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Abstract 20 

Forecasting crop yields, or providing an expectation of ex-ante harvest amounts, is highly 21 

relevant to the whole agricultural production chain. Farmers can adapt their management, 22 

traders or insurers their pricing schemes, suppliers their stocks, logistic companies their routes, 23 

national authorities their food balance sheets to guide import or export and, finally, 24 

international aid organizations can mobilize reliefs. Evidence has grown in the literature that 25 

such forecasts with a meaningful lead time are possible on various geographic scales and for a 26 

broad range of crops. Here, we present a systematic review of the methods applied in end-of-27 

season yield forecasting and three frequently used data sources: weather data, satellite data and 28 

crop masks. Our literature database comprises 362 studies (2004 to 2019) which were evaluated 29 

regarding methods, crops, regions, data sources, lead time and performance. Moreover, we 30 

present 24 sources of real-time and predictive weather data, 21 sources of remote sensing data 31 

and 16 crop masks. Yield forecasting in our literature sample has been performed for 44 crops 32 

in 71 countries, also including many non-staple crops, but with an apparent bias in regions and 33 

crops. Forecasting performance depends on various factors, including crop, region, method, 34 

lead time to harvest and input diversity. Our systematic review supports a broader application 35 

of locally successful approaches at larger scales by providing a comprehensive, accessible 36 

compendium of necessary information for yield forecasting. We discuss improvement 37 

potentials with respect to methodological approaches and available data sources. We 38 

additionally suggest standardization procedures for future forecasting studies and encourage 39 

studying additional crops and geographic regions. Implications of forecasts for different target 40 

groups on different scales and the adaptation towards climate change are also discussed. 41 

 42 

  43 
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1. Introduction 44 

Estimating several weeks in advance how much there will be on the field at harvest time 45 

becomes increasingly tangible. Farmers, commodity markets, insurances, seed traders or 46 

logistics companies as well as regional authorities and food aid programs need outlooks on 47 

expected harvests to adapt their management of fields, firms or food balances (Basso and Liu, 48 

2019; Ben-Ari et al., 2018; Funk et al., 2019b; Headey, 2011; Johnson, 2014; MacDonald and 49 

Hall, 1980; Puma et al., 2015; Stone and Meinke, 2005). An example for the use of forecasts 50 

are crop insurances with ex-ante cash transfers or early warning systems, which were ranked 51 

as top adaptation measure with the highest economic return on investment (Global Commission 52 

on Adaptation, 2019).  53 

 54 

There is a multitude of techniques to forecast crop yields, both in the scientific literature and 55 

in practical application. Here we present a panoptic of existing and mostly successful 56 

approaches from the scientific literature to forecast yields weeks or months ahead of harvest 57 

time, covering almost the whole globe and a large range of crops, methods and scales. We also 58 

describe available weather data, satellite products and crop masks that facilitate yield 59 

forecasting. We chose to include a compilation of weather and remote sensing data due to their 60 

importance in forecasting, since there are few studies that do not use at least one of them and 61 

also because these are not comprehensively collated elsewhere with a forecasting lens. We 62 

furthermore included a compilation of crop masks since these are important for upscaling 63 

locally successful forecasting techniques to larger regions, where the risk of confounding due 64 

to other crops increases without a proper crop mask. This compilation of results supports 65 

upscaling of local approaches, usually on field or region level, to national and global forecasts 66 

which are of importance for enabling global food security. It also allows for detecting blind 67 

spots of forecasting, i.e. regions and crops which are currently under-represented in the 68 
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literature but are crucial for global markets and local food security. A comprehensive data base 69 

of the selected articles is provided to enable a rapid lookup for other researchers. Finally, 70 

drawing of the various approaches presented here, we develop standardization suggestions for 71 

robust crop yield forecasting. 72 

 73 

Several operational systems on national or regional level for crop yield and production 74 

forecasting are in place. These have recently been reviewed by Fritz et al. (2019), Basso and 75 

Liu (2019) and van der Velde et al. (2019). They include, among others, the MARS 76 

(Monitoring Agricultural Resources) system in Europe (van der Velde et al., 2018), 77 

Commodity Outlooks by the USDA for the United States and globally (Egelkraut et al., 2015; 78 

Johnson, 2014; McKenzie, 2008), CropWatch in China (Wu et al., 2013), ICCYF in Canada 79 

(Chipanshi et al., 2015), the Belgian Crop Growth Monitoring System (El Jarroudi et al., 2012; 80 

Tychon et al., 2003) or the Indian Mahalanobis National Crop Forecast Centre by the national 81 

government (Mahalanobis Centre, 2020). 82 

 83 

Global and transnational yield forecasting systems exist, based on models (Iizumi et al., 2018; 84 

López-Lozano et al., 2015) or as exchange platforms that combine national forecasts to provide 85 

a global outlook (Fritz et al., 2019). Their main aim is to provide a coherent picture of the 86 

global harvest situation. The AMIS (Agricultural Market Information System; (Bernardi et al., 87 

2016; Delincé, 2017; FAO, 2017)) platform started after the 2007/08 food price spikes to avoid 88 

such global wreckage in the future and is supplied, among others, by the GEOGLAM initiative 89 

(Global Agricultural Monitoring) (GEOGLAM, 2020). Furthermore, there is the FEWS.net 90 

platform (Famine Early Warning System Network) powered by the US Geo Service to issue 91 

early warnings in particular for developing countries (FEWS.NET, 2020; Funk et al., 2019b).  92 

 93 
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There is only limited literature on the performance of these systems. They often provide 94 

accurate forecasts (only a few percent deviation) in average years while having limited capacity 95 

to anticipate severe losses in a time frame that would allow for timely intervention (Ben-Ari et 96 

al., 2018; van der Velde et al., 2018). Nonetheless, national forecasting systems have improved 97 

considerably in recent years, partly owed to increased availability of better data sources on 98 

weather, highly resolved remote sensing earth observations, soil, management, and other yield-99 

determining factors, and partly owed to improved methods. Yet the rising frequency of extreme 100 

events under climate change (Rahmstorf and Coumou, 2011; Samaniego et al., 2018; Sheffield 101 

and Wood, 2008; Stott, 2016) requires a further improvement of techniques.  102 

 103 

There is a plethora of methods, mostly on small geographic scale. Apart from a successful 104 

small-scale approach, two ingredients are helpful for upscaling these to larger areas: first, the 105 

availability of observational weather and/or remote sensing data in near-real time and, second, 106 

a high-quality crop-specific crop mask and crop calendars. Not all ingredients are necessary 107 

for all approaches, as detailed below (Results section). This study presents a systematic review 108 

of the current literature and data availability in these domains. Our aim is to gather and describe 109 

existing approaches rather than to evaluate them, as different forecasting purposes (e.g. long 110 

lead time, high accuracy, spatial resolution, etc.) would result in different rankings. Our data 111 

base is intended to serve as a public repository of approaches and input data that facilitates the 112 

application of successful approaches on a larger scale.  113 

 114 

This systematic review complements previous reviews on crop yield forecasting. Methods on 115 

small geographic scales have been reviewed by, for example, Koirala et al. (2019), Elavarasan 116 

et al. (2018), Basso et al. (2013) or Basso and Liu (2019). The latter two provide an overview 117 

over different crop modeling schemes, usage of remote sensing data and their applications for 118 
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yield forecasting. In Basso et al. (2013) the authors distinguish forecasts based on crop 119 

observations, statistical or process-based crop models or remote sensing data and list 120 

application examples. They also describe possible ways of incorporating remote sensing data 121 

into models, and interactions between forecasting and nutrient or pest management. The paper 122 

provides a comprehensive overview of early warning systems. Basso and Liu (2019) provide a 123 

review of approaches for yield forecasting across the globe, highlighting their virtues and 124 

deficiencies with a focus on four staple crops. Their study contains a wide swath of methods 125 

and provides suggestions for improved forecasting. Our review, though, goes beyond previous 126 

work for the following reasons. First, we perform a fully systematic literature search resulting 127 

in a large data base (covering more than 350 articles) including additional (non-staple) crops 128 

and allowing only reported data as validation reference. We publish the annotated data base to 129 

facilitate further research. Second, we provide reviews of input data, namely operational 130 

satellite-borne resources, weather products and crop masks that are helpful for many 131 

forecasting efforts. Third, we discuss detailed suggestions on how to improve forecasting 132 

approaches in general and specifically for certain crops and regions. This includes suggestions 133 

for standardizing future studies on crop yield forecasting to create reliable insights. 134 

