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Abstract
Modeling complex systems with large numbers of degrees of freedom has become a grand
challenge over the past decades. In many situations, only a few variables are actually observed in
terms of measured time series, while the majority of variables—which potentially interact with the
observed ones—remain hidden. A typical approach is then to focus on the comparably few
observed, macroscopic variables, assuming that they determine the key dynamics of the system,
while the remaining ones are represented by noise. This naturally leads to an approximate, inverse
modeling of such systems in terms of stochastic differential equations (SDEs), with great potential
for applications from biology to finance and Earth system dynamics. A well-known approach to
retrieve such SDEs from small sets of observed time series is to reconstruct the drift and diffusion
terms of a Langevin equation from the data-derived Kramers–Moyal (KM) coefficients. For
systems where interactions between the observed and the unobserved variables are crucial, the
Mori–Zwanzig formalism (MZ) allows to derive generalized Langevin equations that contain
non-Markovian terms representing these interactions. In a similar spirit, the empirical model
reduction (EMR) approach has more recently been introduced. In this work we attempt to
reconstruct the dynamical equations of motion of both synthetical and real-world processes, by
comparing these three approaches in terms of their capability to reconstruct the dynamics and
statistics of the underlying systems. Through rigorous investigation of several synthetical and
real-world systems, we confirm that the performance of the three methods strongly depends on the
intrinsic dynamics of the system at hand. For instance, statistical properties of systems exhibiting
weak history-dependence but strong state-dependence of the noise forcing, can be approximated
better by the KM method than by the MZ and EMR approaches. In such situations, the KM
method is of a considerable advantage since it can directly approximate the state-dependent noise.
However, limitations of the KM approximation arise in cases where non-Markovian effects are
crucial in the dynamics of the system. In these situations, our numerical results indicate that
methods that take into account interactions between observed and unobserved variables in terms
of non-Markovian closure terms (i.e., the MZ and EMR approaches), perform comparatively
better.

1. Introduction

A complex system is a system composed of highly interconnected components in which the collective
property of an underlying system cannot be described by dynamical behavior of the individual parts alone.
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That is to say, the emergent behavior of a system is not evident in the components by themselves, but only
in the system as a whole. Examples of this include lasers, fluids, financial markets, biological and social
systems, but also Earth system and in particular climate dynamics variables [1–4]. Typically, complex
systems are governed by nonlinear interactions and intricate fluctuations, and to retrieve the dynamics of a
system from time series of only a few observed variables, it is required to characterize and assess interactions
between deterministic tendencies and random fluctuations.

For complex systems, with large numbers of degrees of freedom interacting on various time scales,
deriving explicit time-evolution equations remains both conceptually and computationally challenging.
Many approaches from time series analysis and stochastic modeling have been proposed to model the
behavior of complex systems based on observed time series by separating the system’s behavior between
observed macroscopic and hidden microscopic scales. Furthermore, it is typically assumed that these scales
can be separated into slow and fast dynamics, respectively. Stochastic differential equations (SDEs) are then
used as a result of the impossibility to determine all necessary processes and scales in comprehensive
numerical models. In SDEs the macroscopic variables are modeled explicitly while the microscopic ones are
represented by noise terms. The intuition underlying such approaches is to identify a small number of
variables which are assumed to characterize the underlying dynamics, and solve the governing motion
equation for the reduced-dimensional system in terms of SDEs. For instance master stability function has
been extensively used to analyze the stability of the synchronous state in dynamical systems (both stochastic
and deterministic) [5, 6].

During recent years, interest in modeling stochastic dynamics using Langevin equations (LEs) has
elevated in many disciplines [7], such as investigating turbulent cascades [8], describing nano-friction
fluctuations [9], or modeling molecular dynamics [10] and financial systems [11]. A commonly used,
non-parametric method for deriving the deterministic drift and stochastic diffusion terms of an LE is based
on the Kramers–Moyal (KM) coefficients, which correspond to the first and second order moments
containing the spatial and temporal dependencies of the underlying dynamics [12, 13].

In the LE-approach, the dependencies between slow and fast variables are assumed to be negligible as a
consequence of the separation of time scales. However, this assumption is not always well-grounded, for
instance in Brownian motion [14], when the mass of particles is comparable with that of the surrounding
particles, the random force does not obey white noise behavior anymore. Generalized Langevin equations
(GLEs) have been proposed as a modification of LEs with no constraint of time scale separability [15]. A
GLE equation can be retrieved from times series using projection operator techniques [15–17] and linear
response theory [12]. In this study, we obtain the GLE model of a system within the projection operator
framework. This technique, developed by Mori [15] and Zwanzig [18](MZ), provides a mathematically
consistent foundation for closed, reduced-dimension models. It is restrained, however, to Hamiltonian
dynamical systems around thermodynamic equilibrium. This formalism applies a projection operator P that
projects the whole system dynamics onto the subspace of slow variables, and projects out the remaining
degree of freedom. As a consequence of this dimension reduction, non-Markovian terms arise explicitly in
the resulting equation of motion, representing interactions between the slow (observed) and the fast
(hidden) variables.

Another dimension-reduction approach, belonging to a class of multivariate stochastic models, is
empirical model reduction (EMR) [19, 20]. This methodology, which can be understood as an extension of
the classical linear inverse model (LIM) approach [21], has been extensively used in modeling observed
climate variables [22] and in several cases can successfully reproduce their statistical characteristics. In
constructing the EMR model, it is assumed that the time evolution of a system can be approximated by
information embedded in the observed time series with only a coarse knowledge about a system’s dynamics.

