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Partial cross mapping eliminates indirect causal
influences
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Kazuyuki Aihara® 3°* & Luonan Cheng 10112138

Causality detection likely misidentifies indirect causations as direct ones, due to the effect of
causation transitivity. Although several methods in traditional frameworks have been pro-
posed to avoid such misinterpretations, there still is a lack of feasible methods for identifying
direct causations from indirect ones in the challenging situation where the variables of the
underlying dynamical system are non-separable and weakly or moderately interacting. Here,
we solve this problem by developing a data-based, model-independent method of partial
cross mapping based on an articulated integration of three tools from nonlinear dynamics and
statistics: phase-space reconstruction, mutual cross mapping, and partial correlation. We
demonstrate our method by using data from different representative models and real-world
systems. As direct causations are keys to the fundamental underpinnings of a variety of
complex dynamics, we anticipate our method to be indispensable in unlocking and deci-
phering the inner mechanisms of real systems in diverse disciplines from data.
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ausal interactions are fundamental underpinnings in

natural and engineering systems, as well as in social,

economical, and political systems. Here system details are
typically not known, but only time series are available. Correctly
identifying causal relations among the dynamical variables gen-
erating the time series provides a window through which the
inner dynamics of the target system may be probed into, and a
number of previous methods were developed, such as those
based on the celebrated Granger causality!=>, the entropy®-11,
the dynamical Bayesian inference!2-1°, and the mutual cross
mapping (MCM)!6-21,  with applications to real-world
systems>7>22-31, If the system contains two independent vari-
ables only, the causal relation between them is straightforwardly
direct. However, for a complex system with a large number of
interacting nodes connected with each other in a networked
fashion, two kinds of causation can arise: direct and indirect.
Especially, if there is a direct link between two nodes, the detected
causal relation between them can contain a direct component and
an indirect one through other nodes in the network as a result of
the generic phenomenon of causation transitivity (see Fig. 1).
Even for two nodes that are not directly connected, a causal
relation may be detected, but it must be indirect. To eliminate
indirect causal influences so as to ascertain direct causal links is of
paramount importance, as the latter constitutes the base for
modeling, predicting, and controlling the system. There were
previous studies of significant advance in detecting direct causal
links to reconstruct the underlying true causal network based on
the concept of partial transfer entropy or its linear Gaussian
version, the conditional Granger causality, which resulted in
many successful data mining in related fields3?-38. Combining
these methods with graphical models, recent studies further
provided a visible and comprehensive description of causal rela-
tions among interested variables0-3%3%. However, mathemati-
cally, all these methods are not applicable directly in situations
where the relevant dynamical variables are non-separable so that
the information from any variables cannot be separated easily in a
prediction framework (see “Methods” for the rigorous concept of
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Fig. 1 Direct versus indirect causal links. a There is directional interaction
between variables X and Y, but Z is an independent variable. b The variables
X, 'Y, and Z constitute a one-directional causal chain with an indirect causal
link from X to Y. ¢ The variables constitute a causal loop, where every two
neighboring variables have, in two opposite directions, a direct and an
indirect causal link, respectively. d For a network with many interacting
variables, more indirect causal links would be falsely identified as direct
causal links.

non-separability). In real-world nonlinear systems, the non-
separability is ubiquitously present among systems variables!”. To
our knowledge, the problem of ascertaining direct causation by
removing indirect causal influences for general complex dyna-
mical systems has not been fully studied and remained
outstanding.

In this paper, we develop a data-based, model-free method of
partial cross mapping (PCM) to eliminate indirect causal influ-
ences in situations where non-separability is allowed to be pre-
sent. The central idea is to integrate three basic data analysis
methods from nonlinear dynamics and statistics: classic phase-
space reconstruction, MCM, and partial correlation, to detect
direct causal links for complex and nonlinear networked systems.
The method is validated using various benchmark systems. Its
applications to real-world systems lead to new insights into their
dynamical underpinnings. The method provides a solution to the
long-standing, crucial problem with existing causality detection
methods: misidentifying indirect causal influences as direct ones.
Because of its unprecedented ability to eliminate indirect causa-
tion, this method can be a powerful tool to understand and model
complex dynamical systems.

