
 
 
 
Originally published as:  
 
Wang, X., Dietrich, J. P., Lotze-Campen, H., Biewald, A., Stevanović, M., Bodirsky, B. L., 
Brümmer, B., Popp, A. (2020): Beyond land-use intensity: Assessing future global crop 
productivity growth under different socioeconomic pathways . - Technological 
Forecasting and Social Change, 160, 120208. 
 
DOI: https://doi.org/10.1016/j.techfore.2020.120208 
 

https://publications.pik-potsdam.de/cone/persons/resource/xiaoxi.wang
https://publications.pik-potsdam.de/cone/persons/resource/Jan.Dietrich
https://publications.pik-potsdam.de/cone/persons/resource/Lotze-Campen
https://publications.pik-potsdam.de/cone/persons/resource/anne.biewald
https://publications.pik-potsdam.de/cone/persons/resource/stevanovic
https://publications.pik-potsdam.de/cone/persons/resource/Bodirsky
https://publications.pik-potsdam.de/cone/persons/resource/Alexander.Popp
https://doi.org/10.1016/j.techfore.2020.120208


1 
 

Beyond land-use intensity: Assessing future global crop productivity 1 

growth under different socioeconomic pathways 2 

Xiaoxi Wanga,b,c*, Jan P. Dietrichb, Hermann Lotze-Campenb,c,a, Anne Biewaldb, Miodrag 3 

Stevanovićb, Benjamin L. Bodirskyb,d, Bernhard Brümmere,f, Alexander Poppb 4 
 5 
aDepartment of Agricultural Economics and Management, China Academy for Rural Development, 6 

Zhejiang University, Yuhangtang Road 866, 310058 Hangzhou, P.R. ChinabPotsdam Institute for 7 

Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany 8 
cDepartment of Agricultural Economics, Humboldt University of Berlin, Philippstr.13, 10115 9 

Berlin, Germany 10 
dCommonwealth Scientific and Industrial Research Organisation, St Lucia, Australia 11 
eDepartment of Agricultural Economics and Rural Development, University of Goettingen, Platz 12 

der Göttinger Sieben 5, 37073 Göttingen, Germany 13 
fCentre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Büsgenweg 1, 14 

37077 Göttingen, Germany 15 

 16 
 17 
 18 
 19 

Corresponding author at: Department of Agricultural Economics and Management, China 20 

Academy for Rural Development, Zhejiang University, Yuhangtang Road 866, 310058 Hangzhou, 21 

P.R. China. 22 

E-mail address: xiaoxi_wang@zju.edu.cn (X. Wang)  23 

  24 



2 
 

Highlights 25 

 The study combines agricultural modeling with TFP estimates to project productivity changes. 26 

 The study explores the productivity implications of Shared Socioeconomic Pathways. 27 

 The ratio of cropland expansion to productivity growth impacts changes in food prices. 28 

 Investing in productivity improvement is an effective means of ensuring food availability. 29 

 Different measures highlight different parts of the productivity changes in the scenarios. 30 

 31 

Abstract 32 

Productivity growth is essential to meet the increasing global agricultural demand in the future, 33 

driven by the growing world population and income. This study develops a hybrid approach to 34 

assess future global crop productivity in a holistic way using different productivity measures and 35 

improves the understanding of productivity implications of socioeconomic factors by contrasting 36 

different shared socioeconomic pathway assumptions. The results show that the global 37 

productivity is likely to continue to grow, whereas the productivity growth varies pronouncedly 38 

among different future socioeconomic conditions. The fast growth of total factor and partial 39 

factor productivity can be reached when slow population growth and high economic growth 40 

entail moderate food demand and low investment risks. In contrast, high population growth and 41 

low economic growth could lead to relatively high land-use intensity due to the extreme pressure 42 

on agricultural production, however, associated with low total factor productivity growth. The 43 

model results indicate that the ratio of the total factor productivity growth to cropland expansion 44 

has significant impacts on food prices, with increasing prices when cropland increases faster than 45 

productivity, and vice versa. Investing in productivity improvement appears to be an effective 46 

means of ensuring food availability and sparing cropland, contributing to the achievement of 47 

sustainable development goals. 48 

Keywords: endogenous technological change; productivity growth; land-use intensification; 49 

cropland expansion; socioeconomic pathways 50 
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1 Introduction 65 

Agricultural development is essential in the broader development context, exerting impacts not 66 

only on poverty reduction and food security but also on ecosystems (Barrett et al., 2010; Sayer 67 

and Cassman, 2013; Wang et al., 2016). Increasing output in the agricultural sector in the past 68 

mainly depended on land expansion (Hansen and Prescott, 2002). It is estimated that the global 69 

cropland area and grassland area increased by approximately 1,500 million hectares and 2,600 70 

million hectares, respectively, in the past three centuries (Lambin et al., 2003). Although the pace 71 

of land expansion has been lower in the past decades and a significant decoupling between food 72 

production increases and cropland expansion has occurred since 1960 (Lambin et al., 2003), land 73 

expansion is still taking place, some of which is on plots with high ecological value. Overall, 83% 74 

of all newly converted agricultural land from the 1980s to 2000s was formerly tropical forest 75 