When fitting a prescribed drift term with free parameter to a real-world series, the residual will typically
not be white neither in space nor in time; i.e., it will be state-dependent and exhibit serial correlations. To
cope with this problem, the EMR approach iteratively models the time derivative of the residual as a linear
function of the state of the observed variable and the residual itself, until the final residual is approximately
independent (see methods section below). Substantively, this stochastic model constructs the evolution of
macroscopic variables by introducing hidden components representing microscopic variables. In the
parameterization procedure, hidden variables are approximated by the past observed variables, which
constitutes a non-Markovian closure [20].

The main purpose of this work is to systematically investigate the statistical properties of different
dynamical systems using the three aforementioned methods (KM, MZ, and EMR). In section 2, we shortly
introduce the employed reduction methods. In section 3 we present a detailed comparison of the
performance of these methods based on different kinds of synthetic and real-world time series, and discuss
them briefly. Concluding remarks are provided in section 4.
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2. Methods

2.1. Langevin equation
In the early twentieth century Paul Langevin proposed a quantitative description of random motion of
colloidal particles suspended in a fluid, which has been known as a key problem of non-equilibrium
statistical mechanics. This theory’s applicability later has been extended to express the dynamical behavior
of varieties of macroscopic systems without genuine particle ontologies. The original Langevin equation is a
stochastic differential equation, which represents the time evolution of a subset of degree of freedoms
containing both frictional and random forces that are associated with the fluctuation–dissipation theorem
(FDT) [12].

Consider a system for which the evolution of the macroscopic states x(t) obeys the following equation of
motion:

dx(t)

dt
= f (x, t) + g(x, t)η(t), (1)

where f(x, t) and g(x, t)η(t) represent the deterministic force (e.g., friction and gravity) and stochastic forces
(e.g., noise and chaotic particle interactions in many-body systems), respectively. Here, η(t) is
conventionally a stationary, δ-correlated Gaussian process with zero mean: 〈η(t)〉 = 0 and
〈η(t)η(t ′)〉 = δ(t − t ′). The presence of δ-correlated noise indicates that the Langevin process is a Markov
process. For the class of stochastic processes following equation (1), the drift f and the diffusion g can be
directly estimated from the measured data without any prior knowledge about the internal dynamics of a
system using the Kramers–Moyal (KM) coefficients [23, 24]. The nth KM coefficient Dn(x, t) can be
understood in terms of the transition probability densities in the limit of dt → 0. Formally, the KM
coefficients are defined as:

Dn(x, t) =
1

n!
lim
dt→0

1

dt
〈(x(t + dt) − x(t))n|x(t)=x〉. (2)

In this study, to calculate conditional moments from time-discrete data, we employed the
Nadaraya–Watson estimator [25, 26]:

1

dt
〈(x(i+1)dt − xidt)

j|xi=x〉 =
∑n

i=1 K
(

(xidt−x)
h

)
(x(i+1)dt − xidt)j

∑n
i=1 K

(
(xidt−x)

h

)
dt

. (3)

The kernel function K is here assumed to be Gaussian and accordingly the bandwidth h is determined
using Silverman’s rule of thumb: h = 1.06σN

−1
5 where σ is the standard deviation of the time series under

investigation.
The numerical discretization of the LE, in Itô’s interpretation of stochastic integration, is as follows:

dx(t) = D1(x, t)dt +
√

D2(x, t)dW(t), (4)

where dW denotes the increments of a Wiener process (known as a stochastic process with stationary
independent normally distributed increments). The numerical integration of the equation (4) can be easily
implemented using the Euler–Maruyama scheme with accuracy of order

√
Δt.

x(t +Δt) = x(t) + D1(x, t)Δt +
√

D2(x, t)Δtη(t). (5)

Although the KM method has been applied successfully in many fields, the accuracy of estimation can
be affected by finite-time effects since the estimation of drift and diffusion coefficients is sensitive to the
sampling frequency of the underlying time series [27, 28]. Using the adjoint Fokker–Planck equation
(AFPE) [29], we can derive D1 and D2 analytically for example for an Ornstein–Uhlenbeck (OU) process,
and compare to the discrete-time estimates to judge on their accuracy:

∂

∂t
P+ = D1 ∂

∂x
P+ + D2 ∂2

∂x2
P+. (6)

With a special initial condition p+(x, 0) = (x − X) we can solve the AFPE analytically. For instance, in
the case of an OU process (containing 106 points with sampling frequency of 10−2) subjected to additive
and multiplicative noise, respectively, we compared the first and second order KM coefficients with those
obtained from AFPE. As can be concluded from figure 1, the values of the KM coefficients estimated from
discrete times series according to the equation (2) and the corresponding exact solutions are in a good
agreement. One can also use the second-order expansion for moments [30] to check the robustness of
estimated drift and diffusion coefficients for above systems.

3
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Figure 1. Comparison of the estimated drift (D1) and diffusion (D2) coefficients with corresponding exact solutions for an OU
process containing 106 points with sampling frequency of 10−2. (a) Estimated D1 and D2 (red) and the values obtained from the
analytical solution via AFPE (blue) for an OU process with additive noise. (b) Same as (a) for an OU process subject to the
multiplicative noise 1 + x2.