Results

Direct and indirect causal links. To illustrate the difference
between direct and indirect causal links, we first consider a toy
system of three variables with different interaction structures. If
only two variables interact in one direction and the third one is
isolated (Fig. 1a), then the previous methods can be effective for
identifying the direct causal link!®-2l. However, when the three
variables constitute a unidirectional causal chain (Fig. 1b),
applying any of the previous methods to the time series from a
pair of variables would detect a false direct link between the two
non-neighboring variables X and Y in Fig. 1b (see “Methods” for
a false link aroused by the transitivity). When the three variables
constitute a causal loop (Fig. 1c), every two neighboring variables
may have an indirect causal link in addition to the direct one in
the opposite direction. In this case, previous methods would
falsely identify any actual indirect link as a direct one. In addition
to the above three representative interaction structures for the
three variables, all the other possible modes have been introduced
thoroughly and investigated systematically in Supplementary
Note 1. Moreover, with more observable variables, the likelihood
that indirect causal links are incorrectly regarded as direct ones
will substantially increase (Fig. 1d).

Partial cross mapping. To overcome this problem, we propose
the PCM method. The key idea is to examine the consensus
between one time series and its cross map prediction from the
other with conditioning on the part that is transferred from the
third variable. For the convenience of describing our method
clearly, we consider the simple case of three variables (X, Y, and
Z) causally interacting with each other in a unidirectional chain

(Fig. 2a). Let X = {x,}._,, Y = {yt}le, and Z = {z,}_, be the
corresponding time series of length L. Using Takens-Maié’s
delay-coordinate embedding#?4!, we obtain three shadow mani-

folds: My = {x,}\_,, My = {yt}f:r, and M, = {z,}}_, with the
vectors
X, = (XX gy oo
YI = (yﬂyt—ry’ i

zt = (antf‘rzv

) xtf(Exfl)rx)7
7yt—(Ey—1)ry)7
) Zt—(Ez—l)rz )7

where E,, E,, and E, are the respective embedding dimensions, 7,
7), and 7, are the time lags, and r = max;_, , {1 + (E; — 1)7;}.
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Fig. 2 Basic principles of the PCM framework. a For the illustrative setting of three variables interacting in a unidirectional causal chain, the MCM method

maps N (y,) to the left circled region /{fy(xt) in Mx, where the estimated X" is close to the true X, denoting full causal information from X to Y and leading

oY
to erroneous identification of the indirect causal link as the direct link. b For our proposed PCM method, partial correlation coefficient between X and X is

A 5 =
calculated by conditioning on the information about XZ , which is mapped from N (y,) through Mz and then to the right circled region N (x¢) in My in a,

oY
denoting indirect information flow. Geometrically, oc corresponds to the cosine of the angle between X and X in the entire space, while ¢p is the projection

oy
oZ
of ¢c onto the subspace orthogonal to X™ . Because ¢c > ¢p, the example in a corresponds to the sketch on the right side of b, where the projection is close

to the right angle, leading to a near-zero value of ¢p.

These parameters of embedding dimensions and time lags can be
computationally determined by the method of false nearest
neighbor (FNN) and delayed mutual information (DMI),
respectively. More advanced techniques can also be utilized2042,
In general, for any pair of variables £ and 5 € {x, y, z}, we set

Nf(n,) ={n,&, € N(&,)}, where N'(§,) is a set containing a
fixed number (usually taken as Eg+ 1, which is the minimum
number of points needed for a bounded simplex in an Eg-
dimensional space*3) of nearest neighboring points of &, in the

corresponding shadow manifold. For & =#, /N (n,) becomes

N(n,). For &=, N ¢ (,) becomes a cross mapping neighborhood
from A (&,) (for an illustrative example, see the horizontal arrows
from My to My in Fig. 2a). The dependence from N (x,) to

N z(nt) characterizes the causal influence from the variable pro-
ducing #, to the variable producing &, Previously developed
heuristic measures for quantifying such dependence and causal
influence!6-182021 constitute the MCM framework. We exploit

the correlation coefficient!” between #, and 7% = E[N f(11t)],

where ﬁf is the mapping from &; and [E[-] is an operation taking
appropriately weighted average over all the points in a given set.

Specifically, if the correlation coefficient ¢ = |Corr(x,,x])| is
larger than an empirical threshold T, the MCM method will
stipulate that there is a causal influence from X to Y. MCM
complements the field of causality analysis in pairwise non-
separable dynamical systems. However, due to causation transi-
tivity, the causal link detected by MCM can be either direct or
indirect, as illustrated in Fig. 2a. Additionally, since causation
manifests its influence in a certain time delay, we search for an
optimal time delay that maximizes the causation (i.e., the
obtained correlation coefficient ¢c) between a translated Y and X
(see “Methods” for a detailed description)20.

