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Abstract

We compare the effectiveness of absolute vs. intensity targets in preparing China for progressive climate action

under the Paris Agreement. The Agreement requires countries to submit nationally determined contributions

(NDCs) every five years and in addition calls for submission long-term low greenhouse gas emission development

strategies up to 2050. This study conducts a multi-criteria comparison of the adoption of an absolute vs. an

intensity interim target in 2030, followed by an absolute target in 2050, for China. In doing so, we explicitly

consider economic growth uncertainty as it is the main motivation behind China’s and other developing countries’

adoption of intensity targets for 2030. We perform the target comparison analytically, as well as using the stochastic

version of a large-scale integrated assessment model. The stochastic model is based on expected utility theory and

explicitly accounts for uncertainty.

Key policy insights:

• If China wants to hedge against higher than expected economic growth, it is reasonable to adopt an intensity

target. However, in case of lower economic growth, this choice becomes problematic as policy costs will rise

while the economy grows slow

• The difference in costs due to the 2030 target choice can be of the same order of magnitude as the overall

climate policy costs themselves

• An interim absolute target performs better than an equivalent intensity target, under multiple criteria

Keywords: intensity target, economic growth uncertainty, China NDC

1. Introduction

With the contribution of China and India, more than one third of global greenhouse gas (GHG) emissions

are currently controlled by targets indexed to future gross domestic product (GDP). This means that, instead of

aiming to limit the amount of annual emissions by a given year by an absolute number, China and India are aiming

for a reduction in the emission intensity of their economy, i.e. CO2 emissions per unit of GDP by 2030, as part

of nationally determined contributions (NDCs) under the Paris Agreement. Chinas NDC also contains a target

to peak GHG emissions before 2030, but this does not describe an absolute reduction compared to a reference
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year, and could thus lead to different emission pathways depending on how the economy grows. In addition,

Chinas NDC includes two secondary absolute targets for forestry and non-fossil fuel use. In climate policy design,

emission intensity targets are used as alternatives to emission quantity targets are used as alternatives to absolute

(or quantity) emission targets in order to hedge against economic growth uncertainty, which is particularly large

in rapidly developing countries like China and India. At the same time, research (IPCC (2018),Luderer et al.

(2018)) shows that the next decade of mitigation action up to 2030 will determine the chances of staying below the

warming limits set out in the Paris Agreement. Thus, it is important to explore the implications of the choice of

target type in 2030 in preparing the economy and energy system for mid-century (2050) targets, toward the Paris

Agreement ambition of holding global mean warming ”well below” 2 ◦C. We do so here for the world’s largest

emitter, China, applying a state-of-the-art stochastic energy-economy model that explicitly accounts for economic

growth uncertainty.

China is currently implementing its first emissions trading system, the first one in history formulated with

an emissions intensity cap instead of an absolute cap (Goulder et al., 2017). At the same time, its economy is

undergoing structural changes (Wang et al., 2019c; Mi et al., 2017a), thereby reducing its GHG emissions (Guan

et al., 2018; Zheng et al., 2019). It is also taking measures to reduce air pollution (Li et al., 2019), and investing

heavily in renewables. Yet, these actions alone are not sufficient to rapidly decarbonize the Chinese economy,

simply due to the country’s sheer size and its dependence on coal, reflecting continued dependence on coal in

several emerging economies (Edenhofer et al., 2018; Wang et al., 2019a). While global coal demand dropped in

2015 for the first time this century, the International Energy Agency forecasts that demand will increase again and

will not return to 2014 levels until 2021 (IEA/OECD, 2018). Since China currently accounts for 50% of global coal

demand—and almost half of coal production—global coal demand in the next decade will depend greatly on the

trajectory of China, itself highly uncertain like the future economic growth of China.

Economic growth is an important indicator to which projected CO2 emissions are sensitive (Marangoni et al.,

2017; Mouratiadou et al., 2016). Economic growth is in turn also affected by CO2 emissions (Mi et al., 2017b).

In the presence of a target indexed by economic growth this effect is further strengthened. It is expected to

intensify even more with growing regional rivalry in trade (Neuenkirch and Neumeier, 2015). Motivated by the

above, we address the following research question. Under growth uncertainty, does an intensity or a quantity

target for 2030 perform better in preparing the Chinese economy for a mid-century target and ultimately a 2 ◦C

pathway? Given that a growth-indexed (intensity) target makes the amount of emissions at the target heavily

dependent on economic output, we conduct the analysis to explicitly account for growth uncertainty by deploying

a state-of-the-art stochastic integrated assessment model.

The remainder of the paper is structured as follows. Section 2 gives a short overview of how the two target

types and target sequencing emerged in the Paris Agreement process, section 3 provides a literature review on

the comparison of intensity versus quantity targets, and section 4 describes the scenarios and methods we use for

the present comparison. Section 5 begins the target comparison with an analytical method and shows results of

deterministic and stand-alone numerical scenarios, which motivate the stochastic analysis on sequential 2030 and

2050 targets under growth uncertainty, on which the final target comparison is based. Section 6 concludes and

discusses policy implications. In the Appendix a description of the models and additional methods used in the



study is provided, as well as a literature review on uncertainty considerations in energy-economy models of climate

change.

2. NDCs and target sequencing after Paris

Under the Paris Agreement, participating countries have announced their NDCs, with most pledging emission

reductions up to 2030. Apart from the variation in the level of ambition between countries, there is also a distinction

in the chosen types of emission reduction targets. The Paris Agreement calls on developed countries to adopt

”economy-wide absolute emission reduction targets”, aiming to reduce domestic emissions by a fixed amount

compared to a base-year, e.g. 2005 (UNFCCC, 2015). Based on this, many developing countries, including China

and India, have chosen to adopt an emission intensity target. This is because an intensity target T hedges against

not achieving the desired reduction in absolute emissions E because of unexpected accelerated growth in the

economy, as the allowed emissions would increase in lockstep with economic growth Y :

T =
E

Y
(1)

An intensity target also helps to avoid ”hot-air”, which might occur if the absolute target no longer imposed a

constraint, because of slow economic growth resulting in lower than expected emissions. With an intensity target,

however, the amount of allowed emissions decreases with slower growth (Equation 1). The possibility of hot-air

can harm a country’s credibility towards other participants of an agreement. Finally, there is also a political stance

reflected in the choice of a target indexed to economic output; an acknowledgement that the willingness to act

against climate change exists, but is combined with a statement that penalizing growth of developing countries

does not correctly reflect the responsibilities associated with historical emissions. Intensity targets are believed to

effectively limit economic growth losses from climate policy in contrast to quantity (Pizer, 2005). However, intensity

targets are problematic, as they allow emissions to continue to increase(Vuuren et al., 2002), imposing no overall

cap. In the case of China and India, which are responsible for over one third of global emissions, the choice of

target could have a substantial impact on global decarbonization pathways(Zhu et al., 2015). Progress made in the

implementation of NDCs will be monitored and reviewed every 5 years, with a first global stocktake scheduled for

2023. Mid-century strategies are already being discussed, as countries are invited in the decision accompanying the

Paris Agreement to submit these strategies by 2020 (UNFCCC, 2015). This means that, once these mid-century

targets are in place, the NDCs will, in effect, become interim targets, and a situation of target sequencing will

emerge. Compatibility of NDCs and 2050 targets is important and will play a decisive role in paving the way for

long term climate stabilization (Pahle et al. (2018); Kriegler et al. (2018)). An analysis of the dynamics of this

succession of targets under uncertainty is pursued in this study.

3. The literature on target comparison

Intensity targets can be indexed to output or input and are well established in environmental regulation. In the

climate change context, they gained more attention when the US decided against ratification of the 1997 Kyoto

Protocol (which included absolute targets), and instead took on an intensity target. The debate following the



collapse of negotiations at the 2009 Copenhagen Climate Conference—when it became clear that a Kyoto-like

global agreement including absolute targets with permit trading was not achievable—has focused on a wider range

of national and progressively strengthened commitments.