(Gibbs et al., 2010), and deforestation contributed to 12–20% of the global anthropogenic carbon 76 

emissions in the last two decades (van der Werf et al., 2009). The exact amount of land needed 77 

for agricultural production varies, depending on the state of the applied agricultural technology 78 

and land quality (Lotze-Campen et al., 2010; Wang et al., 2016). For instance, technological 79 

progress associated with the green revolution successfully increased crop yields without a 80 

corresponding expansion of cropland to meet the increasing food needs of Asia's growing 81 

population (Sayer and Cassman, 2013).  82 

To meet future agricultural demand, technological progress in the agricultural sector has become 83 

more critical than ever (Wiebe et al., 2003; Tester and Langridge, 2010). The essential role of 84 

technologies in promoting agricultural productivity and inclusive economic growth is widely 85 

recognized (Barrett et al., 2010), and the intrinsic properties of technological change (TC) are 86 

extensively studied (Arrow, 1962; Romer, 1986; Lucas, 1988; Romer, 1990). In contrast to the 87 

assumption about exogenous TC in the early neoclassical growth theory (Solow, 1957), TC is 88 

found to be an endogenous process (Arrow, 1962; Lucas, 1988; Romer, 1990). In the agricultural 89 

sector, TC can occur through the adoption of new crop varieties, management improvements, 90 

and the expansion of irrigation infrastructures (Griliches, 1957; Lin, 1991; Schneider et al., 2011; 91 

Baker et al., 2012). Advancing agricultural technology is generally triggered by investment in R&D 92 

(Griliches, 1963) and can be associated with population pressure (Boserup, 1975), while the 93 

underlying driving forces for advancing agricultural technology are changes in relative resource 94 

endowments and factor prices (Ruttan, 2002). The importance of the endogeneity of TC is 95 

recognized by modelers, but studies often assume that it is exogenous due to limited data. To 96 

study the impacts of productivity changes on land use changes and food security, existing 97 

economic models often treat productivity changes as parameters, either as a shifter of crop yields 98 

in partial equilibrium models (Robinson et al., 2014) or as a factor that alters productivity level in 99 

a production function in general equilibrium models (Hertel et al., 2016), while few exceptional 100 

analyses assume endogenous TC (van der Mensbrugghe, 2005; Dietrich et al., 2014; Akgul et al., 101 

2016).  102 

Different methods have been employed to improve productivity measures (Alston, 2018). The 103 

methodological differences reflect the conceptual differences between partial factor productivity 104 

(PFP) and total factor productivity (TFP). Productivity measured as PFP (Wiebe et al., 2003; 105 

Rozelle and Swinnen, 2004; Verburg et al., 2008; Havlík et al., 2013) is informative for 106 
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understanding the underlying factors behind productivity changes but can be misleading since 107 

not all production inputs are taken into account. For instance, high crop yields may be driven by 108 

high fertilizer use or high labor input. Hence, despite increased land productivity, overall 109 

productivity might remain constant or even deteriorate. In contrast to PFP measures, TFP 110 

provides a holistic measure of the productivity growth attributed to all input factors (Ludena et 111 

al., 2007; Fuglie, 2008). The social accounting approach (Fuglie, 2008; Solow, 1957) or 112 

econometric techniques (Ludena et al., 2007) can be used to estimate TFP changes. A reduced 113 

form, with a lack of economic behavioral assumptions, is often used in empirical studies to 114 

simplify the estimation (Del Gatto et al., 2011)1, although it provides, to some extent, comparable 115 

estimates as the structural approach (Gong and Sickles, 2020). However, there is seldom a 116 

prediction of TFP due to the uncertainty in the future, although it is equally important to have 117 

(Hertel et al., 2016). Exceptionally, Ludena et al. (2007) provide forecasts of TFP based on the 118 

assumptions of trends in technological changes and extrapolations of efficiency changes using 119 

estimates from logistic regressions. The prediction relies on information from limited time series 120 

data without considering possible structural changes in the future (e.g., changes in the food 121 

demand, demography and biofuel demand), which could potentially underestimate or 122 

overestimate productivity changes. 123 

To fill the existing gaps and to improve the understanding of productivity changes under future 124 

socioeconomic conditions, this study combines agricultural modeling with TFP estimation 125 

techniques in a two-step approach. This approach not only facilitates the projection of 126 

endogenous PFP changes induced by TC and land expansion, as reported by the applied model  127 

but also extends it with TFP estimates derived in an ex-post analysis. In the first step, it employs 128 

a quantitative economic modeling approach to simulate the endogenous land-use intensity 129 

growth in the crop sector under different future socioeconomic scenarios. In the second step, 130 

the study applies a nonparametric estimation method to estimate TFP changes with the 131 

Malmquist productivity index (MPI) based on simulated crop production to further complement 132 

the analysis. To overcome the dimensionality issue related to estimating the global TFP, this study 133 

uses a theoretically sound approach by constructing a weighted average index based on the 134 

distance functions estimated from the regional data. This study also contributes to the strand of 135 

literature that uses structural equation models and CGE models to understand the interactions 136 

between all these underlying factors and their mutual interactions (De Loecker, 2007; Akgul et 137 

al., 2016; Balistreri et al., 2018) by providing detailed information on the agricultural and land-138 

use sectors.  139 

The remainder of the article is organized as follows. Section 2 introduces the model structure and 140 

the methods for measuring productivity changes. Section 3 briefly describes the scenarios based 141 

on the Shared Socioeconomic Pathways (SSPs) and the representation of the major features in 142 

the modeling framework. The results about projections of land productivity and TFP growth at 143 

                                                             
1 One exceptional study is De Loecker (2007) who uses the Olley–Pakes method, a structural model, to estimate the 
impact of trade on productivity changes.  
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the global and regional levels in the SSPs are presented, and their interactions with cropland 144 

expansion and impacts on food prices are discussed in Section 4. Section 5 draws the conclusions. 145 

2 Methods 146 

2.1 Simulation method 147 

MAgPIE (Model of Agricultural Production and its Impact on the Environment) is a partial 148 

equilibrium, agro-economic model for the optimization of land use and production patterns 149 

under given agricultural demand and subject to spatially explicit biophysical constraints (Lotze-150 