The rest of the paper is structured as follows. In section 2, we describe the methods used to 135 

compile the four domains of the review (methods, weather data, remote sensing data, crop 136 

masks). In section 3, we describe the results obtained for each domain. In section 4, we discuss 137 

advantages and drawbacks of our review approach and of the four domains individually. 138 

Section 5 concludes. 139 

  140 
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2. Methods 141 

We performed a systematic review of approaches to forecast yields during the growing season. 142 

Systematic reviews are increasingly used in agronomy to present unbiased views of the 143 

literature on a subject of interest (Bilotta et al., 2014; Mahon et al., 2017; Makowski et al., 144 

2013; White et al., 2011). Additionally, we compiled comprehensive lists of operational 145 

weather reanalysis and forecast data, remote sensing data sources and state-of-the-art crop 146 

masks.  147 

In the literature, the word ‘forecast’ is used in various ways. Newlands et al. (2014) provide a 148 

distinction between forecasting (a probabilistic statement of future yields with a model), 149 

prediction (assertion about future yields based on logic), projection (future yields based on 150 

scenarios) and prognosis (subjective judgment of future states). Moreover, we consider 151 

estimation as a real-time quantification of yield potential, but without forecasting. Throughout 152 

this review we use the term ‘forecasting’ for a pre-harvest statement about crop yields based 153 

on one or several models.  154 

In addition to academic efforts, there are operational for-profit solutions for crop yield 155 

forecasting. They are not included here, since an exhaustive enumeration is beyond scope and 156 

methodological details are often not disclosed. 157 

Apart from the elements reviewed here, historical yields and surveys can aid forecasting. While 158 

historical yields, probably with an added trend, may provide early estimates at the beginning 159 

of the season, they can usually be replaced by more sophisticated estimates during the season. 160 

Surveys among farmers or regional agricultural offices are still a major tool for estimating crop 161 

yields throughout the season (Johnson, 2014; Liu and Basso, 2020; van der Velde et al., 2018), 162 

but are laborious and difficult to upscale to larger regions. A way out seem picture-based yield 163 

estimation techniques (Ceballos et al., 2019), but these have only recently been developed and 164 

are therefore not described in this review. 165 
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 166 

 167 

2.1. Systematic literature review of yield forecasting methods  168 

The Web of Science® was queried with the following search terms on various dates until 169 

December 03, 2019. As TOPIC constraints we chose “(crop AND agric*) OR (crop AND 170 

yield)”, and as TITLE constraints we selected “(harvest OR yield OR production OR insur* 171 

OR food OR "early warning") AND (forecast OR estimat* OR predict* OR outlook OR 172 

pre*harvest OR monitor*)”. Studies were only considered when published between 2004 and 173 

2019. This resulted in 1,334 hits, which were filtered for relevance by subsequently reading 174 

title, abstract and full text. The following filter criteria were applied: 175 

• At least one “true” forecast during the season is presented, i.e. before harvest time and 176 

without any information on weather or plant growth after the forecasting day. 177 

• Reference yields are observed (experimental study, field data or administrative area) 178 

and not simulated, and they are not from greenhouse or pot experiments (except for 179 

those crops regularly grown in greenhouses like tomatoes). 180 

• Yield, either absolute or relative, must be forecasted (not biomass or NPP). 181 

• Only food crops are considered. 182 

• The article is written in English, has been peer-reviewed and is identifiable on either 183 

the Web of Science® or Google Scholar (the latter was only used to locate the full 184 

text of studies indexed, but not linked in Web of Science). 185 

• Review articles were not included, i.e. a new method must be presented or several 186 

methods be compared in a quantitative experiment. 187 

 188 

These filters resulted in 362 relevant papers. Their contents were tabulated and standardized to 189 

enable comparisons and a systematic evaluation by extracting the following variables from 190 
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each study (not all were applicable to all papers). 191 

• Study data: lead author, year, journal, title 192 

• Experiment setup: study region, crops considered, time frame (harvest years) 193 

• Input data: types of input, sources of input, exogenous variables  194 

• Method: model type, lead time to harvest and spatial resolution 195 

• Evaluation: validation method, performance measures 196 

 197 

Regarding method performance, different measures were used in the studies. For 198 

standardization purposes, a focus was placed on R2 (the explained variance) and RMSE (Root 199 

Mean Square Error), with a split into in-sample and out-of-sample assessments. If none of 200 

these measures were available, the study-specific performance was annotated. Several studies 201 

mentioned to perform an out-of-sample (OOS) validation, but in their results it was unclear 202 

whether these relate to the full data set or OOS; in these cases, the full data set was assumed as 203 

training data (i.e. no OOS performance). Some studies, for example Rocha and Dias (2019) or 204 

Yang et al. (2019), use OOS to tune model hyper parameters, which is not counted as OOS 205 

forecast if for the latter the full data set was used. 206 

 207 

2.2. Collection of sources of weather data 208 

Yield forecasting based on crop growth models, whether statistical or process-based, usually 209 

requires weather data as input. Based on the considered literature and our own knowledge, we 210 

compiled an overview of commonly used near-real time products documenting past weather 211 

conditions until the forecasting date as well as sources of weather forecasts up to several 212 

months ahead. Our compilation of weather products comprises global and major regional 213 

efforts.  214 

 215 
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2.3. Collection of sources of remote sensing data 216 

Data from remote sensing tools are used in many forecasting studies. These tools vary in 217 

observed bandwidths, spatial resolution, temporal revisit frequency, distance to the measured 218 

object and, not least, cost for acquisition. Hand-held sensors, tractor-mounted devices or drones 219 

are used in several local forecasting studies, which we also classified as remote sensing within 220 

this study. The major source of data for larger areas at reasonable cost are, however, satellites. 221 

To illustrate the wide range of available satellites for crop monitoring, a list of these was 222 

compiled. It was populated with satellites referenced in the studies selected above and further 223 

satellites described on overview sites of NASA, ESA, Chinese and Indian space agencies.  224 

 225 

2.4. Collection of crop masks 226 

Crop-specific growing areas are required to derive crop production over a region. Masks are 227 

not a direct input to forecasting methods, but are used to filter out irrelevant areas where the 228 

crop of interest is not grown, either in pre- or post-processing. There are several national and 229 

global products available, which were collected and described according to their resolution, 230 

update schedule, crop specificity, method for construction and resources used. Their quality is 231 

not evaluated here as the applicability of a certain mask may depend on the usage. The list of 232 

crop masks was compiled from both the article library compiled above and additional review 233 

articles on crop masks (see references in the section). Only crop masks with global or at least 234 

multi-national coverage are listed, with an exception for the USA where many products are 235 

available and crop production is important globally. 236 

 237 

  238 
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3. Results 239 

 240 

3.1. Methods for yield forecasting used in the literature 241 

 242 

The selected articles on yield forecasting show a wide range of crops (n = 44), including non-243 

staple or horticultural crops like citrus or strawberry, but with less coverage (Figure 1). Wheat, 244 

maize and rice are among the most studied crops.  245 

Studies have been conducted in 71 countries (Figure 2), most frequently in the USA, followed 246 

by China, India, Spain and Brazil. There are also many experiments in developing countries, 247 

but often only with a single study on a single crop. Forecasting efforts in Europe are dispersed 248 

across space, largely following country size and production share, with a dearth of studies 249 

particularly in Eastern Europe. An overview of all combinations of crops and study countries 250 

is provided in Figure S1.  251 

The number of years considered per study varies between 1 and 147 (average 10.6) and depends 252 

on the study type: regional studies based on aggregated yield data are usually longer than 253 

experiment-based assessments (Figure S2). 254 

 255 

 256 
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 257 

Figure 1: Crops for which yield forecasts were performed. The y axis denotes the number of 258 

studies for each crop (also indicated in parentheses behind the crop name). Several crops may 259 

be addressed by the same study, so the total sum is larger than the number of reviewed studies. 260 

Y-axis ranges differ between categories.  261 

 262 

 263 

 264 
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 265 

Figure 2: Countries in which yield forecasting was conducted. The y axis denotes the number 266 

of studies addressing a country (also indicated in parentheses behind each country); several 267 

countries may be addressed by the same study. A majority of articles only studies sub-regions 268 

within one country. There is one global study that we included in panel b. Y-axis ranges differ 269 

between regions.  270 

 271 

There is a wide range of model types and specific models used for forecasting (Figure 3), with 272 

a bias in favor of regression models (occurring in 74% of studies). More than one method is 273 

applied in 37% of the studies (Figure S3). Process-based crop models occur in 57 studies in 274 

our data base, among which DSSAT (including CERES) with 13 mentions is most prominent. 275 

