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a b s t r a c t

Global warming, extreme climate events, earthquakes and their accompanying socioeco-
nomic disasters pose significant risks to humanity. Yet due to the nonlinear feedbacks,
multiple interactions and complex structures of the Earth system, the understanding and,
in particular, the prediction of such disruptive events represent formidable challenges
to both scientific and policy communities. During the past years, the emergence and
evolution of Earth system science has attracted much attention and produced new
concepts and frameworks. Especially, novel statistical physics and complex networks-
based techniques have been developed and implemented to substantially advance our
knowledge of the Earth system, including climate extreme events, earthquakes and
geological relief features, leading to substantially improved predictive performances.
We present here a comprehensive review on the recent scientific progress in the
development and application of how combined statistical physics and complex systems
science approaches such as critical phenomena, network theory, percolation, tipping
points analysis, and entropy can be applied to complex Earth systems. Notably, these
integrating tools and approaches provide new insights and perspectives for understand-
ing the dynamics of the Earth systems. The overall aim of this review is to offer readers
the knowledge on how statistical physics concepts and theories can be useful in the field
of Earth system science.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

1.1. The Earth as a complex system

The Earth behaves as an integrated system comprised of geosphere, atmosphere, hydrosphere, cryosphere as well as
iosphere components, with nonlinear interactions and feedback loops between and within them [1]. These components
an be also regarded as self-regulating systems in their own right, and further broken down into more specialized
ubsystems. Nevertheless, the growing understanding of the multi-component interactions between physical, chemical,
iological and human processes suggests that one should bring different disciplines together and take into account the
arth system as a whole. Such studies and results initiate the emergence of a new ‘science of the Earth’–Earth System
cience (ESS) [2]. The ESS framework has already demonstrated its potential as a powerful tool for exploring the dynamical
nd structural properties of how the Earth operates as a complex system.
The ESS has emerged in the early to mid-20th century, and has developed rapidly during the last decades. Its historical

volution can be briefly outlined into four phases [2]: (i) Precursors and beginnings (pre-1970s). The systemic nature of
arth was mainly described and emphasized by some conceptualizations, such as Vernadsky’s biosphere concept that life
as a strong influence on the physical and chemical properties of Earth [3], and Lovelock’s Gaia hypothesis that Earth
2
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s a synergistic and self-regulating, complex system [4]. These conceptualizations play vital roles in the contemporary
nderstanding of the Earth system. In particular, the International Geophysical Year (IGY) 1957–1958 promoted the
evelopment of international science and led to the emergence of two contemporary paradigms, modern climatology
nd plate tectonics [5,6]. (ii) Founding a new science (1980s). In the 1980s, the newly emerging recognition of Earth as

an integrated entity: the Earth system, was called for by a series of workshops and conference reports. In particular, the
Bretherton diagram developed by the National Aeronautics and Space Administration (NASA) [7] was the first systems-
dynamics representation of the Earth System to couple the physical climate system and biogeochemical cycle. The
Brundtland report published by the World Commission on Environment and Development in 1987 [8] developed guiding
principles for a sustainable development and recognized the importance of the environmental problems for the Earth
system. Some international organizations were also established in this stage, for example, the World Climate Research
Programme (WCRP) aims to determine the predictability of the climate and the effects of human activities on the climate.
The International Geosphere–Biosphere Programme (IGBP) was launched in 1987 in order to coordinate international
research on global-scale and regional-scale interactions between Earth’s biological, chemical and physical processes and
their interactions with human systems. The Intergovernmental Panel on Climate Change (IPCC) was created in 1988
to provide policymakers with scientific assessments on climate change, its implications and potential future risks, as
well as to put forward adaptation and mitigation options. (iii) Going global (1990s–2015). Due to great research efforts
f international programmes such as the IGBP, and the widespread use of the Bretherton diagram, ESS then developed
apidly, from the ‘new science of the Earth’ movement to a global one. In particular, the International Human Dimensions
rogramme (IHDP) on Global Environmental Change was founded with the aim to frame, develop and integrate social
cience research on global change. (iv) Contemporary ESS (beyond 2015). In the 21st century, the ESS framework was well
stablished, and initiated a new programme, Future Earth, which was integrated by several international organizations or
rogrammes, such as the IGBP and IHDP. Future Earth’s mission is to accelerate transformations to global sustainability
hrough research and innovation. Following Ref. [1], we highlight the key organizations, publications, campaigns and
vents that characterize well the evolution of ESS in Fig. 1.
Among the pioneering publications for the evolution of ESS, Hans Joachim Schellnhuber introduced and developed
fundamental concept for ESS: the dynamic, co-evolutionary relationship between nature and human factors at the
lanetary scale [9]. He proposed that the Earth system E can be conceptually represented by the following mathematical
orm:

E = (N ,H), (1)

here N = (a, b, c, . . .); H = (A, S). This model suggests that the overall Earth system contains two main components: N
tands the ecosphere and H is interpreted as the human drivers. N is composed of an alphabet of intricately interacting
lanetary sub-spheres a (atmosphere), b (biosphere), c (cryosphere), etc. The human factor H is much more subtle: A
eans the ‘physical’ sub-component and the ‘metaphysical’ sub-component S reflects the emergence of a ‘global subject’.
his work provided the conceptual framework for fully integrating human dynamics into an Earth system and built a
nified understanding of the Earth.
There exist numerous tools and approaches that support the evolutionary development of the ESS. However, it is

orth noting that they can be integrated into three interrelated foci: observations, modeling and computer simulations,
ssessments and syntheses [2]. The Earth observations are usually referring to the instrumental data, for example, that
re collected by the meteorological stations or polar orbiting and geostationary satellites. However, such datasets only
xtend, at best, for about one-to-two centuries into the past. In order to extend our reach beyond thousands or even
illions of years ago, climate proxies fill this gap. There are multiple proxy records, including coral records [10], marine-
ediment [11], stalagmite time series [12], tree rings [13] as well as the Vostok [14] and EPICA [15] ice core record that help
s to better understand the past Earth system. Mathematical models are currently key methods for the understanding and
rojecting of climate and Earth systems. These models include different variants from conceptual climate models–Energy
alance Models (EBMs) [16] to more complex Earth models, the General Circulation Models (GCMs) [17]. In addition,
he integrated assessment models (IAMs) were designed to take human dynamics as an integral component into account
nd aim to understand how human development and societal choices affect each other and the natural world, including
limate change [18,19]. Based on the GCMs, the Earth systems Models of Intermediate Complexity (EMICs) were developed
o investigate the Earth’s systems on long timescales or at reduced computational cost [20]. These models provide
nowledge-integration to explore the dynamic properties and basic mechanisms of the Earth system across multiple space
nd time scales. The assessments and syntheses also played crucial roles in building new scientific knowledge, linking the
cientific and political communities, and facilitating new research fields based on the feedback from the political sector.
Some new concepts and theory have indeed arisen from the evolution of ESS, including the emerging concept of

ustainability [21], Anthropocene [22], tipping elements [23], planetary boundaries framework [24], such as planetary
hresholds and state shifts [25], etc. Taken together, they create powerful ways to better understand and project the
uture trajectory of the Earth system.
3
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Fig. 1. Timeline illustration of the development of Earth System Science (ESS). The figure shows the key organizations, publications, campaigns,
vents and concepts that have helped to define and develop the ESS.
ource: Reprinted figure from Ref. [2].

.2. Why Statistical Physics?

Yet, despite the rapid development of the ESS, the nature and statistical properties of extreme climate events and
arthquakes remain elusive and debated, and furthermore, the existence of early warning signals of these phenomena
s still a major open question. As a consequence, in this review, we will present several novel approaches based on
r stemmed from statistical physics, that could enhance our understanding of how the Earth system could evolve. In
articular, the interdisciplinary perspective on statistical physics and the Earth system yields to an improvement of the
rediction skill of high-impact disruptive events within the climate and earthquake systems.
Statistical Physics is a branch of physics that draws heavily on the laws of probability and the statistics of many

nteracting components. It can describe a wide variety of systems with an inherently stochastic nature, aiming to predict
nd explain measurable properties and behaviors of macroscopic systems. It has been applied to many problems including
ields of physics, biology, chemistry, engineering and also social sciences. Note that statistical physics does not focus on
4
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he dynamic of every individual particle but on the macroscopic behavior of a large number of particles. The basic theory
nd ideas of statistical physics are depicted in many textbooks, such as [26–28].
Sethna motivated the relationship between statistical physics and complex systems in his book [29] as follows: "Many

ystems in nature are far too complex to analyze directly. Solving for the motion of all the atoms in a block of ice – or the
oulders in an earthquake fault, or the nodes on the Internet – is simply infeasible. Despite this, such systems often show
imple, striking behavior. We use statistical mechanics to explain the simple behavior of complex systems’’. A complex
ystem is usually defined as a system composed of many components which interact with each other. Regarding the
arge variety of components and interrelations, the Earth system thus can be interpreted as an evolving complex system.
he concepts and methods of statistical physics can infiltrate into ESS, in particular, (i) critical phenomena are analogous
o tipping elements: a system will collapse and follow a breakdown [30], if it is close to a phase transition or tipping
oint. Critical phenomena and transitions exist widely in the Earth system [31], such as in atmospheric precipitation [32]
nd percolation phase transition in sea ice [33]. (ii) The concept of fractal was used to describe the Earth’s relief, shape,
oastlines and islands [34]. (iii) The earthquake process is regarded as a complex spatio-temporal phenomenon, and has
een viewed as a self-organized criticality (SOC) paradigm [35]. Moreover, the seismic activity exhibits scaling properties
n both temporal and spatial dimensions [36].