Campen et al., 2008; Popp et al., 2014). The model covers 10 world regions2 (Supplementary 151 

information Error! Reference source not found.), the classification of which is based on the geo-152 

economic conditions of each country. The food demand for crop and livestock products enters 153 

the model as exogenous projections based on the population and income growth and dietary 154 

preferences (Bodirsky et al., 2015). The demand for crop products is divided into four sub-155 

categories, including the food demand, material and seed demand, feed demand and bioenergy 156 

demand. Increasing agricultural yields through technological investments and cropland 157 

expansion is the primary means of providing a sufficient supply of agricultural goods (Dietrich et 158 

al., 2014). International trade is implemented based on self-sufficiency ratios and regional 159 

comparative advantages to reallocate production among regions (Schmitz et al., 2012). A 160 

trajectory of trade barrier reductions is assumed over time, indicating increasing trade openness. 161 

The major associated costs are technological investments, land conversion costs, costs of 162 

production input factors, and transportation costs. Socioeconomic constraints such as trade 163 

liberalization in terms of fast trade barrier reductions are prescribed at the regional level, while 164 

biophysical constraints such as crop yield potentials and water availability derived from the global 165 

crop, hydrology and vegetation model LPJmL (Bondeau et al., 2007; Müller and Robertson, 2014) 166 

and land availability are prescribed at the 0.5 degree grid level (Krause et al., 2013). The 167 

presented simulation covers the period from 1995 to 2050 at intervals of five years with 500 168 

simulation units based on a k-means clustering algorithm aggregating 59,199 spatial grid cells 169 

(Dietrich et al., 2012) to facilitate nonlinear optimization. The detailed documentation of the 170 

model is archived online (Dietrich et al., 2019)3. 171 

2.2 Computing productivity indices beyond the land-use intensity 172 

MAgPIE is in line with the induced innovation theory (Ruttan, 2002). The representation of the 173 

endogenous TC entails an explicit specification of the maximizing behavior by producers subject 174 

to technology constraints and input costs, which is a key feature distinguishing MAgPIE from 175 

other partial equilibrium models, such as GCAM, IMPACT, and GLOBIOM (Valin et al., 2013; 176 

Robinson et al., 2014). The endogenous implementation of TC in MAgPIE provides a projection 177 

of the land-use intensity (see the details in S2). It is an output-oriented measure of land 178 

                                                             
2 AFR is Sub-Saharan Africa; CPA includes China and other centrally planned countries in East and Southeast Asia; 
EUR is Europe; FSU contains regions in the former Soviet Union; LAM is Latin America; MEA is the Middle East and 
North Africa region; NAM refers to the U.S.A and Canada; PAO is the Pacific OECD countries, excluding South Korea, 
i.e., Japan, Australia, and New Zealand; PAS is mainly island countries in Southeast Asia; and SAS includes India, 
Pakistan and other countries in South Asia. 

3 The online documentation is archived from https://redmine.pik-potsdam.de/projects/magpie/wiki.  

https://redmine.pik-potsdam.de/projects/magpie/wiki
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productivity, representing the increase of yields due to a potential suite of changes in 179 

management and technological advances without considering biophysical characteristics 180 

(Dietrich et al., 2014).  181 

In addition to the land-use intensity measure, average yields are computed to represent another 182 

form of land productivity. As shown in equation (1), they can be decomposed as a product of the 183 

cumulative land-use intensity in region 𝑖  at time 𝑡 ,  𝑓𝑖,𝑡
𝑔𝑟𝑜𝑤𝑡ℎ(∙),  and a weighted mean of the 184 

observed yields in the initial period for spatial unit 𝑗 for crop 𝑘 and irrigation type 𝑤, 𝑝𝑗,𝑘,𝑤
𝑟𝑒𝑓𝑦𝑖𝑒𝑙𝑑

, 185 

with weights 𝜔𝑗,𝑡,𝑘,𝑤. To reduce the complexity, climate impacts on yields are excluded in the 186 

study, and therefore the initial biophysical yield potential remains constant over time. The initial 187 

yields represent the land quality, which is determined by the water availability and other 188 

biophysical conditions. Increasing land-use intensity will raise the average yields, as stated in 189 

proposition S.1. Because the initial yields vary among different spatial units and between 190 

different irrigation types of cropland, cropland expansion can lead to either an increase or 191 

decrease of the average yields (proposition S.2). This indicates that the yield increase is driven by 192 

improved land-use intensity and is affected by cropland expansion involving heterogeneous land 193 

quality that depends on the attributes of the cropland, such as the available water for irrigation. 194 

𝑥𝑖,𝑡
𝑦𝑖𝑒𝑙𝑑

=
∑ 𝑥𝑖,𝑡,𝑘

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛
𝑘

∑ 𝑥𝑖,𝑡,𝑘
𝑎𝑟𝑒𝑎

𝑘
  195 

= 𝑓
𝑖,𝑡

𝑔𝑟𝑜𝑤𝑡ℎ
(∙) ∑ ∑ ∑ 𝜔𝑗,𝑡,𝑘,𝑤𝑝

𝑗,𝑘,𝑤

𝑟𝑒𝑓𝑦𝑖𝑒𝑙𝑑
𝑤𝑗𝑖𝑘                                                                                             (1) 196 

where 𝜔𝑗,𝑡,𝑘,𝑤 =
𝑥𝑗,𝑡,𝑘,𝑤

𝑎𝑟𝑒𝑎

∑ ∑ ∑ 𝑥𝑗,𝑡,𝑘,𝑤
𝑎𝑟𝑒𝑎

𝑤𝑗𝑖𝑘
                                                                                          197 

While the land-use intensity and yield index measure the PFP by focusing on a specific input (in 198 

this case land), the TFP indicates the changes in the productivity by accounting for all the inputs. 199 