Delincé (2017) and Basso and Liu (2019) provide an overview over the use of crop models in 276 

forecasting. Within the machine-learning models, neural networks are featured most.  277 

A variety of data enters the models as exogenous variables or as calibration targets for 278 
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intermediate outputs (Figure 4). If weather data are used as model input, these are often 279 

combinations of temperature, precipitation, radiation, or humidity (herein coined as 280 

‘Multiweather’ for standardization). Similarly for vegetation indices (VI), a number of studies 281 

uses multiple VIs and tests which one fits the yield data best (termed ‘MultiVI’). The NDVI 282 

(Normalized Difference Vegetation Index) is the most prominent single VI used for yield 283 

forecasting. Within direct measurements, LAI (Leaf Area Index) is most often used. Various 284 

combinations of different inputs, for example remote sensing and weather data, are used 285 

(Figure S3). Remote sensing data alone (125 times) and weather data alone (75) are most often 286 

used, followed by their combination (55). A split of input combinations per model category 287 

highlights the differential usage between, for example, process-based and statistical models 288 

(Figure S4). 289 

Scientific efforts in yield forecasting have increased (Figure S5). Model usage has evolved 290 

between 2004 and 2019, with rising frequency of machine-learning methods like Neural 291 

Networks, SVM or Random Forests (Figure S6). 292 

Most studies were performed on regional scale (163 studies, where ‘regional’ indicates any 293 

administrative unit below country level), followed by 127 experimental plot studies and 61 294 

field-scale studies. Thirteen studies were performed on national, one on global and one on 295 

storage silo level. Four studies treated more than one scale. 296 

 297 

 298 

 299 

 300 
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 301 

Figure 3: Overview of the methodological tools in the studies considered. Methods are grouped 302 

in four broad categories; “Others” are methods that do not fit elsewhere. The y axis denotes 303 

the number of times a technique or model is used in the literature (one study may use several 304 

tools). Y-axis ranges differ between categories; the y-axis for panel d is log-scaled to 305 

accommodate the wide range. 306 

 307 

 308 

 309 
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 310 

Figure 4: Exogenous variables used as model input, grouped intro three broad categories. The 311 

y axis denotes the number of times an input is used in the literature (one study may use several 312 

tools). Y-axis ranges differ between categories. A list of abbreviations is provided in Table S1. 313 

 314 

 315 

 316 

Lead times to harvest range from just before harvest up to one year or before season start. The 317 

exactness of lead times indicated in the studies varies, with 26 studies mentioning only that a 318 

forecast before harvest was performed, but the actual lead time is not stated. The most frequent 319 

lead times are two months (71 articles) and one month (70). Forecasts are provided at various 320 

growth stages, with the longest lead times (six months or more) observed for olives, sugarcane, 321 

coffee and citrus. 322 

The forecasting performance depends on the crop, region, lead time to harvest, inputs used and 323 

method applied (Figure 5). Due to the large variety in reporting performance, we focused on 324 
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those 134 studies which clearly indicated the time point of forecasting, reported in-sample R2 325 

values per crop (out-of-sample values were too infrequent) and considered only six crops with 326 

high global production share.  327 

The majority of studies (52%) does not provide an out-of-sample assessment of their 328 

performance. Out-of-sample means that a forecast method was trained on a subset of the data 329 

and then applied without further calibration to a test set, as would be the situation for an 330 

operational forecast. Furthermore, several studies that indicate to have done an out-of-sample 331 

validation do not state the performance of this exercise. Of those studies claiming to have done 332 

a validation with independent test data (173), only 109 (30%) report these performance 333 

measures as R2, RMSE or similar. 334 

 335 

 336 

Figure 5: Dependency of forecast performance (R2 in-sample; y axis) on different 337 

determinants: (a) crops, (b) input types, (c) method types and (d) lead time to harvest. For the 338 
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methods plot (c) only those entries were considered where the R2 could clearly be associated 339 

with one method. For the lead time plot (d) only those entries were considered where lead time 340 

could be normalized to weeks before harvest. Abbreviations in (b) are C.mask = Crop mask, 341 

Meas = Measurement, RS = Remote Sensing, Weat = Weather 342 

 343 

3.2. Sources of weather data  344 

 345 

In Table 1 we provide a list of the most common near-real time observation-based weather 346 

products, plus an overview over short-term and seasonal weather forecasts. NASA POWER 347 

(Prediction Of Worldwide Energy Resources) is a prominent near-real time product with a 348 

latency of few days for most variables, combining solar radiation data based on radiative 349 

transfer models from satellite observations with meteorological data from MERRA2 (Modern-350 

Era Retrospective analysis for Research and Applications, version 2). The time gap (latency of 351 

few months) until MERRA 2 becomes available is bridged with GEOS FP (Global Earth 352 

Observing System Forward-Processing) to provide near-real data. ERA5 is the new ECMWF 353 

(European Centre for Medium-Range Weather Forecasts) near-real time reanalysis product, 354 

replacing ERA-Interim reanalysis (discontinued on 31 August 2019). CHIRPS (Climate 355 

Hazards Infrared Precipitation with Stations) and CHIRTS (Climate Hazards Infrared 356 

Temperature with Stations) are new high-resolution products at 3 arcmin global coverage, 357 

combining satellite observations with station data. These products provide an advantage 358 

especially in regions with scarce station data. 359 

 360 

In addition to global products there are various regional efforts. In Table 1 we list a selection 361 

of the prominent North American and European products, but this list is not meant to be 362 

exhaustive. There are, for example, near real-time data sets by the Indian Meteorology 363 

Department (IMD). We also refrain from collating static, not regularly updated reanalysis 364 
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products and climate forcing data sets, which are discussed in Ruane et al. (2015). 365 

 366 

Several options are available to continue yield simulations after the forecasting day throughout 367 

the growing season (Basso and Liu, 2019). These include historical weather data, employing a 368 

weather generator, or using weather predictions. For the latter category we provide an overview 369 

of the most common weather forecast products currently available. General short-term weather 370 

forecasts (up to 2 weeks) can be continued with sub-seasonal (up to 3 months) and seasonal 371 

outlooks, but forecast skill beyond 10 days is as yet generally marginal (Bauer et al., 2015; 372 

Kushnir et al., 2019). Prominent short-term products include NCEP’s GFS (abbreviations in 373 

Table 1) in the U.S. and the ECMWF ensemble. The TIGGE project assimilates data from ten 374 

global numerical weather prediction centers. The field of sub-seasonal to seasonal predictions 375 

is under active development, complementing operational products hosted by NCEP and 376 

ECMWF with new efforts such as the S2S project across multiple institutions (references in 377 

Table 1).  378 

 379 

Several studies in our literature data base use historical climate as a proxy for unobserved 380 

weather in the future. This can be achieved via a trend extrapolation, historical averages or 381 

more sophisticated choices where the observed weather during the season of interest until the 382 

forecasting day is used to identify historical weather analogues (i.e. similar weather until that 383 

day) to prescribe a weather trajectory until the end of the season (Anwar et al., 2008). 384 

Teleconnections with, for example, sea surface temperatures are an emerging option for 385 

forecasts (Boers et al., 2019; Knippertz et al., 2003; Lehmann et al., 2020).  386 

 387 

   388 
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Table 1: Overview of weather products useful for yield forecasting. The table is split into three sections: global near real-time observational 389 

products, regional near-real time products and (mostly) global short- to long-term forecasts. Variable codes are: 2m air temperature (T), 390 

precipitation (P), humidity (H), shortwave (SW) and longwave (LW) surface radiation, wind (W). 391 
Name Time period Latency Temporal resolution Spatial resolution and 

coverage 

Variables Comments Ref. 

