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Abstract.

The choice of the base period, intentionally chosen or not, as a reference for assessing
future changes’ of arh projécted variable can play an important role for the resulting
statement. In regional{climate impact studies, well-established or arbitrarily chosen
baselines are often used without being questioned. Here we investigated the effects of
different baseline periods on the interpretation of discharge simulations from eight river
basingdnsthe period 1960-2099. The simulations were forced by four bias-adjusted and
dowascaled Global Climate Models under two radiative forcing scenarios (RCP 2.6 and
RCP8.5). To systematically evaluate how far the choice of different baselines impacts
the simulation results, we developed a similarity index that compares two time series
of projectednchanges. The results show that 25% of the analysed simulations are
sensitive to the choice of the baseline period under RCP 2.6 and 32% under RCP 8.5. In
extreme cases, change signals of two time series show opposite trends. This has serious
consequences for key messages drawn from a basin-scale climate impact study. To
address this problem, an algorithm was developed to identify flexible baseline periods
for each simulation individually, which better represent the statistical properties of a
given historical period.

Keywords: Baseline period, Climate impacts, Climate projections, Flexible baseline
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1. Introduction

In the context of climate change mitigation and adaptation, decision-makers generally
call for information about impacts of projected changes in a specific region at. different
global warming levels or in certain future periods. They need answers to questions
like: “Can we expect an increase or decrease in water availability, extreme events, such
as floods, droughts, storm surges or heatwaves, around the year 2030, 2050 or by the
end of the 21°%° century? And what will be the consequences forge.ga crop,production,
renewable electricity generation?” To answer such questions,/regional climate impact
modellers face a variety of challenges, which relate to techmical, methodological, and
communication issues of simulation results [1] and corresponding recommendations
under uncertainties in a comprehensible way.

Adding to technical and methodological challengeshincludes, e.g. the choice of
climate scenarios, climate and impact models, the use of biassadjustment methods, and
model calibration and validation periods. The performance of a climate model is usually
measured against it’s ability to represent spatial pattermsvand trends in the historical
climate. Sometimes the performance issused to fassign weights to individual models
within a model ensemble [2; 3, 4, 5, 6, 7]y The uncertainty cascade in the impact
modelling is basically associated with model structure, model parameterisation, and
input data quality [8, 9, 10, 11, 12413514, 15].

After the simulations have been carried out, the question about the baseline period
used to compare future simulation results to, will arise. Where future scenario periods
are usually defined to reflect the decision maker’s planning horizon, baseline periods
are often chosen arbitrarily or are based on existing standards. However, choosing a
baseline period is a sensitive iSS.]{e and/can be easily instrumentalized to support specific
conclusions, whether intentionally or not.

The World Meteorological Organization (WMO) recommends to use the 30-years
period of 1961-1990 as the climate normal when comparing with future periods and that
this should be maintained as.a reference for monitoring long-term climate variability and
change [16, 17]., Beyond that, a regularly updated 30-years baseline period, currently
1981-2010, should be employed to give people a more recent context for understanding
weather and’ climate extremes and forecasts [17, 18, 19]. The Intergovernmental Panel
on Climate Change (IPCC) used the 20-years period 1986-2005 as the baseline in many
graphs in the Fifth Assessment Report [20] and will use the years 1995-2014 in its Sixth
Assessment Report. So, what are climate impact modellers supposed to do? Which
baseline should they select and does it actually matter?

At the global or continental scale, it is virtually impossible to choose a baseline
period whose climate is represented realistically by all climate models. An arbitrary
determination of global baselines is therefore justifiable. However, global and regional
climate simulations are often not designed to synchronize with real year to year patterns
and events [21], which creates a communication challenge, particularly in regional impact
studies. For example, some climate models depict the mid-1980s as a period with

Page 2 of 41



Page 3 of 41

oNOYTULT D WN =

AUTHOR SUBMITTED MANUSCRIPT - ERL-108953.R1

The baseline period makes the difference! 3

above-normal rainfall, when in reality a drought hit West Africa. Others simulate the
extraordinary wet 1950s and 1960s as very dry. Nevertheless, well-established global
baseline periods are often used unquestioningly in regional impact studies, although
the real-life statistical properties of the specific historical period may notsbe adequately
represented by climate model simulations, therefore, also not in subsequent applications.

