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The development of new approaches to detect motor-related brain activity is key in many aspects of science, especially

in brain-computer interface (BCI) applications. Even though some well-known features of motor-related electroen-

cephalograms (EEGs) have been revealed using traditionally applied methods, they still lack a robust classification of

motor-related patterns. Here we introduce new features of motor-related brain activity and uncover hidden mechanisms

of the underlying neuronal dynamics by considering event-related desynchronization (ERD) of µ-rhythm in the sen-

sorimotor cortex, i.e. tracking the decrease of the power spectral density in the corresponding frequency band. We

hypothesize that motor-related ERD is associated with the suppression of random fluctuations of µ-band neuronal ac-

tivity. This is due to a lowering of the number of active neuronal populations involved in the corresponding oscillation

mode. In this case we expect more regular dynamics and a decrease in complexity of the EEG signal recorded over the

sensorimotor cortex. In order to support this theses we apply measures of signal complexity by means of recurrence

quantification analysis (RQA). In particular, we demonstrate that certain RQA quantifiers are very useful to detect the

moment of movement onset and therefore are able to classify the laterality of executed movements.

The detection of the motor-related brain activity for non-

invasive EEG-based brain-computer interfaces is an ac-

tively discussed topic in many areas of research. This

is of special interest in context of neurorehabilitation

and non-muscular control of remote devices using BCI-

based techniques. Traditionally used methods for motor-

related feature extraction, such as spatial filtering and

time-frequency analysis, allow to associate motor actions

with ERD of µ-band oscillations (8-13 Hz) over the sen-

sorimotor cortex. However, these features, i.e. location

of brain activity sources, amplitudes of spectral compo-

nents, etc., are of strong inter- and intrasubject variabil-

ity. Moreover, inherent nonstationarity and a poor signal-

to-noise ratio of EEG signals strongly complicate the de-

tection and classification of motor-related patterns in sin-

gle trials. To find new features of the motor-related brain

activity we explore EEG signals from the viewpoint of sig-

nal complexity. In particular, we put forward the hypoth-

esis that µ-band ERD causes reduction of random fluc-

tuations of neuronal activity, resulting in a more regular

behavior of EEG signals during motor task accomplish-

ments. With this goal in mind we apply RQA, a nonlin-

ear method which describes the recurrence structure of a

system by several quantifiers, in order to examine its com-

plexity and uncover hidden underlying phenomena. Our

findings show that certain RQA measures, namely deter-

minism and recurrence time entropy, allow to reveal new

features associated with neuronal activity complexity re-

duction. These measures are not only sensitive to the tran-

a)Electronic mail: n.frolov@innopolis.ru
b)Electronic mail: a.hramov@innopolis.ru

sitions from background to motor-related brain activity,

but also very useful for distinguishing different types of

motor actions (left/right limbs motion), which is valuable

in the context of potential BCI applications.

I. INTRODUCTION

The study of motor-related brain activity is a challenging

task at the intersection of neuroscience, medicine, nonlinear

physics and engineering. This problem is closely related to

the neurorehabilitation of post-stroke patients suffering motor

and cognitive impairment1. Another branch of actual research

demanding brain motor-related activity decryption is a mental

control of robotic systems, prosthetic devises and vehicles2.

Translating the recorded signals of brain activity into control

commands, brain-computer interfaces (BCIs) can provide a

communication channel between the human and the external

device3–5.

Recently a considerable progress has been achieved in in-

vasive BCIs for motor control. This is due to the principles

of the invasive interfaces operation, which rely on the firing

properties of individual neurons or small groups of neighbor-

ing neurons modulating their activity according to the motor

tasks6. In this case motor-related neuronal activity patterns

are pronounced and well reproduced, which allows to develop

precise schemes for motor control5,7. Despite the outstand-

ing ability for an accurate detection and translation of brain

motor commands, the application of invasive BCIs for daily

purposes is extremely difficult since it requires complex brain

surgery, which is performed in rare cases of urgent need.

On the contrary, noninvasive BCIs are easy to apply and
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much more convenient in terms of usability. Among the vari-

ety of neuroimaging methods, electroencephalography (EEG)

appears to be one of the most suitable for routine BCI ap-

plications8. A comprehensive review on the current state

and future perspectives of sensorimotor EEG-based interfaces

was given by Yuan and He 9 . Traditionally, methods of spa-

tial filtering10,11, machine learning12,13 and time-frequency

analysis14,15 are the core algorithms for feature extraction in

this context.

