly for irrigation. In some regions
withdrawals exceed 100% of renewable water resources, with
devastating consequences (Postel, 1999). Groundwater is being
depleted to the degree that it contributes to sea level rise
in a non-trivial way (Aeschbach-Hertig and Gleeson, 2012;
Pokhrel et al., 2012; Wada et al., 2012a). Wetlands disappear
irreversibly, many rivers no longer reach the ocean or inland
sinks, and in turn 20% of the global irrigated land area
is affected by salinization, waterlogging occurs, water quality
deteriorates (Mekonnen and Hoekstra, 2015), and invasive
species are introduced and proliferate (Vörösmarty et al., 2005;
Molden, 2007; FAO, 2011; Wada et al., 2012b). Overall human
water use consistently rose over the course of the twentieth
century, now exceeding 4,000 km3/yr (Figure 1B and Table 1),
roughly 3,000 km3/yr for irrigation and 1,000 km3/yr for
other sectors; estimates vary across studies (see e.g., Flörke
et al., 2013; Wada et al., 2016a; Huang et al., 2018). Aquatic
ecosystems are thereby rapidly degrading with potentially
serious but unquantified costs, imposing the risk of regime
shifts away from stable environmental conditions (Vörösmarty
et al., 2010; Rockström et al., 2014). Safeguarding riverine and
estuarine ecosystems is imperative for sustainable development
as they provide life-supporting functions (UnitedNations, 2015a)
that, in turn, depend on maintaining Environmental Flow
Requirements (EFRs), the quantity, timing, and quality of river
flows (Acreman and Dunbar, 2004; Falkenmark et al., 2004;
Millennium Ecosystem Assessment, 2005; Brisbane Declaration,
2007) and groundwater (de Graaf et al., 2019).

The Planetary Boundary for human freshwater use is defined
as the maximum global amount of freshwater that can be
appropriated by humans (i.e., blue water consumption abstracted
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TABLE 1 | Food production and water use under different water management scenarios.

Food Irrigation Irrigation Other sectors Other sectors

production withdrawal consumption withdrawal consumption

Current situation 740 * 1013 kcal 2,409 km3 1,255 km3 1,070 km3 193 km3

1. Respect EFR −5% −41% −35% −22% −22%

2. Respect EFR with ambitious water

management

+30% −50% −24% −24% −25%

“Respect EFR” refers to a world in which water withdrawals are not allowed to tap into environmental flows (based on Jägermeyr et al., 2017). “Ambitious water management” refers to

a management scenario with best-practice irrigation upgrades (including irrigation expansion with water saved through efficiency improvement), supplemental irrigation through water

harvesting, alleviation of soil evaporation (mulching, conservation tillage); management assumptions are based on Jägermeyr et al. (2016), but new simulations are presented here to

be combined with the “Respect EFR” scenario (see Appendix). Scenario 1 and 2 are illustrated in Figure 2C. Data are averaged for the 1980 to 2009 time period. For similar estimates

based on an independent method see e.g., Rosa et al. (2018).

from rivers, reservoirs, lakes, and aquifers) (Rockström et al.,
2009; Steffen et al., 2015). Provisionally set to 4,000 km3/yr
(note that consumption does not equal withdrawals, see below),
it builds upon a top-down approach that juxtaposes global
renewable freshwater resources and water volumes needed
to avoid water stress, treated as a global average. Despite
the significance of this initial quantification, it oversees local
impairments and already severe flow alterations. As water use is
not balancing globally, a key component missing is the spatially
explicit account of seasonal EFRs needed to safeguard the aquatic
habitat. Even though not yet transgressed at global level, the
global threshold would be lower when accounting for regional
heterogeneity in natural flows (Gerten et al., 2013) and thus a
regional Planetary Boundary based on EFR transgressions was
proposed (Steffen et al., 2015). While it remains challenging to
quantify the point at which regional water use has a globally
destabilizing effect (i.e., the definition of a Planetary Boundary
Zipper et al., 2020), non-sustainable water use, especially in view
of SDG indicator 6.4 “sustainable withdrawals,” needs to account
for a more context-specific, bottom-up approach in which local
ecosystem needs set boundaries for human water use. Local
holistic methods for the comprehensive determination of EFRs
are needed for effective implementations (Poff and Zimmerman,
2010). But simpler EFR representations in mechanistic global
hydrological models (e.g., Smakhtin et al., 2004; Jägermeyr et al.,
2017; Hanasaki et al., 2018; Rosa et al., 2018; Pastor et al., 2019)
can already assist initial decision making. Such pilot estimates
suggest that about 40% of irrigation water currently abstracted
from surface water bodies is at the expense of environmental
flows and needs to be reset (Table 1). In addition, roughly 20%
of irrigation water use is depleting groundwater bodies (Döll
et al., 2012; Wada et al., 2012b, 2016b), indicating that 50–60%
of current global irrigation practice is unsustainable (Rosa et al.,
2019). Most recently, EFR methods have been implemented in
global gridded crop models, linking overdraft to food production
(Jägermeyr et al., 2017; Rosa et al., 2018; Pastor et al., 2019; Gerten
et al., 2020). While from a global food production perspective
rigorously reallocating these water volumes to the ecosystem
would only impinge upon about 5% of global caloric production
(i.e., rainfed and irrigated production combined, Jägermeyr et al.,
2017), in heavily irrigated systems such as Central and South
Asia, current food production largely depends on unsustainable