Global near real-time products 
NASA POWER (Prediction Of 

Worldwide Energy Resources) 

1981 to 

present 

1-7 days Daily (initially 1-hourly 

(meteorological) and 3-

hourly (solar) but 

averaged to daily) 

0.5° global (initially 0.5° x 

0.66° (meteorological) and 

1° (solar), then rescaled to 

0.5°) 

T, P, H, SW, 

LW, W 

Solar data based on radiative 

transfer models from satellite 

observations, using NASA GEWEX 

SRB and FLASHFlux, meteorological 

data taken from MERRA 2 and GEOS 

5.12.4 

(NASA 
POWER, 
2020) 

NASA POWER - GEWEX SRB 

3.0 

(Global Energy and Water 

cycle Exchanges Surface 

Radiation Budget) and NASA 

POWER – CERES FLASHFlux 2 

& 3 (Clouds and 

the Earth's Radiant Energy 

Systems Fast Longwave and 

SHortwave Radiative Fluxes) 

1983 to 2007 

and 

2008 to 

present 

7-8 days 3-hourly 1° global SW, LW Satellite based, filling the gap until 

highly accurate CERES flux estimates 

become available 6-12 months later 

GEWEX 
(2020) 

NASA POWER - MERRA 2 

(Modern-Era Retrospective 

analysis for Research and 

Applications, version 2) 

1981 to 

present 

Few months hourly 0.5° x 0.625° global T, P, SW, 

LW 

NASA’s Global Modeling and 

Assimilation Office (GMAO) 

reanalysis product, in-situ and 

satellite data observations, replaces 

Gelaro 
et al. 
(2017)  



21 
 

Name Time period Latency Temporal resolution Spatial resolution and 

coverage 

Variables Comments Ref. 

MERRA and now provides 

microwave, hyperspectral, and 

ozone outputs 

NASA POWER - GEOS FP 

(Global Earth Observing 

System Forward-Processing) 

End of 

MERRA 2 to 

near-real 

time 

About 4 

hours 

hourly 0.25° x 0.3125° global T, P, SW, 

LW 

NASA’s Global Modeling and 

Assimilation Office (GMAO) 

operational product, used to fill gaps 

between end of MERRA 2 and near-

real time, kept available for 

approximately 6 months  

Borovik
ov et al. 
(2017) 

ERA5 (ECMWF ReAnalysis) 1950 to 

present, 

including a 

forecast field 

3 months, 

preliminary 

data 7 days 

hourly 0.25° global T, P, SW, 

LW, W 

Observations and modeling, replaces 

the ERA-Interim reanalysis stopped 

in 2019, ERA5 will be completed by 

mid 2020 

ERA5 
(2020) 

NCEP/NCAR (National Center 

for Atmospheric Research) 

Reanalysis 1 

1948 to 

present 

1 day Daily, 6 hourly 2.5° global T, P, H, W Climate Data Assimilation System 

(CDAS) 

Kalnay 
(1996) 

NASA GLDAS (Global Land 

Data Assimilation System) 

1948 to 

present 

About a 

month 

3-hourly 0.25° global (all land north 

of 60° S) 

T, P, SW, 

LW 

Assimilation of satellite- and ground-

based data into land-surface models 

(uncoupled from an atmospheric 

model) forced with observations, 

and thus not affected by numerical 

weather prediction forcing biases. 

Rodell 
et al. 
(2004) 

CHIRPS (Climate Hazards 

Infrared Precipitation with 

Stations) 

1981 to 

present 

preliminary 

2 days, final 

3 months 

daily 0.05° (3 arcmin) global P Satellite and station data for high-

resolution estimates in regions 

scarce observations 

Funk et 
al. 
(2015) 
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Name Time period Latency Temporal resolution Spatial resolution and 

coverage 

Variables Comments Ref. 

CHIRTS (Climate Hazards 

Center Infrared Temperature 

with Stations) 

1983 to 2016 

(to present 

soon) 

Not yet 

operational 

daily 0.05° (3 arcmin) global Tmin, Tmax geostationary satellite thermal 

infrared and 15000 stations, high-

resolution Tmax, advantage for near-

real time 

Funk et 
al. 
(2019a) 

NASA GPM-IMERG (Integrated 

Multi-satellitE Retrievals for 

Global Precipitation 

Measurement) 

 

 

 

 

2000 to 

present 

6 hours 30 min 0.1° global P Integrated multi-satellite retrievals 

of precipitation and snow coverage. 

TRMM (Tropical Rainfall Measuring 

Mission) and CHIM was discontinued 

in 2015 and replaced by GPM, it 

included Multi-satellite Precipitation 

Analysis (TMPA), the real-time TMPA 

(TMPA-RT) 

Huffman 
et al. 
(2019) 

NCEP – CFSR (National Centers 

for Environmental Prediction -

Climate Forecast System 

Reanalysis) 

1979 to 2017 discontinued 6 hourly 0.5° global T, P, SW, 

LW 

Coupled atmosphere-ocean-land 

surface-sea ice system, has been 

extended as an operational real-time 

product (CFSv2) 

Saha 
(2010) 

Regional near real-time products (selection) 
NASA NLDAS (North American 

Land Data Assimilation 

System) 

1979 to 

present 

About 3-4 

days 

Daily, hourly 7.5 arcmin (1/8°), North 

America 

SW, H, W Part of GLDAS, at higher spatial 

resolution for North America 

NLDAS 
(2020) 

ORNL DAAC DayMet (Oak 

Ridge National Laboratory 

Distributed Active Archive 

Center) 

1980 to 

present 

3-4 months Daily 1 km, North America, 

Hawaii, Puerto Rico 

T, P, SW, H Gridded estimates of daily weather 

parameters 

DayMet 
(2020) 

PRISM (Parameter-elevation 1981 to Released Daily, monthly 30 arcsec, USA T, P Assimilated weather station data, Daly et 
al. 
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Name Time period Latency Temporal resolution Spatial resolution and 

coverage 

Variables Comments Ref. 

Regressions on Independent 

Slopes Model) 

present daily 

values, 1895-

present 

monthly 

values 

1pm EDT for 

preceding 

day 

 

data released in “early release” 

which can change, 7 months are 

considered “provisional release”, 

then “stable” 

(2008) 

Copernicus E-OBS 1951 to 

present 

 

About a 

month 

Daily 0.1° Europe extended T, P, 

radiation 

European high-resolution ensemble 

dataset 

Cornes 
et al. 
(2018) 

Global short-term to seasonal forecasts 
NCEP GFS (Global Forecast 

System) 

8 days at 

0.5° and up 

to 16 days at 

1°  

6 hours 3-hourly 0.5° global T, P, H, W U.S. numerical weather prediction 

system, one of the predominant 

synoptic scale medium-range models 

GFS 
(2020) 

TIGGE (The International 

Grand Global Ensemble) 

1 to 15 days  48 hours 6-hourly Global T, P, SW Previously named THORPEX, 

ensemble forecast data from 10 

global numerical weather prediction 

centers, including NCEP, ECMWF, 

UKMO, etc.  

TIGGE 
(2020) 

ECMWF – HRES  

(High Resolution) and  

ECMWF – ENS (Ensemble) 

10 and 15 

days 

 Twice daily 9 and 18 km global T, P, H, SW, 

W 

European numerical weather 

prediction system, ensemble of 51 

forecasts 

ECMWF 
(2020) 

ECMWF – Extended and Long 

Range 

46 days and 

7 months 

 Twice weekly and 

monthly 

36 km global T, P, H, SW, 

W 

Extended range: bridges gap 

between medium-range and 

seasonal forecasting, but still with 

land-atmosphere-ocean coupling 

[as 
above] 
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Name Time period Latency Temporal resolution Spatial resolution and 

coverage 

Variables Comments Ref. 

Long range: ensemble of 51 

forecasts available on the 8th of 

each month, in addition to monthly 

product, run quarterly for 1 year 

ahead 

S2S (Sub-seasonal to Seasonal 

Prediction Project) 

Up to 60 

days 

Updated 

daily with a 

21 day delay 

Weekly anomalies Global T, P Ongoing joint research project 

across multiple institutions within 

WWRP/THORPEX/ WCRP 

Vitart 
and 
Roberts
on 
(2018); 
S2S 
(2020) 

NCEP - CFSv2 (Coupled 

Forecast System model 

version 2) 

45 days to 6 

months 

6 hours 6-hourly 0.5° global T, P, SW, 

LW, 

Medium to long range numerical 

weather prediction and a climate 

model to bridge weather and climate 

timescales, provides anomalies with 

respect to 1999-2010 climatology;, 

"Coupled" refers to the fact that the 

model couples atmosphere and 

ocean 

Saha et 
al. 
(2014) 

CHFP (The Climate-system 

Historical Forecast Project) 

sub-

seasonal-to-

decadal 

Under 

developmen

t 

Under development Global Under 

developme

nt 

Anomalies, multi-modal and multi-

institutional experimental 

framework for sub-seasonal-to-

decadal complete physical climate 

system prediction, including 

atmosphere, oceans, land surface 

and cryosphere 

Tompkin
s and al 
(2017)  
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Name Time period Latency Temporal resolution Spatial resolution and 

coverage 

Variables Comments Ref. 