Heuristically, ¢oc, as defined above, represents the cosine of the

angle between X and X " in the entire space, as shown in Fig. 2b.
In order to distinguish the existence of the causation transitivity,
we consider the projection of ¢c onto the information space
orthogonal to the indirect information that is induced by the
causation transitivity. To this end, we formulate our PCM
framework (see “Methods” and Supplementary Fig. 1 for detailed
formulations and practical instructions). First, for a time series
pair Z and translated Y, = {y,  } with possible time delay

candidates 7:(i = 1, 2, ..., m), we apply the conventional MCM
method to determine the optimal time delay 7; = 7;, which
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maximizes the correlation coefficient Corr(Z, ZYT'). Correspond-
ingly, the obtained mapping Z " from Y, is denoted by 7" for
simplicity. The next step is to repeat the procedure to the time

series pair X and the translated ZT so as to obtain the optimal
AY

. . A Y .

time delay 7;, as well as the mapping X ™ from ZT,2> which

oy
.. . Lo, . .
maximizes the coefficient Corr(X,X ™). Denoting the obtained

AY
. L . . . .

mapping by X, which is acquired from a successive MCM

procedure and characterizes the indirect information flow

. &Y . .
through Z, and then obtaining X, which characterizes all causal
information from X to Y, by repeating the above procedure to
time series pair X and the translated Y_, we introduce the

¥
. . &Y o2 .
correlation index: ¢p, = ‘PCC(X XX )' to measure the direct

causation from X to Y conditioned on the indirect causation
through Z, where Pcc( -, - | - ) is the partial correlation coefficient
describing the association degree between the first two variables
with information about the third variable removed#4, in contrast

to the MCM index ¢; = ‘Corr(X7 XY)‘ Note that we search for

the strongest causation on different candidate time delays in every
MCM procedure above. As a consequence, ¢p can be regarded
intuitively as the projection of ¢c onto the information space

oy
orthogonal to the indirect information b (Fig. 2b), and thus
eliminates the indirect causal influence.

For three causally interacting variables X, Y, and Z, we
generally have ¢c 2 ¢p. Setting an empirical threshold 1 > T >> 0,
we have three cases for the order of the correlation index: oc >
¢op2T, oc2T>¢p, and T>gc=¢p, corresponding, respec-
tively, to the three causal relations: a direct causal link from X to
Y, a sole indirect causal link from X to Y, and the absence of any
causal link from X to Y. The index ¢p thus characterizes the
degree to which direct causal links can be ascertained while
eliminating the possibility of indirect links. For the example in
Fig. 2a, the causal interaction of X and Y belongs to the second
case above, which can be inferred from the correlation index in
the same order as ¢c = T > ¢p. In real applications, it can happen
that the causal signals in transition are not strong enough, making
the values of ¢oc = T and ¢p close to that of T. In such a case, the
detection of direct causal links becomes more sensitive to the
value of T. To overcome this difficulty, we introduce y = ¢p/oc to
measure the proximity of the two index values. The closer the
proximity to one, the higher the possibility of the existence of a
direct causal link. Multiple tests*>~47 have been conducted to
ensure statistical reliability.

The framework of PCM can be generalized to networked
systems with an arbitrary number of interacting variables:
X, Y, ZY, ..., Z° (s=2) (e.g., Fig. 1d). With the full correlation

between X and X', we calculate their partial correlation
Y
coefficient, denoted as ¢p = Pcc(X,f(Y|{5(Z li=1,...,s}))

by removing the information of the cross mapping variables from
the s variables Z1, ..., Z*, where 0p, is a first-order measure for

distinguishing the direct from indirect causal link from X to Y.
Motivation and formalization for extending this measure to
higher orders is described in “Methods” section. We emphasize
here that strongly coupled (synchronized) variables in nonlinear
systems are not in the scope of the PCM framework, because in
this circumstance the complete system collapses to the cause
system sub-manifold, and the effect variable becomes an
observation function on the cause system, where bidirectional