Even though the implications of the choice of baseline periods forthe interpretation
of simulation results are well known, little attention has been paid to them in the climate
impact community. Ruokolainen and Réisénen (2007) [22]| analyse the sensitivity of
forecasts to the choice of different baselines in Southern Finlafid. Razavi et al. (2015)
[23] emphasize that different length of baseline periods may lead to différent conclusions
about stationarity /non-stationarity. Hawkins and Sutton (2016) [L8] discuss the choice
of climate reference periods when comparing global air temperature projected by climate
models with observations. Huang et al. (2018) [24] depiet future flood characteristics
in future periods in four river basins based on diffetent 30-years baseline periods. Snell
et al. (2018) [25] highlight the sensitivity to thefeheice of baseline climate in dynamic
forest modeling in the Alps. Baker et al. (2016) [26] assessed the impact of six different
climate baselines on projections of Afriéan bird 'Species’ responses to future climate
change. Although this issue has been addressed as a side effect in several other studies,
it has generally not been considered important tosform the focal point for systematic
research.

The present study systematically investigates the effect of the choice of the baseline
period on the interpretation of simulation results. It provides examples from eight river
basins located in various climate-zones, where changes in projected future discharge are
estimated based on WMO and [PCC baselines using four bias-adjusted and downscaled
Global Climate Models (GE@Mshfromthe Inter-Sectoral Impact Model Intercomparison
Project (ISIMIP2) [27, 28, 29]. An index measuring the similarity between two time
series is introduced and was used/to assess the sensitivity of choosing different baseline
periods. We developedan algorithm to overcome the problem in cases of substantial
deviations. It identifies, a baseline period, which consists of similar basic statistical
properties as thehistorical period and is flexible in terms of length and timing. Although
the main focus'of this.stuidy is the analysis of river discharge, the method is in principle
applicable to any time series variable, such as meteorological data, crop yields, emissions
of greenhouse gasess/ hydropower potentials and so on.

2. Materials and methods

2.1.,.Study sites

The impact of different baseline periods was investigated by using simulated river
discharge from eight exemplary river basins located in various climate zones from
equatorial to polar (Figure 1 and Table 1). The simulations were carried out within
the framework of various research projects (see references in Table 1). What they have
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in common is the hydrological model, the same four forcing GCMs, and the simulation

period they cover (1960-2099), which guarantees consistency across the studysbasins.

i

Koéppen-Geiger
climate classification

Figure 1. Map of case study ziver basing

Kottek et al. (2016) [30]

Table 1. River basins
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and /climate zones. Source climate zones:

River basin Gauge Area [km?]y Region. Climate Zone

Northern Dvina (DVI) [31] Ust-Pinega 348.000 Europe, Russia Snow (Dfc)

Rhine (RHI) [24] Lobith 160.000 Europe Warm temperate (Ctb)

Sao Francisco (SFC) [32] Outlet 640.000 S. America Equatorial (Aw, As), arid (BSh)
Tagus (TAG) [31] Almousol 70.000 S. Europe Warm temperate (Csa, Csb)
Upper Blue Nile (UBN) [4, 33, 34] / El Diem 175.000 E. Africa Arid (Aw), warm temperate (Cwb)
Upper Mississippi (UMI) [24] Alton 440.000 N. America Snow (Dfa, Dfb)

Volta (VOL) Qutlet 403.000 W. Africa Equatorial (Aw), arid (BSh)
Upper Yellow (YEL) [24] Tangnaihai 121.000 China Polar (ET), snow (Dwc)