In this study, the TFP change is estimated as an (output-oriented) MPI, which is based on the 200 

estimate of the Shephard output distance function using data envelopment analysis (DEA) to 201 

construct a piecewise linear production frontier for each year in the sample (Färe et al., 1994; 202 

Nin et al., 2003; Coelli and Rao, 2005). It treats the aggregated amount of crop commodities as 203 

outputs, 𝑦, and the cropland area, production factors and amount of water used as inputs, 𝑥𝑛. 204 

The distance function4 is 𝐷𝑜(𝑥, 𝑦) = (𝑠𝑢𝑝 {𝜃: (𝑥, 𝜃𝑦) ∈ 𝑆})−1, where 𝑆 denotes the production 205 

technology transforming inputs 𝑥 ∈ 𝑅+
𝑁  into possible outputs 𝑦 ∈ 𝑅+

𝑀 : 𝑆 =206 

{(𝑥, 𝑦) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥 𝑐𝑎𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑒 𝑦}, and 𝜃 is the infimum coefficient for dividing 𝑦 to project 207 

the observed output vector radially on the frontier production vector, given 𝑥 (Nin et al., 2003). 208 

The MPI is estimated as the geometric mean of two Malmquist matrixes by solving the following 209 

linear-programming problems to obtain estimations of four types of distance functions5  (Färe et 210 

al., 1994). 211 

                                                             
4 It is identical to 𝐷𝑜(𝑥, 𝑦) = 𝑖𝑛𝑓{𝜃: (𝑥, 𝑦/𝜃) ∈ 𝑆}. 
5 𝐷𝑡(𝑥𝑡,𝑦𝑡)  is a column vector of the distance function for all the regions, e.g., 𝐷𝑡(𝑥𝑡,𝑦𝑡) =

(𝐷1,𝑡(𝑥1,𝑡,𝑦1,𝑡), … , 𝐷𝐼,𝑡(𝑥𝐼,𝑡,𝑦𝐼,𝑡)). The notation in the distance functions and MPI is in line with Färe et al., 1994, but 

it slightly differs from that in the other indices. 𝑥 refers to the input and 𝑦 is the output. The specification should be 
clear in the context.  
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(𝐷𝜓(𝑥𝑖𝑖,𝜙 , 𝑦𝑖𝑖,𝜙))−1 = 𝑚𝑎𝑥𝜃𝑖𝑖

𝑠. 𝑡.        
𝜃𝑖𝑖𝑦𝑖𝑖,𝜙,𝑛 ≤ ∑ 𝑧𝑖,𝜓

𝐼
𝑖=1 𝑦𝑖,𝜙,𝑛

∑ 𝑧𝑖,𝜓
𝐼
𝑖=1 𝑥𝑖,𝜙,𝑚 ≤ 𝑥𝑖𝑖,𝜙,𝑚

𝑧𝑖,𝜙 ≥ 0      

𝜓, 𝜙 = 𝑠, 𝑡     

        (2) 212 

where 𝑖, 𝑖𝑖 ∈ {1, … , 𝐼}; 𝐼 = 10; 𝑡 ∈ {1, … , 𝑇}; 𝑇 = 11 ; 𝑥𝑖,𝜙,𝑚  refers to 𝑚  inputs and 𝑦𝑖,𝜙,𝑛  is 𝑛 213 

outputs in time step 𝜙 . In the presented analysis,  𝑀 = 3  includes the production factor 214 

requirement costs (a package of capital, labor and fertilizer costs in MAgPIE), cropland area and 215 

amount of water used for irrigation. 𝑁 = 1 refers to the aggregated crop production, and 𝑧𝑖,𝜓 is 216 

the weights applied to both the inputs and outputs in time step 𝜓. We assume constant returns 217 

to scale so that no additional constraints on the weights are required. 218 

The MPI is then calculated using the following general form: 219 

𝑀(𝑥𝑡+1, 𝑦𝑡+1, 𝑥𝑡, 𝑦𝑡) =   
𝐷𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡(𝑥𝑡,𝑦𝑡)
[

𝐷𝑡(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡+1(𝑥𝑡+1,𝑦𝑡+1)

𝐷𝑡(𝑥𝑡,𝑦𝑡)

𝐷𝑡+1(𝑥𝑡,𝑦𝑡)
]

1

2
     (3) 220 

The TFP change can be decomposed into the shift of technology (i.e., technical change, the part 221 

inside the square brackets, which is estimated as the geometric mean of the technological shifts 222 

evaluated at 𝑡 and 𝑡 + 1), and the catch-up to the frontier (the part outside the square brackets) 223 

(Färe et al., 1994). The latter refers to the gaps between the observed production and the 224 

maximum potential production for the two time steps, representing that regions converge 225 

toward the long-term production frontier. The long-term production frontier is SSP-specific, but 226 

it is assumed to be common for all the regions in a single SSP. To overcome the dimensionality 227 

problem (Coelli and Rao, 2005), various crops are aggregated into one single output for the 228 

estimation of the MPI. Different from constructing land quality indicators based on shares of 229 

irrigated land to correct the biases in the analysis of the TFP (Craig et al., 1997; Wiebe et al., 2003; 230 

Fuglie, 2008), we estimate the MPI by considering the amount of water directly as an input, which 231 

represents the land quality adjusted by the weights for irrigated and rain-fed cropland.  232 

Estimating the global MPI directly for each SSP is infeasible because the linear programming 233 

problems for the estimation cannot be solved. To overcome this problem, studies incorporate 234 

global data directly with regional data (Ludena et al., 2007), but this violates a key assumption of 235 

DEA that the production units under assessment are comparable to each other (Dyson et al., 236 