Complex network theory provides a powerful tool to study the structure, dynamics and function of complex sys-
ems [37–40]. Meanwhile, statistical physics is a fundamental framework and has brought theoretical insights for
nderstanding many properties of complex networks. From an applied perspective, statistical physics has led to the
efinition of null models for real-world networks that reproduce global and local features [41]. Complex network theory
s an emerging multidisciplinary discipline that has been applied to many fields including mathematics, physics, biology,
omputer science, sociology, epidemiology and others [42]. Ideas from network science have also been successfully applied
o the climate system and revealed interesting mechanisms underlying its functions, and leading to the emergence of a
ew concept, Climate Network (CN) [43]. The nodes in a CN represent the available, geographically localized, time series,
n particular, regular latitude–longitude grids, while the level of similarity and causality between the nonlinear climate
ecords of different grid points represents the CN’s links [44,45]. The development of this data-based approach is providing
adical new ways to investigate the patterns and the dynamics of climate variability [46].

In this review, we will introduce how to apply statistical physics methods in Earth system science. Particularly, we
ocus largely on the surface of the Earth system, including the climate system, Earth’s relief as well as the earthquakes
ystem, but not including the whole planetary interior.

.3. Outline of the report

Apart from this introductory preamble, the report is organized along 3 Sections.
In the next Section, we start by offering the overall methodology that will accompany the rest of our discussion. Section

contains several topics that are essential but rather formal, including the CN approach, percolation theory, tipping points
nalysis, entropy theory and complexity. The reader will find there the attempt to define an overall theoretical framework
ncompassing the different situations and systems that will be later extensively treated.
Section 3 gives a comprehensive review of applications, especially those that were studied in climate systems, the

arth geometric surface relief and earthquake systems.
Finally, Section 4 presents our conclusive remarks and perspective ideas.

. Methodology

.1. Climate networks

For more than two decades, the complex network paradigm has demonstrated its great potential as a versatile tool for
xploring dynamical and structural properties of complex systems, from a wide variety of disciplines in physics, biology,
ocial science, economics, and many other fields [37,40,47–52]. In the context of network theory, a complex network is
graph with non-trivial topological features which do not occur in simple networks such as regular lattices (Fig. 2a) or
andom Erdős–Rényi graphs (Fig. 2b). One of the novelties of complex network theory is that it can relate the topological
haracteristics to the function and dynamics of the system. Complex network theory has been successfully applied to
any real world systems and revealed fundamental mechanisms underlying their functions. It has been also found that
any real world networks are scale-free networks (Fig. 2c) [38,53].
In recent years, the ideas of network theory have also been implemented in climate sciences to construct CN [43,44,54].

n CNs the geographical locations (or grid points) are regarded as the nodes of the networks and the level of similarity
causality) between the records (time series) of two grid points represents the links and their strength. Various climate
ata such as temperature, pressure, wind and precipitation can be used to construct a network. The climate networks
pproach allows to study the interrelationship between the different locations on the globe and thus represent the global
ehavior of the climate system, e.g., how energy and matter are transferred from on location to another. These networks
ave been used successfully to analyze, model, understand, and even predict various climate phenomena [44–46,55–70].
visualization of a climate network is shown in Fig. 3 as an example.
We first provide an introduction of definitions, notations and basic quantities used to describe the topology of a

etwork, and then present an overview on how to construct a climate network.
5



J. Fan, J. Meng, J. Ludescher et al. Physics Reports 896 (2021) 1–84

(
l

Fig. 2. Characteristics of the basic explored model networks. (a) A regular 2D square lattice, is the most degree-homogeneous network. (b) An
Erdős–Rényi (ER) network, has a Poisson degree distribution and its degree heterogeneity is determined by the average degree ⟨k⟩. (c) A scale–free
SF) network, has a power-law degree distribution, yielding large degree heterogeneity. The degree distributions are shown for (d) the 2D square
attice, (e) the ER network and (f) the SF network.

Fig. 3. Visualization of a climate network with surface air temperature taking into account the spatial embedding of vertices on the Earth’s
surface.
Source: Figure from Ref. [71].
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.1.1. Network characteristics
In this Section we review basic characteristics and metrics used to describe and analyze networks, most of them come

rom graph theory [72]. Graph theory is a large field containing many branches but we present only a small fraction of
hose results here, focusing on the ones most relevant to the study of the complex Earth system. A network, also called
graph in the mathematical literature, is a collection of vertices connected by edges. Vertices and edges are also called
odes and links in computer science, sites and bonds in physics, and actors and ties in sociology [40]. Throughout this
eview we will denote the number of vertices by N and the number of edges by M , which is also a common notation in
he mathematical and physics literature.

he adjacency matrix
Most of the networks we will study in this review have at most a single edge between any pair of vertices, i.e., self-

dges or self-loops not allowed. A simple representation of a network for many purposes is the adjacency matrix A, with
lements Aij such that

Aij =

{
1 if there is an edge between vertices i and j,
0 otherwise. (2)

e should notice that the diagonal matrix elements are all zero in the adjacency matrix. In some situations it is useful to
epresent edges as having a strength, weight, or value to them, usually a real number. Such weighted or valued networks
an be represented by giving the elements of the adjacency matrix values equal to the weights of the corresponding
onnections. A directed network or directed graph, also called a digraph for short, is a network in which each edge has
direction, pointing from one vertex to another. Such edges are themselves called directed edges. For this case, the
djacency matrix is usually not symmetric, and becomes

Aij =

{
1 if there is an edge from j to i,
0 otherwise. (3)

egree
The degree of a vertex in a network is the number of edges connected to it. We denote the degree of vertex i by ki.

or an undirected network of N vertices the degree can be written in terms of the adjacency matrix (Eq. (3)) as

ki =

N∑
j=1

Aij. (4)

he number of edges M is equal to the sum of the degrees of all the vertices divided by 2, so

M =
1
2

N∑
i=1

ki =
1
2

∑
ij

Aij. (5)

The mean degree ⟨k⟩ of the node in an undirected graph is ⟨k⟩ =
1
N

∑N
i=1 ki = 2M/N .

The concept of degree is more complicated in directed networks. In a directed network each vertex or node has two
degrees. The in-degree kini is the number of in-going edges connected to a node and the out-degree koutj is the number of
out-going edges. From the adjacency matrix of a directed network Eq. (3), they can be written

kini =

N∑
j=1

Aij, koutj =

N∑
i=1

Aij. (6)

Bearing in mind that the number of edges in a directed network is equal to the total number of in-going ends of edges
at all vertices, or equivalently to the total number of out-going ends of edges.

Degree distributions
One of the most fundamental properties of a network that can be measured directly is the degree distribution, or the

fraction P(k) of nodes having k connections (degree k). A well-known result for the Erdős–Rényi [73] network is that its
degree distribution follows a Poissonian,

P(k) = e−zzk/k!, (7)

where z = ⟨k⟩ is the average degree. As shown in Fig. 2e, despite the fact that the position of the edges is random, a
typical random graph is rather homogeneous, the maximum number of the nodes having the same number of edges.

However, direct measurements of the degree distribution for real networks, such as the Internet [74], WWW [38],
email network [75], metabolic networks [76], airline networks [77], neuronal networks [78], and many more, show that
the Poisson law does not apply. But they exhibit an approximate power-law degree distribution

P(k) = Ck−λ, (8)
7
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here C is a normalization factor. The constant λ is known as the exponent of the power law. Values in the range
≤ λ ≤ 3 are typical, although values slightly outside this range are possible and are observed occasionally [79].
etworks with power-law degree distributions are called scale-free networks. The simplest strategy to determine the
cale-free properties is to look at a histogram of the degree distribution on a log–log plot, as we did in Fig. 2f, to see if
e have a straight line. Several models have been proposed for the evolution of scale-free networks, each of which may

ead to a different ensemble. The first proposal was the preferential attachment model of Barabási and Albert, which is
nown as the Barabási–Albert model [38]. Several variants of this model have been suggested, see, e.g., in Ref. [80].

lustering coefficient
The extent to which nodes cluster together on very short scales in a network is measured by the clustering coefficient.

he definition of clustering is related to the number of triangles in the network. The clustering is high if two nodes sharing
neighbor have a high probability of being connected to each other. The most common way of defining the clustering
oefficient is:

C =
(number of triangles) × 3

(number of connected triples)
. (9)

Here a ‘‘connected triple’’ means three nodes uvw with edges (u, v) and (v, w). The factor of three in the numerator arises
because each triangle is counted three times when the connected triples in the network are counted.