2.2. Data

The investigation was conducted using annual mean discharge M), derived from

simulated daily diseharge from eight river basins, based on climate model input from four
GCMs in the period 1960-2099. The discharge was simulated with the semi-distributed,
ecoshydrological Soil and Water Integrated Model (SWIM) [35, 36]. The downscaled and
bias-adjusted GCM climate simulation data were provided by ISIMIP2 [27, 28, 29, 37]
for thenGFDL-ESM2M, HadGEM2-ES, IPSL-CMA5-LR, and MIROC5 models. The
aim._is to provide harmonized climate simulation input to impact modelers and thereby

o support the intercomparison of global and regional impact studies.
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2.3. Baseline periods

The impact of the baseline period on the interpretation of changes in simulated:future
river discharge was investigated by using two baselines established by thexWMO [17]
and the IPCC [20]. The WMO baseline covers the 30 years 1961-1990 and the . /PCC'
baseline the 20 years 1986-2005. Other IPCC reports use also different. and longer
baseline periods. However, we chose the above-mentioned baseling here, as'it is used
in many graphs in the IPCC AR5 report [20] and is therefore likely to tempt impact
modellers to use it as a standard in their studies. Interestingly, the centrallimit theorem
dictates that at least 30 samples are needed if we assume a normal distribution and to
ample natural variability [38] as in the case of the WMO [19, 16]x From this perspective,
the IPCC baseline is thereby too short, especially if variables with a high degree of
natural variability are considered, e.g. river dischargessHowevers one could argue that
the sample size is sufficiently large, if the combination of years in the baseline period
times the number of models exceeds a critical threshold, which is given in the case of
the IPCC (20 years times 407 GCMs). In addition, the selection of the baseline period
should strike the balance between being statistically robust and representative of the
target conditions (e.g. “present-day climate’). Fomrapidly changing variables, such
as for instance extreme temperatures, reference periods of 30 years or longer might be
considered insufficiently representative of the target conditions.

In this study, we hypothesize that, the baseline period is a subset that accurately
represents some basic statistical propertiesiof a historical period, here defined as 1960—
2005. An algorithm was developed to identify for each simulation a baseline period of
variable length within a given historical period. The algorithm searches for a baseline
period whose mean, minimum, and maximum values correspond to those of the historical
period. In line with common. practice of hydro-climatic impact studies, the baseline
period should cover at least/30 years. The statistical properties of the baseline period
are allowed to deviate from those of the historical period by not more than a user-
defined threshold, e:g. 5% Ifsthe algorithm is not able to find an appropriate baseline
with n = 30 yeats, n is incremented by 1. The resulting baseline period is therefore
flexible in terms of its length and starting year and is called hereafter “flexible baseline”.
The corresponding funegtion, implemented in R, is provided in Appendix A. It works only
for annual seties but/can be easily adapted for monthly or daily series.

To saccount for the possibility of a linear climate change trend in the historical
discharge, the algorithm was tested using a time series detrended using the first (linear)
differéncingmmethod (Appendix B). In general, the differences in the results were found
to'be minor and the identified baseline periods to be longer. To avoid accidentally
removing Or suppressing some of the extreme years by applying a linear operation,
results shown below are all based on the original data.
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The M@ time series was used to compute the relative change between a specific baseline
and a corresponding future period as follows:

Mqutu’r‘e,i - MQbase,j
MQbase,j

where M@Q),,.. is the average of the annual values of a specific.baseline period and

AMQZ,] -

, (1)

Z\/./'_qutm6 the average of a future period. The index ¢ refers to different future periods
with central years between 2020 and 2080, i.e. 61 time steps.,Thelindex/j represents the
different baselines (WMO, IPCC, and flexible baseline), where the lefigth of the baseline
determines the number of years around the central years in corresponding M_qutm,e
periods.