2001). A more theoretically sound way to compute the global MPI is by constructing a weighted 237 

average index based on the distance functions estimated from the regional data with appropriate 238 

weighting (Färe and Zelenyuk, 2003; Coelli and Rao, 2005). The aggregation scheme in this study 239 

is adopted according to the method derived by Färe and Zelenyuk (2003) and Zelenyuk (2006) 240 

based on production duality (see the details in S4). Similar to the regional MPI, the global MPI 241 

can also be decomposed into the shift of the production frontier and the catch-up to the frontier. 242 

To sum up, this study applies a modeling approach in combination with nonparametric 243 

estimation (Tab.1) to study the channels of improving productivity and its interaction with 244 

cropland expansion and impacts on food prices. 245 



9 
 

Tab.1. Main features of the different productivity measures used in the study. 246 
Productivity index Type of 

productivity 
measure 

Included input factors Estimation method 

Land-use intensity  PFP Investment in R&D, 
production factor costs 

Endogenously determined 
by solving the optimization 

problem 

Average yields PFP Investment in R&D, 
production factor costs, 

cropland area 

Postcalculation based on 
the model output 

MPI TFP Production factor costs, 
cropland area, used 

water amount 

Postcalculation based on 
the model output 

3 Scenarios 247 

3.1 Shared socioeconomic pathways  248 

In the future, as the global population continues to grow, intertwined with higher purchasing 249 

power, especially in developing and emerging countries, increasing demand for crops and 250 

livestock products can be anticipated (Bodirsky et al., 2015; Ruttan, 2002). Since the demand 251 

strongly depends on uncertain trends such as population and economic growth, it is unclear how 252 

the demand for agricultural goods will evolve, and it is uncertain how land dynamics, especially 253 

productivity patterns, will respond to the future demand. The recently developed SSP framework, 254 

depicting the plausible future changes in demographics, the economy, technology, and the 255 

environment (O’Neill et al., 2017; Popp et al., 2017; Riahi et al., 2017), has been applied in 256 

combination with the modeling approach to explore the coherent formulation of strategies for 257 

achieving the sustainable development goals (SDGs) (van Vuuren et al., 2015; Obersteiner et al., 258 

2016). The SSP framework will be used in this study to construct five different scenarios with 259 

respect to the socioeconomic conditions for the analysis. 260 

3.2 Assumptions of relevant factors in SSPs  261 

Different assumptions of SSPs regarding the stylized indicators are shortly introduced as follows. 262 

● SSP1 (Sustainability): A sustainably developed world with low population growth and high 263 

per-capita income, along with reduced global inequalities. These developments go hand 264 

in hand with high education and fast technological progress, also in the agricultural sector. 265 

The lifestyles are sustainable and the environmental legislation is progressive.  266 

● SSP2 (Middle of the road): A middle of the road scenario means business as usual, keeping 267 

the currently observed trends. SSP2 is considered to be the benchmark in this study.  268 

● SSP3 (Regional rivalry): A world with regional conflicts and limited cooperation between 269 

regions, e.g., trade conflicts, leads to reduced global trade flows, slow technological 270 
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change and development, a fast growing population, low investments in human capital, 271 

and unfavorable and weak institutions. 272 

● SSP4 (Inequality): A separate and unequal world in which there is rapid technological 273 

development and economic growth in developed regions while some of the least-274 

developed regions become disconnected from progress in the remaining world and face 275 

high population growth, poor governance and low economic growth. 276 

● SSP5 (Conventional development): A world in which rapid and globalized economic 277 

growth is based on rapid technological progress, free trade, and conventional carbon-278 

intensive development. Living standards are high throughout the world and go along with 279 

high energy consumption, and dietary patterns are characterized by high per-capita 280 

demand, in particular for animal-based products. Institutional stability allows for a 281 

favorable investment environment. 282 

The qualitative storylines of the SSPs, the quantitative population (Kc and Lutz, 2017) and income 283 

scenarios (Dellink et al., 2017) are used to parameterize the MAgPIE model, e.g., with respect to 284 

the trends in trade liberalization, environmental restrictions and costs of technological change 285 

(Error! Reference source not found.). The population and income scenarios of the SSPs are 286 

translated into demand for crop and livestock products, while different trajectories of economic 287 

development influence dietary preferences such as the share of meat consumption and the 288 

amount of calories consumed or wasted per person. The projections of the crop demand under 289 

different SSPs are shown in Fig.SI-2. The SSP indicator “environment” is implemented in the 290 

model through the protection levels of ecosystems, such as forests. “Technology” in MAgPIE is 291 

parameterized as the soil nitrogen uptake efficiency and livestock efficiency (the amount of feed 292 

needed to produce a certain amount of livestock products), but crop productivity changes are 293 

determined endogenously in the optimization. Implementing trade liberalization based on 294 

different self-sufficiency rates in the model represents the dimension of “globalization” of the 295 

SSP storylines. By following the narratives about institutional quality, we include risk-accounting 296 

factors to represent political stability and governance performance in SSPs, which affects 297 

investment risks and uncertainties through different discount rates. High investment risks reduce 298 

capital investments in agricultural production and encourage cropland expansion (Deacon, 1994, 299 

1999; Bohn and Deacon, 2000). We, therefore, use the annual interest rates as discount rates, 300 

based on a literature range of 4–12% (IPCC, 2007), as a proxy for the risk-accounting factors 301 

associated with governance performance (Wang et al., 2016). 302 

4 Results and discussion 303 

4.1 Land productivity growth under SSPs 304 

The land productivity is measured as PFP using both the land-use intensity and yield index, where 305 

the land-use intensity refers to homogenous land quality and the yield index encompasses 306 

heterogeneous land quality. By 2050, the global land-use intensity is expected to increase by 94.8% 307 

and 77.3% under SSP5 and SSP1, respectively (Fig.1). SSP3 also shows a relatively strong increase 308 