causation will always be computationally detected!”. In addition,
theoretically our PCM framework is based on the Takens-Maiié
theorem, which is applicable only for autonomous systems. Data
entirely recorded from nonautonomous systems are therefore not
directly suitable for this framework*$, but our method can be
applied to some nonautonomous systems. In particular, it can be
numerically used to detect piecewise causations with data from
switching systems where the switching points could be located
and each duration between the consecutive switching points is
sufficiently long. Also, our framework is suitable for some forced
systems or/and systems with weak or moderate noise because
some generalized embedding theorems could support the
soundness of our framework?°0, As for an important kind of
nonautonomous system, viz., dynamical oscillators with time-
evolving coupled functions or/and with various types of noise, the
dynamical Bayesian inference with a delicate set of function bases
can provide pretty practical solutions'4. As for the future research
topics, possible investigations include combining the above
mutually complementary methods for causation detection in
more general dynamical systems without knowing explicit model
equations but with highly complex interaction structures.

Ascertaining direct causation in benchmark systems. To vali-
date our PCM method, we use the following benchmark system
of three interacting species: x, = x,_1(0, — X1 — Byyi—1)
+ €xn Ve = yeal®y — a1 — ByXe 1 — Byzi1) + € and z, =
ziy(a, — .z — PaXio1) + € for ap = 3.6, a, = 3.72, and
o, = 3.68, where ¢;, (i € {x, y, 2z}) are white noise of zero mean and
standard deviation 0.005. Different choices of the coupling para-
meters fy, By By and B, can lead to distinct interacting modes
(Fig. 3a). From the time series, we compute the MCM and PCM
indices, ¢c and gp, respectively, for detecting the causal link from X
to Y, with results listed in Fig. 3b, c. While there are cases where
both methods are effective at detecting the direct causal links, for
the causal chain and the causal loop structures with the threshold
value T = 0.5, the PCM method succeeds in discriminating the
indirect causal links, while clearly the MCM method, without
eliminating the influence of the causation transitivity, fails. As
furher shown in Supplementary Note 2, the PCM performance is
more robust than that of the MCM method with respect to varia-
tions in the value of T, making the PCM method applicable to real-
world systems when there is none or little a priori knowledge of
assigning a proper value of T. The results in Fig. 3b, ¢ have also been
verified by using the multi-testing corrections. Additionally, for all
the other possible interaction structures of three species, including
the representative network motifs: fan-in, fan-out, and cascading
structures®>2, our systematic studies manifest that the PCM
method achieves accurate causation detections completely (see
Supplementary Note 1). More importantly, we systematically con-
ducted comparison studies with the Granger causality, the transfer
entropy and all their conditional extensions to detect the causations
for the above three species system and tested their robustness
against different noise levels and time series lengths. As clearly
shown in Supplementary Note 3, the PCM outperforms those
existing methods which are, in principle, suitable only for the
variables satisfying the separability condition. We also provided a
comparison study between the PCM framework and the dynamical
Bayesian inference in Supplementary Note 3. Both methods have
their own particular advantages and could be used in a com-
plementary manner. All these results systematically demonstrate the
universal and peculiar usefulness of our method to the typical
situation where the variables of dynamical systems are non-
separable.

Additionally, we validate the effectiveness of the PCM method
in a network model containing eight interacting species. As
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Fig. 3 Detection of causal links from X to Y in the benchmark systems. a Three distinct interaction modes of the system. b Causal links from X to Y
detected by the MCM method, which contain false direct causation for the second and the third interaction modes. ¢ Direct causal links detected by the PCM
method, which successfully excludes the false direct causations in b. Randomly selected are the 100 trials with a 1000-length from 5000-length time series,
where the sampling rate is 1Hz so that the length matches exactly the time unit of the system. The average is calculated over the results of these randomly
selected trials. The phase-space reconstruction parameters are E = 4 and = = 1. Here superscripts of gc and ¢p denote the specified causal direction.

shown in Supplementary Fig. 10, the direct causal network can be
reconstructed faithfully while the indirect links are all eliminated
successfully with setting an appropriate group of T. In contrast,
with the same values of T, the MCM method produces a dense
network containing direct, indirect, and even erroneous causal
links. We also find that the ratio y = gp/oc can be used to
improve the detection accuracy even for relatively small values of
the threshold T (Supplementary Note 4). Moreover, selecting a
practically effective threshold value is much more realizable and
robust in our PCM method (see Supplementary Fig. 11 and see
Supplementary Note 5 for detailed information on statistical tests
and methods for threshold selection). The robustness tests of
PCM against the time series lengths and the noise scales also
show good effectiveness even with small data size and relatively
strong noise in this model (Supplementary Note 3). These
additional results demonstrate the power of our PCM method in
detecting direct links and accurately reconstructing the under-
lying causal networks from multivariate time series.