We can also get a local clustering coefficient Ci for a single vertex by defining

Ci =
the number of triangles connected to vertex i
the number of triples centered on vertex i

. (10)

hat is, to calculate Ci, we go through all distinct pairs of vertices that are neighbors of i, count the number of such pairs
hat are connected to each other, and divide by the total number of pairs. Ci represents the average probability that a pair
f i’s friends are friends of one another. For vertices with degree 0 or 1, for which both numerator and denominator are
ero, we assume Ci = 0. Then the clustering coefficient for the whole network [37] is the average C =

1
N

∑
i Ci. In both

ases, the clustering is in the range 0 ≤ C ≤ 1.

ubgraphs
A graph G1 consisting of a set P1 of nodes and a set E1 of edges is a subgraph of a graph G = {P, E} if all nodes in P1 are

also nodes of P and all edges in E1 are also edges of E. The simplest examples of subgraphs are cycles, trees, and complete
subgraphs [81]. A cycle of order k is a closed loop of k edges such that every two consecutive edges and only those have
a common node. That is, graphically a triangle is a cycle of order 3, while a rectangle is a cycle of order 4. The average
degree of a cycle is equal to 2, since every node has two edges. A tree, as shown in Fig. 4a, is a connected, undirected
network that contains no closed loops. Here, by ‘‘connected’’ we mean that every node in the network is reachable from
every other via some path through the network. A river network is an example of a naturally occurring tree with directed
links [82]. The most important property of trees is that, since they have no closed loops, there is exactly one path between
any pair of nodes. Thus the number of edges in a tree is always exactly k − 1 edges. Complete subgraphs of order k, also
alled k-clique, contain k nodes and all the possible k(k−1)/2 edges—in other words, they are completely connected [see
ig. 4b].
Let us consider the ER model, in which we start from N isolated nodes, then connect every pair of nodes with a

robability p. Most generally, we can ask whether there is a critical probability that marks the appearance of arbitrary
ubgraphs consisting of k nodes and l edges. A few important special cases that directly give an answer to this question [81]
re: (i) The threshold probability of having a tree of order k is pc(N) = cN−k/(k−1); (ii) The threshold probability of having a

cycle of order k is pc(N) = cN−1; (iii) The critical probability of having a complete subgraph of order k is pc(N) = cN−2/(k−1).
Generally, a network is always composed of many separate subgraphs or components, i.e., groups of nodes connected

internally, but disconnected from others. In each such component there exists a path between any two nodes, but there
is no path between nodes in different components. A network component with size proportional to that of the entire
network, N , is called a giant component.

Similar to component, the concept of community is also one of the most fundamental properties in complex net-
works [83]. The nodes of the network might be joined together into tightly connected groups, whereas between them
there are still links but less connections. A single node of the network may belong to more than one community, and
most of the actual networks are made of highly overlapping communities of nodes [84]. Since community structures are
quite common in real networks, community finding and detection are thus of great importance for better understanding
the function of a network. An example of overlapping k-clique communities is shown in Fig. 4c. A good review on the
community detection in graphs can be found in Ref. [85].

Network models
Erdős–Rényi model: It can be interpreted by the following two well-studied graph ensembles, GN,M the ensemble of all

graphs having N vertices and M edges, and GN,p the ensemble consisting of graphs with N vertices, where each possible
edge is realized/connected with probability p. These two families, initially studied by Erdős and Rényi [73], are known
8
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Fig. 4. Illustration of the concept of subgraphs. Examples of (a) a tree network, (b) a fully completed network, (c) overlapping k-clique communities
t k = 4.
ource: (c): Reprinted figure from Ref. [84].

o be similar if M =

(
N
2

)
p. They are referred to as Erdős–Rényi (ER) model. These descriptions are quite similar to

he microcanonical and canonical ensembles studied in statistical physics [86]. The ER model has traditionally been the
ominant subject of study in the field of random graphs [81], with Poissonian degree distributions, see Eq. (7).
Barabási–Albert model: It is based on two simple assumptions regarding network evolution [38]. (i) Growth: Starting

ith a small number (m0) of nodes, at every time step, a new node with m (⩽ m0) edges that link the new node to m
ifferent nodes already present in the system is added. (ii) Preferential attachment: This is the heart of the model. When
hoosing the nodes to which the new node will be connected, the probability Π that the new node will be connected
o node i depends on the degree ki of node i, such that Π (ki) =

ki∑
j kj

. In this process, after t time steps this results in a
network with N = t + m0 nodes and mt edges. Theoretical and numerical results show that this network model evolves
into a power-law degree distribution, see Eq. (8).

Watts–Strogatz model:
In 1998, Watts and Strogatz [37] proposed a one-parameter model that interpolates between a regular lattice and

a random graph. The details behind the model are the following: (i) Start with order: Start with a ring lattice with N
odes in which every node is connected to its closest k neighbors. In order to have a sparse but connected network at all
imes, consider N ≫ k ≫ ln(N) ≫ 1. (ii) Randomize: Randomly rewire each edge of the lattice with probability p such
hat self-connections and duplicate edges are excluded. This process introduces pNK/2 long-range edges. The resulting
etwork properties of this model are small-world and high clustering coefficient. Specifically, a small-world network is

referring to a network where the characteristic path length L grows proportionally to the logarithm of the number of
nodes, L ∝ logN [37].

2.1.2. Pearson correlation climate network
Our climate system is made up of an enormous number of nonlinear sub-systems having mutual nonlinear interactions

and feedback loops active on a wide-range of temporal and spatial scales. Therefore, modeling the Earth climate system
from the point of view of complex networks can clearly provide critical insights into the underlying dynamics of the
evolving climate system. As discussed above, in CNs, geographical regions of Earth are regarded as nodes, and the bivariate
statistical analysis of similarities between pairs of climatological variables time series represent the links.

In general, there are five steps for the CNs construction and analysis [46], the procedure is displayed in Fig. 5, adapted
from [87]. Step (i): Nodes, the nodes in CNs are usually defined as locations in a longitude–latitude spatial grid at various
resolutions. (ii): Climatological variable, we select the suitable climatological time series to be analyzed, e.g., surface air
temperature, sea surface temperature, precipitation, wind, etc. Some pre-processing is also often needed. For example, to
avoid the strong effect of seasonality, we usually subtract the mean seasonal cycle and divide by the seasonal standard
deviations for each grid point time series. (iii): Edges, in this step we compute the statistical similarity that quantifies the
interdependencies between pairs of time series. The strength of each edge is correlation based. There are many measures
for quantifying the interdependencies of time series, here we mention the types of CNs by correlation measures. For
example, a Pearson correlation climate network, where we use Pearson correlation to quantify the cross-correlations
between time series; while an event synchronization climate network uses the event synchronization method; and a
mutual information climate network is based on mutual information. (iv): Construction, in this step we construct the CN
which typically involves some thresholding criterion to select only statistically significant edges. Considering, for example,
that the significant links have Wij values above a given threshold, Wc , then the adjacency matrix is determined as

Aij = H
(
Wij − Wc

)
. (11)

where H is the Heaviside function. We then investigate the obtained network by using various network characteristics.
Finally, in step (v): Climatological interpretation, the results of this analysis are interpreted in terms of dynamical processes
of the climate system (e.g., atmospheric circulation, ocean currents, plenty of waves, etc.).
9
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Fig. 5. Methodology used to construct a climate network from climatic time series.
Source: Reprinted figure from Ref. [87].

In the following, we will demonstrate how to construct a Pearson correlation climate network. Suppose that the
climatic variable is the daily surface air temperature, either from observations, proxy reconstructions, reanalyses, or
simulations, gathered at static measurement stations, or provided at grid cells. At each node i of the network, we calculate
he daily atmospheric temperature anomalies Ti(t) (actual temperature value minus the climatological average which is
hen divided by the climatological standard deviation) for each calendar day.

For obtaining the time evolution of the weight of the link between a pair of nodes i and j, we follow [66] and compute,
or each time windowing (such as month or year) t over the whole time span, the time-delayed cross-correlation function
efined as

C (t)
i,j (−τ ) =

⟨T (t)
i (t)T (t)

j (t − τ )⟩ − ⟨T (t)
i (t)⟩⟨T (t)

j (t − τ )⟩√
⟨(T (t)

i (t) − ⟨T (t)
i (t)⟩)2⟩ ·

√
⟨(T (t)

j (t − τ ) − ⟨T (t)
j (t − τ )⟩)2⟩

, (12)

nd

C (t)
i,j (τ ) =

⟨T (t)
i (t − τ )T (t)

j (t)⟩ − ⟨T (t)
i (t − τ )⟩⟨T (t)

j (t)⟩√
⟨(T (t)(t − τ ) − ⟨T (t)(t − τ )⟩)2⟩ ·

√
⟨(T (t)(t) − ⟨T (t)(t)⟩)2⟩

, (13)
i i j j

10
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Fig. 6. Typical weighted and directed link in a Pearson Correlation Climate Network. (a) Node i is located on the Southwest Atlantic and node
is in the South American continent. (b) The near surface daily air temperature anomalies for the period [2014,2018]. (c) The cross-correlation
unction between the time series shown in (b). The direction of this link is from j to i with weight W+

i,j = 5.71.