The mean absolute deviation between two AME time sexies, e.g. AMQw o, for
the WMO and AMQrpcc,; for the IPCC baselinegover.all £ = 61 time steps was then
quantified as: &

K
1
D=+ ; | AMQwio, —AMQrpcai] @)

The deviation was then re-scaled.by a user-defined deviation threshold D,, ., to an
agreement score value

Do itp <D,
AS - Dmax (3)

0 itD > Dias

This Agreement Score rahges between one (no deviation, perfect agreement)
and zero (deviation larger than the threshold). In this study a threshold value of
Dipae = 25% was ‘defined; beeduse deviations in discharge projections > 25% that
are solely based on_different baselines, were considered to be very large and indicative
for a substantial/difference.” For other applications (e.g. greenhouse gas emissions,
temperature, precipitation, wind speed) or by using not relative but absolute changes
for AMQ@), ;,/6ther threshold values might be more appropriate.

Apart fromthe deviation based on the choice of different baselines, we quantified
the direction of change signals C'S as

€S, =40 it —0.01 < AMQ;, < 0.01, (4)

compared the agreement between two baselines for the future periods by setting

1 if CS , =CS i
AC, — { 1 WMO, IPCC,

| 5
0 if CSWMO,Z' 75 CSIPCC,i
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to eventually derive the average agreement in the direction of the change signal by

k
1
AC ==Y AC;.
- g (6)
Finally, a Similarity Index was defined as
AS + AC
ST = + (7)

A value of zero is derived if the selection of a baseline hags@'large impact on the
interpretation of results of an impact study while the optimum galue of ST = 1 is
achieved if the choice of the baseline would have no influenee at all. AAn intermediate
value of ST = 0.5 can be derived if the absolute deviations are large with respect to the
user-defined D, value, but both baselines show the same diregtions of change over
all possible future periods. Likewise, a value of approximately 0.5 is obtained when the
choice of different baselines results in a bias with small absolute deviation with respect
t0 Dypaz, although the directions of change deviate for all possible future periods.

The computation of SI was also tested| by Antegrating other factors, such as
agreement in standard deviation or R?, but the results achieved with a more complex
indicator were not considered to be more meaningful than those achieved with the
simplistic approach. The ST was also used te assess the sensitivity of the choice of the
baseline depending on the GCM and theselimate zone.

3. Results and discussion

This section shows to what eéxtent the,choice of the baseline alone can influence the
interpretation of simulationxesults.

Figure 2 shows future AdV/ Q) series for selected river basins relative to M Qs in
the WMO and IPCC, baselines./ Future change signals and magnitudes of change
can be extremely different between the two AMQ series (Figures 2 a and c¢). Both
examples are therefore,characterized by low SI values of 0.24 and 0.19, respectively,
which indicate large differences of M () values in the respective baselines. They also
demonstrate that neither the results based on the one nor the other baseline generally
tends to suggest higher or lower future AM(@Q), a phenomenon also found in river basins
shown in_Appéndix/C. Considering the example of the Northern Dvina River basin
(Figure/2 ¢), one would conclude that future AM@Q does not change substantially but
rather fluctuates around the historical mean if the IPCC baseline is used. A completely
different conelusion would be drawn with the WMO baseline, where AM (@ is projected
to ‘increase between 22-32%. This illustrates how the choice of the baseline period,
based onrthe same model simulation, would lead to conflicting recommendations for
adaptation strategies.

Figures 2 b and d show examples of future AM(Q where it apparently does not
matter which baseline is used as reference. The corresponding ST values of 0.97 and
0:84 are therefore much higher than in the other two examples. Recommendations for
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50 —— 1961-1990 (30 years) WMO baseline 50 —— 1961-1990 (30 years) WMO baseline
40 —— 1986-2005 (20 years) IPCC baseline 40 —— 1986-2005 (20 years) IPCC baseline
Similarity Index (SI) = 0.24 Similarity Index (SI) = 0.97
30 + 30 +
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(a) Volta (VOL), IPSL (b) Upper Blue Niley(WBN), HadGEM

50 4 —— 1961-1990 (30 years) WMO baseline 50 4 —— 1961-1990 (30)years) WMO baseline