2.2. Generalized Langevin equation
The Langevin equation is the simplest approximation to describe the dynamics of non-equilibrium systems.
As remarked earlier, the random force is assumed to behave like a Gaussian white noise, which does not lead
to a good approximation if the time scale of the macroscopic variables is not much longer than that of the
microscopic variables. This issue also requires a modification of the fluctuation dissipation theorem in
which the correlation function of fluctuations is proportional to the memory of the frictional force.
Therefore, generalized Langevin equations (GLE) have been proposed to account for long-range
correlations and memory effects of complex systems that do not exhibit strong time scale separation. This
generalized equation satisfies a certain fundamental consistency condition which relates the memory
function to the auto-correlation of the stochastic force.

One way to derive a GLE is by means of the Mori–Zwanzig (MZ) formalism [17, 31], a projection-based
dimension reduction method that redefines a set of ordinary differential equations into a reduced system
with a time-independent Hamiltonian as long as the system is close to equilibrium. The MZ formalism
assumes that a macroscopic system can be well described by projecting the full microscopic dynamics of a
system onto the space of macroscopic variables. The resulting equation consists of three terms; the first,
local term defines the self-interactions of the macroscopic variables, the second, non-local term describes
memory dependencies of the macroscopic variables, and the last term represents the residual force
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associated with the fast variables that is typically approximated by white noise:

dx(t)

dt
= Ωx(t) −

∫ t

t0

K(t − t′)x(t′)dt′ + R(t, t0). (7)

By multiplying both sides of equation (7) with x(t0) and taking the average [32–34], we arrive at the
following expression:

〈
dx(t)

dt
, x(t0)

〉
= 〈Ωx(t), x(t0)〉 −

∫ t

t0

K(t − t′)〈x(t′), x(t0)〉dt′ + 〈R(t, t0), x(t0)〉 (8)

where 〈R(t)x(t0)〉 = 0, because the fast variable of the underlying system is uncorrelated with the slow
variable. We can rewrite equation (8) in form of an Volterra integro-diffential equation [35, 36] for the
autocorrelation function C(t) = 〈x(t), x(t0)〉:

dC(t)

dt
= ΩC(t) −

∫ t

t0

K(t − t′)C(t′)dt′. (9)

The memory kernel K can then be calculated by solving this equation with known dC/dt and C. Note
that the discrete version of the integral

∫ t
t0

K(t − t′)C(t′)dt′ is h
∑n−1

j=0 K(tn−1 − tj)C(tj), where we applied
the composite left rectangular formula, with tj = t0 + hj using equal spacing h. Thus having obtained
estimates for the deterministic non-Markovian and the memory term on the right-hand side of
equation (7), we are able to determine the random force. The non-Markovian deterministic part on the
right-hand side of the equation (7), corresponding to the drift, is nonlinear for systems not close to
equilibrium and Ωx(t) is thus replaced with F( x(t) with a nonlinear function F(x(t)). In such cases, we
estimate this term using the first KM coefficient and estimate the memory kernel [34] via:

dC(t)

dt
= 〈F(x(t)), x(t0)〉 −

∫ t

t0

K(t − t′)C(t′)dt′. (10)

Note that because we are considering discrete numerical time series, we are in practice using the
following evolution equation:

x(n) = x(tn−1) + h[F(x(tn−1)) − h
n−1∑
j=0

K(tn−1 − tj)x(tj) + R(tn−1)]. (11)

2.3. Empirical model reduction
The primary goal of spatio-temporal modeling of complex systems is to characterize the properties of
underlying dynamics with minimal assumptions about non-sufficient observations. Over the last few years,
linear and nonlinear inverse stochastic modeling approaches have been intensively developed and applied to
obtain reduced models that can explain the statistics of a full system [21, 37]. The linear inverse model
(LIM) approach assumes that the relevant dynamics can be decomposed into linear deterministic and
additive Gaussian random fluctuations terms. Although the linear simplification can be considered as a
decent tool for describing dynamical systems close to equilibrium, not surprisingly, most of real-world
systems exhibit nonlinear behavior. Hence, the empirical model reduction (EMR) [19] has been proposed
as a nonlinear generalization of LIM approaches.

The general form of the EMR approach is as follows: first, model the increments dxk = xk+1 − xk of an
observed variable x as a nonlinear function of x plus a residual, typically via a least-squares minimization
yielding the parameters of f:

dxk = f (xk)dt + r0
k dt (12)

Second, model the residual as a linear function of xk and r0
k and repeat this until the remaining residual

has vanishing autocorrelation:
dr0

k = b1[xk, r0
k ]dt + r1

k dt
. . . ..

drn
k = bn[xk, r0

k , . . . , rn
k ]dt + rn+1

k dt.

Here, drn
k equals rn

k+1 − rn
k with time index k and n denoting the regression level. The presence of these

hidden variables that explicitly depend on the past values of slow variables brings forth ‘memory’ effects.
Incorporating these adaptive number of memory steps resembles the MZ formalism. Opposed to the MZ
method, which provides solutions for the dynamics of a system considering the full memory via the kernel
K(t) function, the EMR offers approximate solutions based on the iterative procedure described above. We
refer to Kondrashov et al [20] for further details and in particular explanations of the relationship between
EMR and the MZ formalism.