withdrawals (Figure 2C). A number of policy recommendations
have been established to safeguard riverine ecosystems (e.g.,
Brisbane Declaration, 2007; Le Quesne et al., 2010; European
Comission, 2015; FAO, 2019), but methodological, institutional,
and financial challenges hinder broader implementation and
recognizing nature as an equivalent water user (Smakhtin, 2008;
Poff and Matthews, 2013).

2.2. Improving Crop Water Productivity
In general, there are two avenues to increase water productivity,
either by reducing water losses or increasing the output per
volume of water used. At global scale, irrigation systems operate
at surprisingly low efficiency levels—only about a third of the
diverted water is consumed by the crop—much is lost in the
conveyance system or through inefficient application to the
plant (Vickers, 2001; Molden, 2007; Jägermeyr et al., 2015,
2016). Although localized drip irrigation techniques can achieve
efficiencies in excess of 95%, only 3% of irrigated land is
operated under such systems worldwide (Postel, 1999; ICID,
2012; FAO, 2014a). Yet the mere focus on expansion of irrigated
land has changed recently, and solutions increasingly focus on
modernization of existing infrastructure (Faurès et al., 2007;
Siebert et al., 2015). Substantial water productivity gains can be
achieved through upgrades in irrigation systems at farm level
(Postel, 1999; Molden, 2007; IAASTD, 2009; Molden et al., 2010;
Al-Said et al., 2012; 2030 Water Resources Group, 2013; World
Water Assessment Programme, 2015b). But scaling up irrigation
efficiency improvements across water sheds has been hampered
by misleading definitions of water “losses” and saving potentials,
which still fuels an aged debate about the irrigation paradox:
higher efficiencies can lead to increased consumption (Seckler,
1996; Perry et al., 2009; Frederiksen, 2011; Gleick et al., 2011;
Christian-Smith et al., 2012; Jia, 2012; Jägermeyr et al., 2015;
Grafton et al., 2018).

Two aspects are important to note herein: first, only part of
the water diverted, but not beneficially used up by the crop (i.e.,
not transpired) can be considered a loss. A significant fraction
(e.g., drainage, surface runoff) remains in the hydrological
system and might be accessible downstream. Only irrigation
water that is non-beneficially consumed (e.g., soil evaporation,
evaporative conveyance losses, weed transpiration) might form
accessible irrigation water losses, while reducing return flows
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can be desirable for other reasons. The traditional definition of
irrigation efficiency (i.e., evapotranspiration by diverted water)
disregards that evapotranspiration (i.e., soil evaporation plus
plant transpiration) includes fractions accessible through better
application and conveyance systems. Therefore, and because
return flows are not accounted for, traditional irrigation efficiency
approximates 100% at watershed level, which is misleading
and merits revision. A beneficial irrigation efficiency measure
has been proposed, that is, the ratio of beneficial (i.e., crop)
transpiration and irrigation withdrawals (Jägermeyr et al., 2015),
which partitions non-beneficial irrigation water fluxes and thus
isolates losses even at watershed level.