However, the detection and classification of motor-related

patterns of brain activity using noninvasive techniques is

much more complicated. The fact is that EEG simultane-

ously records electrical activity of a large group of neuronal

populations located close to the measuring sensor16. Gener-

ally, distinct neuronal ensembles do not behave in coherency.

Therefore, EEG signals represent a complex mixture of local

neuronal activity components. The latter determines inherent

critical properties of EEG signals, such as a poor signal-to-

noise ratio and nonstationarity. Besides, a number of studies

reported that traditional features of motor-related brain activ-

ity such as amplitudes of EEG signals, power spectral density,

time-frequency and spatial features, basically show inter- and

intrasubject variability15,17–19. Hence, it is of high interest to

find relevant features and methods that will withstand the dis-

cussed weaknesses of EEG recordings.

It is known, that motor tasks block ongoing activity in the

µ-band (8–13 Hz) of a EEG record, i.e. event-related desyn-

chronization (ERD) takes place14. Motor-related ERD implies

a time-locked decrease in the number of active neurons in-

volved in µ-oscillations20. We hypothesize that this is equiv-

alent to a suppression of spontaneous fluctuation of neuronal

activity in the corresponding frequency band compared to the

preceding background activity. Thus, we expect that motor-

related neuronal dynamics should be reflected in EEG record-

ings by the signal’s complexity reduction.

To explore this phenomena, we apply recurrence quantifi-

cation analysis (RQA), which provides a rich number of rele-

vant measures of complexity21,22. RQA is a powerful tool for

the analysis of biological signals, specifically heart rate vari-

ability23,24, muscle activity25,26, sleep27–29 and pathological

EEGs30,31. Early RQA studies that focused on EEG analysis

demonstrated the ability of RQA measures to quantify N400

event-related potentials (ERPs) in single trials32, which em-

phasizes the robustness of the RQA approach in the context

of the current study.

In summary, this work intends to find new features of

motor-related brain activity with the focus on motor-related

reduction of EEG signal’s complexity in the µ-band. Here,

we test our hypothesis on the upper limb motor execution

tasks and apply RQA to quantify changes of signal complex-

ity caused by the motor task accomplishment. We demon-

strate that certain RQA quantifiers are sensitive to the transi-

tion from background to motor-related brain activity which,

in turn, reveals differences between left and right upper limb

movements.

The paper is organized as follows. Section II describes the

details of our experimental study, the data pre-/postprocessing

and briefly the RQA method. Section III is devoted to the

analysis of the time-dependent RQA measures and the infer-

ence of task vs. background differences along with differences

between left and right limb movements. Finally, we summa-

rize our results and discuss them in context of BCI develop-

ment in Section IV.

II. METHODS

A. Participants

Participants were recruited among the employees and stu-

dents of the Innopolis University. During the data prepara-

tion, we selected 10 subjects (7 male, 3 female) according to

the following checklist: healthy, aged 18–33, right-handed,

never participated in this or similar experiments before and

having no history of brain tumors, trauma or stroke-related

medical conditions. All the participants were pre-informed

about the goals and design of the experiment. Experimental

studies were performed in accordance with the Declaration of

Helsinki and approved by the local research Ethics Committee

of Innopolis University.

B. Data acquisition

EEG signals along with electromiograms (EMGs) from

both hands were recorded using non-invasive EEG/EMG sys-

tem “Encephalan-EEGR-19/26” (Medicom MTD company,

Taganrog, Russian Federation). Electrocardiogram (ECG)

and electro-oculogram (EOG) were also recorded for further

removal of cardiac and eye-movement artifacts. All recorded

signals were amplified and digitized at the sampling rate of

250 Hz. In order to record motor brain activity we used 9 EEG

Ag/AgCl electrodes Fc3, Fcz, Fc4, C3, Cz, C4, Cp3, Cpz, Cp4

located over the motor cortex according to the international

"10-10" system proposed by the American Electroencephalo-

graphic Society. To capture hand movements execution we

placed 4 EMG electrodes as follows: 1 reference on the wrist

and 1 on the forearm muscle for each hand.

C. Experimental setup

The session started with a 5-min recording of background

brain activity, during which the participants were instructed to

relax and listen to classical music. They were also instructed

not to think about anything special and to make no hand move-

ments. Then, each participant, during the active phase of the

experiment, performed two types of motor actions according

to the experimental protocol, i.e. movements for the left and

right hands (Fig. 1A). Each hand movement implied squeez-

ing the hand into a fist after the first signal, holding it down

to the second signal and then relaxing. The time interval be-

tween the first and the second signals was randomly chosen

for each motor task in the range 4–5 s and the time interval

between the second signal of the current task and the first sig-

nal of the next task (resting period) was randomly chosen in
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FIG. 1. A Schematic representation of the experimental procedure.