Detecting direct causation in real-world networks. We test gene
regulatory networks with gene expression data available from
DREAM4 in silico Network Challenge®3->°, There are five net-
works with different, synthetically produced structures. Each
network has 100 genes. We use the software GeneNetWeaver>® to
randomly select 20 interacting genes, where each gene has 10
realizations of 21 gene expression time series data. Figure 4a
presents one gene regulatory network (see Supplementary Fig. 12
for the others). For each gene, we combine all realizations as one
time series for phase-space reconstruction. We compare the direct
causal links detected by PCM with the a priori known edges of the
five networks and calculate the respective ROC (receiver operating
characteristic) curves (Fig. 4b). We find the average of the five
areas under the ROC curves approaches the value of ~0.75,
indicating high detection accuracies of direct links in gene

regulatory networks even with small data sets, a task for which
PCM outperforms the MCM method (see Supplementary Note 6).

We next consider the food chain network of three plankton
species: Pico cyanobacteria, Rotifers and Cyclopoids, with the
prey-predator relations indicated in Fig. 4c. The oscillatory
population data are selected from an 8-year mesocosm experi-
ment of a plankton community isolated from the Baltic Sea>’->°.
Our PCM method yields six indices for all the possible causal
links, and we preserve the links with index values ;10—1 and
discard other links (see Supplementary Note 5 for issues on
threshold selection). This leads to two direct causal links, which
agree with the ground truth of the original network (Fig. 4d).
Remarkably, our PCM method successfully excludes the indirect
link from Pico cyanobacteria to Cyclopoids. For this network,
there is also a weak direct link from Rotifers to Pico cyanobacteria,
and our method is indeed able to detect it (verified with multi-
testing corrections). This reveals that the actual prey-predator
hierarchy does not necessarily match the direct causal links
among the species. For example, while predators hunt preys, a
predator through hunting can significantly influence the prey
populations when they are not tremendously abundant. In such a
case, the predator can be regarded as the causal source, giving rise
to the third relatively weak but direct causal link.

Our third real-world example is from the recorded data of air
pollution and hospital admission of cardiovascular diseases in
Hong Kong from 1994 to 1997 (see Supplementary Note 6)%0-62,
As shown in Fig. 4e, f, our PCM method uncovers that only the
pollutants, that is, nitrogen dioxide and respirable suspended, are
detected as the major causes of cardiovascular diseases. Neither
sulfur dioxide nor ozone has been identified as the cause for the
diseases, which is consistent with previous results?%03. Our
method reveals a unidirectional causal relation from ozone to
sulfur dioxide, but the detected causal relations among the
recognized pollutants are bidirectional. It is likely that these
detected causal relations are either direct or indirect, because data
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Fig. 4 Detecting direct causal links in three real-world networks. a One of the five gene regulatory networks with 20 interacting genes from
GeneNetWeaver. Each red (blue) arrow represents an activating (inhibitory) effect. b ROC curves characterizing the PCM detection performance. The
corresponding AUROCSs are also indicated. The reconstruction parameters are E = 2 and 7 = 1. ¢ A food chain network of three plankton species, where the
direction of each red arrow represents a prey to predator interaction. d The PCM indices (the color region framed by red boxes) signifying successful
detection of the direct causal links (for E = 4 and = = 1). A relatively weak but direct causal link (the yellow arrow in ¢€) from Rotifers to Pico cyanobacteria is
identified through the index framed by the yellow box. e Results on all successfully detected interactions between air pollutants and cardiovascular diseases
(red box) for E=7 and = = 1. f The reconstructed causal network from the results in e. All detection results are verified using multiple testing corrections.

of other factors, such as temperature, humidity, and wind speed,
are not completely available, which can be the common causes to
some pollutants (e.g., the fan-out interaction mode shown in
Supplementary Fig. 2).

We also apply the PCM method to real-world examples,
including gene expression data related to the circadian rhythms
and electroencephalography data of the human brain in Supple-
mentary Note 7. All the results demonstrate the broad applicability
of our method to different scales of data sets, and indeed reveal new
viewpoints to the dynamical underpinnings of real-world systems.