40 —— 1986-2005 (20 years) IPCC baseline 40 —— 1986-2005 (20 years) IPCC baseline
Similarity Index (SI) = 0.19 Similarity Index (S) = 0.84
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(¢) Northern Dvina (DVI), GFDL (d) Rhine (RHI), MIROC5

Figure 2. Relative change in M @ of central years in four river basins using four
different GCMs under RCP 2.6. “Changes are relative to M@ in WMO and TPCC
baselines

adaptation strategies would'consequently be much less dependent on the choice of the
baseline period in these cases:

A visual assessment of the AM () series with the corresponding ST values in Figure 2
is conclusive, where low S/ values indicate a high sensitivity to the choice of the baseline
period and high ST values alow sensitivity. As with model performance indicators (e.g.
R? PBIAS), andevaluation of which value ranges indicate actually a good or poor fit, or
in the case ofithe SITypwhich values represent high or low sensitivity, remains somehow
subjective. In the contextrof simulated river discharge, we propose SI values below 0.5
to indicateshigh sensitivity.

The choicenof the baseline period has the highest impact on the interpretation
of simulation results performed with the IPSL model and the lowest impact with the
MIROC5 model. However, the average GCM SI value (Table 2) does not imply that
this assumption is true for all basins and all RCPs. The results for RCP 8.5 are slightly
different, where the highest ST value is also achieved with the MIROC5 model, but the
lowest,values with GFDL (Table D1).

Assuming an ST threshold of 0.5, it mattered in 25% of the simulations under
RCP 2.6 (Table 2) and in 32% under RCP 8.5 (Table D1), whether the one or the other
baseline was used to assess future changes. There are basically two options to deal with
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simulations resulting in ST < 0.5: (i) discuss the uncertainties and/or (ii) ¢hoosena
different baseline that represents the basic statistical properties of the histori¢al period
more consistently, e.g. by using the proposed algorithm in Appendix A’

To exemplify, the projected discharge changes with an additional flexible,baseline
for the Volta River basin is shown in Figure 3. It explains why the results derived with
both baselines are so different. The M@ values for the WMO and IPCC baselines are
1454m3s™! and 1115 m3s™ !, respectively. The algorithm identifies the 30-years flexible
baseline 1972-2001 with an M@ value of 1361 m?s~!, which is mitich eloser to the MQ
of the WMO than to the M@ of the IPCC baseline. Furthermore; th?range of values
of the IPCC baseline is much smaller. Where the years withathe lowest discharges are
identical, the highest M@ is only 1800 m3s~! but 3150 m3s~! in the WMO and flexible
baselines. This would make a significant difference in an amalysis /of the distribution of
wet, dry, and extreme years.

Results from all river basins under both RCPs show that the projected AM (@) series
using flexible baselines lie either in between or eutside WMO and IPCC AM@. But,
in all cases, they resemble the WMO more than ghe IPCC AM Q series (Figures in
Appendix C), which is an indication thatfalso the length of the baseline period matters.

Table 3 shows relative differences of ensemble AMQ between WMO, TPCC, and
flexible baselines for all river basins around the eentral years 2040, 2060, and 2080 for
RCP 2.6 and Table E1 for RCP 8.5.4In thetNorthern Dvina River basin (DVI) in 2040 and
2060 and in the Sao Francisco River basin (SFC) in 2080, the ensemble mean projects
opposing change signals between WMO and'IPCC baselines, with absolute differences
up to 13.9% under RCP 2.6 and.almost 20% under RCP 8.5. Relative differences between
WMO and IPCC baselines are lower if the ensemble mean is considered (Appendix E),
but can be very high for individual models, as was shown in Figure 2 a and c¢. As with
individual models, the ensemble mean AM(Q series of the flexible baseline are always
more similar to the WMO than to the IPCC AMQ series.