here the brackets denote an average over the past T days, according to

⟨f (t)⟩ =
1
T

T∑
a=1

f (t − a). (14)

ere, τ is the time lag spanning from [0, τmax] days. The reliable estimate of the background noise level, i.e., the values
f the τmax were discussed in [88,89]. Based on the correlation functions, Eqs. (12) and (13), a weighted and directed link
etween nodes i and j was defined in Refs. [59,61,64]. This is done by identifying the value of the highest peak (or lowest
alley) of the cross-correlation function and denote the corresponding time lag of this peak (valley) as θi,j. The sign of θi,j

indicates the direction of each link; i.e., when the time lag is positive (θi,j > 0), the direction of the link is from j to i [64].
The positive and negative links and their weights are determined via Ci,j(τ ), and are defined as

W+

i,j =
max(Ci,j(τ )) − mean(Ci,j(τ ))

std(Ci,j(τ ))
, (15)

and

W−

i,j =
min(Ci,j(τ )) − mean(Ci,j(τ ))

std(Ci,j(τ ))
, (16)

where ‘‘max’’ and ‘‘min’’ are the maximum and minimum values of the cross-correlation function, ‘‘mean’’ and ‘‘std’’
are the mean and standard deviation. Typical time series and their cross-correlation functions are shown in Fig. 6. For
demonstration, two nodes are selected, a node i is located in the Southwest Atlantic and a node j is in the South American
ontinent (Fig. 6a). The near surface daily air temperature anomalies are shown in Fig. 6b for the time period between
014 to 2018. The cross-correlation function between the time series is shown in Fig. 6c, where the absolute value of a
aximum cross-correlation function is much larger than the level of noise and the minimum value. Since θi,j = 2 > 0,

hen the direction of the link is from j to i. According to Eq. (15), we calculate its weight to be W+

i,j = 5.71. This value
represents 5.71 standard deviations above the noise level, i.e., highly significant.

Finally, networks can be constructed by establishing links between pairs of nodes with weights larger than some
significant threshold. The advantage of this method is that it overcomes the problem of strong auto-correlation values in
the data [88].

2.1.3. Event synchronization climate network
The event synchronization method provides an alternative way to construct a network from climate observations:

event synchronization CN. It was originally proposed by Quian Quiroga et al. [90], where they measured synchronization
11
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nd inferred time delays between signals in neuroscience. Event synchronization is based on the relative timings of events,
uch as rainfall, in a time series and is defined, e.g., by the crossing of a threshold or by local maxima or minima, etc. For
nstance, an extreme rainfall event is defined as the day where its precipitation is above the 99th percentiles of all days.
vent synchronization is especially appropriate for studying extreme events. The degree of synchronization is obtained
rom the number of quasi-simultaneous events and the delay is calculated from the precedence of events in one time
eries (signal) with respect to the other.
Event synchronization starts by constructing two event series from two discrete univariate time series, X and Y . An

vent l that occurs at X at time txl is considered to be synchronized with an event m that occurs at Y at time tym within a
ime lag±τ

xy
lm , if 0 ≤

⏐⏐txl − tym
⏐⏐ < τ

xy
lm , where

τ
xy
lm = min

{
txl+1 − txl , t

x
l − txl−1, t

y
m+1 − tym, tym − tym−1

}
/2. (17)

ere, l = 1, 2, . . . , ex, and m = 1, 2, . . . , ey. ex and ey are the number of events in the X and Y respectively. The number
f times an event appears in X shortly after it occurs in Y is counted:

c(x|y) =

ex∑
l=1

ey∑
m=1

J lmxy (18)

ith

J lmxy =

⎧⎨⎩ 1, if 0 < txl − tym ≤ τ
xy
lm,

1/2, if txl = tym,

0, else,
(19)

nd analogously to Eq. (18) we can define c(x|y). Finally, the symmetrical and anti-symmetrical combinations

Qxy =
c(y|x) + c(x|y)

√
exey

, qxy =
c(y|x) − c(x|y)

√
exey

, (20)

re used to measure the synchronization of the events and their delay behavior, respectively. They are normalized to
⩽ Qxy ⩽ 1 and −1 ⩽ qxy ⩽ 1. It should be noted that if several extreme events are very close in one record, then only

he first one is considered. Particularly, Qxy = 1 if and only if the events of the signals are fully synchronized. In addition,
f the events in X always precede those in Y , then we get qxy = 1.

The event synchronization method has been found useful for the study of electroencephalogram signals [90], neuro-
hysiological signals [91], and the patterns of extreme rainfall events [92–96].

.1.4. Mutual information climate network
The mutual information method is also one of the common tools for quantifying the interdependencies between time

eries and for constructing climate networks. The mutual information of two random variables is a measure of the mutual
ependence between the two variables. The concept of mutual information is intricately linked to that of entropy of a
andom variable [97]. Let X and Y be a pair of random variables with values over the space X ×Y . If their joint distribution
s p(x, y), and their associated marginal probability distribution functions are p(x) and p(y), then the mutual information
s defined as

MI =

∑
x

∑
y

p(x, y) log
(

p(x, y)
p(x)p(y)

)
. (21)

tates with zero probability of occurrence are ignored.
Intuitively, MI is a measure of the inherent dependence expressed in the joint distribution of X and Y relative to

heir corresponding joint distribution under the assumption of independence. Mutual information, therefore, measures
ependence and nonlinearity, in fact: MI = 0 if and only if X and Y are independent random variables, i.e., p(x, y) =

p(x)p(y). Moreover, mutual information is non-negative, symmetric and can also be computed with a time lag [98]. After
we get the mutual information coefficient, Eq. (21), for each pair of nodes, we can construct a mutual information climate
network. It has been shown that the mutual information CN can well capture the westward propagation of sea surface
temperature (SST) anomalies that occur in the Atlantic multidecadal oscillation [99].

To summarize, in this chapter we have described different network characteristics and presented various linear and
nonlinear tools of time series analysis, which can be used to construct, define and characterize CNs. Linear and nonlinear
methods include Pearson correlation, event synchronization, and information-theory measures such as entropy and
mutual information. There are also some other powerful tools, such as, spectral analysis, empirical orthogonal function
analysis and symbolic ordinal analysis that can be used to reconstruct CNs [46].

2.2. Percolation theory

Percolation originally has been used to describe the movement and filtering of fluids through porous materials [100].
The idea of percolation was also considered by Flory and Stockmayer on polymerization and the sol–gel transition [101].
12
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Fig. 7. Bond percolation clusters on a 512 × 512 2D square lattice for p = (a) 0.3, (b) 0.5 and (c) 0.55, respectively. Different cluster sizes have
different colors. The color of the larger clusters depends on their size and varies from blue (small clusters) to red (infinite cluster). The percolation
threshold is pc = 0.5.

In recent years, it has been a cornerstone in the theory of spatial stochastic processes with broad applications to diverse
problems in fields such as statistical physics [102–105], phase transitions [106,107], materials [108,109], epidemiol-
ogy [110–113], networks [30,38,40,114–121], colloids [122,123], semiconductors [124], traffic [125], turbulence [126], as
well as Earth systems [33,65,67,127–130]. Percolation theory also plays a pivotal role in studying the structure, robustness
and functions of complex systems [131].

It is well known that in lattices and other ordered networks [106,107,132], for dimensions greater than one, a
percolation phase transition occurs. The percolation process is a simple model in which the nodes (sites) or edges (bonds)
are occupied with some probability p and unoccupied with probability q = 1 − p. Take a regular lattice as an example
see Fig. 2a). A system is regraded as percolating if there is a path from one side to the other parallel one, passing only
hrough occupied bonds and sites. When such a path exists, the component or cluster of sites that spans the lattice is called
he spanning cluster or the infinite percolation cluster. At low concentration p, the sites are either isolated or form small
lusters of nearest-neighbor sites. Two sites belong to the same cluster if they are connected by a path of nearest-neighbor
ites. At large p values, on the other hand, at least one path between opposite sides exists (see Fig. 7). The percolation
hase transition occurs at some critical density pc that depends on the type and dimensionality of the lattice.
For many complex networks, the notion of side does not exist. However, the ideas and tools of percolation theory

an still be applied [51]. The main difference is that the condition for percolation is no longer the existence of spanning
luster, but rather having a cluster containing O(N) nodes. If such a component exists, we call it giant component, that
as discussed in Section 2.1. Indeed, the condition of the existence of a giant component applies also to lattice networks,
nd therefore it can be used as a more general condition than the spanning property.
There exist two types of percolation, site percolation, where all sites are with probability p occupied and 1− p empty.

n bond percolation, however, it is the bonds which are occupied with probability p and above pc they form a giant
omponent of connected sites. In this review, we will focus on the critical phenomena of percolation near the percolation
hreshold pc , where for the first time a giant component is formed or the system collapses [133]. These aspects are called
ritical phenomena, and the fundamental theory to describe them is the scaling theory from phase transitions.