Overall, the scientific literature on comparison between intensity and absolute targets in environmental regula-

tion can be divided into two main categories: literature on economy-wide regulation, and literature on regulation

at firm or sectoral level, see e.g. Quirion (2005). The focus of this paper will be the category of economy-wide

regulation, which we divide further into 3 subcategories: (I) analyses of policies for a specific country or region and

discussion of which target performs better; (II) discussions of the implications of the target choice on international

bilateral (or broader) agreements in terms of willingness to participate and commit; and (III) target sequencing,

i.e. situations where in multi-stage policy design either choice of target can be implemented sequentially.

Marschinski and Edenhofer (2010) discuss (I), (II) as well as (III) using formal analyses with simple analytic

models, including also the concepts of hot-air and banking/borrowing of emission permits. They find intensity

targets to perform better than absolute targets only under very specific conditions, e.g. a significant positive

correlation between shocks in emissions and output. Ellerman and Wing (2003) also touch on all 3 subcategories,

and find hybrid targets including only some reduced form of indexation—which they analyse in detail—to have

advantages over pure absolute or intensity targets, but conclude in making the case that willingness to act is more

important than the target type.

In the subcategory of single country studies (I), Lu et al. (2013) analyse China’s previous intensity targeting for

2020 and conclude that the advantage of flexibility offered by intensity targets is reduced by the prospect of a low

growth scenario, which would incur high costs. Wang (2014) calls for a Chinese shift to an absolute emissions cap

in order to break the link between emissions and growth. This is based on the grounds of an expected coal import

increase under an intensity target following a reduction in coal usage in big coal exporting countries (e.g USA).

Zhu et al. (2018) propose a hybrid control scheme based on quantity (energy consumption and CO2 emissions) and

intensity (energy intensity and carbon intensity). Webster et al. (2010) also propose a hybrid instrument consisting

of a quantity target combined with a safety valve, and perform a Monte-Carlo analysis for the US economy

using a CGE model. They include uncertainty in 3 parameters: GDP, the rate of autonomous energy efficiency

improvement, and the elasticities of substitution of the production functions. Their analysis results in favoring

intensity targets depending on parameter values and only in combination with a safety valve instrument. Pizer

(2005) makes the case for intensity targets on the grounds of preserving developing countries’ right to near-term

emission growth.

In the subcategory (II) of interacting participants in agreements, Akimoto et al. (2008) propose a scheme based

on sectoral intensity targets, as opposed to country-specific ones, thus reducing the overall energy transformation

costs. However, they do not consider the welfare implications and do not account for uncertainty. Dudek and Golub

(2003) reject the concept of intensity targets arguing that it could add yet another hurdle to the implementation

of already difficult to achieve international agreements.

Authors address the subcategory of target sequencing (III) the least. Sue Wing et al. (2006) find intensity

control more suitable under a broad range of emission targets, especially for developing countries. Their analysis

is based on two indicators arising from consideration of uncertainty: preservation of expectations and temporal



stability.

Here we discuss subcategories (I) and (III) of target comparison studies. We also contribute to the literature

on China’s climate and energy policy in the post-Paris Agreement era. We do so by explicitly accounting for

economic growth combined with short- and long-term climate targets (sequencing), thereby proposing a framework

for dealing with these two types of uncertainties. Additionally, in order to address target achievability, the target

comparison criteria found in the literature are extended with our multi-criteria analysis.

4. Study design

As growth uncertainty drives the choice of intensity targets, we use methods for explicitly accounting for

uncertainty in our modelling. Moreover, to capture the importance of current targets in paving the way for future

climate policy we consider target sequencing scenarios. Finally, since reduction of fossil fuel resource use is crucial

in shaping China’s emissions future, we use a model of large technological detail to capture realistic energy system

configurations. We run all scenarios with the integrated assessment model REMIND (Luderer et al., 2015), in its

stochastic version called REMIND-S, which is presented here for the first time (see Appendix A.1 and Appendix

A.2 for the descriptions of REMIND and REMIND-S, respectively). An overview of the scenarios considered in

our study is given in Table 1. Scenarios unfold in two dimensions: a) Learning about 2050 climate targets, and

b) Learning about economic growth. By ”learning”, we mean to the information available to (energy) investors

under uncertainty, see also Appendix A.3. Concerning the first dimension we consider the following four scenarios:

a no-target scenario (BASE); a scenario (Q50) with a ”stand-alone” (as opposed to ”sequencing”) quantity target

in 2050, that assumes learning has already happended in 20102, (that is, Q50 is known to the investors); and

scenarios with intensity (I30) or quantity (Q30) target types in 2030, which assume that announcement of Q50

happens later than 2010 (target sequencing scenarios) and investors are constrained by their earlier actions after

the announcement. The second dimension represents different years where learning about economic growth occurs:

2010 or 2030. Here, ”learning in 2010” describes the situation where the investors take decisions accounting for

China’s best-guess growth path in the period 2010-2030. The different scenario dimensions are explained in further

detail below.

4.1. Climate policy scenarios

We define sequencing scenarios as cases with a 2 ◦C-compatible GHG emissions quantity3 reduction target in

2050 (mid-century strategy), that has been announced in the year 2030, which we call the learning point. Before

the learning point, the investor ”sees” only the 2030 target; only for the period after the learning point decisions

can be tailored to the updated information (i.e. the Q50 target). To set the stage for these sequencing scenarios

we also run stand-alone scenarios with the 2030 Chinese climate target formulated as either a GHG intensity

target4—reflecting the current situation—or an equivalent GHG quantity target (I30 and Q30). Before 2030, the

2Initial point of the model’s time horizon.
3Because the long-term goal of 2 ◦C adopted by the Paris Agreement corresponds to a quantity target (i.e. an absolute limit on

cumulative CO2 emissions), we formulate the 2050 target solely as a quantity target and do not consider 2050 intensity target scenarios.
4Our formulation of China’s intensity target encompasses also China’s peaking target.



2050 target is unknown and only a 2030 target exists, reflecting the current level of information. The technique

to implement the sequencing scenario in a model with perfect foresight such as REMIND is as follows: a scenario

with only the 2030 target (stand-alone scenario) is run in a first step and then the sequencing scenario is optimized

over the period 2030-2050 to achieve the mid-century target, with the energy and mitigation investment trajectory

fixed to the stand-alone run until 2030. We also consider a hypothetical scenario of full information, where both

the Q50 target and growth uncertainty are considered to have been resolved already in 2010 and no interim target

in 2030 is needed. This deterministic scenario (Q50-L10-medium) with fixed expectations about economic growth

(”medium”) is then used to derive the optimal 2030 interim targets (Figure 1), thereby ensuring that they are

aligned with the 2050 quantity target for China, which in turn is fixed to a global below 2 ◦C scenario based on

results from the CD-LINKS project (Kriegler et al., 2018). It is important to note that our calculation of optimal

interim targets leads to a more stringent intensity target in 2030 (72% reduction relative to 2005; 0.91 Mt CO2-

e/billion US$2005) than provided in the official Chinese NDC (60-65% reduction relative to 2005), which reflects

the fact that the cost-efficient pathway towards the 2050 emission quantity target—and the overall below 2 ◦C

target—typically lies below China’s NDC intensity target in 2030 (UNEP, 2017), see Figure 3. For the comparison

of interim target types, we adopt the emissions in 2030 (13.4 Gt CO2eq, within the uncertainty range found in

studies using also national Chinese models like TIMES Grubb et al. (2015) and Roelfsema et al. (2020)) of the cost

effective mid-century strategy (Q50-L10-medium) as the quantity target (Q30) equivalent to I30.

Climate policy in all scenarios is enforced via an economy-wide lump-sum carbon tax, covering also CH4 and

N2O emissions, however excluding land-use change5 CO2 emissions. The carbon tax takes an initial value in 2020

and then rises with a 5% annual increase. To derive the optimal carbon tax path, the model is solved iteratively

(with updating of the initial carbon tax value between iterations) until the climate target, i.e. the reduction of GHG

emissions or GHG intensity, is met. Decision variables in REMIND are investments in the macroeconomic capital

stock as well as into energy generation technologies (optimal allocation). Technological change is an important

driver of the evolution of energy systems. For mature technologies, such as coal-fired power plants, the evolution

of techno-economic parameters in the production function of REMIND is prescribed exogenously. For less mature

technologies with substantial potential for cost decreases via learning-by-doing, investment costs are determined

via an endogenous one-factor learning curve approach that assumes floor costs. In the presence of a national target,

a carbon tax is used so that the optimal investments shift to cleaner energy sources, but REMIND fully accounts

for path dependencies (e.g. past investments in power plants that have not yet reached the end of their lifetime),

as well as increasing marginal costs in the case of rapid expansion of technologies (adjustment costs).

4.2. Economic growth scenarios

The SSP26 ”middle-of-the-road” GDP path (Kriegler et al., 2014a) is our central, medium growth scenario.

Then, by increasing labor productivity7—the main driving force of economic growth in the REMIND model (Luderer

5These are also reduced in policy scenarios, but by prescribed scenarios.
6Shared socio-economic pathways (SSPs, ONeill et al. (2014)).
7By designing the growth scenarios via labor productivity—rather than directly prescribing GDP paths—we capture macro-economic

effects of different policy choices.



Table 1: Overview of the scenarios considered. There are 2 dimensions in the study, reflected in the scenario names as follows: ”Climate

target(s)”-”Year where learning about growth uncertainty occurs”. Example names: Q50-L10 means stand-alone quantity target in

2050 (i.e. no 2030 target) - learning about growth in 2010, I30-L30 denotes a sequencing scenario with intensity target in 2030 and

quantity target in 2050 - learning about growth in 2030, etc. In cases where the focus is on a particular growth scenario (low, medium

or high), it will be added to the scenario name as follows: Q50-L10-medium. Notes: The 2050 target is formulated solely as a quantity

target, because the long-term 2 ◦C target is also of the same kind.

Economic Growth

2030 Target Learn 2010 Learn 2030

2050 Target

No Target No Target BASE-L10 BASE-L30

Stand-alone No Target Q50-L10 Q50-L30

Sequencing
Intensity I30-L10 I30-L30

Quantity Q30-L10 Q30-L30

Total GHG Emissions (Mt CO2eq/yr) Emissions Intensity (Mt CO2eq/billion US$2005)

2010 2020 2030 2040 2050 2010 2020 2030 2040 2050

1
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Year

V
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lu

e

scenario

BASE L10 medium Q50 L10 medium

Q50: 8.6 Gt CO2eq 

I30: 0.91 Mt CO2eq/bil US$

Q50: 8.6 Gt CO2eq 

Q30: 13.4 Gt CO2eq 

Figure 1: Calculation of China’s Q30 and I30 targets, based on full information, i.e. medium growth assumptions and full target

information. We derive the optimal 2030 quantity target for China (Q30) as well as the equivalent intensity target (I30) from the

optimal emissions path of a policy scenario (black line) compatible with the 2 ◦C long-term target featuring the 2050 cost-efficient

emissions from the CD-LINKS project (Q50) as target.

et al., 2015)—by 25% and by decreasing it by 25% we generate the ”High” and ”Low” scenarios. All three scenarios

are assumed to have equal probability. Figure 2 shows the resulting baseline GDP paths for China. For comparison,

current growth estimates from other sources: SSP1, SSP5, the OECD, and Price-Waterhouse-Coopers are also

shown. This illustrates the difficulty of deriving solid predictions of Chinese economic growth (Morgan, 2018;

Christensen et al., 2018).

5. Results

5.1. The importance of target type

5.1.1. Analytical results

Here, a discussion is provided on how each target type shapes the optimal carbon price differently. This is

important because different incentives and investment dynamics are reflected in the optimal carbon price paths,



Figure 2: Uncertainty in economic growth of China, measured in purchasing power parity (PPP) GDP. A 25 percent variation around

the medium growth scenario (SSP2, O’Neill et al. 2014) is used for the labor efficiency parameter in our scenarios (Low, Medium,

High). For reference, SSP1 and SSP5 (based on OECD projections; Kriegler et al. (2017)) as well as other scenarios from the OECD

(OECD, 2018), and Price-Waterhouse-Coopers Hawksworth et al. (2017) are shown.

and subsequently different hedging strategies against uncertainty (e.g. a preventive strategy versus a wait-and-see

approach). We will show that when emission intensity decreases with economic growth—as is commonly the case—

the target type has a strong effect on how economic growth shapes the optimal carbon price paths, i.e. different

incentives for investment are generated. More precisely, we show that in the presence of a quantity target, the

optimal carbon price increases with economic growth, whereas under an intensity target it decreases.

We define the emissions reduction in each case as ∆E ≡ Ebase − Epol. In a single period setting (stand-alone

target), and under an emissions quantity target Q, we obtain (comparing the medium with the low growth scenario):

∆EM = EM,base −Q > EL,base −Q = ∆EL, (2)

because EM,base > EL,base (see Figure 3). Thus, since abatement in the medium scenario is larger than in the

low scenario (the target Q is fixed, but baseline emissions are higher under medium growth than under low growth),

the medium scenario will feature a higher carbon price.

In the case of an intensity target I, we get (Y stands for GDP):

∆EL = EL,base − I · YL,pol = EM,base ·
EL,base
EM,base

− I · YM,pol ·
YL,pol
YM,pol

> EM,base − I · YM,pol = ∆EM (3)

The inequality in eq. 3 holds only if

EL,base
EM,base

>
YL,pol
YM,pol

⇒ IL,base
IM,base

· YL,base
YM,base

>
YL,pol
YM,pol

⇒ IL,base > IM,base (4)

(GDP cancels out because Ybase ≈ Ypol; climate policy has very little impact on GDP). The last inequality of eq.



4 holds for China and most countries, because emissions intensity is commonly reduced faster in a higher growth

compared to a lower growth scenario, see Figure 3. Thus from eq. 3 it holds that ∆EM < ∆EL

Summarizing, in the presence of an intensity target the optimal carbon price will be highest for the low growth

scenario, as seen also in Figure 4. As the carbon price is a proxy for costs of policies, this has serious implications

in how the hedging strategies of the early years are shaped, which we will quantify numerically in the following.

Figure 3: Overview of the deterministic case (learn about growth in 2010). Left: GHG emissions scenarios for China. The 13.4 Gt

CO2eq target is not constraining for the low growth Q30 scenario (hot-air is the difference in 2030 between the dashed blue and

the continuous black line), and the indexed target (I30 scenarios) is not unique. Without uncertainty (medium growth) it makes no

difference whether an intensity or quantity target is chosen. Right: GHG intensities for the same scenarios. The converging Q30

emission scenarios are now diverging, and the I30 scenarios are converging to our 2 ◦C-compatible intensity target. The official NDC

intensity target of China is depicted in the grey area. It is not posing a constraint, as it lies above the baseline intensities in 2030.

Note: L10 has been omitted from the scenario names
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Figure 4: How economic growth scenarios shape the optimal carbon price paths in China, i.e. the policy costs; Q30 and I30 targets

have reversed behavior in response to the high and low growth scenarios, whereas they are equal in the absence of uncertainty (medium

growth).

5.1.2. Numerical results

To motivate the use of a stochastic modelling framework in the upcoming sections, we start the numerical

analysis by investigating the deterministic modelling—i.e. assuming that learning about growth uncertainty has

occurred already in 2010, see Appendix A.3—of the targets in 2030. We compare the medium with the high and low

growth scenarios, and discuss environmental implications in terms of total GHG emissions. Differences in marginal

abatement costs are expressed in terms of carbon prices. Finally, we discuss welfare effects in terms of differences

in balanced growth equivalents (BGE), as proposed by Stern (2007), and further analysed and used by Anthoff and

Tol (2009), and Drouet and Emmerling (2016), see Appendix A.5 for details.

The optimal emissions of the deterministic cases are given in Figure 3. Without uncertainty, it makes no

difference whether an intensity or quantity target is chosen, which can be proven also analytically (Ellerman and

Wing, 2003). Since we have chosen equivalent quantity and intensity targets for the medium growth scenario,

optimal emissions are identical in this case, as seen by the coinciding paths (black line). This is no longer true for

the high and low growth scenarios. If a higher than expected growth is observed, emissions in 2030 will be higher

regardless of target choice, seen by the difference in the red and the black curves. An intensity target (I30-L10)

has increased emissions in total and in absolute value in 2030, whereas a quantity target (Q30-L10) meets the 2030

target of 13.4 Gt CO2eq but with increased total emissions. In the case of low growth the quantity target is not

posing a constraint as the baseline emissions are already below it (dashed blue line). The average annual growth

rate of GDP in the period 2010-2030 is assumed to be 6.7% in the medium growth SSP2 scenario (historical data:

ca. 6.5% in 2017-2020). By conducting a sensitivity analysis of emissions on the GDP growth rate we find that

emissions under a quantity target are the same as in the medium growth baseline (i.e. the target is not posing

a constraint) at an average annual growth rate of GDP of 6.1%8. The non-constraining target could give rise to

hot air and climate policy costs can drop to zero. In contrast, an intensity target can impose a stringent emissions

8For reference, our low growth scenario features a GDP growth rate in the period 2010-2030 of 5.5%, and the average annual growth

rate of long-term OECD projections for 2020-2050 is ca. 2.5%.



Table 2: Comparison of welfare effects until 2030 measured as percent changes in balanced growth equivalents (BGE, see Appendix

A.5) for the different target types of the stand-alone 2030 scenarios. The last two rows are the corresponding climate policy costs (i.e.

comparison with the baseline) for each target and for the same period, which we use for reference.

Scenarios compared ∆BGE 2030 (%)

High growth (I30-L10-High vs. Q30-L10-High) 1.0

Medium growth (I30-L10-Medium vs. Q30-L10-Medium) 0

Low growth (I30-L10-Low vs. Q30-L10-Low) -0.97

Quantity (BASE-L10 vs. Q30-L10) 0.6

Intensity (BASE-L10 vs. I30-L10) 0.75

constraint on a slow growing economy (weak blue line), i.e. an additional challenge.

In terms of marginal abatement costs, Figure 4 shows that under high growth, to reach a quantity target they

can increase almost 3-fold, whereas they would decrease under an intensity target. On the other hand, in the low

growth case, there is a significant increase in marginal abatement costs for reaching the intensity target, while the

quantity target produces hot-air, i.e. no costs (the target is not posing a constraint as baseline emissions are already

below it). Regarding the welfare effects, Table 2 shows how the differences in welfare between target types compare

with each other and—for reference—with the costs of climate policy. In the case of high growth, an intensity target

performs better than a quantity target, whereas in the case of low growth only an intensity target incurs costs (as

the quantity target is not posing a constraint), so quantity has an advantage. Our sensitivity analysis of emissions

on the GDP growth rate (see Appendix A.6) suggests that these effects are monotonous, meaning that an intensity

target has a lower BGE than quantity under low growth already at a marginal variation in GDP growth around the

medium scenario (because the intensity target is a ”moving” emissions target), and a higher BGE in the case of high

growth, which means it provides cost containment compared to a quantity target. In the medium growth case, there

is no difference in welfare, due to the equivalence of the two targets in the absence of uncertainty. It is important to

note that the differences in welfare between the targets in the high and low growth scenarios could reach the same

order of magnitude as the costs of climate policy (last two rows of Table 2). This observation, combined with the

case-dependent advantage that each target exhibits—depending on what growth scenario materializes—motivates

us to perform the stochastic analysis of the upcoming sections, in order to compare intensity and quantity targets.

5.2. How hedging strategies shape the target sequencing

5.2.1. Target sequencing scenarios

In the remainder of the paper we perform decision-making under uncertainty (see Appendix A.3) with the

REMIND-S model, as opposed to the deterministic analysis of the previous section. We do so by performing an

expected value welfare maximization across all three growth cases (low-medium-high) at once. We thus derive one

single optimal emissions path instead of one for each growth scenario, which is the main feature of the stochastic

model. This allows us to identify hedging strategies (hedging strategies are characterized by a lower emissions

pathway due to taking into account all three possible economic growth outcomes simultaneously, compared to

simply assuming medium growth in a deterministic optimization, see Figure A.9).



The implementation of the stochastic optimization problem describes the situation of an investor who has to

decide on a single energy sector investment strategy for the period 2010-2030 until the uncertainty about economic

growth is resolved. The REMIND-S model also accounts for investments in industrial capital stock as an additional

optimization variable. This decision remains freely adjustable to the individual economic growth scenario from

2010 onward, assuming that capital markets can learn immediately about the actual growth path as it unfolds. To

implement the target sequencing, we calculate the optimal emission paths for cases where, initially, decisions up to

a certain point are taken with only the 2030 targets being known (stand-alone scenarios), and an announcement

of a ”follow-up” 2050 quantity target taking place in the same year. This myopic behavior describes a situation

of unanticipated learning in 2030. We simulate two types of sequencing scenarios, one that follows after the 2030

intensity target case, which is denoted with I30-L30, and one that follows after the 2030 quantity target case,

which we denote with Q30-L30 (see also Table 1). REMIND-S calculates the optimal paths that emerge around

mid-century, resulting from investment decisions pre-2030 taken under growth uncertainty and without information

about the follow-up 2050 target.

In Figure 5, we show how target sequencing shapes optimal emissions paths, and plot these next to the hy-

pothetical, full-information case of the 2 ◦C compatible stand-alone9 target in 2050, which we used to derive the

optimal 2030 targets. Due to the stronger hedging (i.e. the deviation from the Q50-L10-medium scenario, which

we analyse in detail in the next section) in the I30-L30 scenario, decarbonization starts earlier and thus total

emissions (area under emissions curve) are lower than in the quantity target case (483 Gt CO2 in I30Q-L30 vs.

527 Gt CO2eq in Q30-L30). In Figure 6, a more detailed representation of the same scenarios is shown, focusing

on key variables and adding the baseline scenario. An intensity target scenario has a higher net present value (in

year 2020) carbon price (27.7 $/tCO2 vs. 18.6 $/tCO2). This leads to over-investment in energy in the early years

(energy investment curve). The 2050 target announcement leads to jumps in the optimal carbon price paths. It

can also lead to substantial early retirement of coal capacities in the power sector up to 2050 (aggregated over

time) of up to 2500 GW, i.e. nearly 40% of total projected coal capacity in the baseline (6,400 GW), and 66% more

than the idle capacity in the quantity target scenario (these estimates are in the lowest range of estimated stranded

capacities from Wang et al. (2019a),Wang et al. (2019b)). Finally, a quantity target could lead to less welfare

losses as seen in the certainty- and balanced-growth equivalent curves. Figures A.16 and A.17 in the Appendix show

further numerical results, including for GDP, energy demand, and energy mixes.

9The Q50-L10-medium scenario features no growth uncertainty, and has full long-term target information; thus an interim target is

obsolete.
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Figure 5: Optimal emissions of the target sequencing scenarios for China (featuring uncertainty about growth and 2050 target until

2030), compared to the stand-alone medium-growth Q50 deterministic scenario (full information about 2050 target and economic

growth). In 2030 uncertainty is resolved (learning point) and the 2050 absolute emissions target is announced (myopic behavior). The

decisions prior to the learning point are equal across the growth scenarios (one line for each target type) whereas after the learning

point they can be tailored to the individual growth scenarios, see Appendix A.3. In the graph the intensity target’s stronger hedging

is shown.
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Figure 6: Optimal paths of the sequencing scenarios for China, under uncertainty. The same graphs with each growth scenario plotted

separately are found in Figure A.15 of the Appendix. CGBE: certainty- and balanced-growth equivalent.

Sue Wing et al. (2006) discuss the theoretical property stating that intensity targets lead to a slower decoupling

of growth and emissions. In our stochastic analysis, however, where hedging strategies against growth uncertainty

are identified, we find that it is the intensity target that could lead to a faster—but more costly—reduction in

emissions.

5.2.2. Hedging strategies in the energy system

The sequencing scenarios of the previous section exhibit a different behavior depending on whether the 2030

target is an intensity or absolute target. We showed analytically that this is due to different incentives generated

by each target type. With the sectoral and technological detail of REMIND-S we are able to quantify the optimal

hedging strategies dictated by the different incentives of the previous sections. Hedging is the result of seeking

the best compromise between all the possible growth scenarios, and exists also in the baseline case (see Appendix

A.4). However, it unfolds differently in the case of climate targets under growth uncertainty. Under an intensity

target the low growth scenario poses a challenge for the economy if realized, as the 2030 intensity target becomes

more stringent if GDP grows slowly (see Figure 3). The dominance of the low growth scenario leads to the hedging

strategy of further reduced emissions when comparing a full-information with an uncertainty scenario (Q50-L10-

Medium vs. I30-L30 in Figure 5), describing a preventive strategy. This happens via increased renewable energy

capacity additions in the power sector—alongside increased energy investment in general—compared to the quantity



target case (see Figure A.13 for a comparison of energy investment strategies). However, this comes at an increased

price for energy, as seen on the same figure. Under a quantity target the hedging strategy differs substantially;

now the high growth scenario poses a challenge—due to high policy costs if the target is fixed (see again Figure

3)—and the least-cost possible energy system in the presence of the short-term 2030 target is one characterized by

moderate energy investment, pointing to a wait-and-see strategy and less hedging in emissions. This is reflected

also in the average price paid for energy, as seen in Figure A.13.

5.2.3. The role of coal

The power sector plays an important role in the transition to a low-carbon economy. In China, this sector is

dominated by coal. An illustration of how coal shapes the hedging in emissions is shown in Figure 7, where it is

seen that until 2020 in the quantity target scenario optimal coal usage follows a similar path as the deterministic

policy case, only to be reduced further under an intensity target. This is not the case for the other two important

fossil fuel energy sources, gas and oil, as seen on the same figure. The coal reduction under the intensity scenario

is driven by the retired coal capacities in the power sector (see Figure 6 and section 5.2.1).

We examine also the stylized case of anticipated learning about uncertainty, described by the introduction of

a learning step in a perfect foresight model like REMIND-S, which greatly reduces the target effect and leads

to similar strategies for each target. As seen in Appendix A.4.2, anticipated learning reduces the importance of

target choice and leads to almost the same amount of uncertainty-driven emissions reduction for a quantity and an

intensity target.
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Figure 7: Optimal fossil resource usage in China under uncertainty compared to the scenario of full information. The quantity scenario

features no further uncertainty-driven decrease in coal usage whereas oil and gas are reduced.

5.3. Multi-criteria comparison of intensity vs. quantity targets

Climate targets, as policy objectives, need to be evaluated in terms of more than one property to achieve

political and social acceptance; climate policy will affect the environment (GHG concentration, air pollution, etc.),

but it can also create winners and losers depending on the direction of investment streams. It can even be the



Table 3: Overview of criteria for target comparison. A detailed description of the indicators is provided in Appendix A.7.

Criterion Short description Category

GHG emissions Total GHG emissions in the period 2005-2050 Environmental

Carbon price The size of the carbon price that has to be exerted on the economy

for the target to be met

Efficiency

Welfare loss Indicator based on total discounted social welfare loss until 2050.

Measured in balanced growth equivalents

Efficiency

Idle coal capac-

ity

Total retired coal capacity in the power sector that has not reached

the end of its lifetime

Disruptiveness

Cost volatility Expressed by the volatility of the carbon price around 2030, the year

of learning about the mid-century target

Disruptiveness

Expected

Value of Infor-

mation

Describes the difference in the value of learning about growth uncer-

tainty between the two target types

Expectation

Stabilization

Non-optimal

investment

The amount by which investment in energy deviates from the medium-

growth full-information path

Expectation

Stabilization

reason why capacities are retired earlier than expected (due to unanticipated strengthening of policies), giving rise

to sunk investments. Moreover, different target types can give rise to completely different response strategies. For

example, a preventive strategy can incentivise high investment in energy early on, whereas a wait-and-see strategy

can have the opposite effect. This will affect how costs are distributed over time. Furthermore, as targets will

inevitably be sequential, the above mentioned effects will become more complex, as it is also the type of the second

target and the time of its announcement that will play an important role. Lastly, the fact that economic growth

cannot be predicted with certainty already affects the baseline case (over- or under-investment), and this effect

intensifies in the presence of climate policy.

To address these implications and take into account the findings of the analytical discussion and the determin-

istic and stochastic analyses, we compare intensity and quantity targets under multiple criteria. We choose four

categories of criteria: the environment, economic efficiency (relating to costs of policies and their distribution

over time), disruptiveness (relating to abrupt changes in the system caused by the announcement of targets) and

expectation stabilization (relating to how targets under growth uncertainty affect investors’ optimal behavior).

Overall, we use seven criteria. Environmental criteria are expressed in terms of GHG emissions, while target effi-

ciency is measured in terms of carbon prices and welfare. As indicators addressing disruptiveness, we use idle coal

capacity and climate policy cost volatility. To assess the robustness of targets for stabilizing expectations, we rate

them according to the Expected Value of Information (EVOI) (see Table A.4 for a description of the EVOI) and

non-optimal investment. The criteria are summarized in Table 3, and explained in detail in Appendix A.7.

Figure 8 illustrates the multi-criteria comparison between a quantity and an intensity target, taking into account

target sequencing and growth uncertainty. The quantity target performs better in five out of seven criteria, whereas

intensity is better under one. The individual values of the indicators are discussed in section 5.2.1. Regarding the

criteria classification, an intensity target features leads to slightly lower total emissions but the quantity target

features more economic efficiency (lower carbon price and less welfare losses) and favors stabilization of expectations



(less non-optimal investment). In terms of disruptiveness, a sudden switch to a quantity target after 2030 could

cause many coal capacities in the power sector to become idle. Under a quantity target the idle capacities would be

lower, with the additional benefit of a smaller jump in the carbon price due to the announcement of the 2050 target.

In the EVOI case there is no clear advantage of either a quantity or intensity target, highlighting the dominant

role of growth uncertainty. The reduction of growth uncertainty largely eliminates the target effect, as shown in

Appendix A.4.2. Summarizing, a 2030 quantity target features an easier low carbon transition, e.g. with less costs

and less idle capacities in the energy sector. The overall effect of the quantity target performing better can be

interpreted as a manifestation of the optimal response to the risk of realization of the low growth scenario in the

case of an intensity target, which outweighs the risk of a high growth scenario under a quantity target (because

under high growth the extra climate policy costs are more easily borne). It is thus more beneficial to hedge against

growth uncertainty with a 2030 quantity target because in the case of low growth it provides cost containment and,

at the same time, offers a smoother transition to the mid-century quantity target.

We acknowledge that the absence of indicators relating to interaction with other countries (incentives, cooper-

ation, etc.) and the absence of an indicator based on air quality constitute limitations for our study. To capture

these, a stochastic model with regional interaction (and high spatial resolution) would be needed, which currently

involves a prohibitive computational burden. Moreover, the model’s sensitivity related to the utility function’s

constant relative risk aversion could be explored in a further analysis.
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Figure 8: Multi-criteria comparison of quantity and intensity targets for China. Indicators are listed along the y-axis and their values are

given on the x-axis as percentages relative to the medium-growth full-information scenario value (Q50-L10-Medium), for harmonization.

A lower indicator value indicates a more positive effect, i.e. reduced risk. A quantity target generally performs better than an intensity

target. In one case there is no clear advantage for the one or the other type of target (EVOI). Note: the full-information value is 100%

for the four upper indicators. For the three indicators at the bottom where scaling with the full-information value is not possible (it is

zero by definition), we scale with the respective lower value. A detailed explanation of the criteria is given in Appendix A.7.



6. Conclusions and Policy Implications

We performed an empirical study of China’s climate policy to assess if its 2030 emission intensity target performs

better than an absolute target in preparing the economy for a 2 ◦C compatible mid-century target, i.e. in a target

sequencing situation.

China and India expect high economic growth, and hence adopted an intensity target providing cost containment.

But this becomes problematic in the low growth scenario as increased climate policy costs will occur on top of lower

than expected growth. In contrast, a quantity target has more costs than an intensity target in a high growth

scenario, but may come at very low cost in the case of low growth. This means that each target has its advantages,

but no single optimal strategy can be identified if future growth is uncertain. Additionally, the costs related to the

choice of intensity vs. quantity target for China are of the same order in magnitude as climate policy itself. Taking

into account all possible growth scenarios shows that an interim 2030 absolute target en route to a 2 ◦C compatible

mid-century quantity target performs better than an intensity target in our multi-criteria comparison for the case

of China; costs are lower and it also reduces uncertainty. As an explanation for the advantage a quantity target

over an intensity one, we show analytically that the target type has a strong effect on how growth scenarios shape

the optimal carbon price, i.e. different incentives for investment are generated for each target type. The analytic

results enhance the robustness of the findings, as the form of the probability distribution describing the uncertainty

does not play any role there.

China’s climate targets constitute an important part of the Paris Agreement, reflecting the country’s key role

in the negotiations and the international effort to combat climate change. As such, their performance needs careful

analysis both for the sake of China’s economy and for a successful agreement. Ellerman and Wing (2003) suggest

that—in a theoretical and perfectly flexible system—intensity and quantity targets can be interchanged infinitely

and eventually lead to the same costs and emissions. This is challenged here due to the fact that in reality, energy

investment cycles and power plant lifetimes have time scales longer than the target updating (e.g. China’s official

5-year plans, or the Paris Agreement process for mid-century strategies); that is, the system shows inertia rather

than flexibility. Consequently, successions of different types of targets will lead to a discontinuity and should be

avoided. A strengthening of China’s climate ambition is underway, driven by the fact that, in the current 5-year

plan climate targets were easily met through energy saving policies and economic structure adjustments. The

adoption of a 2030 absolute target is more suitable for China, as the long-term 2 C target is also, in effect, an

absolute target. The switch from the current interim intensity target to absolute emissions control could happen

gradually, taking advantage of the Agreements updating of targets every five years.

Code and data availability. REMIND is open-source: https://github.com/remindmodel/remind. The source

code of the models used (REMIND and REMIND-S) as well as the data are available by the authors upon request.

Declarations of interest : none.



Appendix A.

Appendix A.1. The integrated assessment model REMIND

REMIND (REgional Model of INvestment and Development) is a multi-sector, multi-region integrated assess-

ment model used for global and regional climate policy analysis (Luderer et al., 2015). REMIND has been used

extensively in IPCC reports, e.g. IPCC (2014) and IPCC (2018), and major model intercomparison projects, e.g.

Kriegler et al. (2014b), Pietzcker et al. (2017), Bauer et al. (2018), Luderer et al. (2018), Riahi et al. (2017). It

combines a top-down Ramsey-type growth model with a bottom-up energy system model of large technological

detail. In the macro-economic core of REMIND, aggregated and discounted intertemporal social welfare is maxi-

mized for a number of regions spanning the whole globe, while pathways are derived for savings and investments,

factor incomes, as well as energy and material demand. The utility function of REMIND exhibits constant relative

risk aversion and has a logarithmic form on consumption. Regions interact by trade in primary energy carriers,

emission permits, and a composite good. The detailed representation of the energy system in each region consists of

capital stocks for more than 60 technologies for energy conversion, including technologies that are able to generate

negative emissions, like bioenergy combined with carbon capture and sequestration.

In REMIND, economic activity results in demand for energy services, which in turn results in GHG emissions

from extraction and burning of fossil fuels in different sectors (buildings, industry, transport) and levels (primary,

secondary, and final energy). Mitigation scenarios analyse optimal strategies for decarbonization with the use of

a carbon tax applied on the economy, resulting in a shift from fossil use to renewable energy. A full portfolio of

GHG is considered (CO2, CH4, N2O, NH3, F-gases, etc.), either via emissions from energy use or via exogenous

marginal abatement cost curves (e.g. land-use). Adjustment costs in energy investment and deployment account for

policy realism and path dependency. REMIND usually runs in so-called cost-effectiveness mode, not internalizing

potential economic damages of climate change, but rather analyzing energy technology portfolios and investment

dynamics under given climate targets (GHG budgets, reduction relative to a baseline, carbon taxes, etc.)

Appendix A.2. Decision-making under uncertainty in energy-economy models — Description of the REMIND-S

model

There are several approaches in the literature to tackle uncertainty in climate policy analysis, reviewed ex-

tensively by Golub et al. (2014), Traeger (2009), Kann and Weyant (2000), Heal and Millner (2014), Heal and

Kristrm (2002), Peterson (2005), and Baker and Shittu (2008). In energy-economy models, the first approach is

called uncertainty propagation, and includes the methods of scenario analysis and sensitivity analysis. Although

as methods they do not derive unique optimal decision paths, they provide important means for the design of

climate policy. They do so by thoroughly exploring the scenario space and deriving detailed insights for each case,

and by identifying which parameters contribute the most to uncertainty. A recent application of scenario analysis

in the context of climate change are the SSPs (ONeill et al., 2014)), where self-consistent scenarios for the most

important socio-economic drivers (population and economic growth, etc.) were developed for the future and a big

body of studies was carried out shedding light on the implications of these socio-economic drivers for energy and

land-use, emissions, climate change and mitigation of climate change (Riahi et al. (2017), Kriegler et al. (2017)). In



other applications, Marangoni et al. (2017) use a sophisticated sensitivity analysis method to test various different

parameters influencing emissions projections in the context of the SSPs, and conclude that economic growth and

energy intensity are the most important drivers of uncertainty.

As a second approach to tackling uncertainty, methods performing decision-making under uncertainty are used.

These include the methods of real option analysis (Anda et al., 2009) and stochastic modelling, e.g. discrete

stochastic programming (Bosetti and Tavoni, 2009) and dynamic stochastic programming (Jensen and Traeger

(2014) provide detailed estimates of optimal carbon taxes under long-term economic growth uncertainty using a

dynamic stochastic integrated assessment model).

The model REMIND-S (REMIND-Stochastic) is presented here for the first time. It is the version of REMIND

(see Appendix A.1) that explicitly accounts for uncertainty in one or more parameters. REMIND-S solves a

Discrete Stochastic Programming (DSP) problem. DSP is a common method to explicitly account for uncertainty

in integrated assessment models of climate change. It is widely used due to its moderate computational cost

and useful insights, as well as the fact that it provides means for inclusion of stochasticity and multi-stage decision

modelling. The key concept of DSP is to allow for the identification of one single optimal strategy under uncertainty

(illustrated on the right panel of Fig. A.9), as opposed to multiple state-dependent optimal paths in a learn-then-act

framework which can be explored by standard Monte Carlo, or simple deterministic scenario analysis (left panel

of Fig. A.9). Thus, in DSP, the decision maker is exposed to a range of values of the uncertain parameter(s) in

different ”states-of-the-world” (realizations of the uncertain parameter), and still derives a single optimal path.

The range of values of the uncertain parameter is described by a probability distribution running over the full

set of states-of-the-world. This probability distribution can take any form and this is what gives the method the

characterization ”stochastic”. REMIND-S features the exact same technological and sectoral detail as REMIND

(the same holds for the rest of the model structure), but in REMIND-S expected utility is maximized, i.e. the

weighted sum of utilities in each state-of-the-world, using the probabilities as weights, see equations describing

the No-Learn and Act-Then-Learn cases in Fig. A.9. Thus, each state-of-the-world of REMIND-S is actually an

instance of REMIND with different values for the uncertain parameters.



Figure A.9: Schematic representation of the various levels of uncertainty consideration applied here, and the respective objective

functions. E is the expected value operator, U is the utility, s stands for state-of-the-world, I are the investment decisions, θ is the

uncertain parameter, and m a message containing information about θ. ”Learning” refers to the point in time where the message m is

received. Hedging is defined as the decision path that responds to uncertainty, driven by the decision maker’s risk aversion.

As mentioned above, the main feature of DSP is deriving a single optimal strategy under uncertainty. But

capturing one single decision path poses a challenge in a complex model like REMIND-S, where various different

investments and choices can be made. Thus, in REMIND-S, energy investments, fossil extraction rates and trade,

as well early retired capacities are equalized across the states-of-the-world using special constraints, which leads to

equal emissions across the states-of-the-world; this is what is defined as one single optimal strategy. The presence

of these constraints in an expected utility optimization framework gives rise to hedging strategies (the red arrows

of Fig. A.9 show where the hedging takes place), as the best compromise between conflicting optimal decisions in

each state-of-the-world is sought after. This happens before uncertainty is resolved (learning point of Fig. A.9), as

the decision maker should be unaware of the state-of-the-world that will materialize. After the learning point the

constraints are fully relaxed so that decisions can be tailored to individual growth scenarios, and emissions differ

across the different states-of-the-world.

Risk aversion is described by the elasticity of intertemporal substitution (EIS), which describes also the decision

maker’s preference towards intertemporal equality, as we do not consider separate preferences (this would require

a different type of modelling, as intertemporal optimization cannot be easily combined with separate preferences).

In REMIND-S, EIS is equal to unity, giving the utility function its logarithmic form with diminishing returns of

consumption, see Appendix A.1.



Appendix A.3. Uncertainty scenarios

A schematic of the approaches to uncertainty considered here is given in Figure A.9. First, in the presence of

a symmetrical probability distribution, the medium growth or best-guess (BG) case is the situation where—given

an uncertain parameter θ described by a known probability distribution—an optimal decision path can be derived

under complete information using the best-guess value of θ, E(θ), where E is the expected value operator. With

”decision path” we refer to optimal energy planning configurations (i.e. investments, fuel extraction and trade, and

capacity retirement decisions). The second case of Figure A.9, learn-then-act (LTA), describes a counterfactual,

where uncertainty about θ is completely resolved before energy planning is performed, thus it can be fully adapted

to each state-of-the-world (a ”state-of-the-world” describes one realization of θ). Third, act-then-learn (ATL) is

the case where all θ values remain possible and the decision path takes into account all of them at once. But the

decision makers will eventually learn or be able to make better assumptions about the uncertain parameter; at a

certain point in time uncertainty is resolved and the decisions after that point can be tailored to the individual

messages received. Last, no-learn (NL) is a special case of ATL where learning never happens and decisions are

taken under uncertainty throughout the time horizon.

Appendix A.4. How to hedge against growth uncertainty

Appendix A.4.1. Hedging in the absence of climate policy

Hedging is defined as the deviation of the single optimal decision path—produced with REMIND-S—when

compared with the path of the deterministic case. But why does hedging appear in the first place, i.e. why is

the single optimal path not simply the mean value between the growth scenarios (i.e. the medium growth—or

best-guess—result in the case of a symmetrical probability distribution, like in this study)? The latter can be

obtained by a simple scenario analysis, without stochasticity. In mathematical form (using the same notation as

in Figure A.9):

arg max
I

E[U(θ)] 6= arg max
IBG

U [E(θ)] (A.1)

To answer this question we look into how uncertainty affects optimal investments. Uncertainty in economic

growth leads to changes in optimal investment decisions already in the baseline case, in investments in the macroe-

conomic capital stock as well as energy investments. These changes occur while seeking one single energy investment

path, i.e. the best compromise between all the possible growth scenarios (only one is allowed in REMIND-S because

energy planning decisions cannot be tailored to individual growth scenarios prior to learning), when the decision

maker necessarily ends up with a trajectory that lies somewhere between the optimal paths of the deterministic

scenarios. This is the solution that includes the lowest sacrifice: the least possible overinvestment in case a low

growth scenario realizes, the least possible underinvestment in case a high growth scenario realizes, and, if possible,

neither overinvestment nor underinvestment in case the medium growth realizes. Indeed, as seen in Figure A.10

the overall result is an investment path (grey line) that lies between the High- and Low-growth scenarios, but lower

than the medium growth path (black line), as the effect of uncertainty does not propagate linearly through the

growth scenarios, see Equation A.1. More specific, if optimal investments were to lie above the medium growth case



and a low growth scenario materialized, this suboptimality turns out to be more expensive than if the investments

lie under the medium growth case, because in the high growth case the society is wealthier.
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Figure A.10: Hedging in investments in the baseline case for China. Left: Energy investments. Right: Macro-economic investments.

Note: macro-economic investments in the stochastic case are not equal across the growth scenarios, the grey line of the right graph

describes the average. Energy investments are equalized in REMIND-S by definition.

Furthermore, as seen in Figure A.11, the percent reductions in optimal energy technology investments under

uncertainty are not the same for each technology, showing a) energy-specific robust strategies in the baseline, and

b) highlighting the necessity to use a technology-rich model for the present analysis.
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Figure A.11: Variation in the optimal use of key energy sources between the medium-growth/full-information and the BASE-L30 case

(both without climate policy) in China. percent reduction is not the same for all energy types.
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is much stronger in the case of an intensity target (dark green vs. orange dashed lines), but is almost equalized when learning in 2020

is considered (squares in 2020). The separate paths after 2020 exist because energy planning can adapt to individual growth scenarios

only after the learning point.
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Figure A.13: Left: Energy is cheaper in the case of a quantity target in China, as a result of a wait-and-see strategy. Right: Optimal

energy investments increase under uncertainty in the intensity target case, but decrease for a quantity target.

Appendix A.4.2. The effect of anticipated learning

When anticipated learning is considered (with a learning step in 2020, see A.12), more hedging (compared to

the no-learn case) takes place in the quantity target scenario, as the available information after 2020 allows for the

energy planner to respond to the upcoming target in 2030 individually, thus increasing investment and subsequently,



Table A.4: Effect of uncertainty and target type on welfare (expressed as percent changes in aggregate policy costs and measured

in certainty-equivalent balanced growth equivalents; CBGE) for China: In the left column, a comparison of policy costs until 2030

between the deterministic and the scenarios with and without anticipated learning is shown. We see that anticipated learning about

uncertainties increases welfare significantly (difference between Expected Value of Perfect Information; EVOPI, and Expected Value of

Information; EVOI), and quantity targets can generate less costs than intensity targets. In the far right column, as reference, we show

the corresponding climate policy costs until 2030, i.e. BASE-L30 vs. I30-L30 and Q30-L30, and baseline vs. policy with anticipated

learning

No-Learn

Target Type EVOPI Reference Costs

Quantity 3.16 0.62

Intensity 4.1 1.6

Anticipated Learning

EVOI

Quantity 1.23 -0.06

Intensity 1.32 -0.03

welfare, see Table A.4 (more on this in the next paragraph). All the Q30-L20 scenarios meet the 13.4 Gt target

in 2030, except for the low growth scenario, where the target is not constraining, because overinvestment prior to

the learning point combined with low growth result in a pathway with emission reductions stronger than what the

target dictates. Overall, we see that learning eliminates to a great extend the difference between a quantity and

intensity target. This is reflected also in the respective coal usage as seen in Figure A.14

The welfare losses due to uncertainty, measured in certainty- and balanced-growth equivalents (CBGE), sum up

to 4.1 percent of net present value of total consumption, see Appendix A.5 for a detailed definition of the CBGE.

This is called expected value of perfect information (EVOPI), and is reduced when learning is considered, as seen

in Table A.4. The associated metric is called expected value of information (EVOI). This shows that with reduced

uncertainty (learning), the target type choice plays less of an important role in the decision-making process.
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Figure A.14: Coal usage in China in the 2030 target case. The quantinty no-learn scenario features no decrease in coal consumption,

compared to the deterministic medium-growth, but with anticipated learning (L20) coal is reduced. There is only one no-learn scenario

for each target because all 3 scenarios have the same optimal energy planning, by definition (the same happens for the L20 scenarios

prior to learning).

Appendix A.5. Policy costs measured in balanced growth equivalents

Climate policy costs in integrated assessment models are usually formulated in terms of relative differences in

intertemporal, aggregated, and discounted consumption (or GDP) between cases with and without policy. When

comparing climate policy costs across different baselines, as happens here where different growth scenarios are

considered, this method of comparison fails to capture the welfare effects correctly, as for each case one ends up

using a different yardstick. A measure that is more adequate is the balanced growth equivalent (BGE), which

describes the amount of today’s consumption, that, when extended into the future with a growth rate α, results

in the same amount of utility U as the scenario in question. In mathematical form the BGE is the solution of the

following equation with respect to γ:

T∑
t=0

U [γ(ω)(1 + α)t]Pt(1 + ρ)−t = W (ω) (A.2)

where ω is the policy in question, P is population, t is the time and T the time horizon, ρ is the discount rate



and W is the welfare. For a standard constant relative risk aversion utility function we get:

γ(ω) = [(1− η)W (ω)]
1

1−η

[ T∑
t=0

(1 + α)t(1−η)Pt
(1 + ρ)t

]− 1
1−η

, for η 6= 0 (A.3)

and

γ(ω) = exp
(W (ω)− ln(1 + α)

∑T
t=0 tPt(1 + ρ)−t∑T

t=0 Pt(1 + ρ)−t

)
, for η = 0 (A.4)

where η is the intertemporal elasticity of consumption.

Using the BGE relative differences between scenarios with different baselines are easily and intuitively compa-

rable. For scenarios where expected utility is maximized the certainty- and balanced-growth equivalent is defined

as the expected value of the BGE and used as adequate policy measure:

CBGE ≡ E(BGE) =

s∑
i=1

BGEipi (A.5)

Appendix A.6. Sensitivity of policy costs on the growth of GDP

Here the results of a sensitivity analysis on the GDP growth rate in the deterministic case are presented (Table

A.5).

Appendix A.7. Description of target rating criteria

We discuss the relative attractiveness of sequential intensity and quantity targets in terms of the criteria listed

below (the respective categories are provided in brackets), based on the sequencing scenarios (Q30-L30 and I30-

L30) of section 5.2.1. The expected value, i.e. the average between the three possible growth scenarios is taken

for the calculation of all indicator values. The Q50-L10 medium-growth/full-information scenario—with which we

normalize where noted—features full information about growth and 2050 target, and no 2030 target. For plots of

the indicators see Figure 8. For a detailed view of the optimal paths in each growth scenario see Figure A.15.

GHG emissions [Environmental]

We describe the emissions indicator in terms of the total amount of GHG emissions emitted by each target

type scenario in the period 2005-2050. The indicator is harmonized with the total GHG emissions reduction of the

full-information scenario in the period 2005-2050.

Carbon price [Efficiency]

The size of the carbon price that has to be exerted on the economy for the target to be met. To account for

time variability we take the net present value in 2020 (discounted at 5%) of the price path until 2050, and express

the indicator as percentage of the medium-growth full-information case.

Welfare loss [Efficiency]

The welfare loss indicator measures which target features a smaller reduction of social welfare against the

baseline in the period 2005-2050, relative to the reduction of the medium-growth full-information path (which thus

has a value of 100%). We use BGE values in 2050 in order to account for baseline variability, see Appendix A.5.

Idle coal capacity [Disruptiveness]



Table A.5: Expansion of Table 2: Comparison of welfare effects until 2030 measured as percent changes in balanced growth equivalents

(BGE, see Appendix A.5) for the different target types of the stand-alone 2030 scenarios. The GDP growth rate is increased gradually

(in 10% steps) until the value that corresponds to the scenarios considered in our study in order to examine the sensitivity of policy

costs to the GDP growth rate. The last two rows are the corresponding climate policy costs (i.e. comparison with the baseline) for

each target and for the same period, which we use for reference.

Scenarios compared ∆BGE 2030 (%)

High growth (I30-L10-High vs. Q30-L10-High) 1.00

High growth 90% (I30-L10-High vs. Q30-L10-High) 0.90

High growth 80% (I30-L10-High vs. Q30-L10-High) 0.82

High growth 70% (I30-L10-High vs. Q30-L10-High) 0.73

High growth 60% (I30-L10-High vs. Q30-L10-High) 0.67

High growth 50% (I30-L10-High vs. Q30-L10-High) 0.60

High growth 40% (I30-L10-High vs. Q30-L10-High) 0.48

High growth 30% (I30-L10-High vs. Q30-L10-High) 0.37

High growth 20% (I30-L10-High vs. Q30-L10-High) 0.25

High growth 10% (I30-L10-High vs. Q30-L10-High) 0.12

Medium growth (I30-L10-Medium vs. Q30-L10-Medium) 0

Low growth 10% (I30-L10-Low vs. Q30-L10-Low) -0.09

Low growth 20% (I30-L10-Low vs. Q30-L10-Low) -0.20

Low growth 30% (I30-L10-Low vs. Q30-L10-Low) -0.27

Low growth 40% (I30-L10-Low vs. Q30-L10-Low) -0.41

Low growth 50% (I30-L10-Low vs. Q30-L10-Low) -0.55

Low growth 60% (I30-L10-Low vs. Q30-L10-Low) -0.65

Low growth 70% (I30-L10-Low vs. Q30-L10-Low) -0.75

Low growth 80% (I30-L10-Low vs. Q30-L10-Low) -0.80

Low growth 90% (I30-L10-Low vs. Q30-L10-Low) -0.90

Low growth (I30-L10-Low vs. Q30-L10-Low) -0.97

Quantity (BASE-L10 vs. Q30-L10) 0.6

Intensity (BASE-L10 vs. I30-L10) 0.75



Expected retired coal capacity in the power sector (i.e. retired capacity that has not reached the end of its

lifetime). To take into account also the years a power plant would spent in idle mode, we aggregate over time. The

indicator is normalized with the medium-growth full-information scenario value.

Cost volatility [Disruptiveness]

The sequencing scenarios with unanticipated announcement of the 2050 target, exhibit a myopic behavior

which can lead to jumps in costs. To capture these we calculate the difference in the carbon price across the various

growth scenarios in the time before and after the target announcement (2030). Since each growth scenario has an

independent carbon price, we take the expected value of the differences for each scenario in order to derive the cost

volatility indicator.

Expected Value of Information [Expectation Stabilization]

Describes the value—in terms of welfare gains—of learning about growth uncertainty in 2030, i.e. it compares

the BGE of the I30-L30 and Q30-L30 scenarios with the BGE of scenarios with no learning. See Table A.4 for

more information on this indicator.

Non-optimal investment [Expectation Stabilization]

Acting under uncertainty necessarily leads to a suboptimal allocation of resources, as explained in section

Appendix A.4. Thus, prior to the learning point, energy investment will be suboptimal. We measure this subop-

timality by comparing the absolute difference between the net present value (with a discount rate of 5%) of the

total energy investment of the period 2010-2030, i.e. up to the learning point, in the full-information case and

each target scenario. Thus, medium-growth full-information has a zero value by definition, and we scale with the

baseline value.
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Figure A.15: Target sequencing scenarios for China: detailed view (with each growth scenario plotted separately) of the variables used

for deriving the indicators for target comparison.
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Figure A.16: Optimal paths of energy demand (total, and by sector) and GDP for the sequencing scenarios for China, under uncertainty.

The graph shows how target sequencing shapes optimal emissions paths, plotted next to the hypothetical, full-information case of the 2

◦C compatible stand-alone target in 2050—which we used to derive the optimal 2030 targets—and the counterfactual baseline scenario.

I30Q50-L30 Q30Q50-L30

BASE-L10-medium Q50-L10-medium

2
0
2
0

2
0
3
0

2
0
4
0

2
0
5
0

2
0
2
0

2
0
3
0

2
0
4
0

2
0
5
0

0

50

100

150

200

0

50

100

150

200

P
ri

m
a

ry
 E

n
e

rg
y

 (
E

J
/y

r)

Biomass

Coal

Gas

Geothermal

Hydro

Nuclear

Oil

Solar

Wind

Figure A.17: Optimal energy mixes for the sequencing scenarios for China, under uncertainty. The graph shows how target sequencing

shapes optimal emissions paths, plotted next to the hypothetical, full-information case of the 2 ◦C compatible stand-alone target in

2050—which we used to derive the optimal 2030 targets—and the counterfactual baseline scenario.
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