Second, pursuits to increase irrigation efficiency do not
necessarily translate into reduced water withdrawals, as
farmers—in the absence of effective water regulation—generally
rather expand irrigation or switch to higher value crops, instead
of losing water allocations. Unchanged water diversion paired
with more efficient systems results in reduced return flows
into the river, which can have adverse effects for downstream
users (Ward and Pulido-Velazquez, 2008; Grafton et al., 2018).
Besides these valid arguments, any reduction in non-beneficial
consumption through irrigation upgrades improves the overall
crop water productivity at basin level. Irrigation improvements,
however, do not directly increase crop yields, but water savings
can be used to boost yields by expanding irrigation or toward
reducing overdraft. But it is clear that policies and institutional
legislation to regulate water reallocations become paramount
to reset overdrafts already in place (Nelson et al., 2010; Simons
et al., 2015).

The initially linear relationship between water application and
yield levels off at high water inputs and many irrigated systems
apply more water than needed (e.g., see Figure 5 in Molden
et al., 2010; Lopez et al., 2017). Forms of deficit irrigation can
thus reduce water requirements at marginal yields reductions,
driving up water productivity substantially (Fereres and Soriano,
2007; Molden, 2007; Geerts and Raes, 2009; IAASTD, 2009;
Lopez et al., 2017). Including application and conveyance
losses, recent modeling studies confirm—in theory—that there
are sizeable saving potentials in irrigated agriculture across
regions worldwide. More than 40% of current irrigation water
consumption might be accessible under ambitious irrigation
transitions (Table 1) to either reduce use or expand irrigated
areas (Brauman et al., 2013; Fishman et al., 2015; Jägermeyr
et al., 2016; Lopez et al., 2017; Stenzel et al., 2019; Huang
et al., 2020). However, dynamic quantitative water accounting
and local net effects of irrigation transitions in account of
non-trivial water trade-off dynamics along the river network
are difficult to assess at global scale (Munia et al., 2016).
Although global crop-hydrological models increasingly provide
the infrastructure to represent mechanistic water partitioning,
irrigation systems are still insufficiently represented in many
models (e.g., Siebert and Döll, 2010; Elliott et al., 2014). In
state-of-the-art global crop models contributing to the Global
Gridded Crop Model Intercomparison project (GGCMI, Elliott
et al., 2015; Franke et al., 2019; Jägermeyr et al., 2020), irrigation
is assumed to be unconstrained by actual freshwater availability
and to operate at loss-free water conveyance and application.

In global hydrological models such as in the Inter-Sectoral
Impact Model Intercomparison Project (ISIMIP, Frieler et al.,
2017) irrigation is usually constrained by surface and often also
groundwater availability, but crops and different management
forms are usually not explicitly represented (Wada et al., 2016a).
In the next crop model intercomparison phase water-availability
constraints and mechanistic irrigation processes need to be
explicitly represented in multiple harmonized models, based on
improved input data, to refine understanding of future water
saving strategies, which can inform decision making and guide
local feasibility assessments for implementation.

2.3. Rainfed Agriculture—The Crux of a
New Green Revolution
The second avenue for increasing water productivity is increasing
the yield output per water used. Important in irrigated systems as
well, but especially in rainfed agriculture it includes agronomic
practices such as water harvesting, supplemental irrigation, and
soil and water conservation. The contribution of irrigation to
global food security has been tremendous and will even increase
in the future (Faurès et al., 2007; World Water Assessment
Programme, 2015b), but irrigation alone will not be sufficient to
attain the SDG food targets (Rockström et al., 2007b; Davis et al.,
2017; Keys and Falkenmark, 2018). New substantial freshwater
allocations are required to bring current food production on a par
with future demands: 5,200 km3/yr of additional blue and green
water might be needed by 2050 under current water productivity
levels (SEI, 2005; Rockström et al., 2007b). However, such
volumes have to originate to 85% from green water on current
rainfed land, that is, through maximizing water productivity, as
arable land is scarce and irrigation expansion limited (SEI, 2005;
Schyns et al., 2019). The majority of food production at global
level—currently about 60%—remains rainfed for the foreseeable
future (Siebert and Döll, 2010; FAO, 2011; Keys and Falkenmark,
2018).