Subjects were sitting comfortably in the chair while performing mo-

tor actions of left and right hands on audio signal command. B Ex-

perimental sequence. Time intervals between the signals were cho-

sen randomly in ranges 4–5 seconds between first and second signals

for one task and 6–8 seconds from second signal of previous and first

signals of the next task. C Examples of recorded µ-band-pass fil-

tered EEG and EMG signals (LHM = left hand movement, RHM =

right hand movement).

the range 6–8 s (Fig. 1B). The active phase of the experiment

consisted of 30 repetitions of each type of motor task (60 total)

and the overall duration of the experimental procedure was ap-

proximately 18 minutes per participant, including background

activity recording.

D. Data preprocessing

The following preprocessing steps were carried out to pre-

pare raw EEG and EMG recordings for further analysis.

First, cardiac and eye-movement artifacts were removed

using recorded ECG and EOG signals via artifact removal

method based on Gram-Schmidt process33. A Notch filter

around 50 Hz was applied to EEG and EMG data to exclude

power line effects.

Second, we applied a 5th-order Butterworth band-pass fil-

ter in the range 8–13 Hz to the 18 minute multichannel EEG

signals in order to extract µ-band neuronal oscillations associ-

ated with motor-related brain activity. EMG recordings were

also band-pass filtered (10–100 Hz) to capture pronounced

high-frequency fluctuations of muscle activity caused by mus-

cle tension during movement execution (Fig. 1C). The latter

allows to determine exact times for the beginning and the end

of movement executions and to study the motor-related brain

activity at these specific intervals.

Finally, the bandpass filtered time series (both EEG and

EMG) were split into 60 trials, each lasting 18 seconds (6 sec-

onds before and 12 seconds after the command, totaling 4500

data points), i.e. 30 attempts for the left and right hand.

The considered EEG trials represent 9-dimensional multi-

variate sets X(t) = (xCp4(t), xC4(t), xFc4(t), xCpz(t), xCz(t),
xFcz(t), xCp3(t), xC3(t), xFc3(t))

T composed of EEG signals

recorded over the sensorimotor brain area (Fig. 2A). To de-

scribe brain dynamics in three areas of interest we separated

X into three 3D subsets, according to their location on the

scalp (Fig. 2B):

1. right hemisphere (RH): XL(t) = (xCp4(t), xC4(t),
xFc4(t))

T;

2. left hemisphere (LH): XR(t) = (xCp3(t), xC3(t),
xFc3(t))

T;

3. longitudinal fissure (F): XF(t) = (xCpz(t), xCz(t),
xFcz(t))

T.

Consequently, from a physical perspective, each brain area

is represented by a three dimensional trajectory, treating the

constitutive time series as state variables (Fig. 2C). This way

of state space trajectory construction is convenient in the con-

text of multivariate EEG analysis and circumvents the single

variable embedding problem34–37.

Of particular note is the fact that the further analysis deals

with sensor-level EEG recordings. This is done to exclude

EEG pre-pocessing steps related with source reconstruction

and capture general effects of motor-related activity from the

viewpoint of an overall decrease of complexity of the under-

lying neuronal processes in the sensorimotor cortex. The ad-

vantages and limitations of such approach will be discussed in

Section III.

E. Recurrence quantification analysis

Being a fundamental property of most dynamical systems,

recurrence implies that the system’s state repeats itself in

time38. It is represented as neighboring points (states) of the

system’s trajectory in its state space. A common way of vi-

sualizing the system’s repeating states is the recurrence plot
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FIG. 2. Step-by-step visualization of the EEG signal analysis. A EEG electrodes, located at the sensorimotor area, forming a multivariate set

X(t): right hemisphere (subset XR(t), blue area), left hemisphere (subset XL(t), orange area), and longitudinal fissure (subset XF(t), green

area). B Example of a motor-related EEG trial from XR(t) (left hand movement). Vertical dashed lines correspond to the first and second audio

signal at 0 s and 5 s, respectively. C Representation of the current trial from XR(t) as a trajectory in 3D phase space. D Illustrative scheme

of the movement execution accessed from a EMG signal (top panel) and corresponding time-dependent measures of DET (middle panel) and

RTE (bottom panel).