.2.1. Phase transition
The concept of phase transition is usually used to describe transitions between solid, liquid, and gaseous states

f matter for thermodynamic physical systems, where an ordered phase (e.g., solid) changes into a disordered phase
e.g., liquid) at some critical temperature Tc [26]. Another classical example of a phase transition is the magnetic phase
ransition, explained by the Ising model, where a spontaneous magnetization m > 0 appears, at low temperature without
ny external field. While increasing temperature, the spontaneous magnetization decreases and vanishes at Tc .
Percolation is indeed a simple geometrical phase transition, where the percolation threshold pc distinguishes a phase of

inite clusters (disordered phase) from a phase of an infinite cluster (ordered phase). The occupied probability p of sites or
onds plays the same role as the temperature in the thermal phase transition. They are usually called control parameters
n statistical physics.

ercolation order parameter
The percolation order parameter P∞ in the relative size of the infinite cluster which is defined as the fraction of the

ites belonging to the infinite cluster. For p < pc , there exist only finite clusters, thus, P∞ = 0; For the case p > pc ,
owever, P∞ is analogous to the magnetization below Tc and behaves near pc as a power law

P ∼ p − p β . (22)
∞ ( c)

13
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Fig. 8. Percolation phase transitions in lattice and network systems. The percolation order parameter P∞ as a function of occupied probability
for (a) 2D bond percolation with pc = 0.5, (b) 2D site percolation with pc ≈ 0.593 and (c) ER network with pc = 0.25. Here the average degree

k⟩ = 4 for ER network.

t describes the order in the percolation system and is therefore called the order parameter. We show in Fig. 8, how P∞

ehaves as a function of p, for both bond and site percolation in the 2D square lattice model, as well as, for site percolation
n the ER network, respectively. It is worth noting that we adopt p as the control parameter in Fig. 8, which results P∞

eing a monotonic increasing function. When p is gradually decreased (from 1), it can be regarded as removal (or attack)
f nodes or links and the system collapses after removing a fraction of 1 − pc . Thus, 1 − pc can be a measure of the
esilience of the system, i.e., how close it is to collapse.

luster size distribution
The finite components distribution near criticality follows the scaling form [106,107]

ns ∼ s−τe−s/sξ . (23)

here s is the component size, and ns represents the number of components of size s. At the percolation threshold
ξ ∼ |p − pc|−σ diverges and the tail of the distribution behaves as a power law with the critical exponent σ .

verage cluster size
For any given site, the probability that it belongs to a cluster of size s is sns. Let us define ρ(p) as the probability that

ny given site is part of a finite cluster,

ρ(p) =

∞∑
s=1

sns(p) = M1(p), (24)

hich is the first moment of the cluster size distribution. Hence, for any given site of any given finite cluster, the
robability ws(p) that the cluster is of size s is

ws(p) =
1

ρ(p)
sns(p), (25)

ith
∑

∞

s=1 ws(p) = 1. For any given site of any given finite cluster, the average size ⟨s(p)⟩ of the cluster is

⟨s(p)⟩ =

∞∑
s=1

sws(p) =
1

ρ(p)

∞∑
s=1

s2ns(p) =
M2(p)
M1(p)

. (26)

ote that, the average size ⟨s(p)⟩, excluding the infinite cluster, diverges near the critical point as,

⟨s⟩ ∼ |p − pc |−γ , (p → pc) . (27)

orrelation length
The correlation function g(r) is the probability that a site at position r from an occupied site in a finite cluster belongs

o the same cluster.
Typically, for large r ≡ |r|, there is an exponential cutoff, i.e., g(r) ∼ e−r/ξ , at the correlation length ξ . The correlation

length ξ is defined as

ξ 2
=

∑
r r

2g(r)∑ . (28)

r g(r)

14
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measures the mean distance between two sites on the same finite cluster. When p approaches pc , ξ increases as

ξ ∼ |p − pc |−ν . (29)

The quantities P∞ and ⟨s⟩ are analogous to the magnetization m and the susceptibility χ in magnetic systems. β , γ
and ν are called the critical exponents and describe the critical behavior of the percolation phase transition.

2.2.2. Structural properties
Next, we will briefly introduce some fundamental measurements that are used to characterize the structural properties

of a percolation cluster. For more details, the readers can refer to Ref. [106].

Fractal dimension
The fractal concept was introduced into the physical world by Mandelbrot [134] and applied to percolation by

Stanley [135] to describe the cluster shapes at the percolation threshold pc . The infinite cluster is self-similar on all length
scales, and can be regarded as a fractal. The fractal dimension df is defined as how, on average, the mass M of the cluster
within a sphere of radius r from a site of the cluster changes with r ,

M(r) ∼ rdf . (30)

or length scales smaller than the correlation length ξ , a fractal structure exists. For length scales larger than ξ , the cluster
ecomes homogeneous. This can be summarized as

M(r) ∼

{
rdf , r ≪ ξ

rd, r ≫ ξ .
(31)

The relative size of the giant component, P∞ can also be expressed as

P∞ ∼
rdf

rd
=

ξ df

ξ d , r < ξ. (32)

he fractal dimension df of percolation clusters can be related to the critical exponents β and ν. Substituting Eqs. (22)
and (29) into Eq. (32), yields df = d −

β

ν
.

Fractal analysis was also applied in the study of complex networks [136]. Generally, there are two basic methods to
calculate the fractal dimensions of a given system, i.e., using either the box counting method [137] or the cluster growing
method [138]. (i) The box counting method: Let NB be the number of boxes of linear size lB that are needed to cover the
object, the fractal dimension df is then given by NB ∼ l

−df
B . It means that the average number of nodes ⟨MB (lB)⟩ within a

box of size lB is,

⟨MB (lB)⟩ ∼ l
df
B . (33)

The fractal dimension df can be obtained by a power law fit. (ii) The cluster growing method: Similar to Eq. (30), the
dimension df can be calculated by

⟨MC ⟩ ∼ ldf (34)

where ⟨MC ⟩ is the average mass of the cluster, defined as the average number of nodes within linear size ℓ in the cluster.
Note that, the above methods are difficult to apply directly to networks, since networks are generally not embedded in
space. In order to measure the fractal dimension of networks one usually combines the concept of renormalization [136],
i.e., for each chemical size lB, boxes are placed until the network is covered. Then each box is replaced by a node
(renormalization), and the renormalized nodes are connected if there is at least one link between the no-renormalized
boxes. This procedure is repeated and the number of boxes NB scale with ℓB as NB ∼ ℓ

−df
B .

Graph dimensions dmin and dℓ

The fractal dimension dmin has been used to describe the structural properties of the shortest path between two
arbitrary sites in the same cluster. Let ℓ be the path length, which is often called the "chemical distance" [139], it scales
with r as

ℓ ∼ rdmin , (35)

and the number of sites within ℓ is

M(ℓ) ∼ ℓdℓ , (36)

where dℓ is often called the ‘‘graph dimension’’ or ‘‘chemical’’ dimension. Combining Eqs. (30), (35) and (36), we obtain
the relation between dmin, dℓ and df , dℓ =

df
dmin

.
Besides the fractal dimension exponents dmin, dℓ and df discussed above, there are also some other exponents such as

he backbone exponent and the red bonds exponents to describe the fractal dimensions of the substructures composing
ercolation clusters [26,107].
15
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.2.3. Scaling theory
The scaling hypotheses of phase transitions were developed by Kenneth G. Wilson during the last century and honored

y the 1982 Nobel prize. The scaling theory of percolation clusters relates the critical exponents of the percolation
ransition to the cluster size distribution, ns(p). According to the scaling hypotheses, it is possible to state the following
elation for ns(p),

ns(p) ∼ s−τ f
(
|p − pc |1/σ s

)
, (37)

here τ is the Fisher exponent [102], and f (x) is scaling function following f (x) = exp(−x), which rapidly decays to zero.
The correlation length ξ is defined as the root mean square distance between occupied sites on the same finite cluster

or all clusters, see Eq. (28). For clusters with s sites, the root mean square distance between all pairs of sites on each
luster, is

R2
s =

2
s(s − 1)

s∑
i=1

i∑
j=1

(
ri − rj

)2
, (38)

nd thus,

ξ 2
=

∞∑
s=1

R2
s s

2ns/

∞∑
s=1

s2ns. (39)

lose to the percolation threshold pc , Rs ∼ s1/df , and we obtain from the above equation

ξ 2
∼

∞∑
s=1

s2/df +2−τ f
(
|p − pc |1/σ s

)
/

∞∑
s=1

s2−τ f
(
|p − pc |1/σ s

)
. (40)

o calculate the sums in Eq. (40), we transform them into integrals, and obtain

ξ 2
∼ |p − pc |−2/(df σ) , (41)

hich yields the scaling relations between ν, σ and τ

ν =
1

df σ
=

τ − 1
dσ

, (42)

here d is the system’s dimension.
Consider the kth moment of the cluster size distribution

Mk =

∞∑
s=1

skns(p) ∼

∞∑
s=1

sk−τ f
(
s/ξ df

)
, (43)

hich scales in the critical region as,

Mk ∼ ξ df (k−τ+1)
∼ |p − pc |(τ−1−k)/σ . (44)

Next we consider the percolation order parameter P∞, which behaves as [106],

P∞ = 1 −
1
p

∑
s

sns ∼

∑
s

s(ns(pc) − ns(p)) ∼ (p − pc)(τ−2)/σ . (45)

ombining with Eq. (22), we have,

β =
τ − 2

σ
. (46)

Similarly, we obtain for k = 2, the relation Mk ∼ |p − pc |(3−τ )/σ , yielding

γ =
τ − 3

σ
. (47)

Thus, the critical exponents are not independent of each other but satisfy two sets of scaling and hyperscaling relations.
The scaling relations can be easily expressed by Eqs. (42), (46) and (47).

2.2.4. Universal gap scaling
An interesting property of percolation is universality, which is a fundamental principle of behavior at or near a phase

transition critical point. As a result, the critical exponents depend only on the dimensionality of the system, and are
independent of the microscopic interaction details of the system. The behavior of a system is characterized by a set of
critical exponents, as discussed in the last section. If two systems have the same values of critical exponents, they belong
to the same universality class. The universality property is a general feature of phase transitions. A phase transition is also
16
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Fig. 9. Schematic of the explosive percolation model. (A) For each step two vertices are chosen randomly and connected by an edge. (B) At each
time step of the Product Rule (PR) process, two edges, e1 and e2 , compete for addition. The selected edge is the one minimizing the product of the
sizes of the components it merges. Here e1 is accepted and e2 is rejected. (C) Typical evolution of an ER, Bohman Frieze (BF), and PR process on a
ystem of size N = 512,000.
ource: Figure from Ref. [116].

haracterized by scaling functions that govern the finite-size behaviors [140]. The concept of finite-size scaling provides
versatile tool to study the percolation transition.
Usually, a lattice or network is expected to undergo a continuous percolation phase transition during a random

ccupation or failure process [81]. Explosive, hybrid and genuinely discontinuous percolation for processes that are
ot random but competitive link-addition processes has attracted much attention in recent years [116,141–152]. The
escription of the explosive percolation model is shown in Fig. 9.
Instead of performing a finite-size scaling analysis at the critical phase transition point, the finite-size scaling analysis

n the percolation properties and critical scaling of the size of the largest gap in the order parameter is considered.
or instance, Fan et al. [153] developed a new universal gap scaling theory and propose six gap critical exponents to
escribe the universality of percolation phase transitions. This theoretical framework can be applied for both continuous
nd discontinuous percolation in various lattice and network models by using finite-size scaling functions.

ap exponents
Starting with an empty lattice, or network system with N isolated nodes, bonds or links are added randomly or by

ompetitive link-addition processes one by one. The control parameter is denoted as r , which represents the link density
r = T/M , with M being the maximal number of edges. The order parameter is the size of the largest cluster, given by the
largest connected component in the entire system. During the evolution of the system, we record the size of the largest
cluster S(T ) at time step T , and calculate its largest one-step gap ∆

∆ ≡
1
N

max
T

[S(T + 1) − S(T )] . (48)

he step with the largest jump defines Tc and its relative transition point as rc . Moreover, the percolation strength is
efined as the size of the largest connected component at Tc , i.e., Sc = S(Tc).
Critical phenomena such as percolation exhibit scale-free behaviors that are quantified by scaling relations, see

discussions in previous sections. Similarly, the averages ∆̄, r̄c and S̄c are anticipated to exhibit the following power-law
relations [153], as a function of L,2

∆̄(L) ∼ L−β1 , (49)

r̄c(L) − rc(∞) ∼ L−1/ν1 , (50)

S̄c(L) ∼ Ldf 1 , (51)

here β1, ν1 and df 1 are three critical exponents describing the universal class of the percolation, and rc(∞) is the
ercolation threshold in the thermodynamic infinity limit, L → ∞. Their corresponding fluctuations δ∆(i)

= ∆(i)(L)−∆̄(L),
r (i)c = r (i)c (L) − r̄c(L) and δS(i)c = S(i)c (L) − S̄c(L), are also investigated,

χ∆ =

√ 1
D

D∑
i=1

[δ∆(i)]2, (52)

2 The size of the system is N = Ld .
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χrc =

√ 1
D

D∑
i=1

[δr (i)c ]2, (53)

χSc =

√ 1
D

D∑
i=1

[δS(i)c ]2, (54)

here D is the number of independent realizations. We expect that χ∆, χrc and χSc decay algebraically with L with the
following scaling relations

χ∆ ∼ L−β2 , (55)

χrc ∼ L−1/ν2 , (56)

χSc ∼ Ldf 2 , (57)

here β2, ν2 and df 2 constitute another set of critical exponents. The universality class of the percolation is characterized
y the new six gap critical exponents. Note that they are highly related to the standard percolation exponents, and not
ully independent from each other. The relationships between the gap exponents and the standard percolation critical
xponents are derived as [153],

β1 = β2 = β/ν, ν2 = ν, df 1 = df 2 = df . (58)

In particular, the values of β1 can imply the order of the percolation. That is, β1 = 0 indicates the percolation is a first
order transition; whereas models with 0 < β1 < 1 are continuous [120,147]. We present the numerical results for bond
percolation on a 2D square lattice in Fig. 10, where we obtain β1 = β2 ≈ 0.104, 1/ν1 = 1/ν2 ≈ 1/ν, and rc(∞) ≈ 0.5,
nd df 1 = df 2 ≈ 1.895. All results are in agreement with the known theoretical values [103].

.3. Tipping points analysis

The notion of tipping point: ‘‘little things can make a big difference’’, was first published by Malcolm Gladwell in his
ook [154]. It means, at a particular moment in time, a small change can result a large and long-term consequences in a
omplex system. Tipping points are usually associated with bifurcations [155]. A tipping point is defined as ‘‘the moment
f critical mass, the threshold, the boiling point’’. Many complex systems experience sudden shifts in behavior, often
eferred to as tipping points or critical transitions, ranging from climate [23,156–161], ecosystems [158,162–167], to social
cience [168,169], financial markets [170,171], medicine [172–174] and event macroeconomic agent-based models [175].
Complex systems can shift abruptly from one state to another at tipping points, which may imply growing a

hreat and risk of abrupt and irreversible changes [161]. It is thus of great practical importance to understand the
heoretical mechanisms and predict the tipping phenomena. Although predicting such critical points before they occur is
otoriously difficult. Theory proposes the existence of generic early-warning signals (EWS) that may indicate for a wide
lass of systems if a critical threshold is approaching [176–178]. EWS is currently one of the most powerful tools for
redicting critical transitions. The tipping point analysis technique provides a vital tool to anticipate, detect and predict
ipping points in complex dynamical systems. The methodology usually combines monitoring memory in time series,
ncludes dynamically derived lag-1 autocorrelation [179], power-law scaling exponent of detrended fluctuation analysis
DFA) [180,181], and power-spectrum-based analysis [182].

.3.1. Basic concepts
Defining tipping points: Following Ref. [177], a tipping point is the corresponding critical point at which the future

tate of the system is qualitatively changed. A single control parameter is identified as (ρ), for which there exists a
hreshold (ρc), from which a small perturbation (δρ > 0) leads to a qualitative change (F̂ ) in a crucial feature of the
ystem (F ), after some time (T > 0). The actual change (∆F ) is defined as:

|∆F | = |F (ρ ≥ ρc + δρ|T ) − F (ρc|T )| ≥ F̂ > 0 (59)

n this definition, the critical threshold (ρc) is considered as the tipping point, beyond which a qualitative change occurs.
ote that such changes may occur immediately or even much later after the cause.
Types of tipping points: The theoretical mechanisms behind tipping phenomena in a complex system can be effectively

ivided into three distinct categories: bifurcation-induced, noise-induced and rate-dependent tipping [183].
Bifurcation, means that a small change in forcing (ρ) past a critical threshold causes a large, nonlinear change in the

ystem state, thus meeting the tipping point definition in Eq. (59). Given a conceptualized open system [184],
dF

= f (F , ρ(t)), (60)

dt
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Fig. 10. Gap critical exponents for bond percolation on 2D square lattice systems. (a) and (b), ∆̄(L) and χ∆ as functions of L. (c) and (d), log–log
lot of the percolation threshold r̄c (L) and χ∆ versus L. (e) and (f). The power-law relations of S̄c (L) and χSc with L. Inset in (c) shows the log–log
lot of rc (∞) − r̄c (L) as a function of L.
ource: Reprinted figure from Ref. [153].

here ρ(t) is in general a time-varying input. In the case that ρ is constant, we refer Eq. (60) as the parameterized system
ith parameter λ and to its stable solution as the quasi-static attractor. If ρ(t) passes through a bifurcation point of the
ystem where a quasi-static attractor loses stability, it is intuitively clear that a system may ‘tip’ directly as a result of
arying that parameter. We present two bifurcation-induced tipping point examples in Fig. 11. Where the system’s states
re described by

dF
dt

= ρ + F − F 3, (61)

nd
dF
dt

= ρF − F 3, (62)

or Fig. 11 a and b, respectively. In general, as a system approaches a bifurcation tipping point, where its current state
ecomes unstable, it leads to a shift to an alternative attractor.
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Fig. 11. Different sources of cascading tipping point types. (a) and (b) Bifurcation-induced, (c) noised-induced transitions, (d) reversible tipping
points. Solid lines are stable steady states, dashed lines are unstable steady states.