Discussion
To summarize the work, by exploiting both dynamical and statis-
tical features from the observed data, there are two major

advantages of our method: detecting direct causality based on PCM
and handling non-separability problem based on Takens-Mafié’s
embedding theorem. Actually, variables for a nonlinear dynamical
system are generally considered non-separable due to their inter-
twined nonlinear nature. Specifically, in contrast to the existing
methods on detecting causation, which either misidentify indirect
causal links as direct ones or fail due to a violation of the condition
of separability, we develop a method theoretically and computa-
tionally to solve this outstanding problem, coping with the situation
for which the existing frameworks cannot work effectively. The
central idea lies in examining the consensus between one time series
and its cross map prediction from the other with conditioning on
the part that is transferred from the third variable. Our method is
capable of not only distinguishing direct from indirect causal
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influences but also removing the latter. A virtue of our method is
that it is generally applicable to nonlinear dynamical networks
without requiring the condition of separability, which complements
the missing part of causality analysis (see Supplementary Table 3).
In fact, the concept of causality in dynamical systems is different
from the widely accepted traditional statistical viewpoint that X
causes Y if and only if an intervention in X has an effect on Y. Due
to the non-separability, causality in dynamical systems should have
different formalization, which in simplest way can be intuitively
interpreted as a coupling term from X to Y in the system’s equa-
tions. Further theoretical interpretations regarding this new fra-
mework will be included in our future work. Finally, our PCM
method is validated by applying to a number of real-world systems,
yielding new insights into the dynamics of these systems. Unam-
biguous identification of direct causal links with indirect causal
influence eliminated is a key to understanding and accurately
modeling the underlying system, and our framework therefore
provides a vehicle to achieve this goal.

Methods
The concept of non-separability. We illustrate the concept, non-separability, by
using a general continuous-time dynamical system:

%= F(x), )

where the state variable x(¢) = [x, (£), %,(£), ... ,x,(t)] " evolves inside a compact

manifold M., forming an attractor A with a dimension d 4. Here, d 4 can be com-
puted as the box-counting dimension of .A. The dynamics with an initial value x, €
M, are denoted by x(t) = ¢,(xo), where ¢,(-) is regarded as a flow along the manifold
M,. According to Takens-Mafi¢’s embedding theory and its fractal generalizations,
one can, with probability one, reconstruct the system with a positive delay 7 and a

smooth observation function 4 : M, — IR in the sense that the delay-coordinate map

Dy () = (%), h(9_ (%)), h(9_5 (X)), - B9 (1), (x))] s generically an
embedding map as long as L >2d 4. Particularly for direct illustration, we take the
observation function h(x) as a simple coordinate function: h(x) = x;, where x; is the ith
component of x. Thus, we have y(t) = [x;(t), x;(t — 7), ... ,x,(t — (L — 1)7)]" and
also have the manifold M, mapped to the shadow manifold M, by the embedding
map TI. Since the embedding map is one to one, the dynamics y, on the shadow
manifold M|, are topologically conjugated with the dynamics ¢ on M,, that is,

y(t+17) =y, (y(t)) =Tog oI '(y(t)). @)

On the one hand, system (1) implies a fact that the future dynamics of one specific
component, say x; with j = (or #)i, is governed by

lp.]; = x(0) = [y (), %), ey, (D] = (¢ 4+ 7) ®)

and thus depends on the history of all the components x;, x,, ..., x,. On the other
hand, the relation in (2) implies the other fact that as long as the embedding map T
exists, the future dynamics of x; is also governed by

oy y(0) = (O 5t =), et = L - D)D) = x(e+7)  (4)

and thus only depends on the history of one variable x; and on the embedding map T’
as well.

Generically, it is possible to make a prediction of x(t + 7) based only on the
observation of one variable, and this prediction could be as perfect as the prediction
using the information of all the variables x,(f), x5(), ..., x,(t) of the system (this
obviously disables the idea of Granger causality and its extensions). Thus,
Takens-Mané’s embedding theory reveals that, in such a deterministic nonlinear
dynamical system, the information of the whole dynamical system could be
generically injected into only one single variable and thus could be reconstructed
by the observation data of that variable. This therefore invites a concept of non-
separability, that is, one, prevalently, cannot remove the information of some
variable from the other variables when any prediction is made for the dynamical
systems. This also reveals that the methods based on prediction frameworks, such
as the Granger causality, the transfer entropy, and all their extensions,
mathematically are not suitable for dealing with the time series data produced by
nonlinear dynamical systems where non-separability always exists among the
internal variables. A toy example showing how GC fails in non-separable systems
could be referred to the Supplementary Materials of ref. 17.