The first Green Revolution focussed on areas with sufficient
precipitation or irrigation, where returns were high (Pingali,
2012). Tackling today’s yield gaps requires more marginal regions
to come into focus, with water constraints in semi-arid and
mostly rainfed regions. In these drought-prone and low-yielding
systems, the lack of water is of principal concern, because it
subsists a co-limitation of nutrients and water. Replenishing
soil fertility will often not have much effect, until sufficient soil
moisture becomes available to the plant (Oweis and Hachum,
2006). Yet, an important aspect is that it is often not about
the total amount of precipitation per year that imposes greatest
problems, but unreliable and erratic rainfall (i.e., dry spells
and periodic water scarcity) (Wani et al., 2009). In addition,
poor farm water management characterized by excessive on-
farm water losses in semiarid tropical systems provokes root
zone drought and resulting low yields (1-2 t/ha) (Oweis and
Hachum, 2006; Rockström et al., 2007b). On average, a large
fraction of available precipitation (and irrigation) water runs off
unused, evaporates non-beneficially from bare soils, or percolates
below the plant root zone. Such losses of non-beneficial green
water flows lead to a nonlinear relationship between yield growth
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and water consumption, which indicates a particularly great
opportunity to improve water productivity at the low-yield range
in savanna agro-ecosystems (Rockström et al., 2003). A doubling
of staple crop yields in many parts of sub-Saharan Africa seems
indeed achievable with current know-how, through relatively
small manipulations of rainwater partitioning (Rockström and
Falkenmark, 2000; Molden, 2007; Pretty et al., 2011; Jägermeyr
et al., 2016). In fact, this is the world’s largest untapped potential
to safe water in food production (Falkenmark et al., 2009).

Climate change with altered rainfall patterns might impose
additional stress on agricultural systems, both rainfed and
irrigated, but particularly for smallholders in semi-arid
regions (Falkenmark et al., 2009; Porter et al., 2014). Field
studies, however, demonstrate a wide spectrum of long-known
agro-ecological practices to increase plant water availability
and thereby climate resilience through e.g., maximizing soil
infiltration, collecting surface runoff for supplemental irrigation,
and alleviating soil evaporation (e.g., Fox and Rockström, 2003;
Welderufael et al., 2008; Araya and Stroosnijder, 2010). Improved
crop varieties and rotations adapted to dryland farming,
optimum crop geometry, agroforestry, and conservation tillage
can also play an important role in increasing plant water
uptake and thus stabilizing yields (Duivenboodew et al., 2000;
Rockström et al., 2007a). Such readily available measures are
being implemented sporadically around the world, leaving huge
untapped potential to scale up (Mati et al., 2007; Barron et al.,
2015; Searchinger et al., 2018). Rockström and Karlberg (2010)
therefore call for a “triple Green Revolution”: intensify food
production; within environmental limits; and mainly focused
on green water. These facts render remarkable hydro-climatic
opportunities for on-field water management interventions in
rainfed farming to improve yield levels, smallholder climate
resilience, and—most importantly—livelihoods of the poor
(Biazin et al., 2012).

2.4. Water Management as a Pivot Toward
Closing the Future Food Gap
Today the debate about sustainable intensification of
agriculture (The Royal Society, 2009; Foley et al., 2011;
Foresight, 2011; Tilman et al., 2011; Garnett et al., 2013;
Gunton et al., 2016; Hunter et al., 2017; Rockström et al.,
2017; Pretty, 2018; Pretty et al., 2018) goes past the two-
dimensional clash of “growth without limits” or “limits to
growth.” Envisioning a sustainable future, the focus shifted
toward growth within limits or “abundance within Planetary
Boundaries” (Rockström and Klum, 2015). This middle ground
now forms the nexus in which to move beyond a focus on
biophysical limits only and toward solution-oriented research,
developing pathways to exploit “planetary opportunities”
(De Fries et al., 2012).

In the historical context, it is clear that a third agricultural
upswing is imperative—the sustainability revolution. There are
repeated calls for a second Green Revolution (e.g., Conway,
1999; Annan, 2003; Ki-moon, 2008), now with the recognition of
environmentally sound strategies. Previous research, cited above,
has shown that there are sizeable management opportunities
in both irrigated and rainfed systems worldwide. Combined,

ambitious water management strategies across scales can
significantly increase global food production while relieving
pressure on freshwater resources (e.g., Gerten et al., 2020). Here
updated simulations, based on model configurations in previous
publications (Jägermeyr et al., 2016, 2017; Gerten et al., 2020, see
Appendix), highlight that such measures can over-compensate
losses associated with rigorously safeguarding EFRs and further
increase global caloric food production by 30% compared to the
current situation (Figure 2C). Independent approaches arrive at
similar estimates (Rost et al., 2009; Brauman et al., 2013; D.
Chukalla et al., 2015; Huang et al., 2020).