11 
 

in land-use intensity of 74.2%, while SSP2 and SSP4 experience relatively low land-use intensity 309 

growth, at the rates of 60.8% and 45.9%, respectively. 310 

 311 

Fig.1. Global land-use intensity (left panel) and yield index (right panel) for each SSP by 2050. 312 

The land-use intensity in the model is mainly affected by two factors, namely, the risks associated 313 

with investment and the pressure from the increasing crop demand. Investment risks and 314 

uncertainties associated with investments, which determine the attractiveness of agricultural 315 

technologies, are influenced by the institutional environment (Deacon, 1994, 1999; Bohn and 316 

Deacon, 2000; Deininger et al., 2014; Wang et al., 2016). In particular, Wang et al. (2016) find 317 

that land-use intensity increases when the governance performance is strong. Following the 318 

same logic, SSP5 and SSP1 are characterized by fast economic growth and a stable institutional 319 

environment, resulting in fast technological progress and high land-use intensity. This leads to a 320 

deceleration of cropland expansion in these two scenarios since the increasing demand is mainly 321 

satisfied by intensified production and yield improvements resulting from technological 322 

investments. In contrast, there is more cropland expansion in SSP2, SSP3, and SSP4 than in SSP1 323 

and SSP5 (Error! Reference source not found.). 324 

Pressure from the demand side, which is transmitted to the production side (Error! Reference 325 

source not found.), is another key factor driving the land-use intensity. As shown in Fig.1, the 326 

global land-use intensity growth rate in SSP3 is 13.4 percentage points higher than that in SSP2 327 

in 2050 and close to that in SSP1, despite the lower investment risks in SSP1 and SSP2. This is due 328 

to the high population growth increasing the demand for crop products and the limited 329 

opportunities for international trade in SSP3 (Error! Reference source not found.). Thus, 330 

technological progress as an endogenous response mechanism is the last resort for increasing 331 

the land-use intensity. This is specifically true for the developing regions, such as AFR, MEA, and 332 

SAS, which have very high population growth in SSP3 and, therefore, even higher land-use 333 

intensity increases than those in the developed regions (Error! Reference source not found.). In 334 

this scenario, it is arguable whether the projected increase in the per-capita demand can actually 335 

be realized since high prices would lead to reduced demand, including a higher degree of 336 

undernourishment. 337 
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The yield index, i.e., the average yield change, also indicates the continuous growth of the global 338 

land productivity over time for all SSPs (Fig.1). By 2050, SSP1 has the highest average yields, which 339 

are more than twice as high as those in 1995, followed by SSP5 (124.9%) and SSP2 (93.1%). SSP3 340 

and SSP4 have the lowest growth rates of average yields at 83.0% and 78.1%, respectively. Since 341 

the yield index is a weighted measure, the model results indicate that the average yield is driven 342 

by cropland expansion into areas with different agricultural suitability and land-use intensity 343 

growth. For instance, in SSP1 that features low investment risks and population pressure with 344 

globalized international trade, modest cropland expansion and high land-use intensity lead to 345 

high average yields, and vice versa for SSP3. Cropland expansion affects average yields through 346 

the initial yields of newly converted cropland, which is mainly dependent on irrigation conditions. 347 

From 1995 to 2050, the shares of irrigated area in SSP1, SSP2 and SSP5 increase by 18%, 13%, 348 

and 10%, respectively, indicating that crop production is mainly concentrated in the irrigated area 349 

(Tab.2). In particular, the share of the irrigated area continues to rise at a steady pace in SSP1 350 

from 2015 to 2050. By contrast, the shares of irrigated area in SSP3 and SSP4 reach the highest 351 

levels in 2025 and 2015, respectively, and then decrease hereafter. This is due to the large 352 

expansion of rain-fed cropland area, in particular in SAS for SSP3 and in NAM for SSP4 (Error! 353 

Reference source not found.). The relatively low initial yield of rain-fed cropland can decrease 354 

the average yield level. 355 

Tab.2. Changes in the share of irrigated area w.r.t. the total cropland area. 356 
Year SSP1 SSP2 SSP3 SSP4 SSP5 

1995 1.00 1.00 1.00 1.00 1.00 
2005 1.03 1.01 1.01 1.03 1.01 

2010 1.08 1.05 1.04 1.06 1.05 

2015 1.03 1.09 1.07 1.04 0.97 
2020 1.04 1.10 1.10 1.04 0.96 

2025 1.04 1.10 1.13 1.01 0.96 
2030 1.06 1.10 1.08 1.01 0.99 

2035 1.11 1.09 1.05 0.97 1.01 
2040 1.15 1.09 1.03 0.98 1.01 

2045 1.17 1.11 1.03 0.99 1.03 

2050 1.18 1.13 1.01 1.00 1.10 

The lower yields in newly converted rainfed cropland in SSP3 result in lower average yields 357 

compared to SSP2, which offset the effects of the higher land-use intensity in SSP3. Due to a 358 

similar reason, SSP1 has higher average yields than SSP5, despite the lower land-use intensity. 359 

The findings are consistent with Proposition S.2 derived in the method section, stating that 360 

expanding cropland into areas with lower than average yields leads to a decreasing yield index. 361 