NOAA CPC (Climate Prediction 

Center) 

2 weeks to 

13 months 

Few days Monthly conterminous United States  T, P Maps of anomalies with respect to 

1980-2010 average climatology 

NOAA 
CPC 
(2020) 

JMA/MRI-CPS2 (Tokyo 

Climate Center, Japan) 

Up to 7 

months  

Few days Daily, later monthly 0.5° global T, P, W, H ENSO forecasts, seasonal anomalies; 

hindcast archive 1979-2014 

Takaya 
et al. 
(2016) 

 392 

 393 
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3.3. Sources of remote sensing data 394 

A majority (66%) of the studies reviewed here uses remotely sensed data to produce yield 395 

forecasts during the season. While 104 small-scale studies on experimental plots relied on 396 

ground-based (74) or low-height airborne (30) sensors, the majority used data from satellites. 397 

Only a few satellites account for most applications (Table 2): MODIS (67 studies), SPOT (27), 398 

Landsat (26) and AVHRR (21). There are more satellite products suitable for application, but 399 

used only infrequently or not at all. A selection of these is provided in Table 2. Stratoulias et 400 

al. (2017) and Chivasa et al. (2017) provide further overviews of satellite sensors with very 401 

high spatial resolution and how to estimate yields in heterogeneous landscapes. Depending on 402 

the wavelengths measured, infrared, optical, radar, microwave and multi-/hyperspectral 403 

sensors are distinguished.  404 

Applications of these data within yield forecasting comprise the measurement of vegetation 405 

greenness, general vegetation condition, soil attributes like soil moisture, pest or disease 406 

infestations (often based on greenness) or crop distribution. Weather data can also be collected 407 

with satellites, for example METEOSAT.  408 

Remotely sensed data can be used, as training or validation inputs, in three different ways: 409 

direct (for correlation), indirect (via assimilation into models) or as plant measurement 410 

surrogates (for further processing in models); see also Basso and Liu (2019). 411 

A plethora of different vegetation indices or conditions can be derived from satellite 412 

measurement, of which many were used in our database (Figure 4). The NDVI accounts for 413 

the large majority, and 66 studies use a combination of at least three spectral measurements to 414 

forecast yields. Cao et al. (2015) and Basso and Liu (2019) provide an overview of many 415 

possible indices. A recent effort to harmonize Landsat and Sentinel-2 data (HLS, 2020) has 416 

been started by NASA to overcome data gaps between both products. 417 

 418 
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Table 2: Satellite sources for remote sensing data with key characteristics and their usage count within the studies reviewed here; abbreviations are 419 

listed in Table S1. URL resources for each satellite family are provided in Table S4. Application references for each satellite used within the studies 420 

reviewed here are detailed in Table S2 (not all satellites were applied in our literature set). 421 

Satellite family Operator Spatial 

resolution 

Revisit 

frequency 

Spectral 

bands 

Area 

coverage 

Availability Operational time 

frame 

Studies 

with use 

AVHRR NOAA 1 km 1 day NDVI Global Public 1981-present 21 

CBERS China-Brazil Earth 

Resource Satellite 

Program 

Up to 10 m 26 days B,G,R, NIR Global On request 1999-present 0 

COSMO Italian Space Agency Up to 1 m 16 days SAR Global On request (public) 2008-present 0 

Deimos Deimos Imaging 22 m 2-3 days G, R, NIR Global On request (comm.) 2009-present 0 

ENVISAT ESA Up to 30 m 35 days SAR C-band Global On request 2002-2012 4 

Formosat NSPO (Taiwan Space 

Agency) 

8 m 1-2 days B,G,R, NIR Global On request (comm.) 2004-present (gap 

in 2016/17) 

3 

IKONOS DigitalGlobe 1-4 m 3-14 days B,R,G, NIR  On request (comm.) 1999-2015 0 

IRS ISRO (Indian Space 

Research Organisation) 

6-70 m 24 days R, G, NIR, 

SWIR 

75 N, 25 S, 20 

W, 50 E 

On request 1996-2013 2 

KOMPSAT KARI (Korea Aerospace 

Research Institute) 

4-6 m 14 days B,R,G, NIR Global On request 1999-present 0 

Landsat USGS, NASA 30 m 16 days B,G,R, NIR, 

SWIR, TIRS 

Global Public 1982-present 26 

MODIS NASA Up to 250 m 1-2 days 36 bands Global Public 1999-present 67 

Pleiades Airbus 2 m Up to daily B,R,G, NIR Global On request (comm.) 2011-present 0 

Proba-V ESA 0.3-1 km 1-2 days NDVI 56S-75N Public 2013-present 1 

Quickbird DigitalGlobe 2.5 m Up to 2.5 days B,G,R, NIR  On request (comm.) 2001-2015 2 

Radarsat Public-private 1-100 m Daily SAR C-band Global On request 1993-present 6 
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Satellite family Operator Spatial 

resolution 

Revisit 

frequency 

Spectral 

bands 

Area 

coverage 

Availability Operational time 

frame 

Studies 

with use 

cooperation from Canada 

RapidEye Planet 6.5 m Up to daily B,G,R, RE, 

NIR 

84 N to 84 S On request 

(comm.); partly 

public 

2009-present 4 

ResourceSat-

1/2 

ISRO (Indian Space 

Research Organisation) 

6-70 m 5 days G, R, NIR, 

SWIR 

Global On request 2004-present 0 

Sentinel ESA Up to 5 m (SAR) 

or 10 m (other) 

5-12 days SAR, 13 bands Global Public 2014/5-present 5 

SPOT Spot Image / CNES 6-20 m Up to daily B,G,R, NIR Global On request (comm.) 1986-present 27 

TerraSAR, 

TanDEM 

German Aerospace 

Center (DLR) 

< 1 m to 40 m 11 days SAR Global Public 2007-present 2 

WorldView DigitalGlobe < 1 m Depends on 

region, a few 

days 

B, R, G, NIR, 

+4 more 

Global On request (comm.) 2007-present 2 

   422 
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3.4. Crop masks of potential relevance for yield and production forecasting 423 

A crop mask is a gridded product, indicating the location or grid-cell fraction of a specific crop. Crop 424 

locations are important for selecting areas of interest in yield or production forecasting and calculating 425 

aggregated production from yield. These masks are usually applied in pre- or post-processing of 426 

forecasting methods, not as a direct input to the forecasting algorithm. There are several global and 427 

regional products publicly available, offering different spatial resolutions, land-use classifications, 428 

update schedules and resources used for construction (Table S3). Most of the masks are static (created 429 

for one specific year) and distinguish only land-use classes like forests or croplands, but do not resolve 430 

different crop types in higher granularity. A majority of masks provides geo-specific locations for 431 

land-use classes, indicating the dominant land-use class for each pixel. Few masks, like SPAM or 432 

MIRCA2000, indicate the area shares of each crop type per grid cell but do not spatially allocate these 433 

types within grid cells. Some of the masks, like the MODIS-LC or FAO’s WaPOR products, offer 434 

further data like phenology or evapotranspiration with regular updates. MIRCA2000 also provides a 435 

crop calendar including monthly planting and harvest dates. Almost all masks are constructed with 436 

the support of remote sensing data, either as sole resource or to upscale ground-based data to a larger 437 

area. Comparisons of different approaches and masks are provided by Grekousis et al. (2015), 438 

Anderson et al. (2015), Lambert et al. (2016) and Fritz et al. (2010). Apart from the crop masks listed 439 

here, there are many national approaches, exemplified by Pervez and Brown (2010) or Waldner et al. 440 

(2017). Within our literature data base, the US-based CDL was most often used (15 studies), followed 441 

by MODIS Land cover (5). Others were used only once or not mentioned. 442 

 443 

For deriving production forecasts for the ongoing season, an updated crop mask during the season is 444 

necessary. This is not the case for any of the masks described in Table S3, as these are released only 445 

after the season. This leaves two choices for obtaining a current mask: either assume the latest 446 

available data of crop allocation as still valid, or use a dynamic approach that allows for an on-the-447 

fly construction of a crop mask, based on ground observations, the methods used for constructing the 448 
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existing masks or idiosyncratic algorithms. The Sen2Agri toolbox (Valero et al., 2016), neural 449 

network-based crop mapping in California (Zhong et al., 2019), a global comparison of five methods 450 

for satellite-derived crop masks (Inglada et al., 2015) or random forest-based crop masking in Zambia 451 

with the Google Earth Engine (Azzari and Lobell, 2017), among others, are of interest here. Another 452 

approach is yield correlation masking (Kastens et al., 2005), which filters crop areas by correlating 453 

reported crop yields with vegetation indices for all potential areas and keeping only those with a 454 

minimum correlation.  455 

 456 

While the highest resolved masks on global level (30 m) are sufficient for large fields in, for example, 457 

the USA, Australia or Ukraine, they are usually not sufficient for many developing countries in 458 

particular in sub-Saharan Africa where plot sizes are small and often under mixed or inter-cropping 459 

regimes with two crops grown simultaneously or in relay. If no data with higher resolution are 460 

available, an un-mixing approach might be useful to distinguish the contributions of individual crops 461 

to a larger, mixed observed pixel in the mask (Rembold et al., 2013). In the tropics, in-season updates 462 

of crop masks are additionally hampered by large parts of crop growth being in the rainy season. 463 

Clouds block the penetration of non-radar wavelengths and thus preclude eliciting crop type, 464 

phenology or growth. Diverse and complex cropping patterns in the tropics lead to patchy influences 465 

from weather and management. Additionally, less dense data coverage for yields, management or 466 

other required information (Kamali et al., 2018) complicates model calibration. 467 

 468 

 469 

 470 

 471 

4. Discussion 472 

We presented a systematic review of crop yield forecasting methods and three often used data 473 

domains: weather, remote sensing and crop masks. This compilation can aid in upscaling successful 474 
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local approaches to larger regions and thus support decision making in agriculture on multiple levels.  475 

4.1. Advantages and concerns of our systematic literature overview 476 

The search terms for the Web of Science® were chosen to gather a broad scope of studies related to 477 

forecasting. Yet the selected articles may be biased with respect to crops, regions, performance and/or 478 

inputs considered. Additionally, for practical reasons but also to synthesize recent developments we 479 

limited the selection of studies to a publication date between 2004 and 2019, which excludes 480 

important previous studies such as Cane et al. (1994). For horticultural crops like strawberries or 481 

tomatoes only few studies were found, which might be explained by the ‘agric*’ search term. Biotic 482 

stressors such as pests and diseases or the detection of phenological phases are rarely addressed in 483 

the studies reviewed, due to our focus on yields. This merits an additional study to catalogue recent 484 

efforts on that front. Survey-based methods or expert judgments are only sparsely included in our 485 

data base – which supports our aim of compiling a suite of methods that are technically ready for 486 

upscaling. The literature in general may be selective in terms of successful performance, as methods 487 

with low performance are unlikely to be published – though these could hone expectations for certain 488 

crops and regions. Moreover, we excluded all studies that estimate yields after harvest to focus on 489 

true forecasts during the season (or just before harvest time), although real-time estimations shortly 490 

after harvest could improve regional statistics which often appear with a significant time lag. Several 491 

studies were excluded as forecasts were not compared with observed but rather simulated yields 492 

(using full-season data), which we assumed as biased towards better performance as both forecast 493 

and full-season simulation tend to capture similar signals (examples: Ferrise et al. (2015), Brown et 494 

al. (2018)). Nonetheless, for method improvement or data assimilation techniques such studies could 495 

provide relevant insights. Finally, it was difficult to standardize a very diverse range of methods, 496 

performance assessments or input data. For example, there are many flavours of regression analyses 497 

(OLS, PCR, PLS, stepwise etc.) which were not specifically annotated.  498 

We assume that the 362 studies reviewed represent the current state of the art in crop yield forecasting 499 

techniques. Moreover, as no filter on crops or methods was imposed, this review gathers a broad 500 
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scope of published techniques for very diverse crops. There is a partial overlap between our article 501 

data base and the one by Basso and Liu (2019). Differences are owed to the search method, terms, 502 

time frame and filters, which renders both studies complementary. 503 

With the publicly available result table (Table S2), this review may help to quickly select appropriate 504 

methods or data sources and standardize efforts for future yield forecasting approaches for specific 505 

crops and regions. 506 

 507 

 508 

4.2. Strengths and weaknesses of current yield forecasting methods 509 

There are several studies that reach a very high accuracy of forecasting, i.e. more than 90% explained 510 

variance or an RMSE of less than 5%. These methods comprise different approaches and input data. 511 

Many successful studies are placed in water-limited environments where a rainfall deficit directly 512 

affects yields (Balaghi et al., 2008; Guo and Xue, 2011; López-Lozano et al., 2015; Maresma et al., 513 

2016). 514 

Robust correlations between forecasted and actual yields are reported for methods based on only 515 

remote sensing data or only weather data and both combined. Empirical correlations between remote 516 

sensing-derived data and yields are comparatively easy to construct and often show robust 517 

performance, across many different regions. Regression approaches have the advantage that they 518 

usually do not require soil or cultivar parameters. Yet, detailed information on growing season and 519 

phenology (possibly derived from satellites) often improves the model. For models based only on 520 

weather, the necessary input data can partly be replaced by satellite-measured weather data, if ground-521 

based information is not available (an example is the CHIRPS data set, Funk et al. (2015)). Combined 522 

models, using both remote sensing and weather data, unite the advantages of each, but may suffer 523 

from collinearity between exogenous inputs. Shorter lead times to harvest improve forecasts (Figure 524 

5), but reduce the set of actionable items available before harvest. 525 

There is a large diversity in methods, crops and study areas, but all with a bias towards staple crops 526 
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and main producing countries. For many crop-country combinations there are well-performing 527 

methods. Yet, there is no silver bullet technique such that each new setting requires appropriate 528 

validation. 529 

 530 

Major deficits remain as follows. Targeted research efforts might help improve upon them.  531 

First, many regions and crops are under-represented (Figure S1). If forecasting yields is perceived as 532 

an adaptation mechanism for climate change, enhanced consideration of minor crops and areas is 533 

relevant to maintain a high diversity of nutrient sources. The gap is particularly prominent in 534 

developing countries, where yield forecasting is currently difficult due to small plot sizes, frequent 535 

mixed and inter-cropping, limited availability and resolution of weather or soil data and, finally, 536 

scarcity of crop yield data for validating methods.  537 

Second, a rigorous out-of-sample validation (i.e. evaluation data is not used for model training) is 538 

lacking in more than half of the studies. This leaves the true performance of a method unknown, since 539 

operational forecasting is tantamount to out-of-sample prediction. There may also be a reporting bias 540 

for out-of-sample performance, since the latter is higher than the in-sample performance within our 541 

selected literature, when compared on average and not for individual studies – which is unexpected 542 

and may point to authors only reporting independent validation results if they are robust. 543 

Third, model comparison and thus the choice of the ‘best’ model per region is only possible if they 544 

are compared under the same settings (input and output data). This is difficult due to mostly 545 

unavailable data from the studies. 546 

Fourth, forecasting assumes that no major unexpected yield-changing events after the day of 547 

forecasting occur (‘potential’ yield outlook). In particular when no weather forecasts are included, a 548 

‘normal’ weather is assumed for the rest of the growing season with no major biotic or abiotic stresses. 549 

Yet extreme events like floods or pest outbreaks can seriously change expectable harvest amounts, 550 

making their prediction relevant for yield forecasting (compare e.g. Ben-Ari et al. (2018) for the case 551 

in France 2016 or the locusts outbreaks in Eastern Africa and Pakistan in early 2020 (FAO, 2020)).  552 
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Fifth, there are several sources of uncertainty in yield forecasting which need to be reported 553 

appropriately but usually are not. The first type is due to the models applied, where parameters are 554 

uncertain and the choice of the best model is elusive. The second type of uncertainty is due to 555 

unobserved data during the current growing season, including actual cropping patterns, soil 556 

conditions, planting dates, management decisions like fertilization (Fieuzal and Baup, 2017; Stone and 557 

Meinke, 2005), and the spread of pests and diseases. The third type of uncertainty comes from the 558 

forecasted data that feed into the models (e.g. weather or pest distributions). Forecast distributions 559 

instead of point estimates are a step forward to clearly highlight ranges of outcomes. The uncertainty 560 

of forecasts may be decisive for policy planning.  561 

Sixth, most of the studies on experimental plot level were applied to controlled conditions and may 562 

show reliable forecasting there. But their performance in real-world application, for larger areas, with 563 

less and possibly low-quality data, is usually not assessed.  564 

Seventh, the reproducibility of studies is unclear. Correlations between input and yield data may be 565 

restricted to a certain period of time. For example, Cane et al. (1994) produced reliable maize yield 566 

forecasts in Zimbabwe from sea surface temperatures. Yet it is unclear whether this relation still 567 

holds, given changes in climate and cropping patterns, such that improvements or new approaches 568 

might be necessary. 569 

Eighth, more complex crop models do not necessarily produce better results than simple models (Ben-570 