Yet, food demand is expected to increase by 60–100% a
few decades into the future. Closing the future food gap
sustainably requires bringing together additional measures
(Grafton et al., 2017; Kummu et al., 2017). Solutions must
integrate strategies harnessing opportunities in all domains of the
food system, capitalizing on synergies and co-benefits, embedded
in landscape approaches. These measures include yield gap
closures not just through improved water supply, but soil fertility
management and crop rotation, precision agriculture with
targeted fertilizer application and integrated pest management,
genetic improvement of crop’s stress resistance and nutrient
efficiency, reduce food losses (Jalava et al., 2016; Ritchie et al.,
2018), and importantly, change human diets toward lower animal
protein intake (Springmann et al., 2018; Willett et al., 2019).
Naturally, efforts to advance toward replacement level fertility
would help reduce future food demand, especially if in synergy
with attaining other SDGs (e.g., Abel et al., 2016). Linking supply
and demand, food trade is a critical element of any solution to
global food security, underlined by the fact that today 80% of
people live in net food-importing countries (Porkka et al., 2013;
MacDonald et al., 2015).

Recently, evidence accumulates showing that the safe and just
space in terms of food production within planetary boundaries
indeed exists. Modeling studies suggest that attaining sustainable
future food security in recognition of the planetary boundaries
would be narrowly possible (Conijn et al., 2018; O’Neill
et al., 2018; Springmann et al., 2018; Gerten et al., 2020).
However, these results build on a progressive transformation of
current agricultural systems. Fertilizer application need to be
redistributed, land use pattern revised, water use regulated, and
biodiversity maximized (e.g., Pretty et al., 2018).

It is clear that water management is not a panacea and will
not be sufficient to attain the 2030 Agenda in isolation. It is
considered a critical starting point for sustainable intensification
and it integrates into more holistic agro-ecological landscape
approaches to further maximize synergies and to adapt to
local requirements (see e.g., Tittonell et al., 2012; Marques
et al., 2016). While the implementation of water targets face
financial, institutional, and cultural challenges, returns include
important co-benefits, especially in the developing world.
Improved irrigation systems can improve crop quality, reduce
application of fertilizer and pesticides and thus improve water
quality, and reduce water logging (Gleick et al., 2011; Calderón
et al., 2014). Localized irrigation, water harvesting, mulching,
and conservation tillage can reduce soil degradation, and help
control weeds (Liniger et al., 2011), which is essential for
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integration into larger landscape conservation approaches (e.g.,
Duivenboodew et al., 2000; Marques et al., 2016). Degraded
soils (i.e., soil erosion and loss of soil organic matter and
nutrients) currently affect >60% of the cropland in sub-Saharan
Africa (Liniger et al., 2011). Its restoration is an important
prerequisite for sustainable intensification; a positive example
at scale is the Great Green Wall Initiative spanning across
the Sahel (African Union and UN Convention to Combat
Desertification, 2020). Conservation agriculture in general will
also help mitigate greenhouse gas emissions (Mahdi et al.,
2015). As probably the single most important synergy, water
management intervention can expand economic opportunities,
and is often a prerequisite for smallholders to invest in
higher inputs such as fertilizer or irrigation (Conway, 1999;
Biazin et al., 2012; Burney et al., 2013). Low-cost measures
including organic mulching, conservation tillage, and simple
drip kits, can catalyze a shift past low input-output systems
and directly translate into improved livelihoods (Postel et al.,
2001; Kahinda and Taigbenu, 2011). Upfront investment needs
can be steep, but long-term economic analyses confirmed the
substantial net profits achievable (Fox et al., 2005; Biazin et al.,
2012). Given that many poor subsist on water-constrained
agriculture, the associated scope for poverty alleviation and
improved local food security is tremendous (Dillon, 2011;
Burney and Naylor, 2012; World Water Assessment Programme,
2015b).

Infrastructure development for small-scale water harvesting
systems are associated with investments comparable with
those for basic sanitation and water supply (Rockström and
Falkenmark, 2015). Off-the-cuff calculations for irrigation
transitions costs, assuming upper-end per hectare investments
for drip irrigation of US$ 1,000–18,000, come down to 100–
1,800 billion for 100 Mha crop land—a third of irrigated area
worldwide. When weighing these large upfront capital costs,
it is important to account for the costs of not taking action.
Degrading ecosystems can be of substantial value (Poff et al.,
2015), Costanza et al. (2014) estimate that US$ 3,000–10,000
billion per year worth of ecosystem services were lost due to
disappearing wetlands.