Noise-induced, noise-induced transitions between existing stable states of a complex system (Fig. 11c), can also be
regarded as tipping points [185], however, they do not meet the definition of forced changes, as in Eq. (59). Noise-induced
tipping points mean that noisy fluctuations result in the system departing from a neighborhood of a quasi-static attractor.
For example, Pikovsky and Kurths studied the coherence resonance in a noise-driven excitable Fitz Hugh–Nagumo system
and uncovered that the effect of coherence resonance is explained by different noise dependencies of the activation and
the excursion times [186]. The abrupt warming events during the last ice age, known as Dansgaard–Oeschger events,
provide a noise-induced tipping real-world example [185]. In addition, Sutera [187] studied noise-induced tipping points
in a simple global zero-dimensional energy balance model with ice-albedo and greenhouse feedback [188]. Their results
indicate a characteristic time of 100,000 years for random transitions between ‘warm’ and ‘cold’ climate states, which
match very well with the observed data. The noise-induced tipping points approach has also successfully been used for
modeling changes in other climate models and phenomena [189]. In contrast to approaching bifurcations, it was found
that noise-induced transitions are fundamentally unpredictable and show none of the EWS [177].

Rate-dependent, in which the system fails to track a continuously changing quasi-static attractor. To better understand
the phenomenon of rate-dependent tipping, Ashwin et al. introduced a linear model with a tipping radius and discussed
three examples where rate-dependent tipping appears [183]. Given a system for F ∈ Rn and the parameter ρ has a
uasi-static equilibrium F̃ (ρ) with a tipping radius R > 0, then for some initial F0 with

⏐⏐⏐F0 − F̃ (ρ)
⏐⏐⏐ < R, the evolution of

with time is given by

dF
dt

= M(F − F̃ (ρ)) for |F − F̃ (ρ)| < R, (63)

here M is a fixed stable linear operator (i.e.
⏐⏐eMt

⏐⏐ → 0 as t → ∞). ρ(t) is a time-varying parameter, that represents the
nput to the subsystem. The tipping radius may be related to the basin of attraction boundary for the nonlinear problem.
his model shows only rate-dependent tipping—because M is fixed and there is no bifurcation in the system and no noise
s present. In particular, the model can be generalized to include M and R that vary with ρ(t). Eq. (63) can be solved with
20
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Fig. 12. Some basic main tipping elements in the Earth’s climate system.
Source: Figure from Ref. [161].

the initial condition F (0) = F0 to give

F (t) = eMtF0 +

∫ t

s=0
eM(t−s)MF̃ (ρ(s))ds. (64)

Note that the rate-dependent tipping was also observed in the zero-dimensional global energy balance model [188].
Besides the above three tipping types, there is potentially another type, a reversible tipping point. In Fig. 11d, we show

an example of a reversible tipping point, in which a mono-stable system exhibits non-linear but reversible change [159].

2.3.2. Tipping elements in the Earth’s climate system
In Ref. [23] Lenton et al. introduced the term tipping elements to describe large-scale components of the Earth system

that may pass a tipping point, and assessed where their tipping points lie. They emphasized that the human activities
may play a vital role to push the components of the Earth system past their tipping points, resulting in profound impacts
on our social and natural systems. They also defined the subset of policy-relevant tipping elements having the following
conditions: (i) The first condition is described in Eq. (59); (ii) the second one is related to the ‘‘political time horizon’’ TP ;
(iii) the third one is called ‘‘ethical time horizon’’ TE ; (iv) the last one is that a qualitative change should correspondingly
be defined in terms of impacts. According to these four aforementioned conditions, we review here some policy-relevant
potential tipping elements in the climate system, as shown in Fig. 12. For each tipping element, we consider its (1) feature
of the system F (see Eq. (59)) or direction of change, (2) control parameter(s) ρ, (3) critical value(s) ρc , (4) transition
timescale T as well as (5) key impacts.

Arctic Sea-Ice. For both summer and winter Arctic sea-ice, the area coverage is declining and the ice has thinned
significantly over a large area [190]. In the IPCC projections with ocean–atmosphere GCMs, half of them will become
ice-free in September during this century [191], at a polar temperature −9 ◦C [192]. The decline in the areal extent can
be regarded as the feature of the system, denoted by F ; the local air temperature ∆Tair and ocean heat transport can
be regarded as control parameters; a numerical value of the critical threshold is still lacking in literature; the transition
timescale is about T ∼ 10 years; the declining of the Arctic Sea-Ice can amplify warming and cause ecosystem changes.

Greenland ice sheet. It has been reported that the Greenland ice sheet is melting at an accelerating rate [193], which
could add additional 7 meters to sea level over thousands of years if it passes a particular threshold. The decrease of the
21
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i
ce volume can be regarded as F , a feature of system; the local air temperature ∆Tair is a control parameter; the critical
value ρc ∼ 3◦; the transition timescale T can reach about 300 years.

West Antarctic ice sheet. According to the IPCC report [193], the Amundsen Sea embayment of West Antarctica might
have already passed a tipping point, i.e., the ‘grounding line’ (where ice, ocean and bedrock meet) is retreating irreversibly.
This could also destabilize the rest of the West Antarctic ice sheet [194]. It has been found, using paleoclimatology data,
that such widespread collapse of the West Antarctic ice sheet occurred repeatedly in the past. Similar to the Greenland
ice sheet, the decrease of the Ice volume can be regarded as F ; the local air temperature ∆Tair is the control parameter;
the critical value ρc ∼ 5−8◦; the transition timescale T can reach 300 years. The collapse of the West Antarctic ice sheet
may lead to about 5 meters of sea-level rise on a timescale of centuries to millennia [23].

Atlantic circulation. The Atlantic meridional overturning circulation (AMOC) is one of Earth’s major ocean circulation
systems, redistributing heat and affecting the climate. Research has provided evidence for a weakening of the AMOC by
about 3± 1 sverdrups (around 15 per cent)3 since the mid-twentieth century [160]. The AMOC is also considered as one
of the main tipping elements of the Earth system [23,156]. The overturning of the Atlantic circulation can be regarded
as F ; the additional North Atlantic freshwater input is the control parameter; the critical value ρc ∼ 0.1 − 0.5 Sv; the
transition timescale T can reach 100 years. A slowdown of the AMOC is associated with a southward shift of the tropical
rainfall belt by influencing the Intertropical Convergence Zone, and a warming of the Southern Ocean and Antarctica [17].

El Niño–Southern Oscillation (ENSO). ENSO, the interannual fluctuation between anomalous warm and cold conditions
in the tropical Pacific, is one of the most influential coupled ocean–atmosphere climate phenomena on Earth [195–197].
It has been reported that extreme El Niño events are projected to likely increase in frequency in the 21st century [198].
The tipping point behavior of ENSO in a warming world was discussed in Ref. [199]. The amplitude of ENSO is regarded
as F ; the zonal mean thermocline depth, thermocline sharpness in the east equatorial Pacific, and the strength of the
annual cycle are the control parameters; the transition timescale T can reach 100 years. A stronger El Niño usually
causes more extreme events (e.g., floods, droughts, or severe storms), which have serious consequences for economies,
societies, agriculture and ecosystems.

Indian summer monsoon. The Indian summer monsoon rainfall (ISMR) has a decisive influence on India’s agricultural
output and economy. The monsoon season (from June to September) can bring drought and food shortages or severe
flooding, depending on how much rain falls. The land-to-ocean pressure gradient drives the monsoon circulation, related
to the moisture-advection feedback [200]. The ISMR shows a declining trend since 1953 [201]. It has been reported that
under some plausible decadal-scale scenarios of land use, greenhouse gas and aerosol forcing, the Indian summer monsoon
switches between two metastable regimes corresponding to the ‘‘active’’ and ‘‘weak’’ monsoon phases [23]. Thus, the
Indian summer monsoon can be also regarded as a tipping element. In particular, the ISMR is regarded as F ; the planetary
albedo over India is the control parameter; the critical value ρc = 0.5 Sv; and the transition timescale T is 1 years.

Amazon rainforest. Tropical forests play a vital role in the global carbon cycle [202] and are the home of more than half of
the known species worldwide [203]. Deforestation and climate change are destabilizing the tropical forests with annual
deforestation rates of around 0.5% since the 1990s, with a strong increase in recent years [204]. An empirical finding
suggests that the observed tropical forest fragmentation is near to the critical point in three continents, including the
Americas, Africa and Asia–Australia [205]. In particular, we focus on the Amazon rainforest, since it is the world’s largest
rainforest and is home to one in ten known species [161]. If forests are close to tipping points, the Amazon dieback could
release 90 gigatonnes Carbon dioxide. Finding the tipping point of the Amazon rainforest is thus essential for us to stay
within the emissions budget. Here the rainforest in the Amazon is regarded as F ; the precipitation and dry season length
are the control parameters; the critical value ρc = 1, 100 mm/year; its transition timescale T is about 50 years.

Besides the seven above mentioned tipping elements, there are also some potential policy-relevant tipping elements
in the climate system, such as, Sahara/Sahel and West African monsoon, boreal forest, Antarctic bottom water, tundra,
permafrost, marine methane hydrates, ocean anoxia and Arctic ozone. The readers who are interested can find them in
Ref. [23]. Strong evidence indicates that ‘‘tipping points are under way has mounted in the past decade. Domino effects
have also been proposed’’ [161].