Ari et al., 2016), but it is also apparent that statistical models do not fully reflect soil-plant-atmosphere 571 

interactions or the timing of stress (Mavromatis, 2016). Together, this suggests that a model ensemble 572 

approach with diverse model complexities might provide more reliable estimates. Few studies, 573 

though, have applied several methods to account for this, and a better capturing of extremes with 574 

model ensembles has yet to be proven. 575 

Ninth, the spatial and temporal resolution of weather data and remote sensing products is mostly not 576 

high enough to represent diverse field conditions (Bolton and Friedl, 2013), in particular in 577 

developing countries with often cloudy conditions during large parts of the growing season. The 578 
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trade-off between space and time is exemplified by the choice between MODIS (high revisit 579 

frequency) and Landsat or Sentinel satellites (higher spatial resolution). Similarly for weather data, 580 

small-scale local conditions may alter obtained precipitation and thus yield expectations, but are not 581 

reflected in most large-scale weather products. Crop surveys on the ground could amend estimates 582 

by providing local information, but are costly and time-intensive to obtain and thus difficult to 583 

upscale. 584 

 585 

 586 

 587 

4.3. Strengths and weaknesses of weather data 588 

Weather data, both historical and forecasted, are used in many crop forecasting methods, and have 589 

undergone strong developments for better availability, coverage and accuracy – but deficits related 590 

to crop forecasting remain. Despite continuous improvements of skill in numerical weather forecasts 591 

(Alley et al., 2019), the lack of skill after about 10 days (Bauer et al., 2015; Kushnir et al., 2019) is 592 

still a central bottleneck to any yield forecasting. There has been rapid progress at sub-seasonal and 593 

seasonal time scales (Klemm and McPherson, 2017). Yet these are still under-used, as their 594 

capabilities and limitations are not directly transparent to every user (Turco et al., 2017). For example, 595 

the Madden-Julian Oscillation (MJO) that wanders across the globe in 1-3 months, with important 596 

implications for the tropical summer monsoons and agriculture in general, can now be forecasted 597 

with predictive skills up to five weeks before onset (Kim et al., 2018). Experimental linkages to 598 

climate modes such as the ENSO index have the potential to improve the forecasting skill in certain 599 

years (Anderson et al., 2019). Implementing seasonal forecasting in agricultural outlooks can already 600 

positively affect farmers decision making (Gunda et al., 2017). Process-based crop models, in contrast 601 

to empirical models, usually require daily weather input, which are rarely available for long lead 602 

times or at high spatial resolution – the seasonal distribution of rainfall is the most critical information 603 

(Coelho and Costa, 2010). The influence of spatial resolution, though, has been described as limited 604 
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when aggregating forecasts to larger scales (Wit et al., 2005). Capa-Morocho et al. (2016) evaluate 605 

methods to disaggregate seasonal forecasts anomalies into daily weather realizations for the CERES 606 

crop model in Spain with promising results. For all weather products a reduction in the lag time 607 

between observation and the provision of the data would be helpful to allow more timely forecasts. 608 

Finally, an improved forecasting of extreme events would aid to adjust yield expectations under non-609 

linear influences. 610 

 611 

4.4. Strengths and weaknesses of remote sensing data 612 

A large range of satellites with different spatial and temporal resolutions is available to use for 613 

commercial or research purposes. Remote sensing data are increasingly used in yield forecasting, 614 

often with remarkable success in deducing harvest amounts from vegetation condition around 615 

anthesis. Since large parts of the growing season, for example in the tropics, can be in the rainy 616 

season, clouds may hinder the acquisition of useful images. Therefore, the combination of several 617 

resources is reasonable, although this necessitates harmonization across resolutions, wavelengths and 618 

indices. A recent effort in this direction is the Harmonized Landsat Sentinel archive (HLS; see 619 

results). 620 

While the NDVI is most often applied, as a surrogate for green leaf area and plant health, other indices 621 

like the EVI, SAVI, NDWI or RGB channels also play a role (Cao et al., 2015), for example to limit 622 

soil and atmospheric disturbances (Kouadio et al., 2014) or to avoid NDVI saturation at large leaf 623 

areas (Peralta et al., 2016). Radar satellites have also been used for yield estimation, with considerable 624 

predictive skill for some crops (Fieuzal and Baup, 2017; Fieuzal et al., 2017). Radar signals are less 625 

disturbed by clouds than optical wavelengths such that a combination of radar and optical 626 

wavelengths might serve well during tropical rain-determined growing seasons. Moreover, most 627 

satellite-derived measures are useful until anthesis or the peak of green biomass accumulation, but 628 

diminishingly predictive around maturity. This precludes the harvest index (HI; the ratio of harvested 629 

to total biomass) to be estimated from space – but the HI is not constant over time or between cultivars 630 
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and is an important determinant of yields (Fieuzal et al., 2017; Li et al., 2011; Walter et al., 2018). 631 

Therefore, the combination of several indices from different spectra and timepoints is advised to 632 

overcome limitations of each single index, exemplified by several studies in our database. The 633 

combination of vegetation measurements from satellites and unmanned aerial vehicles (UAV or 634 

drones) is another avenue of research that could overcome the resolution-revisit-coverage trade-off 635 

for selected areas. 636 

Distinct methods for yield forecasting (process-based models, empirical models, expert integration 637 

or others) require – if they use remotely sensed data at all – different types of these data in terms of 638 

resolution, wavelengths, revisit frequency and accuracy, as has been reviewed by Basso and Liu 639 

(2019).  640 

To increase the usefulness of satellites even further, a reduced lag time between data acquisition and 641 

provision would be helpful. In the tropics, though, the time between two cloud-free images may be 642 

more limiting than the time until data provision and calls for a merging of several satellite sources. 643 

Moreover, traits that are currently mostly measured manually (e.g. plant height, lodging, deep soil 644 

moisture, micronutrient content or pest infestation) could increasingly be measured from space, 645 

although the exact relationships between on-the-ground and remote measurements will have to be 646 

established first. A combination of remote sensing and weather data is advised (see also above) as all 647 

forecasts based on remote data alone cannot incorporate later yield-diminishing effects, which might 648 

be represented in weather forecasts. Finally, while remote sensing indicators deliver a comprehensive 649 

picture of vegetation status, it is often not possible to derive causes for a non-normal status (like pests, 650 

lack of water or nitrogen) and thus recommendations for management practices are difficult, if not 651 

augmented from other sources.   652 

 653 

 654 

4.5. Strengths and weaknesses of available crop masks 655 

To upscale locally robust forecasts of crop yields to larger scales, an accurate crop mask is 656 
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recommended to avoid confounding from other crops grown in the same area. Crop masks are mostly 657 

required to derive area-dependent production estimates, but can also aid in improving yield forecasts 658 

in several ways. First, filtering irrelevant areas before forecasting can free up computing power for 659 

relevant areas and thus increase accuracy. Second, if yields are to be forecasted with the aid of remote 660 

sensing data, crop masks help to aggregate these only for the relevant pixels. Third, if empirical 661 

models are used to calculate the production (sometimes this information is can be derived earlier from 662 

import–export balances), exact crop masks can help to calculate the corresponding crop yields. 663 

While the availability of weather or satellite data, as well as the capacity of computational methods, 664 

have increased recently, reliable crop masks that are available during the season are still not 665 

accessible. Thus current forecasts for larger regions either rely on crop masks from previous years or 666 

develop their own masking algorithm (19 studies in our database). Although several global or 667 

continental crop masks are available (Table S3), there are huge discrepancies between these in terms 668 

of resolution, coverage, update schedules and accuracy (on the latter aspect, cf. e.g. Lambert et al. 669 

(2016)). Most of the masks are also not crop specific, indicating only whether the pixel under scrutiny 670 

is predominantly crop or any other use. Crop masks are therefore considered a major uncertainty in 671 

large-scale forecasting of crop yields, in particular in evergreen areas or developing countries where 672 

cropping patterns are highly dispersed and subject to frequent changes (Vancutsem et al., 2012). If 673 

no reliable crop mask is available, yields (as harvest per area) can still be estimated based on weather 674 

data, in particular when growing areas are virtually constant over time. 675 

 676 

 677 

4.6. Suggestions for improving methods for yield forecasting 678 

Ideas for improving yield forecasting approaches are presented in this section. Other studies 679 

discussing amendment suggestions are, for example, Fritz et al. (2019), van der Velde et al. (2019) 680 

and Basso and Liu (2019), which we complement here. 681 

 682 
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4.6.1. Increase data availability and provide actionable forecasts 683 