5
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Figure 2. A stochastic process with linear drift and additive noise. (a) Original (red) and randomly chosen simulated time series
based on KM, MZ, and EMR methods (from top to bottom, respectively). (b) Summary statistics (PDFs in the left column and
ACFs in the right column) of original and simulated time series derived from 1000 sample time series reconstructed by the three
stochastic models (KM, MZ, and EMR), from top to bottom as indicated in the legend. The original system is an
Ornstein–Uhlenbeck process (according to equation (13)) with Δt = 0.01 whose statistical features are shown in red color.

In equation (12), in fact, we substitute the deterministic term f by the first KM coefficient. This term can
be a polynomial with different orders depending on the process dynamics. For instance, to reconstruct a
stochastic process that takes place in a double-well potential V(x), we first estimate the deterministic part
via the first KM coefficient and then approximate the stochastic term using the recursive
procedure.

3. Results and discussion

In the following, we present our results of KM, MZ, and EMR performance for reconstructing various
dynamical systems with different levels of complexity. The performance of these three methods is examined
in terms of statistical properties such as probability density functions (PDFs) and ACFs of large sets of time
series simulated with the derived SDE models.

6
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Table 1. Summary of mean squared error (MSE) between PDFs of
different systems and corresponding averaged PDF of simulated time
series over several realizations.

Time series KM MZ EMR

OU additive noise 0.000 03 0.000 32 0.000 03
OU multiplicative noise 0.0013 0.0021 0.004
OU colored noise 0.002 0.000 01 0.000 01
S & P500 0.05 0.03 0.06
Niño-3 0.01 0.001 0.001
DW additive noise 0.0004 0.000 42 0.0021
DW multiplicative noise 0.0008 0.0009 0.001
[Ca2+] 0.004 0.009 0.009

Table 2. The table illustrates MSE (as an error metric) between
ACFs of original systems and corresponding average ACFs of
simulated time series.

Time series KM MZ EMR

OU additive noise 0.000 13 0.000 21 0.000 34
OU multiplicative noise 0.000 38 0.0003 0.000 27
OU colored noise 0.07 0.000 04 0.000 13
S & P500 0.002 0.001 0.0008
Niño-3 0.01 0.003 0.006
DW additive noise 0.000 15 0.000 02 0.000 31
DW multiplicative noise 0.0009 0.005 0.001
[Ca2+] 0.026 0.004 0.004

3.1. Unimodal processes
3.1.1. Synthetic time series
We commence by considering the dynamics of the stationary Gaussian–Markov Ornstein–Uhlenbeck (OU)
process: dx(t)

dt
= θ(μ− x(t)) + ση(t). (13)

The OU process is known to be mean-reverting, i.e., the drift coefficient controls the forcing of the state
variable x(t) back to its mean μ. We generate 106 data points with θ = 1, μ = 0, σ = 0.5 and time sampling
Δt = 0.01.

In order to numerically integrate equation (13), we apply the Euler–Maruyama method. We recall that
for stochastic integration, there are two different approaches, Itô and Stratonovich. In the case of the OU
process with an additive noise, these two interpretations are equivalent and in this study we mostly employ
the Itô method.

In this study the deterministic terms of simulated time series constructed by the three aforementioned
inverse modeling methods (KM, MZ, and EMR) are estimated directly from the first KM coefficient.
Figure 2 displays the statistical properties of the time series generated using the original OU process as well
as corresponding, randomly chosen time series obtained from the three different methods, in comparison
with the original time series. The PDFs are obtained as averages over 1000 simulated time series and the
error bars indicate the deviations ±σ around the averages for the 1000 realizations. We calculate the mean
squared error (MSE) as an error metric to evaluate the performance of the KM, MZ, and EMR methods in
reconstructing the statistical properties of underlying systems. The summary of MSE values can be found in
tabels 1 and 2. For the specific settings investigated in the case of equation (13), all three SDE models
perfectly reproduce the statistic of the underlying dynamics. Here the auto-correlation exponentially decays
and the memory coefficients of GLE are zero except at τ = 1, indicative of a Markovian process.

Dynamical processes with multiplicative noise are ubiquitous in the natural sciences and beyond
[38–40]. For a system subject to an additive noise the deterministic potential corresponds to stochastic
steady-state potentials through Vs =

Vd
σ

, where σ is the intensity of fluctuations that are independent of the
system state x. It implies that, in response to the stochastic force, the system exhibits stochastic fluctuations
from its deterministic attractor. In the case of a multiplicative noise, a noise-induced drift becomes visible
and consequently a new attractor basin is generated that does not exist in the absence of state-dependent
fluctuations. In equation (13) we substitute the additive noise with a multiplicative noise (i.e., the diffusion
term is multiplied by 1 + x2) whose intensity depends on the instantaneous value of the state

7
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Figure 3. A stochastic process with linear drift and multiplicative noise (1 + x2). (a) Original (red) and randomly chosen
simulated time series based on KM, MZ, and EMR methods (from top to bottom respectively). (b) Statistical properties of the
observed and simulated Ornstein–Uhlenbeck subject to the multiplicative noise. The left column illustrates the PDFs for
simulated results obtained as averages over 1000 realization with uncertainties in blue color. The right column displays the ACFs
of ensembles of simulated time series constructed based on the three different stochastic models (KM, MZ, and EMR, from top
to bottom).

variable x(t):
dx(t)

dt
= θ(μ− x(t)) + (1 + x2)η(t) (14)

As it can be concluded from figure 3, all three methods work very well in reproducing the statistical
features of the linear system also when exposed to symmetric multiplicative noise.

For more comparison, we analyze a system subject to asymmetric noise, which results in a skewed
distribution. We thus multiply the noise term in equation (13) by (1 + x) (instead of (1 + x2)) and evaluate
the statistical properties of the system. According to figure 4, the KM model exhibits better performance in
comparison to the two other models, since it can directly estimate the (in this case asymmetric)
state-dependent noise from the time series.

So far we considered additive and multiplicative noise, with η itself given by Gaussian white noise. But
in many physical and biological systems, fluctuations exhibit some degree of correlation that cannot be

8
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Figure 4. A stochastic process with linear drift and asymmetric multiplicative noise. (a) Original (red) and randomly chosen
simulated time series based on KM, MZ, and EMR methods (from top to bottom respectively). (b) Statistical properties of the
observed and simulated Ornstein–Uhlenbeck subject to the asymmetric noise (1 + x). The left column illustrates the PDFs for
simulated results obtained as averages over 1000 realization with uncertainties in blue color. The right column displays the ACFs
of ensembles of simulated time series constructed based on the three different stochastic models (KM, MZ, and EMR, from top
to bottom).

satisfied by white noise. Therefore we substitute the stochastic term of equation (13) with a first order
autoregressive process (AR(1)) and investigate the performance of the three aforementioned methods to
derive SDEs in the presence of colored noise.

An AR(1) process is given by:
Yt+1 = αYt + η(t), (15)

where η is a Gaussian white noise process with zero mean and constant variance. According to figure 5(b),
the statistical properties of simulated time series constructed via the KM method can not perfectly follow
the original ones in this case. From tables 1 and 2 it can also be concluded that MZ and EMR perform

9
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Figure 5. A stochastic process with linear drift and colored noise. (a) Original (red) and randomly chosen simulated time series
based on KM, MZ, and EMR methods (from top to bottom). (b) Summary statistics (PDFs and ACFs) of original time series and
simulated time series derived from 1000 sample time series reconstructed by the three stochastic models (KM, MZ, and EMR)
from top to bottom as indicated in the legend. The original system is an Ornstein–Uhlenbeck process with colored noise
constructed by a first-order autoregressive process (AR(1)) with α = 0.5, whose statistical features are shown in red color.

better (with smaller MSEs). This is expected, since the presence of colored noise implies a deviation from
the white-noise assumption of the LE and the KM method to derive it.

It is also of interest to evaluate the performance of these SDE models when the system exhibits some
short-term memory in the deterministic part. For this purpose we consider a stochastic delay differential
equation given by:

dx(t)

dt
= αx(t) + βx(t − τ) + R(t). (16)

The random force R is given by serially correlated noise produced by a second-order autoregressive
(AR(2)) process in which the current value depends on the two previous values. As can be observed from
figure 6, the EMR and MZ methods yield significantly better approximations of the PDF and ACF than the
KM method for this system with short-term memory in the drift and colored noise. This provides an

10
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Figure 6. Statistical properties of the observed (red) and simulated (blue) time series from a delayed OU process, with tau = 2,
subject to correlated noise produced by an AR(2) process. The simulated time series were constructed using KM, MZ, and EMR
methods (from top to bottom), averaged over 1000 different realizations.

instructive example for situations where the MZ and EMR approaches clearly outperform the KM approach
(as theoretically expected).

3.1.2. Real-world time series
In recent years, quantifying stochastic dynamics of financial time series (e.g. stock prices and stock market
indices) through stochastic differential equations in order to describe their evolution has attracted
considerable attention. In this study we analyze the weekly S & P500 stock index for the time span of 35
years (1950–1985) and analyze its distinctive statistical properties. Here the stock return price ln p(t+δt)

p(t)
represents the state variable x(t). The statistical results of the simulated time series estimated by the three
inverse modeling methods is shown in figure 7. According to the KM coefficients the deterministic part of
the dynamics is described by a linear function of the state variable, while the stochastic term exhibits
nonlinear behavior.

As mentioned above, we exert the first KM coefficient also to approximate the deterministic term of the
GLE and EMR models. In this first real-world case, the approximation of the PDFs is not perfect
anymore. The results reveal that the MZ formalism outperforms the two other methods in terms of the
ACF, with very good agreement to the original return series (figure 7(b), second row, second
column). It is worth mentioning that the statistical properties of financial time series exhibit a time-scale
dependence and long-range correlations [41, 42]. Therefore we conclude that the memory effects of recent
returns occurring in different time scales (from minutes to several days) can be modeled well by the MZ
technique.

Another empirical time series that exhibits uni-modal variability is the Niño-3 index [43], which is one
of several El Niño-Southern oscillation (ENSO) indicators in regard to tropical Pacific sea surface
temperatures (SST). During the last decades, understanding the mechanisms underlying ENSO variability
and prediction of future fluctuations has attracted substantial attention [44–47]. ENSO describes variations
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Figure 7. Summary statistics of S & P500 stock index. (a) Original (red) and randomly chosen simulated time series based on
KM, MZ, and EMR methods (from top to bottom respectively). (b) The average PDFs (left column) and ACFs (right column) of
simulated time series over 1000 realizations (blue) created by KM, MZ, and EMR models from left to right, respectively. The
statistics plotted in red correspond to the original weekly S & P500 stocks index for the time span of 35 years (1950–1985).

in temperature and pressure in the eastern Pacific ocean and has significant impacts on global climate
variability. We reconstruct the Niño-3 monthly sea surface temperature (SST) indices averages across
(5N–5S, 150–90W) from 1891 to 2015 using the KM, MZ, and EMR inverse modeling approaches. The
non-Gaussian behavior of Niño-3 indicates a nonlinear process, quantified by the positive skewness of the
SST distribution, which may reside in the interaction of oceanic variables of interest and the atmospheric
fast forcing [48]. This kind of interactions brings about memory effects into the system dynamics that
should not be expected to be fully captured by models established based on Markovian assumptions.
Figure 8(b) displays the PDFs and ACFs of the resulting simulated time series. Although all three inverse
methods produce similarly skewed and heavy-tailed distributions, comparing the AFCs, MZ achieves a
higher accuracy approximation than KM and EMR. We repeated this procedure for the Niño-4 index, and
also in that case found that the MZ approach outperforms the other two methods. According to these
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Figure 8. Summary statistics of Niño-3 monthly sea surface temperature (SST) indices. (a) Original (red) and randomly chosen
simulated time series based on KM, MZ, and EMR methods (from top to bottom respectively). (b) Comparison of model
performance of KM, MZ, and EMR in reconstructing dynamics underlying ENSO variability. The figure depicts the statistical
properties of the observed (red) and simulated (blue) monthly Niño-3 SST indices from 1891 to 2015.

results, the most significant characteristic of these real-world processes leading to ENSO variability is the
presence of serial correlations connected to internal interactions between observed (slow) and unobserved
(fast) variables which can be captured best by the MZ approach.

In order to investigate whether these results are prone to overfitting, we first calibrated the three SDE
models on the first half of the time series and validated the parameters by comparing the resulting time
series statistics with the ones of the second half of the time series for both systems (Niño-3 and S & P500,
respectively). The results are presented in figures 9(a) and (b). It can be inferred that the longer-term
variations in the ACF are still captured to some degree by the MZ method. For the ENSO case, the slow
variations of the ACF correspond to low-frequency variability present in this time series, which is not noise
but an important part of (internal) climate variability. The fact that the reproduction of these slow
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Figure 9. Comparison between ACFs obtained from calibrating different models (KM, MZ, EMR) on the first half of (a) Niño-3
monthly SST and (b) S & P500 time series only, and ACFs from the second half of these time series (red).

variability modes is less accurate when only calibrating on the first half of the time series is due to the fact
that capturing these slow variability modes is harder when considering only a shorter part of the time series.
For the S & P500 time series however, the comparably faster fluctuations of the ACF most likely correspond

14



New J. Phys. 22 (2020) 073053 F Hassanibesheli et al

Figure 10. A stochastic process with nonlinear drift and additive noise. (a) Original (red) and simulated time series based on
KM, MZ, and EMR methods (from top to bottom respectively). (b) Comparison of the numerical simulation of a process in a
double-well potential subject to an additive Gaussian noise with intensity σ = 0.5, 106 data points and a sampling interval of
0.01. The plot displays PDFs and ACFs of the original (red) and simulated (blue) time series obtained from three different
stochastic models (KM, MZ, and EMR as indicated in the legend), averaged over 1000 realizations.

to noise. The very good approximation of the ACF when applying the MZ formalism to the full S & P500
time series could hence be the result of overfitting when deriving the full kernel K.

3.2. Bimodal processes
3.2.1. Synthetic time series
Up until now we studied processes with a unique mode; however, there are various stochastic dynamics in
natural systems that do not exhibit uni-modality. We start with generating a synthetic process in which a
particle moves in a double-well (DW) potential at ±

√
θ, driven by additive Gaussian noise

dX(t)

dt
= θ(x(t) − x3(t)) + ση(t). (17)
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Figure 11. A stochastic process with nonlinear drift and multiplicative noise. (a) Original (red) and simulated time series based
on KM, MZ, and EMR methods (from top to bottom respectively). (b) Statistical properties of the observed (red) and simulated
(blue) time series related to a particle motion in a double-well potential, subject to multiplicative noise with diffusion

√
1 + x2.

The simulated time series were constructed using KM, MZ, and EMR methods (from top to bottom), averaged over 1000
different realizations.

Here we construct the stationary time series with θ = 1, σ = 0.5 and Δt = 0.01. For all three inverse
models the specific values of the drift terms are again derived from the first-order KM coefficients from the
original time series. The non-Markovian term in the GLE derived via the MZ formalism, which accounts
for interactions between the slow and fast variables, was estimated from the information encoded in the
ACF [32, 34] (equation (7)). Considering the Markov property of the underlying system (17), the kernel
function K of the MZ approach is zero (as theoretically expected). The left column in figure 10 illustrates
the average PDFs of model-simulated time series in comparison with original time series, for 1000
realizations, and the right column displays the associated ACFs. It can be seen that these three stochastic
models can mimic the key features of the original time series very well.

In contrast, in the presence of a multiplicative noise, estimating the underlying dynamic is not trivial
anymore. We substitute the additive noise in the previous example with

√
1 + x2. As it can be observed in
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Figure 12. Comparison between PDFs obtained from the Itô scheme (left panel) and the Stratonovich scheme (right panel) for
the Ca2+ ice core time series.

figure 11), the average ACFs deviate from the original ones for the MZ and EMR methods, while the KM
method still achieves an excellent approximation of the PDF and ACF.

3.2.2. Real-world time series

Identification and understanding the triggering mechanism of the Dansgaard–Oeschger events, abrupt
temperature increases during the last glacial period (roughly from 115.000 years to 12.000 years BP) has
attracted considerable attention in the past years [49–53]. These rapid and strong warming events (up to
16k within few decades [54]), followed by slow-paced cooling phases are inferred from the content of stable
isotope composition of water δ18O in different Greenland ice cores. These proxy records allow to
empirically reconstruct the temperature profile over the last 120.000 years with high temporal resolution. In
this study we investigate the high-resolution (20 years-average) Ca2+ (interpreted as a proxy for
atmospheric circulation patterns), collected from the NGRIP ice core on the GICC05 time scale [55].
Because of the substantially better signal-to-noise ratio, we focus here on the Ca2+ time series between 60ka
and 30ka b2k. We apply the KM, MZ, and EMR approaches to reproduce dynamical and statistical
properties of the underlying dynamics of [Ca2+].

Since the integration of the diffusion term of an SDE is not uniquely defined, two different
frameworks for stochastic calculus have been proposed, namely the Itô and the Stratonovich scheme (see
appendix A for further details). Up to now, we have interpreted the SDEs in the Itô sense, for which a
consistent discretization scheme is the Euler–Maruyama method with straightforward white-noise
increments.

In contrast, in the Stratonovich calculus white noise is approximated by continuously fluctuating noise
with finite memory, which may be more suitable for approximating real-world time series. Indeed, it has
been argued that the Stratonovich scheme is more appropriate for continuous physical systems, such as
ocean and atmospheric circulation systems [56]. A well-defined SDE discretization scheme that is consistent
with the Stratonovich interpretation is the Heun method, which has been shown to perform with higher
precision for a dynamical system model of paleoclimate variability [57].

We compared the performances of both stochastic calculi and corresponding discretization schemes
(Euler–Maruyama and Heun, respectively) for the Ca2+ ice core time series. According to figure 12, the
Stratonovich calculus performs better than the Itô calculus in terms of approximating the PDF. This likely
corresponds to the intrinsic properties of the Stratonovich interpretation in which fast quantities with finite
correlation time, as observed in continuous physical systems such as climate variables, can be
approximated as white noise. The better performance obtained using the Stratonovich calculus is in
agreement with observations made in earlier studies [56, 57].

Figure 13 shows the statistical properties (PDFs and ACFs) of the observed and simulated [Ca2+] time
series in the interval 60.000 years to 30.000 years before the year 2000 AD. Because of the large amplitude of
the [Ca2+] concentration variations, the calculations were conducted in natural logarithmic scale [50]. The
drift term, again directly derived from the KM coefficient for all three inverse methods, exhibits a nonlinear
behavior with two stable equilibrium states, which reflects the switching mechanism between cold stadials
and warmer interstadials.

The results presented in figure 13 show that the modeled time series for all three methods could
accurately reproduce the bimodality of the observed PDFs, although it should be noted that the LE
derived with the KM approach approximates the observed PDF better than the GLE and EMR
approaches: the depth of the two potential wells in MZ and EMR are shallower than the observed PDF
suggests. It is clear from the results illustrated in the right column of the figure 10(b) that the MZ
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Figure 13. Comparison between observed and simulated [Ca2+] time series from Greenland ice cores. (a) Original (red) and
simulated time series based on KM, MZ, and EMR methods (from top to bottom respectively). (b) Statistical properties of the
observed and simulated [Ca2+] time series in the interval between 60ka and 30ka b2k. The PDF of the original data is shown in
red color while simulated time series obtained from KM, MZ, and EMR models (from top to bottom) can be found in blue color.
The PDFs for the three stochastic models are averaged over 1000 realization and therefore considerably smoothed.

and EMR methods have better performances to construct the underlying autocorrelation structure of the
[Ca2+].

4. Conclusions

In the last decades, there have been considerable methodological advances in understanding and
quantitatively modeling the behavior of complex systems. Among others, stochastic differential equations
(SDEs) are a promising approach for this challenge in situations where only a few variables are actually
measured. For some typical example settings, we have studied the performance of three methods to derive
SDEs—the Kramer–Moyal approach to derive Langevin equations (LE) with potentially multiplicative
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noise, the Mori–Zwanzig approach to derive generalized Langevin equation (GLE) including a
non-Markovian term, and the empirical model reduction (EMR) approach to derive GLEs—for various
synthetic and real-world time series. Since the microscopic dynamics of complex systems are often not
accessible, these methods regard the unobserved, fast variables as random fluctuations and investigate the
properties of underlying systems from the evolution of only a few macroscopic, comparably slow
observables. In this study corresponding numerical simulations of all three inverse methods have been
examined in terms of PDFs and ACFs of the simulated time series, as metrics for assessing the models’
performance. We generally observed a nearly optimal performance of all three approaches for unimodal
Markovian systems. For unimodal, non-Markovian systems, the MZ and EMR strongly outperformed the
KM approach as theoretically expected. It is thus not possible to draw a firm conclusion about which SDE
deviation method is in general superior in comparison to the others. According to our results, the
performance of SDE models strongly relies on the effects of memory on the underlying dynamics. We could
show that LEs (as derived by the KM approach) obtain better results for systems with weak memory
contribution but asymmetric multiplicative noise, since it can directly estimate the state-dependent noise
with higher precision. On the other hand, for systems with memory effects and colored-noise forcing, it is
essential to take into account the non-Markovian closure terms. Hence, the MZ and EMR approaches can
be considered more reliable in reconstructing the dynamics of systems exhibiting strong memory effects. In
these two methods, the interactions between observed and unobserved variables are taken into
consideration in terms of memory effects. That is, the EMR approach incorporates adaptive numbers of
memory steps, whilst the MZ method considers the full memory of a system via the kernel K. With regards
to prospective investigations, we suggest that the adaptability of the three investigated SDE models in
reproducing dynamical characteristics of multi-variate time series should be further investigated. For
example, Boers et al [50] introduced a two-dimensional stochastic delay differential equation model as an
approximation of the GLE to analyze the temperature and dust proxy records from Greenland ice cores.
Their results revealed the role of the coupling strength between the two variables, where the model has
problems in reproducing the bimodality in absence of coupling terms, and also shows that the explicit
consideration of memory terms helps to reproduce the asymmetry observed in those temperature and dust
proxy records. Furthermore, it should be of interest and high practical relevance for real-world systems to
consider an adaptive stochastic differential equation framework that can reconstruct the underlying
dynamics of complex systems driven by Lévy noise.
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Appendix A. Stochastic calculus

Equation (1) with a given initial condition x(t0) = x0 has a unique solution which satisfies the following
integral form:

x(t) = x(t0) +

∫ t

t0

f (x(t′))dt′ +

∫ t

t0

g(x(t′))η(t′) dt′. (A1)

A Wiener process is non-smooth and nowhere differentiable, hence translating the second integral in the
equation (A1) using a conventional Riemann sum is not uniquely defined. To interpret the noise term, two
different formulations of stochastic calculus have been introduced for computing the solutions of SDEs;
known as Itô and Stratonovich calculi, respectively [58, 59].

In the Itô prescription, the evaluations of the function g(x(t)) are uncorrelated with the (infinitesimal)
increments of the Wiener process dW(t). In fact, the Itô integral is defined as the limit of a left Riemann
sum (where the function g(x(t)) is evaluated at the left of the interval [t, t +Δt]) with an Itô correction.
The resulting stochastic integration in the Itô scheme is given:

∫ t

t0

W(s)dW(s)ds =
1

2
[(W2(t) − W2(t0)) − (t − t0)]. (A2)

Although the Itô convention does not preserve the chain rule of calculus, employing Itô’s Lemma maintains
the martingale property. Owing to this property, the Itô calculus is used extensively in finance [60].
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The most common alternative to the Itô integral that does satisfy the chain rule of classical calculus is
the Stratonovich scheme. From that point of view, a function can be evaluated at the midpoint of the time
interval [t, t +Δt]. Because the midpoint selection rule is associated with the finite noise autocorrelation
[61], the martingale property does not hold. In contrast to the Itô, the Stratonovich calculus approximates
the Wiener process as the limit of a correlated process when the correlation time approaches zero:

∫ t

t0

W(s) ◦ dW(s) =
1

2
(W2(t) − W2(t0)). (A3)

This approximation leads to difficulties e.g. for the calculation of expectation values, since stochastic
variables and noise are not independent: 〈x(t)η(t)〉 �= 0. It should be underlined that the Itô and
Stratonovich calculi have the same solution if their drift terms fulfill the following relationship, which is
called Itô–Stratonovich drift correction:

fS(x(t)) = fI(x(t)) − 1

2
( g(x(t))

∂g(x(t))

∂x
, (A4)

where fI denotes the drift of the Itô calculus and fS the drift of the Stratonovich calculus.
Even though both interpretations are mathematically consistent, one obvious question that may arise is

which interpretation is the right one for desribing or approximating a particular set of physical processes. In
order to answer this, we have to look at the origin of the noise in the stochastic system. It has been shown
that, if the relaxation time of a system is large enough in comparison with the noise correlation time, then
the Itô interpretation is appropriate. On the other hand, if the noise is colored, i.e., it has finite correlation
time, the limiting SDE must be treated in the Stratonovich framework [61–63].

As noted above, different stochastic calculi (Itô or Stratonovich) are associated with different kinds of
discritization for numerical integration [64]. It must hence be stated upfront which stochastic calculus is
going to be considered. The simplest and most widely used discretization scheme to numerically integrate
SDEs is the Euler–Maruyama method, which converges to the Itô interpretation:

x(t +Δt) = x(t) + f (x(t))Δt + g(x(t))η(t)
√
Δt. (A5)

Another numerical method that we used in this paper (for approximating the Ca2+ ice core time series),
called Heun method [65], leads to the Stratonovich scheme. This method is an example of a
predictor-corrector method in which the predictor is calculated by a simple Euler type integration as
follows:

x̂(t +Δt) = x(t) + f (x(t))Δt + g(x(t))
√
Δtη(t) (A6)

x(t +Δt) = x(t) +
1

2
( f (x(t)) + f (x̂(t +Δt))Δt +

1

2
( g(x(t)) + g(x̂(t +Δt))

√
Δtη(t). (A7)
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