(RP), which can show structures such as diagonal and hori-

zontal/vertical lines and areas of different recurrence densi-

ties21. Certain structures are related to the system’s complex-

ity and recurrence quantification analysis (RQA) was intro-

duced to analyze them numerically, using various measures of

complexity22.

To analyze the recurrence structures in the selected brain

areas, using the multivariate set X (Sect. II D), we created a

binary recurrence matrix

Ri, j =

{

1, if (ε− ‖ Xi −X j ‖)< 0,

0, otherwise
(1)

where Xi, j =X(ti, j), i, j = 1, ...,N with N = 4500 for the num-

ber of considered states Xi. The recurrence threshold ε deter-

mines the size of the neighbourhood in state space in which

states being considered as recurring.21. When analyzing an

RP one should take into account that the obtained results can

crucially depend on the choice of this threshold. To provide

a robust representation of the RP and ensuring comparability

within the samples, i.e. data from different participants, we

determined the value of the threshold ε for each sample as the

3rd percentile of the pairwise distance distribution, following

Kraemer et al. 39 ,

To access time-dependence of the estimated RQA quanti-

fiers we used a running window along the main diagonal line

of each RP with a window size of w = 750 data points (3 s)

and a shift δw = 20 data points (0.08 s).

In the current study we want to quantify regularity and

complexity of EEG signals affected by motor tasks execution.

Therefore we pick two suitable RQA quantifiers, namely the

Determinism (DET) and the recurrence time entropy (RTE).

DET is defined as the ratio of recurrence points that form di-

agonal lines to all recurrence points found in the RP:

DET =
∑w

l=lmin
lP(l)

∑w
l=1 lP(l)

, (2)

where P(l) is the histogram of diagonal lines l in the RP and

lmin = 2 is the minimal considered length of a diagonal line.

The presence of diagonal lines in the RP is an important in-

dicator of a deterministic process, since in this case, trajec-

tories at different points in time evolve in a similar manner.

More correlated and regularized processes are characterized

by longer diagonal lines and less isolated points.

Along with DET, we estimate the recurrence time entropy

(RTE) – a complexity measure based on the “white” (non-

recurrent) vertical lines indicating recurrence times tw:

RTE =−
Tmax

∑
tw=1

p(tw) ln p(tw), (3)

where p(tw) = h(tw)/∑tw h(tw) is the estimated probability

of a recurrence time tw and h(tw) is the histogram of re-

currence times obtained from the RP. This RQA measure is

well suited for capturing the transitions between periodic and
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chaotic dynamics (and vice versa), because it is related to the

Kolmogorov-Sinai entropy40. A regular process results in low

RTE values, with a chaotic process increasing the number

of different recurrence times, thus increasing its distribution

h(tw) and consequently increasing the RTE value.

Typical single trial time series of DET and RTE are shown

in Fig 2D. One can see the increase of DET and the decrease

of RTE associated with two motor actions respectively follow-

ing the corresponding audio signal. A detailed discussion of

RQA results will be given based on the between-subject anal-

ysis in section III. For each participant, we average the RQA

time series over the trials and exclude the baseline level (3 s

prior the first audio signal):

∆DET (t) = DET (t)−DETbckg,

∆RTE(t) = RTE(t)−RTEbckg,
(4)

where DETbckg and RTEbckg are mean values of DET and

RTE 3 s prior the first audio signal.

All RQA related computations were performed using the

DynamicalSystems software library for Julia programming

language41.

F. Statistical test

The motor-related changes of the RQA measures calculated

at the different (area, time)-pairs are treated as different as-

pects of the data with respect to which the experimental condi-

tions (motor-task vs baseline and left vs right limb movement)

will be compared. Each (area, time)-pair is tested via statisti-

cal t-test. Since we do not know exactly the locus of the pos-

sible differences in the (area,time)-domain, the multiple com-

parisons problem (MCP) takes place. To control family-wise

error rate (FWER) and address MCP we used nonparametric

statistical test based on the random partitions following Maris

and Oostenveld42.