High-quality yield and management data are necessary to train and validate forecasting methods. 684 

While the USA is a paragon for open data, the situation is direr elsewhere, especially in developing 685 

nations. Data availability could be improved if forecasting studies usually publish their data, which 686 

could be done via separate data descriptor papers. Semi-public resources like social media or 687 

newspapers could be tapped by data mining approaches, which have already proven valuable in early 688 

warning systems (Ford et al., 2016), although their use is not straightforward (Palen and Anderson, 689 

2016). Crowd-sourcing initiatives are increasingly getting in focus, for example for the Picture-Based 690 

Insurance (PBI) project (Ceballos et al., 2019) and could be of use for enhancing ground truth data 691 

with limited resources. The practice of crop cuts (where samples from pre-defined random fields are 692 

aggregated to represent average yields for a region; e.g. Murthy et al. (1997)), although sometimes 693 

criticized for its inaccuracy, time consumption and non-representativeness (Lobell et al., 2019), could 694 

be an option to increase data availability in all countries if properly performed. Data stemming from 695 

precision farming could be of potential use, for instance intra-field yield estimates from combine 696 

harvesters or, similarly, fertilizer or pesticide application.  Finally, the choice of the growing season 697 

is decisive to capture key phenological phases and the timing of stressors. Yet in most regions only 698 

coarse season calendars are available, which hampers locally adapted forecasting efforts. 699 

 700 

If forecasts should be useful for in-season adaptation or planning, they must provide actionable items. 701 

Different target groups have different requirements, illustrated with three examples.  First, for 702 

farmers, the forecast should be available as early as possible on plot level to ensure that agronomic 703 

interventions (fertilization, irrigation, cultivar choice, etc.) are still possible. High accuracy is 704 

preferable, but farmers can also plan with tendency knowledge, that is whether the remaining part of 705 

the growing season will be dryer or wetter than usual. Guidelines can be taken, for example, from 706 

Frame et al. (2017) to translate forecasted losses into literate terms, using the triad of ‘unusual, 707 

unfamiliar, unknown’. Second, for commodity traders, potentially any lead time which allows 708 
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financial adjustments is appreciated – yet the pre-harvest information is most valuable when not 709 

publicly available as this is a major benefit over other traders. A sufficiently accurate reflection of 710 

extreme production shocks is necessary, though, to allow for estimating non-linear impacts on 711 

commodity prices. Third, for humanitarian aid organizations, production forecasts are an indication, 712 

but these could be augmented by prospects on ensuing food availability, nutritional content or safety, 713 

as key ingredients of food security (Schmidhuber and Tubiello, 2007). Developing countries are main 714 

targets for aid, but often simultaneously scarce in data. Thus, only moderate accuracy may be 715 

expected, but then with high robustness and long lead time to mobilize funds and act. Further literature 716 

on the diverse needs of stakeholders indicates that it is only limitedly possible to unify forecasting 717 

needs (Bocca et al., 2015; Challinor, 2009; Guimarães Nobre et al., 2019; Hansen, 2002; Rijks and 718 

Baradas, 2000; van der Velde et al., 2019).   719 

 720 

 721 

4.6.2. Improve yield forecasting methods on multiple levels 722 

Regarding input data, improvement suggestions for weather and remote sensing data are illustrated 723 

above. Further factors like pests and diseases, management decisions, air pollution or economic 724 

circumstances (e.g. fertilizer prices) are equally relevant and could be attempted to be forecasted, 725 

using models or simple proxy forecasts. The combination of inputs from independent and diverse 726 

sources is recommended to increase robustness of forecasts and to better assess uncertainty. 727 

Regarding models, ensemble approaches seem timely, as a multitude of models allows to select the 728 

best one for each region and thus to overcome idiosyncratic deficiencies. In any case, every model 729 

needs to be validated thoroughly, which is only possible with an out-of-sample assessment where 730 

evaluation data are invisible during the training process. A lens should be placed on extreme years 731 

(positive and negative) to capture yield drivers also in non-standard years, which may have highly 732 

non-linear repercussions for farmers and commodity markets (Headey, 2011). Long time frames for 733 

model training and validation are helpful here, as they contain more variation. A further enhancement 734 
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in methods is to consider the phenology of crop growth and the timing of stress factors, as effects 735 

may differ during the season (Barnabas et al., 2008). Finally, adapting methods from similar (climate, 736 

soil, crop, management) regions across the globe may help to quickly assemble first forecasts for 737 

previously untapped regions. Our review aids in this respect by providing a comprehensive overview. 738 

Regarding results, a preference for robust, actionable forecasts over highly optimized quantitative 739 

forecasts (which may not hold in subsequent years) may suit selected purposes. Actionable also 740 

requires to clearly communicate uncertainty, for example how likely a large forecasted loss is across 741 

different input data. Potgieter et al. (2003) suggest probabilistic quality measures for crop yield 742 

forecasts.  743 

 744 

 745 

4.6.3. Crop and region-dependent improvement options along with standardization suggestions 746 

The strong bias in studied crops and regions (Figure 1, Figure 2, Figures S1-S2) urges to consider 747 

less researched cases. For many crop-country combinations, studies are present but may already be 748 

outdated (more than 10 years since publication; examples: maize in Ethiopia or rye in Germany) or 749 

have not yet been subject to a rigorous out-of-sample evaluation (examples: Bezuidenhout and 750 

Schulze (2006), Bognár et al. (2011)). There are also hundreds of cases where the FAO reports 751 

harvested areas of more than 10,000 ha but no forecast has yet been conducted in the scientific 752 

literature (examples: maize in India or potatoes in Hungary). Moreover, many studies are based on 753 

only few years of data – there are 76 studies with only one analysis year, particularly for experimental 754 

studies – and thus require longer time series to be reliably extrapolated to unknown conditions. It is 755 

also recommended to test the transfer of results from research plots onto larger geographic scales. 756 

Further examples on each of these deficits can be derived from Figures S1-2 and Table S2. 757 

 758 

To achieve robust results in crop yield forecasting, we suggest the following steps for standardizing 759 

future studies, based on findings detailed above. These mainly relate to scientific studies, but can also 760 
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serve in operational systems. 761 

First, we suggest to consider multiple methods in forecasting. Statistical models, process-based 762 

models or machine-learning methods consider different aspects of crop growth and may thus 763 

complement each other. Second, forecast studies need to report out-of-sample results on independent 764 

test data (otherwise they are “not even wrong”, following Ghahramani (2015)). We also recommend 765 

to report method performance in at least one common evaluation measure, namely R2 or RMSE to 766 

facilitate cross-study comparisons. Third, the acquisition of quality-checked input data is 767 

recommended. There are considerable sources of error in yields or management data which may 768 

impede good results. Gap-filling, filtering, substitution or imputation methods may cover up for data 769 

deficiencies. Fourth, if remote sensing data are used, we recommend the testing and inclusion of 770 

multiple sources and indices. In our literature database there are more than 60 examples how to select 771 

appropriate wavelengths and combine them. Fifth, the data used in studies should be made publicly 772 

available, either within the study or as a separate data descriptor paper to allow other researchers to 773 

reproduce results and test different methods on the same data set. Sixth, and finally, a systematic 774 

treatment of uncertainty within a Bayesian framework or model ensemble is recommended to deduce 775 

robustness of results. With these suggestions we hope to spur the development of more robust and 776 

reproducible forecasting methods that can then readily be included into operational systems. 777 

 778 

5. Conclusion 779 

We presented a systematic review of crop yield forecasting methods and three often used data 780 

domains: weather, remote sensing and crop masks. We conclude that yield forecasts are increasingly 781 

feasible for many crops and regions and that more input data resources have become available. 782 

Deficits on all areas remain, though, and should be targeted in research. Specifically, there are large 783 

crop growth areas with limited or no research on forecasting, uncertainties or unavailability of 784 

necessary data resources, method-specific deficiencies and lack of robust or coherent accuracy 785 
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assessments across studies. To overcome these deficits, we suggest to target under-researched areas 786 

by transferring established approaches, increase data availability from published studies, combine 787 

several methods and data sources to unite their strengths, follow standardized procedures for 788 

designing forecasting studies and, finally, provide practically actionable forecasts in addition to 789 

scientific achievements. Reliable crop yield forecasting can critically improve planning of agronomic 790 

management and adaptation measures, stabilize farmers’ income and thus could become an integral 791 

component of food security early warning systems.   792 

 793 

  794 
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