They also explain why the order of future land productivity in the SSPs indicated by the land-use 362 

intensity index is different from the order indicated by the yield index. The combined effects of 363 

land-use intensity growth and the initial yields of newly converted cropland jointly determine the 364 

changes in the average yields at the regional level. Taking the regional yield index in SSP3 as an 365 

example, AFR has a larger increase in land-use intensity and average yields (Error! Reference 366 

source not found. and Error! Reference source not found.) than LAM because AFR has to rely on 367 

increasing technological investments for fulfilling the demand driven by very high population 368 

growth while regions such as LAM and FSU with less increase in the agricultural demand can still 369 
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expand their cropland area. Hence, if there is a high enough land-use intensity growth, it is 370 

possible to overcome the adverse effects of cropland expansion on average yields, resulting in 371 

an overall high average yield growth. 372 

4.2 TFP growth under SSPs by 2050 373 

The productivity growth measured by the land-use intensity and yield index shows how different 374 

parts of the land productivity will develop under different socioeconomic conditions. The global 375 

cumulative MPI derived in the study captures the full scope of the output growth relative to the 376 

growth of all the inputs including the cropland area, production factor costs and amount of water 377 

used for irrigation. The projection of TFP growth is first compared to the available historical and 378 

projection data in the literature (Ludena et al., 2007). In contrast to the prediction based on the 379 

estimates of historical data, which is likely to be the extrapolation of the historical productivity 380 

growth, the results in the presented study indicate that the projection has large spans when 381 

taking into account the changes in socioeconomic conditions (Fig.2). In combination with the 382 

other two productivity measures, the results show that the annual growth rates of the regional 383 

productivity vary across different SSPs (Error! Reference source not found.), suggesting the 384 

important influences of the socioeconomic factors on productivity changes.  385 

 386 

Fig.2. Regional cumulative TFP growth. The validation data is derived based on the annual average rate of TFP 387 
changes from the periods of 1960-1980, 1981-2000, and 2000-2040 based on the study of Ludena et al. (2007). 388 

By 2050, there is the highest growth of the global TFP in SSP1 (75.9%), followed by SSP5 (42.2%), 389 

SSP4 (37.9%) and SSP2 (33.4%) (Fig.3). SSP3 lies at the bottom, indicating the lowest growth in 390 

TFP, with an increase of 30.2% by 2050. Instead of relying on a limited time series of historical 391 

data to estimate TFP changes, the approach in the present study is likely to capture the structural 392 

change due to changes in socioeconomic conditions. 393 
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 394 

Fig.3. Global cumulative TFP growth for each SSP by 2050. 395 

The TFP growth has profound implications for food prices. The model results suggest that 396 

changes in food prices are negatively associated with TFP growth but positively associated with 397 

cropland expansion (Fig.4). Specifically, the ratio between the TFP growth and cropland 398 

expansion has significant impacts on food prices, with prices decreasing when productivity grows 399 

faster than cropland expands and vice versa. SSP1 and SSP5 are projected to have pronounced 400 

TFP growth of 62.6% and 32.2%, respectively, from 2005 to 2050. The substantial TFP growth in 401 

SSP1 and SSP5 is associated with decreased food prices (23.0% in SSP1 and 11.0% in SSP5) and 402 

minor increases in cropland area (6.2% in SSP1 and 11.2% in SSP5). In SSP2 and SSP4, there is also 403 

TFP growth, but it is associated with increased food prices and slightly higher cropland expansion 404 

compared to SSP1 and SSP5. Conversely, in SSP3, food prices increase substantially, while the TFP 405 

grows by 21.0% and cropland expands by 38.7% from 2005 to 2050. The results of an ordinary 406 

least squares estimation (Error! Reference source not found.) confirm that increasing the ratio 407 

between the TFP growth and cropland expansion has a negative and statistically significant effect 408 

on food prices, suggesting that increasing the ratio by one unit will decrease the global food 409 

prices by 17.83%. Investing in productivity improvements appears to be an effective way to 410 

ensure the availability of food, which is essential for reducing poverty and hunger, and to spare 411 

cropland, which improves the sustainable use of terrestrial ecosystems as part of the SDGs(Foley 412 

et al., 2011; Tilman et al., 2011; Havlik et al., 2013). 413 

 414 
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 415 

Fig.4. Growth rates of the TFP, food prices and cropland in 2050 w.r.t 2005 for the SSPs. 416 

The global TFP growth is mainly driven by technological progress (i.e., shifts of the production 417 

frontier) rather than the convergence of regions to the maximum production potential (i.e., 418 

catch-up), as shown in Tab.3. In particular, there is a large shift of the production frontier in SSP1 419 

at the global level, with an annual average increase of 1.4% from 1995 to 2050. Since the global 420 

MPI is derived as a weighted average of the regional MPIs, it is worth looking at the components 421 

of the TFP at the regional level. Taking SSP2 and SSP4 as examples, the higher global TFP growth 422 

in SSP4 than in SSP2 reflects that the large production regions, such as CPA, LAM, and NAM, have 423 

higher regional TFP growth in SSP4. The order of the SSPs indicated by the MPI generally 424 

corresponds to the SSP narratives, in particular for SSP3. It is noticeable that the regional TFP, 425 

especially in developing regions, is also mainly driven by shifts of the production frontier (i.e., 32 426 

of 40 regional catch-up scores are less than unity), consistent with the historical trend (Nin et al., 427 

2003). Several regions in SSP5, such as AFR, FSU, LAM, MEA, PAS, and SAS, converge to the long-428 

term production frontier. This suggests that SSP5 is the pathway with the fastest convergence of 429 

productivity for developing regions. Among all regions, LAM is the only region showing 430 

convergence (with an average annual rate of 0.1%) across all SSPs, while CPA has a unity score 431 

for convergence in all SSPs.  432 
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Tab.3. Average rates of the shift of technology, catch-up, and TFP change from 1995 to 2050 across the SSPs. 433 
  AFR CPA EUR FSU LAM MEA NAM PAO PAS SAS Global 

SSP1 

Shift of technology 1.013 1.012 1.011 1.009 1.017 1.018 1.013 1.017 1.017 1.013 1.014 

Catch-up 0.996 1.000 0.994 0.998 1.001 0.997 0.993 0.992 0.998 0.995 0.997 

TFP change 1.009 1.012 1.006 1.007 1.018 1.015 1.005 1.008 1.016 1.007 1.010 

SSP2 

Shift of technology 1.006 1.009 1.004 1.005 1.008 1.010 1.005 1.009 1.007 1.005 1.006 