III. RESULTS AND DISCUSSION

To address the main problem of the current study, namely

the quantification of an expected reduction in the complex-

ity and randomness of neuronal processes in the sensorimotor

cortex in the execution of motor tasks, we consider general

cross-subject effects of motor-related changes in the corre-

sponding RQA time series. First, we analyze the transition

from (random) background neuronal activity to brain activ-

ity in the accomplishment of motor tasks. Figure 3 shows

the results of DET and RTE, averaged over the subjects and

along with the standard error, for the movements of right (A,

B) and left (C, D) hands. As noted in Section II D, we are

particularly interested in differences in results regarding the

right hemisphere (XR, blue), the left hemisphere (XL, orange)

and the longitudinal fissure (XF , green). These results indi-

cate that motion execution is associated with an increase in

DET (Fig. 3 A,C). In addition, DET takes local maxima near

baseline

ΔDET

ΔRTE

Left hand

Right hand

ΔDET

XR

A

B

XL

XF

XR

XL

XF

XR

XL

XF

C

D

motor executionbaseline

baseline

-2 0 4 102 6 8 s

-2 0 4 102 6 8 s

-2 0 4 102 6 8 s

motor execution

motor execution

ΔRTE

XR

XL

XF

-2 0 4 102 6 8 s

motor executionbaseline

0.08

0.04

0.00

0.08

0.04

0.00

-0.1

-0.2

0.0

-0.3

0.1

-0.4

-0.1

-0.2

0.0

-0.3

0.1

-0.4

FIG. 3. Time dependence of ∆DET and ∆RT E averaged over all sub-

jects (±SE) for the right hemisphere (XR, blue), the left hemisphere

(XL, orange) and the longitudinal fissure (XF , green) in case of the

right (A, B) and left hand movements (C, D), respectively. Bold areas

highlight the time intervals of significant divergence from the base-

line level (p < 0.05, MCP corrected via a nonparametric statistical

test). In each panel the red dashed lines indicate the moments of the

first (0 s) and the second (5.5 s) audio signal and the black horizontal

line corresponds to zero level. Gray boxes show 3 s baseline inter-

val before the first audio signal and red boxes show the interval of

movement execution obtained from averaged EMGs.

start (approximately 2–4 s after the first audio command) and

end (approximately 7–8 s after the first command) of the mo-

tion execution. The positions of the local maxima are clearly

associated with the hand flex and hand relaxation that are per-

formed after the first and second audio commands, while the

DET values decrease when holding the hands in a compressed

state. The execution of motor tasks in this experimental setup

is thus clearly characterized by the pronounced local increase

of DET. In fact, the growth of DET implies a predictable or
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FIG. 4. A Time dependence of ∆DET RL and ∆RTERL, derived

from EEG data of the right and left hemispheres (Eq. (5), see text

for details). Measures are averaged over the subjects and displayed

as mean±SE. Shaded areas mark the areas with significant differ-

ences between the time series corresponding to left and right hand

movements (p < 0.05, MCP corrected via nonparametric statistical

test) and the red boxes indicate the movement execution interval

determined from averaged EMGs. B Exemplary representation of

motor-related EEG samples analysis on an individual test level using

∆DET RL and ∆RT ERL. EEG experiments are arranged as follows:

left-hand movements (trials 1-30, highlighted in blue) and right-hand

movements (trials 31-60, highlighted in orange).

regular motor neuronal activity. This finding is consistent with

our hypothesis that motor action is associated with the sup-

pression of random µ-band fluctuations in the EEG that are

inherent in background activity. Local peaks of DET are ac-

companied by a decrease of RTE (Fig. 3 B,D). This also shows

that the underlying motor neuronal activity recorded by the

EEG becomes less chaotic and complex. A non-parametric

statistical test in the (area,time)-domain (cf. Sect. II F) shows

that the described motor changes of the RQA quantifiers com-

pared to the background activity are significant (p < 0.05) for

all three considered areas during the duration of the motor task

execution. The occurrence of significant changes about 1.5 s

before and after the execution of the motor task is related to

the half width of the selected window size w = 3 s. It is note-

worthy that the RQA measurements return to the backround

level after the end of the movement, which is a clear indica-

tion of the backward transition of the neuronal dynamics into

the background mode.

It should be noted that the RQA time series for the right

and left hands have a similar qualitative time course (two

maxima/minima associated with hand flexion and relaxation)

but assume involvement of the different brain areas. Partic-

ularly, right hand movement reduces the complexity of neu-

ral dynamics in the left hemisphere more (orange curve in

Fig. 3 A,B) and the left hand movement – in the right hemi-

sphere (blue curve in Fig. 3 C,D). It coincides with the known

contralaterality of the brain’s motor-related activity. However,

complexity reduction in the ipsilateral brain area and fissure

region, even being not such pronounced, is also observed dur-

ing the movement execution. This could be due to the vol-

ume conduction/field spread effect, which is critical for non-

invasive measurements43. Despite these limitations, analyz-

ing the complexity of neuronal dynamics using RQA makes

it possible to distinguish between the further discussed lateral

types of motor actions.