The sensitivity (STo< 0.5) of the choice of the baseline period for different climate
zones is inconclusive (Table'2 and Table E1). A larger sample size of catchments from
various climate zones is required to make more robust statements. However, the lowest
sensitivity was'achiéved/in warm temperate climates (C) represented by the Rhine,
Tagus, and Upper Blue Nile River basins.
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Table 2. Similarity index ST between WMO and IPCC AMQ series (mean of period
2020-2080), RCP 2.6

DVI RHI SFC TAG UBN UMI VOL YEL Average
GFDL 0.19 0.82 0.82 0.68 093 049 054 0.44 0:61
HadGEM 0.93 0.53 0.62 0.65 097 0.35 0.75 0.62 0:68
IPSL 0.43 0.65 0.15 0.55 0.88 0.73 0.24 0.95 0.57
MIROC5 0.86 0.84 0.81 - 019 092 0.8 0.62 0.72
Average 0.60 0.71 0.60 0.62 0.74 062 0.58 0.66
- 4

Table 3. Ensemble'meanyAMQ in selected future periods in [%] relative to MQ of

WMO, IPCC, and flexible baseline, RCP 2.6

| 2040 2060 | 2080
Basins | WMO IPQC Flex. | WMO IPCC Flex. | WMO IPCC  Flex.
DVI 9.2 4.7 7.9 7.2 -4.7 6.0 8.0 0.7 6.6
RHI -442 =5.4 -4.8 -0.8 -3.1 -14 3.0 2.1 2.3
SFC 12.8 -6.3 -12.1 | -14.0 -8.0 -104 | -5.0 8.8 -4.5
TAG -5.6 3.7 -5.6 0.3 0.0 -0.3 7.6 11.5 7.0
UBN 18.5 14.7 16.0 22.4 15.7 19.8 17.9 13.3 15.2
UMI -8.5 -7.9 -84 -4.1 -0.7 -3.5 1.1 3.9 2.2
VOL 10.6 8.8 11.2 9.3 16.6 10.1 2.4 7.3 3.3
YEL 1.8 9.9 4.0 7.7 13.3 9.7 5.6 11.8 7.7
Mean diff. 4.2 5.5 5.5
Min. diff. 0.6 0.3 0.8
Max. diff. 13.9 11.9 13.9
Median diff. 2.8 5.8 4.7

Last four rows indicate differences between WMO and IPCC AM(Q series
Flex. = flexible baseline
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4. Conclusions

This study demonstrates how solely the choice of a baseline period can influenee the
interpretation of discharge projections in eight river basins using climate input from
four bias-adjusted GCMs. To evaluate whether the choice of either the,well established
30-years (1961-1990) WMO [17] or the more recent 20-years (1986-2005), IPCC [20]
baseline matters, a similarity index ST was introduced as a measure to compare the two
resulting time series of future change. In about 25% of the simulations under RCP 2.6
and in 32% under RCP 8.5, large quantitative differences and/or.opposite signals of
change were found, with at least one case of major discrepancies in each river basin.
The deviations for selected future periods can be so large that they range from -5% to
+45% for a given central year. These figures indicate that, different recommendations
for action could possibly be derived in at least every fourth case:

No systematic differences in the direction of ghange using either baseline period
could be identified. Neither the results based omsthe ' WMO nor those based on the
IPCC baseline tend to generally project higher/or lower future river discharge.

4.1. Choosing baseline periods

Given that a baseline period is normally a‘subset of the historical period, it should
represent its basic statistical properties. “wkrom a formal statistical perspective, a
minimum length of 30 years is highlysrecommended for regional impact studies,
particularly when using integrated variables, such as river discharge. We developed
an algorithm, which identifiesfor each simulation a flexible baseline of variable length
and variable start year representing the basic statistical properties of a given historical
period. In about 20% offthe 32isimulations, the flexible baselines were longer than
30 years, highlighting the importance of longer-term perspectives to more confidently
quantify historic reference variability when developing adaptation strategies. The use of
flexible baselines helps torreduce uncertainty in the interpretation of model simulations
in cases where standard baseline periods do not capture the variability of the historical
period. If multiple.ranges of uncertainty, such as those implied by the impact modelling
cascade and gnulti-criteria baseline selection, are combined, the central limit theorem
implies that! cenfral tendencies are favoured at the expense of extremes [39)].