Catch-up 1.000 1.000 0.996 0.997 1.000 0.997 0.997 0.999 0.995 0.999 0.999 

TFP change 1.006 1.009 1.000 1.002 1.009 1.008 1.003 1.008 1.002 1.004 1.005 

SSP3 

Shift of technology 1.007 1.008 1.003 1.005 1.006 1.008 1.004 1.007 1.008 1.004 1.006 

Catch-up 1.000 1.000 0.999 0.998 1.000 1.000 0.997 0.999 0.997 1.001 0.999 

TFP change 1.007 1.008 1.002 1.003 1.007 1.007 1.001 1.006 1.005 1.005 1.005 

SSP4 

Shift of technology 1.005 1.010 1.005 1.007 1.009 1.009 1.004 1.008 1.008 1.006 1.007 

Catch-up 0.997 1.000 0.999 1.000 1.001 0.997 0.998 1.001 0.994 0.998 0.999 

TFP change 1.002 1.010 1.004 1.007 1.010 1.006 1.002 1.009 1.002 1.004 1.006 

SSP5 

Shift of technology 1.006 1.012 1.005 1.010 1.008 1.011 1.003 1.010 1.010 1.003 1.007 

Catch-up 1.000 1.000 0.998 1.000 1.000 1.002 0.996 0.999 1.002 1.002 1.000 

TFP change 1.006 1.012 1.003 1.010 1.008 1.013 0.999 1.009 1.011 1.004 1.006 

Note: Values larger than unity indicate an increase in the shift of technology or catch-up. For comparison reasons, the values are given with three digits after the 434 
decimal. 435 
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Although the average results (Tab.3) show an increase in the shift of the production frontier 436 

for all regions in all SSPs, they do not identify which regions push forward the long-term 437 

production frontier. Recall that the MPI measures capture the performance of the productivity 438 

relative to the best practice in the sample, where the best practice represents the “world 439 

frontier” (Färe et al., 1994). By looking at the component distance functions in the index of 440 

the shift of the production frontier (see the details in Färe et al. (1994)), the study finds that 441 

regions such as EUR, NAM, CPA, and LAM often determine the global frontier in the first time 442 

steps, and CPA and LAM often determine the global frontier in the later time steps (Error! 443 

Reference source not found.). Rather than using techniques such as second-stage regressions 444 

(Chen et al., 2008; Headey et al., 2010) to pinpoint the underlying driving factors behind the 445 

MPI, the study can provide insights into the possible factors affecting the shift of the 446 

production frontier with a priori information from simulating land dynamics in the MAgPIE 447 

model and the insights gained from analyzing PFP measures. Taking CPA and LAM as examples, 448 

the average rate of the shift of the production frontier for the SSPs is 0.8-1.2% and 0.6-1.7%, 449 

respectively, indicating robust growth. One source of the shift of the production frontier is 450 

due to changes in management and increases in technological investments, which are partly 451 

affected by the overall institutional environment. For instance, the empirical analysis of the 452 

TFP in the literature shows the positive impacts of institutional change in China on the 453 

adoption of new rice varieties during the rural reform period (Lin, 1991) and the overall 454 

agricultural productivity (Gong, 2018). The positive effect of irrigation technologies on 455 

production is another cause of the shift of the frontier. The result is consistent with other 456 

studies that indicate that irrigation mainly affects the shift of the production frontier (Fan, 457 

1991; Jin et al., 2002; Chen et al., 2008).  458 

5 Conclusions 459 

Measuring productivity entails different ways that consider different types of production 460 

inputs. By synthesizing the findings of productivity growth indicated by the PFP and TFP 461 

measures, the study shows that there is likely to be a continuous growth of the global crop 462 

productivity for a broad span of different future socioeconomic conditions, but the ranking of 463 

the SSPs regarding growth rates varies across productivity measures. In particular, SSP5 has 464 

the highest land-use intensity by 2050 while SSP1 has the highest average yields and TFP. In a 465 

world with fast economic growth, strong governance performance and relatively slow 466 

population growth (SSP1 and SSP5), the food demand in 2050 can be met without aggressive 467 

cropland expansion. Productivity growth occurs through the adoption of high-yield 468 

technologies and improved irrigation. In contrast, low economic growth, weak governance 469 

performance, and very high food demand driven by fast population growth (SSP3) will require 470 

high land-use intensity together with vast cropland expansion into rain-fed areas to fulfill the 471 

demands but this will result in low TFP growth. Whether it is feasible to feed an increasing 472 

population under these circumstances can be doubted based on the results. A reason for 473 

concern is the low TFP growth in SSP3, especially in developing regions. Under the conditions 474 

of high population and low income growth, food insecurity in SSP3 is likely to become worse 475 

in developing regions. In all SSPs except SSP5, the TFP growth is driven not only by shifts of 476 

the production frontier, based on investments in yield-augmenting technologies and 477 

management improvements affecting land-use intensity, but also by the investment in 478 

irrigation technologies, which is not part of the land-use intensity measure. This confirms the 479 

necessity of increasing investment in R&D and infrastructure to meet the increasing food 480 

demand and to avoid large-scale cropland expansion, especially in the face of fast population 481 

growth. SSP5 is featured as a pathway with fast convergence toward the long-term production 482 
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frontier across developing regions. The ratio between the TFP growth and cropland expansion 483 

has significant impacts on food prices, with decreasing prices when productivity grows faster 484 

than cropland expands and vice versa. Investing in productivity improvement appears to be 485 

an effective means for ensuring food availability and sparing cropland, which can contribute 486 

to the achievement of SDGs.  487 

 488 
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