Let us take a closer look at the differences in brain dynam-

ics during right and left hand movements with respect to con-

tralateral effects. For further analysis we only use the XR and

XL records and introduce a measure of asymmetry as the dif-

ferences between RQA measures in the right and left hemi-

sphere for both hands:

∆DET RL(t) = ∆DET R(t)−∆DETL(t)

∆RTERL(t) = ∆RTER(t)−∆RTEL(t)
(5)

where superscripts R and L indicate right and left hemi-

spheres, respectively. Figure 4 A shows the course of

∆DET RL(t) and ∆RTERL(t) during the motion execution, av-

eraged over all subjects and along with the standard error.

Here, the first audio signal corresponds to the time t = 0. In

addition to the previous results, Fig. 4 shows that the reduction

of the complexity of the neural dynamics during the execution

of left and right hand movements takes place in a different

way. A comparison of ∆DET RL and ∆RTERL for left- and

right-hand movements using a nonparametric statistical test

shows that both measures reflect significant differences be-

tween the types of movement. Specifically, reducing the com-

plexity of the underlying neuronal dynamics results in pro-

nounced interlateral asymmetry during movement execution,

which is reflected in a maximum at DET and a minimum at

RTE in case of the left hand movement and vice versa for the

right. Note that the asymmetry measures based on both DET

and RTE , show significant differences of right- and left-hand

motion (Fig. 4A). The introduced measures discriminate the

brain dynamics associated with left and right hand movement

may based on a statistical test (cf. Sect. II F) at an interval that

approximately covers the motion execution (2.5–8 s after the

first audio signal). In fact, the disclosed properties of motor-

related EEG samples associated with contralateral asymmetry

are suitable for a single-trial analysis and classification. Fig-

ure 4 B shows the exemplary representation of RQA applied

to individual EEG experiments collected from a randomly se-

lected subject. It can be seen, that the chosen RQA quanti-

fiers are able to clearly distinguish between left- and right-

hand movements: the former are characterized by the positive

∆DET RL(t) and simultaneously negative ∆RTERL(t) values

and vice versa for the latter.

In summary, we would like to emphasize that the discussed

features of motor neuronal activity detected by EEG signals

at the sensor level through RQA complexity measurements

are clearly observed and well reproduced in the experimen-

tal group under consideration. What is more important is that
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7

the generality of the cross-subject analysis provided also ap-

plies to the single trial analysis (see exemplary illustration in

Fig. 2E). The latter, together with the low computational cost

of RQA algorithms, offers the prospect of their application in

EEG-based BCIs for motion control and assessment. How-

ever, the implementation of the RQA methods for stable oper-

ation in real-time detection and classification of motor-related

brain states requires additional extensive research.

IV. CONCLUSION

We have used RQA to study new features of motor-related

neuronal processes that are measured by non-invasive EEG.

In our analysis, we have focused on the consideration of time-

dependent RQA quantifiers based on diagonal lines (deter-

minism, DET) and non-recurrent vertical lines (recurrence

time entropy, RTE). These measures are suitable for detecting

transitions between regular (periodic) and irregular (chaotic)

dynamics and for quantifying the complexity of the system

under study. Both quantifiers clearly show that the direct exe-

cution of motor tasks is associated with a large increase in the

regularity of the EEG signals, i.e. a reduction in the complex-

ity of underlying motor-related neuronal processes. In other

words, RQA has shown that µ-band ERD causes a reduction

in random fluctuations in neuronal activity inherent in back-

ground brain activity, leading to more regular behavior of the

EEG signal during motor task execution. In addition to detect-

ing an increase in motor-related regularity of brain dynamics,

DET and RTE measurements are sensitive enough to indicate

the difference between two lateral types of motion due to the

inherent differences in neuronal response. Specifically, we

observed a strong increase in regularity in the sensorimotor

area contralateral to the executed movement. Despite the lim-

itations of EEG analysis at the sensor level, such as volume

conduction/field spreading effect, interhemispheric asymme-

try the DET and RT E values, which also supported statisti-

cally significant differences between two types of performed

movements.

Overall, the current results are consistent with and com-

plement the well known concepts of motor-related brain pro-

cesses. We suppose that the discovered features of neuronal

dynamics in the sensorimotor cortex and the robust RQA

methods of identification and classification will contribute to

the study of non-invasive EEG-based BCI development for

motor control and rehabilitation5,44–46.
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