Water governance is needed to allocate water resources to
high-value uses and to balance priorities amongst competing
demands (Falkenmark et al., 2007; Hoekstra, 2011; World Water
Assessment Programme, 2015b). For instance, most economic
models are yet to value the services provided by freshwater
ecosystems. There are positive examples, e.g., in the USA (Kendy
et al., 2012) or China (Zhang et al., 2012), but water management
practices are often fragmented, leading to lost synergies,

poor trade-offs, and are not readily transferable (Boelee,
2011). Even though central to sustainable intensification of
agriculture, these farmwatermanagement strategies are currently
insufficiently represented among international development
policies (Rockström and Falkenmark, 2015; Searchinger et al.,
2018).

The main principles for sustainable intensification of
agriculture are evident: (i) improve efficiency in resource use;
(ii) expand or redistribute inputs to underperforming systems,
and (iii) conserve and enhance natural ecosystems (e.g., FAO,
2014b). However, there is a clear research gap regarding how
to implement these goals at scale. Many promising ideas and
local solutions prove successful (e.g., Pretty et al., 2006, 2011;
Cui et al., 2018; Pretty, 2018; Searchinger et al., 2018)—by
2018 about 163 million farms use at least one component of
conservation agriculture (Pretty, 2018; Pretty et al., 2018). But
knowledge of how to transform agricultural systems across
scales, in respect of various limiting biophysical, institutional,
economic, and cultural factors is largely missing. Despite the
prominent position in the 2030 Agenda, the global potential of
sustainable intensification of agriculture, and especially the water
dimension therein, is widely unknown.

In view of the broader historical human race for food, new
innovations will certainly create technological fixes, which will
further push the envelope of opportunities. But when faced
with the scale of untapped potentials associated with traditional
practices, the next agricultural pivot appears to be, above all, an
implementation challenge.
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APPENDIX

Global simulations of irrigation water use, environmental
flow requirements, and EFR transgressions as shown in
Figure 1B are performed with the global agro-hydrological
model LPJmL. Model configurations and input data setups
are as in Jägermeyr et al. (2017). The only difference
is the consideration of a transient land-use input (Siebert
et al., 2015) to account for historical changes over the 20th
century. Simulated water use and EFR transgressions shown
in Figure 1B are based on the average of three different
historical re-analysis weather data inputs and three different
EFR calculation methods (see Jägermeyr et al., 2017 for
more details).

Farm water management potentials are also simulated with
the LPJmL model, based on assumptions in Jägermeyr et al.
(2016). The “ambitious water management” scenario presented
here refers to water and soil management interventions in both

irrigated and rainfed systems. It includes best-practice irrigation
upgrades, that is, switching to drip irrigation where possible
and sprinkler systems otherwise, only paddy rice is assumed to
operate under surface irrigation. Irrigated areas are assumed to
expand based on water saved through efficiency improvements.
Rainfed systems are simulated under supplemental irrigation
through rainwater harvesting and partial alleviation of soil
evaporation through mulching and conservation tillage. These
management practices are based on assumptions in Jägermeyr
et al. (2016). New simulations are performed here to combine
the effects of maintaining EFRs with the “ambitious water
management” scenario in Jägermeyr et al. (2016). Jägermeyr
et al. (2017) also includes farm water management scenarios, but
not the more ambitious one use here. Farm water management
potentials are simulated under constant land use pattern
representing the year 2005, and all other model setups and
configurations are as in Jägermeyr et al. (2016) and Jägermeyr
et al. (2017).

Frontiers in Sustainable Food Systems | www.frontiersin.org 16 April 2020 | Volume 4 | Article 35

https://www.frontiersin.org/journals/sustainable-food-systems
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-food-systems#articles

	Agriculture's Historic Twin-Challenge Toward Sustainable Water Use and Food Supply for All
	1. A Challenge for Human Ingenuity
	1.1. Conundrums of Settled Life
	1.2. Growing Societies in Face of Environmental Limits
	1.3. The Twin-Challenge: People and Planet

	2. Water as Key Factor: Between Scarcity and Optimism
	2.1. Irrigated Farming—Ratchet and Hatchet
	2.2. Improving Crop Water Productivity
	2.3. Rainfed Agriculture—The Crux of a New Green Revolution
	2.4. Water Management as a Pivot Toward Closing the Future Food Gap

	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix


