
 
 
 
Originally published as:  
 
Li, Q., Schultz, P., Lin, W., Kurths, J., Ji, P. (2020): Global and local performance metric 
with inertia effects. - Nonlinear Dynamics, 102, 2, 653-665. 
 
DOI: https://doi.org/10.1007/s11071-020-05872-4 
 

https://publications.pik-potsdam.de/cone/persons/resource/Paul.Schultz
https://publications.pik-potsdam.de/cone/persons/resource/Juergen.Kurths
https://doi.org/10.1007/s11071-020-05872-4


Global and local performance metric with inertia effects

Qiang Li1,2,3, Paul Schultz4, Wei Lin1,2,3, Jürgen Kurths4,5,6, and Peng Ji1,2,3∗
1Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China

2LCNBI and LMNS (Fudan University), Ministry of Education, Shanghai 200433, China
3Research Institute of Intelligent and Complex Systems, Fudan University, Shanghai 200433, China

4Potsdam Institute for Climate Impact Research (PIK), 14473 Potsdam, Germany
5Department of Physics, Humboldt University, 12489 Berlin, Germany

6Institute for Complex Systems and Mathematical Biology,
University of Aberdeen, Aberdeen AB24 3UE, United Kingdom

A complex system’s structural-dynamical interplay plays a profound role in determining its collec-
tive behavior. Irregular behavior in the form of macroscopic chaos, for instance, can be potentially
exhibited by the Kuramoto model of coupled phase oscillators at intermediate coupling strength with
frequency assortativity and this behavior is theoretically interesting. In practice, however, such ir-
regular behavior is often not under control and is undesired for the system’s functioning. How the
underlying structural and oscillators’ dynamical interplay affects a collective phenomenon (and its
corresponding stability) after being subjected to disturbances, attracts great attention. Here, we
exploit the concept of a coherency performance metric, as a sum of phase differences and frequency
displacements, to evaluate the response to perturbations on network-coupled oscillators. We derive
the performance metric as a quadratic form of the eigenvalues and eigenmodes corresponding to
the unperturbed system and the perturbation vector, and analyze the influences of perturbation
direction as well as strength on the metric. We further apply a computational approach to obtain
the performance metric’s derivative with respect to the oscillators’ inertia. We finally extend the
metric to a local definition which reflects the pairwise casual effects between any two oscillators.
These results deepen the understanding of the combined effects of the structural (eigenmodes) and
dynamical (inertia) effects on the system stability.

I. Introduction

Complex networks play a vital role in revealing a hierarchical architecture of complex systems. Each element of
a system exhibits its own dynamics determined by intrinsic governing equations and parameters. Once adjacency
elements are coupled, the dynamics on the network induces the emergence of self-organization and other collective
phenomena [1–3]. The induced phenomena, e.g. phase synchronization and chaos, are generally governed by the
complex interplay between the intrinsic dynamics, the underlying network topology and the coupling strength. Though
initially unexpected, coupled periodic systems were found to exhibit a chaotic regime over large portions of the
parameter space, e.g. the paradigmatic Kuramoto model of coupled phase oscillators and its extensions [4]. On the
one hand, different features are known to cause chaotic macroscopic dynamics. Such features might be preferential
connections between oscillators with similar or dissimilar natural frequencies [5] or a time-varying coupling strength
[6]. On the other hand, the Kuramoto model exhibits chaotic behavior at intermediate coupling strengths with positive
Lyapunov exponents [7] or chaotic dynamic of order parameters [7, 8]. The chaotic behaviour, an essential property of
the incoherent regime, is predominantly observed in systems of intermedite size and its corresponding hyper-chaotic
regime vanishes in the infinite-size limit [8–10]. Additional to chaotic behavior, phase synchronization has been widely
studied, from the aspects of the effects of inertia, the sufficient conditions to guarantee the phase synchronization, and
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so on [11–15]. Even any non-zero inertia can induce the first-order phase transition from incoherence to coherence
[16, 17]. The interplay between dynamical and structural properties leads to further various phenomena, including
solitary states [18]. The induced phenomena can be further affected by phase shift [19] and time-delay feedback
control [20], and should be explicitly taken into account the future design of power grids [19, 20].

In general, a dynamical system is unavoidable to be affected by internal and external perturbations [21, 22], where
large perturbations in multistable settings might even lead to transitions to alternative attractors [23]. A central
question arises of how to quantify the effects of perturbations on a system’s long-term stability as well as how to
characterise the transient behaviour. Various stability measures along the line of this research have been proposed,
e.g., the master stability formalism given small perturbations [24]. For large perturbations, basin stability quantifies
the probability of the system returning to a desired synchronous regime [25]. Commonly, these stable stationary states
are characterized by phase coherency order parameters (see [26] for an overview). A further method to quantify the
degree of synchronisation is the synchrony alignment function [27], capturing the interplay of the network topology
and the spatial allocation of natural frequencies. However, to compare system transients following impulsive one-time
perturbations, various observables have been tailored to different aspects of the time evolution. Commonly, a notion
of return time measurement is employed, examples are synchronisation speed [28], relaxation rate [29] or finite-time
basin stability [30]. Another approach is to construct energy-like functionals, e.g. quadratic performance metrics
like coherency [31] or fragility measures [32], quantifying a respective kind of effort to regain synchronisation. These
energy-like functionals characterize a global system stability, and local ones reflect causal effects between components,
e.g. local response functions in Fourier space [33]. Additionally, to measure e.g. chaotic dynamics of the order
parameter, as discussed above, quadratic performance metrics [7, 34] can be applied. Recently, it has been shown
that the presence of (high) inertia is a distinctive ingredient to the emergence of chaotic dynamics in the form of
intermittently chaotic transients and stable chaotic two-population states [35]. However, chaotic attractors as well as
transients are often undesired for proper functioning of complex systems and the dynamics needs to be designed or
controlled in a way to suppress chaos in favour of phase synchronisation.

Based on the previous work on performance metrics in this context (i.e. [31–33]), in this manuscript we further
investigate a gradient formula for local quadratic performance metrics, extend the global approaches analytically
derived in a strong coupling regime to a weak one and investigate the local approaches systematically. In particular,
we focus on the Kuramoto model with inertia, mainly from perspectives of its theoretical interest (its evidence to
chaotic dynamics) as well due to its widespread applications (especially to power transmission grids at a macroscopic
scale [36]). In particular, we exploit the concept of performance metrics to investigate the Kuramoto model with
inertia, and obtain its solution as a function of the spectral decomposition of the underlying network. We conduct
a computational approach based on a gradient formula [31] and calculate its sensitivity with respect to the inertia.
We analytically derive a local performance metric in the strong-coupling regime and finally validate the conclusions
numerically in the weak-coupling regime.

II. Model and coherency performance metric

Consider a network given by a graph G = (V, E) with N nodes V = {1, · · · , N} and M edges E⊆V × V. The
adjacency matrix A of G with elements aij quantifies the connection between nodes i and j, with aij = 1 if (i, j) ∈ E
and aij = 0 otherwise. Each node of the network is governed by the second-order Kuramoto dynamics as follows

θ̇i = ωi,

ω̇i = −
1

mi
ωi +

Pi
mi
− K

mi

N∑
j=1

aij sin(θi − θj),
(1)
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where the state of the i-th node consists of its phase θi and frequency ωi, mi ≥ 0 denotes the inertia, Pi the power
and K is the coupling strength. We consider the network G has N1 consumers (with Pi<0) and N2 generators (with
Pi>0), the sum of Pi satisfies

∑N
i=1 Pi = 0. To simplify the calculation further, we take Pi = − 1

N1
if the i-th node is

consumer, and otherwise Pi = 1
N2

. The classical Kuramoto order parameter R measures the phase coherence of the
stationary state and is defined as [26]

Reiψ =
1

N

N∑
j=1

eiθj , (2)

where ψ is the average phase of the nodes and i =
√
−1. With the increase of the coupling strength K, the system

undergoes a phase transition from incoherent to coherent states in the macroscopic dynamics. With small K and
the phases are uniformly distributed on the interval [0; 2π], we have R ≈ 0 and there is no macroscopic rhythm.
In a range of intermediate K, irregular interesting behavior of chaotic dynamics could occur, especially when nodes
prefer connecting with similar (dissimilar) frequency to each other [5]. As illustrated in Fig. 1, we show that for
weak-coupling strengths, the second-order Kuramoto model could exhibit chaotic dynamics with positive maximum
Lyapunov exponent and the chaotic order parameter in macroscopic scale. In Fig. 1(a), black dots denote different
realizations and the red line indicates the mean value. Figure 1(b) shows one realization of the order parameter R
with the mean value (the red-dot line) and the standard deviation (the shaded area). In the strong coupling regime,
the mutual phase differences become small and all phases form a coherent group such that R ≈ 1. The interplay
between dynamical properties between nodes, e.g., frequency assortativity, is crucial to system dynamics. Assume
that the system is initially located in the regime of a stationary phase synchronized state denoted as θ(0)i and ω

(0)
i .

Denoting θ = [θ1, · · · , θN ] and ω = [ω1, · · · , ωN ], we focus on the system’s response to perturbations to the stationary
state and define difference coordinates as

δθ(t) = θ(t)− θ(0) and δω(t) = ω(t)− ω(0). (3)

We consider small perturbations with normal distribution and linearize the system (1) at the stationary state. This
yields

[
δθ̇

δω̇

]
=

[
0 I

−KM−1L −M−1

][
δθ

δω

]
+

[
I 0

0 M−1

]
δP δ(t), (4)

where I is the identity matrix, M = diag{mi} is the inertia matrix, and diag{mi} is a diagonal matrix M with
elements Mii = mi. L is the weighted Laplacian matrix with diagonal elements Lii =

∑N
j=1 aijcos(θ

(0)
i − θ

(0)
j ) and

off-diagonal elements Lij = −aijcos(θ(0)i − θ
(0)
j ). δ(t) is the Dirac delta function, which is zero except at t = 0,

δ(t) =

{
+∞, t = 0,

0, t 6= 0,
(5)

and satisfies the identity
∫ +∞
−∞ δ(t)dt = 1 [37]. Here, δP is the perturbation vector

δP =

[
vθ

vω

]
∈ R2N , (6)

where both the amplitude and the location of the perturbations are characterized in two random constants vθ ∈ RN

and vω ∈ RN . δP δ(t) implies that the perturbations are instantaneous at t = 0 and disappear at t > 0. In what
follows, we perturb the phase θq and frequency ωq of the q-th node with an impulse at t=0, with vθi 6= 0 and vωi 6= 0 if
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FIG. 1: Illustration of the emergence of chaos. In the weak-coupling regime, the system (1) can exhibit chaotic dynamics,
which can be quantified by the maximum Lyapunov exponents (a) and represented by the order parameter in macroscopic scale
(b). In (a), black dots denote different realizations and the red line indicates the mean value. (b) shows one realization of the
order parameter R with the mean value (the red-dot line) and the standard deviation (the shaded area). For the calculation of
Lyapunov exponents, we use ChaosTools from the Julia library. Here, we take an Erdős-Rényi graph with N = 100 nodes and
the connection probability equal to p = 0.05, mi = 1, N1 = 30, N2 = 70, and K varies within the range of [0, 0.02].
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i = q; vθi = 0 and vωi = 0 otherwise. Substituting Eq. (6) into Eq. (4), we obtain the following solution of the overall
linear system

ẋ = Jx + B δP δ(t). (7)

Lemma 1 (Solution for the linear system). With the initial condition x(0) = 0, the solutions of Eq. (7) are

x(t) = eJtBδP. (8)

where

J =

[
0 I

−KM−1L −M−1

]
, x =

[
δθ

δω

]
and B =

[
I 0

0 M−1

]
.

Proof. We multiply Eq. (7) by an integrating factor e−Jt, and rewrite Eq. (7) as

e−Jtẋ− e−JtJx = e−JtB δP δ(t). (9)

Using the fact that e−Jtẋ− e−JtJx = d
dt (e

−Jtx), and integrating Eq. (9) from 0 to t, we obtain

e−Jtx(t)− x(0) =

∫ t

0

e−JτB δP δ(τ)dτ. (10)

To solve the right side of Eq. (10), using
∫ t
0
f(τ)δ(τ)dτ = f(0) for all reasonably well behaved function f [38], we

have

e−Jtx(t)− x(0) = BδP. (11)

Therefore, with the initial condition x(0) = 0, we obtain the solutions of Eq. (7) as

x(t) = eJtBδP. (12)

We can decompose Eq. (8) into eigenmodes of the system Eq. (7) by diagonalizing the Jacobian matrix J, which
admits a set of right eigenvectors {ur1 · · ·ur2N}, and

Juri = λiu
r
i ,

for i = 1, · · · , 2N . We assume that the parameters of Eq. (1) are selected such that the origin is asymptotically
stable. Then the eigenvalues λi of J are complex-valued with Re(λi) < 0 for i = 2, · · · , 2N , where Re(λi) is the
real part of λi, and λ1 = 0 corresponding to a global phase shift symmetry. Typically, J is asymmetric and not
diagonalized through a unitary transformation, i.e. it is not normal and the right and left eigenvectors are not
identified with each other. The left eigenvectors are determined by uli

†
J = λiu

l
i
† where uli

† is the conjugate transpose
of uli. We can, however, form a biorthogonal basis by employing the condition 〈uli,urj〉 = uli

†
urj = 1 if i = j and

〈uli,urj〉 = 0 otherwise. We write an eigendecomposition of J as

J =

2N∑
i=2

λiu
r
iu

l
i

†
. (13)
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FIG. 2: Variations of analytic and simulation solutions of H caused by perturbations S, where the perturbations are normally
distributed with standard deviation 0.1 and mean S, and we take the coupling strength K = 1.0, the inertia mi = 1.0, N1 = 30,
and N2 = 70. The x-axis and the y-axis represent the mean S and the solutions of H, respectively.

Substituting Eq. (13) into Eq. (8) results in the solution of x as

x(t) =

2N∑
i=2

uri e
λit〈uli,BδP〉. (14)

To compare the transient response to perturbations given by Eq. (6) in the linear regime, we exploit the quadratic
coherency performance metric [31] as

H =

∫ ∞
0


N∑

i,j=1

aij(δθi(t)− δθj(t))2 +
1

2

N∑
i=1

miδω
2
i (t)

}
dt. (15)

H sums the potential Hp and the kinetic Hk energy when the system returns to the stationary state, where
the potential energy is defined as Hp =

∫∞
0

{∑N
i,j=1 aij(δθi(t)− δθj(t))

2
}
dt and the kinetic energy is defined as

Hk = 1
2

∫∞
0

{∑N
i=1miδω

2
i (t)

}
dt.
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Lemma 2 (Coherency performance metric). Using the the solution of x, we rewrite H as

H = −
2N∑
i,j=2

1

λ∗i + λj
〈BδP,uli〉〈ulj ,BδP〉〈uri ,Qurj〉, (16)

where

Q =

[
2L̃ 0

0 1
2M

]
, (17)

and λ∗i is the complex conjugate of λi and we omit λ1 = 0 due to the orthogonality of the eigenvectors.

Proof. We rewrite Eq. (15) as

H =

∫ ∞
0

δθ>L̃δθ +
1

2
δω>Mδωdt, (18)

where L̃ ∈ RN×N is the unweighted graph Laplacian matrix of the underlying network with the diagonal elements
L̃ii =

∑N
j=1 aij and the off-diagonal elements L̃ij = −aij . Here, L̃ is different from L introduced in Eq. (4) due to

the additional weights. For a sufficiently large coupling strength K, the system (1) could be located in a stationary
state, and we therein have θ(0)i ≈ θ

(0)
j for i, j = 1, · · · , N and L̃ ≈ L. Now, using the definition of the state vector x,

H can also be rewritten succinctly as

H =

∫ ∞
0

x>Qxdt, (19)

where

Q =

[
2L̃ 0

0 1
2M

]
. (20)

Substituting Eq. (14) into Eq.(19) and using the fact that Re(λi) < 0 for i = 2, · · · , 2N yields

H =

∞∫
0

dt e(λ
∗
i +λj)t

2N∑
i,j=2

〈BδP,uli〉〈ulj ,BδP〉〈uri ,Qurj〉

= −
2N∑
i,j=2

1

λ∗i + λj
〈BδP,uli〉〈ulj ,BδP〉〈uri ,Qurj〉. (21)

To validate the analytical expression Eq. (16) of the coherency performance metric, we apply Eq. (15) to numerical
simulations of the nonlinear system. We consider an ensemble of Erdős-Rényi graphs with N nodes and connection
probability equal to p = 0.05. The perturbations are applied at t = 0 to a random selected node q and follow a
normal distribution with mean S and standard deviation 0.1. Given S, two random values vθq and vωq are obtained
from a uniform distribution, i.e. the phase and frequency of the q-th node are perturbed, respectively. The variations
of the simulations and analytic solutions of H with the magnitude of the perturbation vector are shown in Fig. 2.
For small S the numerical solutions of H match well with the analytic solutions and confirm the validity of the linear
approximation Eq. (7). Naturally, with S increasing from 0 to 1, the differences between the analytic solutions and
the simulation results also increase.
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(a)

(b)

FIG. 3: (a) Coherency performance metric H with respect to the inertia m, where m is from 0.1 to 10, K = 1.0, and q = 1, i.e.,
we perturb the first node. The x-axis and the y-axis represent changes in m and H, respectively. (b) (∇mH)q with respect to
the inertia m for the three perturbation cases, where m is from 0.5 to 10, q = 1, i.e., we perturb the first node. Here, N1 = 30

and N2 = 70. The x-axis and the y-axis represent changes in m and ∇m(H)1, respectively.
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III. Inertia effects

Besides external perturbations, Eq. (16) shows that the intrinsic inertia is another important factor for the coherency
performance metric. To asses howH itself depends on the local inertia, we systematically varym in the interval [0.1; 10]
following the configuration in Fig. 2. For simplicity, hereafter identical inertia constants are considered, i.e. M = mI

is a scalar matrix. Especially, we perturb the phase and/or the frequency locally at a randomly selected node q in the
following three cases: (i) perturb ωq, i.e. vθq = 0 and vωq 6= 0 in the vector δP; (ii) perturb θq, i.e. vθq 6= 0 and vωq = 0;
(iii) perturb ωq and θq simultaneously, i.e. vθq 6= 0 and vωq 6= 0. As shown in Fig. 3(a), for case (i), H is independent of
m, while for the cases (ii) and (iii), H monotonically increases with respect to m and inertia effects on the coherency
performance metric are significant.

To support the numerical evidence in Fig. 3(a), we derive the sensitivity of H to local inertia for the system Eq. (1)
subject to small perturbations (S � 1). For this aim, we conduct a computational approach based on a gradient
formula following the general framework of [31]. Concretely, we calculate the gradient ∇mH of H on the inertia and
derive an algorithm for evaluating ∇mH. Substituting Eq. (8) into Eq. (19), we have

H = δP>B>
∞∫
0

eJ
>tQeJtdt BδP, (22)

where B, J and Q all depend on m. In this case, H is a function of m, denoted by H(m). To obtain the ∇mH, we
show the Lemma 1 as follows.

Lemma 3 (Derivative formula). The directional derivative DξH(m) along a unit vector ξ ∈ RN is defined as

DξH(m) = lim
σ→0

H(m+ σξ)−H(m)

σ
. (23)

H(m + σξ) are considered as functions of a scalar σ and are expanded in a Taylor series around σ = 0. H(1)(m, ξ)

denotes the coefficient of σ, and we have

DξH(m) = H(1)(m, ξ) . (24)

Proof. For a sufficient small σ, the Taylor expansion of H(m+ σξ) is

H(m+ σξ) = H(m) +H(1)(m, ξ)σ +O(σ2). (25)

Substituting Eq. (25) into Eq. (23), and using σ → 0, we have

DξH(m) = H(1)(m, ξ) .

In fact, the directional derivative DξH(m) is the partial derivative of H(m) along a selected direction ξ ∈ RN .
∇mH = [(∇mH)1, (∇mH)2, · · · , (∇mH)N ]T , where (∇mH)q is the partial derivative of H(m) along the q-th or-
thonormal basis eq ∈ RN . Consequently, we obtain (∇mH)q by a special choice ξ = eq from DξH(m), i.e.,

(∇mH)q = DeqH(m), (26)

where eq is the q-th orthonormal basis for a Euclidean space RN , i.e., its q-th element is equal to 1 and others are 0.

Lemma 4 (Lyapunov equation). For the convenience of the calculation of ∇mH, we define b(m) := B(m)δP and
use Eq. (12) with Lemma 2 to rewrite H(m) as

H(m) = b(m)>O(m)b(m), (27)
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with

O(m) =

∫ ∞
0

eJ
>tQeJtdt. (28)

O(m) satisfies the Lyapunov equation

O(m)J(m) + O(m)J(m)> + Q(m) = 0. (29)

Proof. By taking the derivative of eJ
>tQeJt with respect to t, and integrating the derivative from t = 0 to t =∞, we

have ∫ ∞
0

d

dt
(eJ
>tQeJt) dt = O(m)J(m)> + O(m)J(m). (30)

Using the fact that

eJ
>tQeJt → 0 for t→∞, and eJ

>tQeJt = Q(m) for t = 0.

We obtain the Lyapunov equation

O(m)J(m) + O(m)J(m)> + Q(m) = 0,

which implies O(m) is the unique solution of the Lyapunov equation Eq. (29).

Lemma 5 (First order performance metric). Substituting H(m+ σξ) into Eq. (27), we have

H(m+ σξ) = b(m+ σξ)>O(m+ σξ)b(m+ σξ). (31)

Both sides of Eq. (31) are considered as functions of a scalar σ and are expanded in a Taylor series around σ = 0.
b(1)(m, ξ) and O(1)(m, ξ) represent the coefficient of σ, and we have

H(1) = b(1)>Ob + b>O(1)b + b>Ob(1), (32)

where

b(1)(m, ξ) =

[
0

−ΨM−2vω

]
(33)

and Ψ = diag{ξi},

O =

∫ ∞
0

eJ
>tQeJtdt, (34)

and O(1) =

∫ ∞
0

eJ
>t
(
OJ(1) + J(1)>O + Q(1)

)
eJtdt. (35)

and we drop the arguments (σ, ξ) for the convergence of simplification. Using the eigendecomposition of the matrix J

and the Taylor series of J(m+ σξ), Q(m+ σξ), we obtain further

O =

2N∑
i,j=2

〈uri ,Qurj〉
λ∗i + λj

uliu
l
j

>
, (36)

and

O(1) =

2N∑
i,j=2

〈uri ,
(
OJ(1) + J(1)>O + Q(1)

)
urj〉

λ∗i + λj
uliu

l
j

>
, (37)
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where

J(1)(m, ξ) =

[
0 0

ΨKM−2L ΨM−2

]
(38)

and

Q(1)(m, ξ) =

[
0 0

0 1
2Ψ

]
(39)

denote the coefficient of σ.

Proof. First of all, for Eq. (31), we need to find expressions for O(m + σξ) and b(m + σξ). The right sides of Eq.
(31) are considered as functions of a scalar σ and are expanded in a Taylor series around σ = 0 as

b(m+ σξ) = b(m) + b(1)(m, ξ)σ +O(σ2), (40)

and

O(m+ σξ) = O(m) + O(1)(m, ξ)σ +O(σ2). (41)

By inserting Eqs. (25), (40)-(41) into Eq. (31) and comparing the coefficients in the order of σ, we obtain the
first-order correction to the performance metric H:

H(1)(m, ξ) = b(1)(m, ξ)>O(m)b(m) + b(m)>O(1)(m, ξ)b(m) + b(m)>O(m)b(1)(m, ξ),

where we use the fact that H(m) = b(m)>O(m)b(m).
Now, to determine O(1)(m, ξ) we can make use of the fact that O(m+σξ) is also subject to the Lyapunov equation

Eq. (29), which then contains the terms J(m+ σξ) and Q(m+ σξ):

J(m+ σξ) = J(m) + J(1)(m, ξ)σ +O(σ2), (42)

and Q(m+ σξ) = Q(m) + Q(1)(m, ξ)σ. (43)

By substituting Eqs. (41), (42) and (43) into the original Lyapunov equation and collecting terms associated with
powers of σ, we get two Lyapunov equations determining O and O(1),

OJ + J>O + Q = 0, (44)

and O(1)J + J>O(1) + (OJ(1) + J(1)>O + Q(1)) = 0. (45)

Note that the arguments (σ, ξ) have been dropped in favour of readability. By using Lemma 4, we obtain the
solutions of the two Lyapunov equations Eqs. (44) and (45), respectively,

O =

∫ ∞
0

eJ
>tQeJtdt,

and O(1) =

∫ ∞
0

eJ
>t
(
OJ(1) + J(1)>O + Q(1)

)
eJtdt.

Using the eigendecomposition of the matrix J, we have

O =

2N∑
i,j=2

〈uri ,Qurj〉
λ∗i + λj

uliu
l
j

†
, (46)
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and

O(1) =

2N∑
i,j=2

〈uri ,
(
OJ(1) + J(1)>O + Q(1)

)
urj〉

λ∗i + λj
uliu

l
j

†
. (47)

In the rest of our proof, we compute the coefficients of the Taylor expansion in Eqs. (40),(42) and (43). Recall the
scalar series expansion of 1/(mi + σξi) around σ = 0:

1

mi + σξi
=

1

mi
− σξi
m2
i

+O(σ2). (48)

We take the shorthand Ψ = diag{ξi} and use Eq. (48) to directly obtain the following terms up to O(σ2):

b(1)(m, ξ) =

[
0

−ΨM−2vω

]
, (49)

J(1)(m, ξ) =

[
0 0

ΨKM−2L ΨM−2

]
, (50)

and

Q(1)(m, ξ) =

[
0 0

0 1
2Ψ

]
. (51)

Theorem 1 (Inertia gradient). Selecting ξ = eq, the q-th component of the gradient ∇mH is

(∇mH)q = b(1)>Ob + b>O(1)b + b>Ob(1). (52)

Proof. Substituting Eq. (26) into Eq.(24) of Lemma 3, we have

(∇mH)q = H(1)(m, eq) . (53)

Substituting Eq. (53) into Eq. (32) of Lemma 5, we obtain

(∇mH)q = b(1)>Ob + b>O(1)b + b>Ob(1). (54)

Up to now, we have evaluated (∇mH)q based on Lemma 3-5 and Theorem 1. To clearly exhibit our results,
we show the proofs of Lemma 3-5 and Theorem 1 by following the general framework of [31]. By using eigen-
decomposition of the matrix J, we extend the expressions of O and O(1) in favour of simulation. At the beginning
of this section, in Fig. 3(a), three cases for perturbations were introduced (phase, frequency or joint perturbation).
Varying the inertia m in the interval [0.5; 10], we complement the analysis of the inertia effect with our analytic results
for (∇mH)q in Fig. 3(b). For case (i), (∇mH)q is close to 0, i.e., the variation of the inertia does not affect the
transient performance of the system. However, for the cases of (ii) and (iii), we conclude that (∇mH)q > 0, i.e., H
monotonically increases with the variations of m and the system becomes unstable with the increases of the inertia.
Therefore, these analytical results from Fig. 3(b) are consistent with Fig. 3(a).
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IV. Local coherency performance metric

We have introduced the coherency performance metric H which measures the stability of the whole system given
a delta perturbation δP = [vθ, vω]> and have analyzed the different sensitivity in the phase and frequency directions
with respect to the inertia in the strong-coupling regime with K = 1.0. Instead of the global performance metric in
a strongly-coupled regime, we focus now on a local definition that quantifies the transient performance at each node
separately and extends the analysis to a weakly-coupled regime.

For perturbations δPq = [0, . . . , vθq , . . . , 0, 0, . . . , v
ω
q , . . . , 0]

> localised at the q-th node, we define the local metric
Hk(δPq) to measure the energy variations of the k-th node as

Hkq := Hk(δPq) =

∫ ∞
0


n∑
j=1

akj(δθk(t)− δθj(t))2 +
1

2
mkδωk(t)

2

 dt, (55)

with k 6= q and k, q = 1, · · · , N . The global metric H in Eq. (15) is retrieved by summing the local ones across the
influenced nodes, i.e. H =

∑N
k=1Hk.

Lemma 6 (Generalized coherency performance metric). Using the solution of x, we obtain the analytic solution of
Hkq is

Hkq = −e>k

2N∑
i,j=2

〈uli,BδPq〉

{[
I I
] diag {uri }
λi + λj

[
L̃−A 0

0 1
2M

]
−
[
A 0

] diag {uri }
λi + λj

}
〈ulj ,BδPq〉urj . (56)

Proof. For convenience of computation, we rewrite Eq. (55) as

Hkq =

∫ ∞
0

e>k

{
δΘ(L̃−A)δθ +

1

2
δΩMδω + AδΘδθ

}
dt, (57)

where δΘ = diag{δθi} ∈ RN×N and δΩ = diag{δωi} ∈ RN×N are the diagonal phase-difference matrix and
diagonal frequency-displacement matrix, respectively. We also diagonalize the corresponding state matrix as X =

diag{xi} ∈ R2N×2N and rewrite Eq. (57) as

Hkq =

∫ ∞
0

e>k

{[
I I
]

X

[
L̃−A 0

0 1
2M

]
x +

[
A 0

]
Xx

}
dt. (58)

Substituting the solution Eq. (14) of x into the diagonal state matrix, we have

X =

2N∑
i=2

eλit〈uli,BδPq〉diag{uri }, (59)

where for the vector uri , diag{uri } is a diagonal matrix. Substituting Eq. (59) into Eq. (58) finally yields Eq. (56).

We have already obtained the analytic solution of Hkq expressed in Eq. (56) and contrast it with numerical
simulations of Eq. (55). Using again the same setting as in Fig. 2, we perturb the frequency ωq and phase θq of node
q, q = 1, · · · , N . This corresponds to case (iii) in Fig. 3. We evaluate each of the other nodes’ response and get a
matrix H with N ×N elements, where the diagonal elements of H are 0, and the off-diagonal elements are the energy
variations of node k, with k 6= q. For illustration purpose only, we depict the block (15 × 15) of H in Fig. 4. The
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x-axis denotes the location of perturbations, the y-axis denotes the perturbed nodes and the color reflects the values
of the corresponding energy variations.

For K = 0.5, we obtain the analytic Ha and numerical solutions Hs of H in Fig. 4(a) and (e), respectively.
The results are close upon visual inspection. However, in order to quantify the similarity between the analytic and
numerical solutions of H, we use the Pearson correlation coefficient defined as

r =

∑N
k=1

∑N
q=1(H

a
kq − H̄a)(Hs

kq − H̄s)√∑N
k=1

∑N
q=1(H

a
kq − H̄a)2

√∑N
k=1

∑N
q=1(H

s
kq − H̄s)2

, (60)

where

H̄a =
1

N2

N∑
k=1

N∑
q=1

Ha
kq, and H̄s =

1

N2

N∑
k=1

N∑
q=1

Hs
kq,

are the averages over the entries in Ha and Hs, respectively. Indeed, for K = 0.5, the Pearson correlation coefficient
is r = 0.9999.

We also numerically calculate the local metric for weak coupling strengths. For sufficiently low K, the system
exhibits large transients even after small perturbations and some nodes do not return to the synchronous regime,
indicating multistability. Hence, our linear approximation of the dynamics breaks down hand in hand with a loss
of coherence in the final state. In this case, the local metrics could be much larger as shown for K = 0.04 in Fig.
4(b). With the increase of the coupling strength K, the synchronization coherence increases, local metrics decrease
correspondingly in Fig. 4(c)-(e), and the order parameter R increases as shown in Fig. 4(f). Meanwhile, the similarity
between the analytical solutions (obtained for strong coupling strength K = 0.5) and the numerical ones (for weak
coupling strengths) increases as shown in Fig. 4(g). The local energy variation reflects the sensitivity of the nodes.
With the decrease of K, the sensitivity increases with the increases of the local energy variation. For example, for
K = 0.04 in Fig. 4(b), the 5-th node is easily perturbed by other nodes. This could be due to multiple reasons and
nodes’ local topological properties could be the main reason. To investigate the influence of the network topology,
below the local performance is evaluated for different network motifs.

As we have seen, the local performance Hkq is largely determined by the underlying network structure. To get a
more systematic picture, we determine Ha and Hs for specific motifs. We take three motifs ¬-® shown in Fig. 5
with one consumer (the 1st node with ω1 = −1) and two generators (the 2nd and 3rd nodes with ω2 = ω3 = 0.5). As
an illustration, we perturb both the frequency ω1 and phase θ1 in the three motifs, show the analytical and numerical
solutions of the local metrics on the 1st node (shown in the second column) and on the 2nd node (shown in the third
column) in Fig. 5. Here, we display the standard deviation (in red and blue shaded area) and mean values (red and
blue curve) of H11, H21 (simulation and analytic).

Our results exhibit casual influence between each pair of nodes, and indicate that for the local linear response
indicate, given fixed perturbation, nodes are subject to a certain topological vulnerability. The network topology
determines highly responsive nodes as well as critical locations. The local metrics are influenced by many factors,
especially by an interplay of their topology and the kind of perturbation. Even given the topology but varying the
spatial distribution of generators or consumers, as shown in ¬ and ® of Fig. 5, the resulting metrics vary from, e.g.,
the maximal values and nodes’ casual responses. Perturbations can also affect the results of local metrics. We vary
both the value of perturbation δθ1 of phase and δω1 of frequency of the 1st node from -0.5 to 0.5, and calculate the
local metric of H11, shown in the last column of Fig. 5.

V. Conclusion

The theoretical interest in the Kuramoto model with inertia is due to its diverse collective behavior, including chaotic
dynamics at intermediate coupling strengths and network sizes. It is also practically useful to systems functioning
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of, e.g., power transmission grids. In this work, we have exploited the coherency performance metric to investigate
the influence of the inertia on the system stability. Especially, we have first formulated the analytical expression of
the metric as a function of topological and dynamical properties given small perturbations. We have also derived a
gradient algorithm to further quantify the derivation of the metric with respect to the inertia, and have shown that the
values of the metric generally decrease with the decrease of the inertia. We have additionally generalized the global
performance metric to the local one, have analyzed the causal effects of the stability influences, and have shown that
the analytical results can be further extended to the case of weak coupling. The local performance metric quantifies
the pairwise casual influence between any two nodes and could easily reveal vulnerable nodes. However, the current
framework is based on small perturbations and on coherent states. It is also straight-forward to extend the analysis
to incoherent and chaotic states [34]. Furthermore, it is interesting to extend the theoretical framework for large
perturbations and to analyze the placement of the power on the system stability. Beyond impulsive perturbations,
the linear response of synchronisation in complex networks to sequences of perturbations recently have become a
focus [33] and it is an interesting avenue for future research to generalize our results to time-dependent perturbations.
Additional to the three motifs, it is also quite interesting to extend the investigation to a detour structure [39], other
small motifs [40], and trees [41].
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(e) (f) (g)

FIG. 4: (a) When the coupling strength K = 1.0, the figures of analytic and numerical solutions of H, where we only show part
(15× 15) of the solutions, and m = 1.0. (b)-(e) Figures of coherency performance metric H with respect to different coupling
strength K, where we perturb both the frequency ω and the phase θ of each node in turn, only part (15× 15) of the numerical
solutions H are shown. K is from 0.04 to 0.5, and m = 1.0. (f) Figure of order parameter R with respect to the coupling
strength K, where K is 0.01 from to 1.0, and the inertia m = 1.0. (g) Figure of Pearson correlation coefficient r with respect
to different coupling strength K, where K is 0.01 from to 1.0, and the inertia m = 1.0. Here, N1 = 30 and N2 = 70.
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