Transitivity arousing indirect causation. To investigate how the transitivity
arouses indirect causation, we consider a heuristic logistic model of three species

connected in the following manner:
xp =g (ot — X)),
7 =z (e, — a2y — Box ), (5)
Ve :yt—l(ay &Y ﬁyzzt—1)7
where the three species X = {x/}, Z = {z;} and Y = {y,} are interacting in a causal
chain, denoted by X — Z — Y, and the coupling strengths f3., and 3, are nonzero.
Now, we shift the second equation in (5) with one time step and then substitute
it into the last equation in (5), which yields:
Ve = Vi1 |% — &Y 7ﬁyz2172(lxz =0z, = Box )| (6)

Also the last equation in (5) can be transformed as:
1
Zi1 =‘8_(ay_ayyt—l = Ve/Vei1)s (7)
vz
so that
1
2y = ﬁ*(“y =Yy = Vi1 /Vea)- (8)
)z

Then, a substitution of Eq. (8) into Eq. (6) gives:

1
Ve =Y {% -y, — B, B (o = oy, 5 = ¥io1 /i)
vz
X ©)
x aziazi(ayilxyyt—z7}’1—1/)1!—2) 7ﬁzxx272 .
ﬁyz
Consequently, this equation, coupling with the first equation in (5), forms a
causation relation unidirectionally from X to Y. However, this causation is indirect,

induced by the transitivity, and then the influence has the effect of time delay for
discrete-time dynamical systems.

The PCM method of first order and higher order. We now formulate the PCM
framework formally (see Supplementary Fig. 1 for a schematic graph of the PCM
procedure). The first step is to translate the time series Y = {y;} with time steps

(i = 1,2, ..., m), generating m translated variables denoted as Y, = {y, +r, }. For

time series pair Y, and Z, we apply the conventional MCM method (see the
practical steps below) to obtain the mapping 2" from Y. and calculate the
correlation coefficient Corr(Z,ZYT‘ ). For simplicity, we denote 7" as the mapping

2% with

LY
i, = argmax, ;. Corr(Z,Z ). (10)
LY
The next step is to repeat the procedure to the time series pair of translated Z, and

AY Y AY
. o2 oY - IS
X so as to obtain the mapping X * from Z_, and set X7 as X with

(11)

v
. L
i, = argmax, _;,,Corr(X, X ™).

AY
Now the obtained X* represents the indirect information flow. By directly
applying MCM to the translated Y, and X, we could have bl denoting all the

information transferred from X to Y, which is simplified for X with

iy = argmaxlSiSmCorr(X,XY" ). (12)
We now introduce the correlation index:
oY o2
oo = [Pec(x, X157, (13)
where Pcc( -, - | - ) is the partial correlation coefficient describing the association

degree between the first two variables with information about the third variable
removed. We review the definition of partial correlation coefficient here. For time
series X, Y, and Z, ..., Z, the partial correlation coefficient between X and Y
conditioned on Z! is

Corr(X,Y) — Corr(X, Z")Corr(Y, Z")

Pec(X,Y|Z") = ; = (14)
(1= Corr(X,2")")(1 — Corr(Y,Z")")

The partial correlation coefficient between X and Y conditioned on both Z! and 72 is

(15)

and the partial correlation coefficient between X and Y conditioned on more
variables can be defined recursively. For the computation and more information on
the partial correlation coefficient, see refs. 4464,

To provide detailed instruction to our method, we summarize the practical
steps here:

Procedure A: MCM for detecting causation from U = {u,}, to V = {v,}}_:

Poc(X,Y|Z") — Pec(X,Z2| 2" ) Pec(Y, 22|21
V(= Pec(x.22171) (1 — Pec(Y,22|71)) |

Pec(X, Y|Z!, Z%) =
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1. Reconstruct the phase space by using delay-coordinate embedding for time
series U and V, the reconstruction parameters (embedding dimensions
E,, E, and time lags 7,, 7,) can be selected by FNN algorithm and by the
method of DMI, respectively (see Supplementary Note 5);

2. For each time index ¢, find the set of neighboring points N'(v,) of v, (E, + 1
nearest neighbors are used since it is the minimum number of points needed
for a bounded simplex in an E,-dimensional space?3);

3. Find the corresponding points in My that have the same time indexes as the
points in N(v,) and calculate their weighted average (the weights are
determined by the distances between the point in A (v,) and v, which
defines the operation [£[-]) to obtain the estimated u ut,

4. Use an appropriate index (such as ¢ = |C0rr u,, 1)) |) to characterize the

-V,
consensus of the estimated time series U ° (subscript 0 is denoted for no
translation of V here to keep consistency with the following notations) and
the original time series U, which measures the causation from U to V.