4.2. Regional context

At #he local'and regional scales, it is important to take region-specific characteristics
into.account, where other factors that are largely independent of past climate variability
may alsorinfluence the choice of a representative baseline period, e.g., degree of human
impact (land use / cover change, reservoirs, irrigation). In this context, it is reasonable to
duestion whether the baseline period should represent rather natural conditions (far back
in time with low human impact) or more recent conditions (with strong human impact).
Another reason why the application of standard baseline periods is questionable is that
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they are often detached from reality. If a baseline period is chosen that, for example,
was characterized by severe droughts in reality and future simulations projectdrelatively:
drier conditions (even though the simulated baseline was above normal), stakeholders
may interpret that the future will be drier than the driest period they have experienced
in their lives. Using flexible baselines is a solution to better tailor information to the
needs of decision makers while addressing the challenge of uncertaintytransparently and
efficiently.

4.3. Ensemble mean versus single model simulations

Generally, the interpretation of results based on model ensemblestis less sensitive to
the choice of baseline periods than for single model simulations. Nevertheless, in three
cases, even the ensemble mean using the WMO and [PCC baselines projected opposite
change signals in selected future periods.

4.4. Outlook &

An analysis of results based on monthlyrer daily time series or a focus on extremes
rather than the average might reveal an even higher sensitivity to chosen baseline periods
than the annual time series used in this study. “An improvement of the algorithm to
identify flexible baseline periods, intermsiof,incorporating more sophisticated statistical
parameters and tests, might be necessaryif applied to monthly or daily time series.
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Appendix A. Baseline algorithm (R)
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assess_deviations <— function(ts, ncycle, base_length, ts.stats){

# numeric vectors
# mean maximumm,

and minimum values

storing deviations between

# between flexible baseline and entire historical period
dev.mean <— numeric(ncycle)

dev .max

dev . min

<— numeric(ncycle)

<— numeric(ncycle)

for ( y in l:ncycle ) {
<— ts[y:(y + base_length — 1)]

}

assess_deviations

sel

dev.mean[y] <— (mean(sel,

dev.max[y] <— (max(sel,

na.rm = T)

as.numeric(ts.stats[1]))| / as.mumeric(ts.stats[1]) % 100

as.numeric(ts
dev.min[y] <— (min(sel,

na.rm = T

)
[
na.rm = T)
[

.stats

)
21))
)

/ as’.numeric(ts.stats[Z]) x 100

as.numeric(ts . stats [3])) // as.numeric(ts.stats[3]) % 100

<— list (dev.mean,

dev.max, dev.min)

wn FH -

elect_baseline <— functiom(ts, wfirst_year , last_year, base_length, thresh.dev) {
# This function returns . a logiecal vector,
# where TRUE-values dmdigate the years of the ”"best” baseline period.

# The ”best”

baselime period is

defined as

# the period of a given length (base_length)
# with the lowest deviations between mean,
# between the flexible baseline period and the entire historical period.

# INCOMING VARIABLES

max, and min values

# ts — time series of (annual) values

# first_year, = first year of time series

# last_year = lasty year of time series

# baseslength = minimum number of years in baseline periods

# number of cycles from first to last year,

neycle

nyears

# statistics

ts . mean
tS . max

ts . min

ts.

stats

depending on base_length

<— last_year — first_year + 2 — base_length
<— last_year — first_year + 1

<— mean(ts, na.rm = T)
<— max(ts, na.rm = T)
<— min(ts, na.rm = T)

<— list (ts.mean,

ts .max,

of entire time series

ts . min)
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4

5 #

6 # iterations

7 #

8 bs_length <— base_length — 1

9 nc <— ncycle

10 index <— NULL

N ids . valid <— NULL

:g select_baseline <— vector (mode = "logical”, length =/ nyears)
14 . . .

15 while ( length(ids.valid) = 0 ) { -

16 # add 1 year to baseline period if necessary during iterations
17 bs_length <— bs_length + 1

18

19 # if length of baseline period equals entite, period:

20 # — return entire period and exit function

21 if ( bs_length = nyears ) {

22 print (”length of baseline period equals entire period”)

23 select_baseline [1:length(select_baseline )] <— T

24 return (select_baseline) 4

25 }

26

;; # compute the number of cycles \possible to iterate the baseline
29 # period through the entire period

30 nc <— last_year =mfirst_year + 2 — bs_length

31

32 # compute mean, max., and min.ndeviations between

33 # baseline and entirenperiod

34 dev.stats <— assesgedewiations(ts, nc, bs_length, ts.stats)
35

36 # evaluate results_against given threshold

37 ids.valid  <— which(abs(unlist (dev.stats[1])) < thresh.dev &
38 abs(unlist (dev.stats [2])) < thresh.dev &
ig abs(unlist (dev.stats [3])) < thresh.dev)
41 . . .

42 it ( lengthiCids - walid) >=1 ) {

43 if ( length(ids.valid) = 1 ) { index <— ids.valid }

44 if (“length(ids.valid) > 1 ) {

45

46 # Ainde tuple with lowest sum

47 sam . tuple<— abs(unlist (dev.stats [1]))[ids.valid] +

48 abs(unlist (dev.stats [2]))[ids.valid] +

49 abs(unlist (dev.stats [3]))[ids.valid]

50

51 index <— ids.valid [which(sum. tuple = min(sum. tuple))]
52

53 } ;

54 )

55

56 . . .

57 select_baseline [index:(index + bs_length — 1)] <= T

58 return (select_baseline)

59 }
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Appendix B. Using detrended historical data
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Appendix C. Relative discharge changes

Appendiz C.1. RCP 2.6
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Appendix D. Similarity Index STI

36

Table D1. Similarity index ST between WMO and IPCC AMQ series, R€P 8.5

DVI RHI SFC TAG UBN UMI VOL YEL Ayerage
GFDL 034 0.75 036 0.76 0.79 055 058 0.42 0.57
HadGEM 0.74 048 0.72 0.68 086 049 0.78 0.66 0.68
IPSL 0.52 053 039 035 0.86 0.88 0.28 0,92 0.59
MIROC5 0.86 043 0.81 0.94 030 0.79 0.78 0.604"0.69
Average  0.62 0.55 0.57 0.68 0.70 0.68 0.614,0.65

Appendix E. Ensemble mean

Table E1. Ensemble mean AMQ in selected future periods in [%)] relative to M@ of
WMO, IPCC, and flexible baseline, RCP 8.5

2040 2060 2080
Basins WMO IPCC Flex. | WMO TPCC Flex. | WMO IPCC Flex.
DVI 4.8 -5.8 3.3 5:5 -5.6 4.0 4.1 -5.7 2.7
RHI 3.0 1.5 2.3 -1.6 2.7 =22 -2.3 -3.5 -2.8
SFC -8.2 -1.64,.-3.9 -0.6 13.7 2.3 3.0 22.6 7.6
TAG -26.7  -21.1 =218 | -41.5 -33.6 -41.8 | -58.2 -54.2 -55.8
UBN 26.3 23.60 23.6 | »32.7 23.6  30.2 | 56.0 52.2  53.3
UMI 1.8 -labn 2.4 -8.3 -6.3  -8.2 -6.5 -4.5  -6.6
VOL 14.6 2044 15.6 3.6 5.2 3.9 -3.5 1.2 -3.4
YEL 0.4 3.2 2.2 7.3 13.4 8.7 6.1 11.5 7.7
Mean diff. 4.9 6.7 6.3
Min. diff. 1.5 1.1 1.2
Max. diff. 10.6 14.3 19.6
Median diff. 4.5 7.0 4.4

Last four rows indicate differences between WMO and IPCC AM(Q series
Flex. = flexible baseline periods
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