Procedure B: PCM for detecting direct causation from X to Y conditioning on Z:
1. Translate time series Y with different candidate time delays 7,(i = 1, 2, ..., m)

to generate Y, = {y, . }; .
2. For each palr Z to Y, , perform Procedure A to obtain Corr(Z, Z" "), and
7,7

denote 2" as 2", where the time delay 7; maximizes Corr(Z,Z ) as in
(10);

3. Translate tlme series 2" with different candidate time delays 7(i=1,2,...,m)
to generate Z oY

4. For each palr X to Z perform Procedure A to obtain Corr(X,X ™), and

%

denote XA as X "2 where the time delay 7; maximizes Corr(X, bé ) asin

(11);

5. For each palr X to Y, perform Procedure A to obtain Corr(X, X ) and

denote X as X' , where the time delay 7; maximizes Corr(X, X ") as in

to measure the direct causation from X to Y

(12);
6. Use ¢p 7JPcc(X X \XZ
conditioning on Z.

Note that we search for the strongest causation on different candidate time
delays in every MCM procedure above. For consistency, in the whole research, all

the MCM results are also based on this strategy. Moreover, it is possible to
characterize the causal relations among variables on a distribution of time delays
(i.e., a causal spectrum). This full causal description will be included in our
future work.

As described above, the first-order PCM method can be established as following
definition for networked systems of more than three interacting variables:

X, Y, Z\, ..., Z(s>2) (e.g., Fig. 1d), based on which high-order method can be

derived,
Pcc(X,XY'{Xz i:l,.4.7s}>'.

In a complex dynamical networks, the indirect causation could also be transferred
through more than one variables (e.g., through two variables X — Z! — 72 — Y).
The high-order PCM method is derived to specifically characterize this situation. In

iy

(16)

Op, =

. . . oY
particular, we calculate the correlation coefficient between X and X , and the
partial correlation coefficient between them through removal of the information
about the cross mapping variables via two variables out of the s variables Z1, ..., Z5.

The partial correlation coefficient
izj i je{l, ... ,s}})

Y { XZ?JY

represents effectively a second-order method for differentiating the direct and
indirect causal links from X to Y that is transferred through two mediate variables.
Analogously, the nth order measure, denoted by ¢p, , can be defined through any
Z5 as

¢p, = (17)

Pcc <X7 X

combinations of # mediate variables from Z1, ...,

op,= Pcc(X‘)A(Y {X/‘ (iys ... »i,) is an n — combination from{1, ... ,5}}) '
(1)
Together with ¢c,¢p, (7 =1, ... ,s) and the PCM measure
y = (,_10p,)/ € (19)

reflecting the proximity of all these coefficients, we obtain higher-order PCM methods
for detecting direct causal links in large networks. However, for a relatively large order
n, the possible number of combinations of # mediate variables is quite large. We will
study the computations and applications of the high-order methods in future work,
and in this research, we only consider the first-order problem.

In practice, the partial correlation procedure will encounter calculation
problems if the network scale is relatively large and thus a large conditioning set
should be taken into account. In this case, we could adopt the technique of
selecting several nodes Z' that maximize ¥ % + 0% Y (or min{of %, ~"}),
which means a high probability of the existence of an indirect link through Zi, and

make conditioning on these nodes. Moreover, if we have a priori knowledge that
the network is sparse, that is, indirect connections are seldom, we could also make

Z5 one by one, and take the minimum value of Qﬁgy‘z

conditioning on Z1, ...,
the final result.

Moreover, the PCM idea can be further developed or varied by substituting the
partial correlation to other possible measures characterizing the conditional
dependence. For example, the coefficient of determination (denoted 72) is a possible
choice to serve as an index directly estimated from the cross map neighbors in
parceling out effect sizes for each contributing factor. Another heuristic thinking is
that for indirect causal influence X — Z — Y, cutting off either the link X — Z or
Z — Y is enough to eliminate the whole indirect information flow, which also
provides variation of the PCM framework. These further variations will be included
in our future work.
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