2.3.3. Early warning of tipping points
As discussed above, many complex dynamical systems, in particular climate systems, can have tipping points and

imply risks of unwanted collapse. Although predicting such tipping points before they are reached is a big challenge, the
existence of generic EWS provide useful indicators for anticipating such critical transitions [176,178]. Hence, if an early
warning of a tipping point can be identified, then it could help broader society, scientists and policymakers to perform
early actions to reduce system collapsed related damages. Thus, numerous studies have been dedicated to detecting and
predicting these critical transitions, often making use of the EWS. In this review, we will highlight the tipping point
analysis techniques that are used to anticipate, detect and forecast critical transitions in a dynamical system.

Critical slowing down near tipping points
The ‘‘critical slowing down’’ phenomenon has been suggested as indicators of whether a dynamical system is getting

close to a critical threshold [206]. This happens, for instance, at the fold bifurcation (Fig. 11), often associated with tipping
points. This indicates that the rate at which a system recovers from small perturbations becomes slow, and the slowness

3 In oceanography, a sverdrup (symbol: Sv) is a non-SI metric unit of flow, with 1 Sv equal to 1 million cubic meters per second.
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Fig. 13. Critical slowing down as an indicator for foreseeing tipping points.
Source: Figure from Ref. [178].

can be inferred from rising ‘‘memory’’ in small fluctuations in the state of a system. For example, Fig. 13 demonstrates
that the critical slowing down has an indicator that the system has lost resilience and may be tipped more easily into an
alternative state (as reflected by lag-1 autocorrelation) [178].

In order to illustrate the relation between the critical slowing down phenomenon, increased autocorrelation and
increased variance, here we show a simple example that reveals the underlying mechanism. We consider a simple
autoregressive model of first order,

xn+1 − x̄ = eλ∆t (xn − x̄) + σεn
yn+1 = eλ∆tyn + σεn,

(65)

here x̄ is the stable equilibrium of the model, ∆t is the period and λ is the recovery speed. Here yn is the deviation of
he state variable x from the equilibrium, εn is a random number obtained from a standard normal distribution and σ is
the standard deviation. If λ and ∆t are independent of yn, Eq. (65) can be written as:

yn+1 = αyn + σεn. (66)

he lag-1 autocorrelation α ≡ eλ∆t is zero for white noise and close to one for red noise. The expectation value of a
irst-order autoregressive process yn+1 = c + αyn + σεn is

E (yn+1) = E(c) + αE (yn) + E (σεn) ⇒ µ = c + αµ + 0 ⇒ µ =
c

1 − α
. (67)

et us consider c = 0, then the expectation value equals zero and the variance to be

Var (yn+1) = E
(
y2n

)
− µ2

=
σ 2

1 − α2 . (68)

he return speed to equilibrium decreases, when the system is close to the critical point. This implies that λ tends to
ero and α approaches to one. According to Eq. (68), the variance tends to infinity. In summary, the critical slowing down
eads to an increase in lag-1 autocorrelation (α) and in the resulting pattern of fluctuations (variance).

Slowing down causes the intrinsic rates of change to decrease, and thus the state of the system becomes more like its
ast state, i.e., the autocorrelation increases. The resulting increase in ‘‘memory’’ can be measured in a variety of ways
rom the frequency spectrum of the system.
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Autocorrelation function. The lag-1 autocorrelation function (ACF(1)) indicator is a simple way to provide an EWS for
n impending tipping event. For instance, Held and Kleinen have shown that the autocorrelation increases in the vicinity
f a bifurcation in a model of the thermohaline circulation [179]; Dakos et al. found that the autocorrelation increases
efore eight well-known climate transitions in the past data [157].
The coefficient of the correlation between two values in a time series is called the ACF. For example the ACF for a time

eries yn, see Eq. (66) in the autoregressive model, is given by: Corr(yn, yn−s), s = 1, 2, . . . , where s is the time gap and is
alled the lag. In particular, a lag-1 autocorrelation is the correlation between values that are one time step apart. More
enerally, a lag s autocorrelation is the correlation between values that are s time steps apart.
The ACF scaling exponent, γ , is the power-law decay of the autocorrelation function with increasing lag s [207]. Let

s denote C(s) as the autocorrelation with lag s of time series, then the scaling is defined as

C(s) ∼ s−γ , (69)

for long-range correlations. Notably, for short-range correlated records, C(s) decays exponentially and only ACF(1) is
ndicative of a data variability close to a tipping point.

Detrended fluctuation analysis. Slowing down causes an increase in memory, which can also be measured using
etrended fluctuation analysis (DFA) [180]. See [180] for the detailed method. DFA is often used to detect long-range cor-
elations or the persistence of diverse time series including DNA sequences [208], heart rate [209–211], earthquakes [212],
nd also climate records [213]. If the time series is long-range correlated, the fluctuation function, F (n), increases according
o a power-law relation:

F (n) ∼ nα, (70)

here n is the window size and α the DFA scaling exponent. Here, F (n) =

√
1
n

∑n
t=1

(
Xt − Y z

t
)2, where Xt =

∑t
i=1(xi−⟨x⟩)

is the cumulative sum or the ‘‘profile’’ of a time series xi, and Y z
t is the fitting polynomial, z stands for the (polynomial)

order of the DFA. The DFA exponent α is calculated as the slope of a linear fit to the log–log graph of F (n) vs. n. It has
been found that the DFA exponent in the temporal range 10 ≤ n ≤ 100 is sensitive to changes in a dynamical system,
which is similar to ACF(1) [181].

Power spectrum. Recently, Prettyman et al. introduced a novel scaling indicator based on the decay rate of the power
spectrum (PS) [214]. PS analysis partitions the amount of variation in a time series into different frequencies. When a
system is close to a critical transition, it tends to show spectral reddening, i.e., higher variation at low frequencies [215].
The PS scaling exponent β is calculated by estimating the slope of the power spectrum S(f ) of the data, from the scaling
relationship

S(f ) ∼ f −β . (71)

Analytically, the three scaling exponents have the linear relationship: α =
1+β

2 = 1 −
γ

2 . It has been reported that the
PS-indicator is a useful technique which behaves similarly to the related ACF(1)- and DFA-indicators. In addition, it also
shows signs of providing an EWS for a real geophysical system, tropical cyclones, whereas the ACF(1)- indicator fails [214].

Besides the slower recovery from perturbations, increased autocorrelation and memory [see Eq. (67)], increased
variance [measured as standard deviation, see Eq. (68)] is another possible indicator of a critical slowing down as a critical
transition is approached. For example, Carpenter and Brock have shown that the variance increases in the vicinity of a
bifurcation in a lake model [216].

Flickering before transitions. Another notable EWS is a system’s back and forth oscillation between two stable states
in the vicinity of a critical transition. This oscillation has been called flickering and was observed on the model of lake
eutrophication [217] and trophic cascades [218].

Skewness and Kurtosis. In addition to the aforementioned EWS before a catastrophic bifurcation, two further precursors,
observed when approaching a critical transition and thus suggested as EWS, are changes in the skewness and kurtosis
of the distribution of states [219–221]. While skewness indicates asymmetry in the distribution—with a negative skew
indicating a right-sided concentration and a positive skew indicating the opposite. Skewness is the standardized third
moment around the mean of a distribution,

γ =

1
n

∑n
i=1 (yi − µ)3

[
1
n

∑n
i=1 (yi − µ)2]3/2

. (72)

Similarly, kurtosis is a measure of the ‘‘peakedness’’ of the distribution—with positive kurtosis indicating a peak higher
than the one of a normal distribution and negative kurtosis indicating a lower peak. Kurtosis is the standardized fourth
moment around the mean of a distribution estimated as,

κ =

1
n

∑n
t=1 (zt − µ)4

(
√

1
n

∑n
t=1 (zt − µ)2)2

. (73)
24



J. Fan, J. Meng, J. Ludescher et al. Physics Reports 896 (2021) 1–84

2

d
s
c

m
c
Y
E
i
A
r

d
e
f
m
b

2

2

s
a
b
t

N
d
m

H
m
g
o
i

w
e
q

w

M
c
c
r

2

i
i
s

.3.4. Precursors of transitions in real systems
In the last section, we first highlighted the theoretical background of tipping points that may occur in non-equilibrium

ynamics before critical transitions. Nonetheless, it poses much of a challenge to detect EWS in real complex systems
uch as, climate, social and ecological systems. Developing reliable predictive systems based on these generic properties
an strengthen our capacity to navigate systemic failure and guide us for designing more resilient systems.
We will briefly review emerging precursors of transitions in different real systems, including climate, ecosystems,

edicine and finance. An abrupt climate change occurs when the Earth system is forced to cross a threshold to a new
limate state [222]. Large, abrupt, and widespread climate changes include the Carboniferous Rainforest Collapse [223],
ounger Dryas [224], greenhouse–icehouse transition [225], Dansgaard–Oeschger events, Heinrich events and Paleocene–
ocene Thermal Maximum [226]. All these rapid climate changes could be explained as critical transitions [176]. For
nstance, a significant increase in autocorrelation is regarded as a precursor of eight well-known climate transitions [157].
flickering phenomenon was found to precede the abrupt end of the Younger Dryas cold period, which can be also

egarded as a precursor [227].
In ecology, tipping point analysis has also become a major focus of research. For example, an EWS was found in the

estabilization of exploited fish stocks, where harvesting leads to increased fluctuations in fish populations [228]. The
merging of EWS has been demonstrated in lake and marine systems [229,230]. In physiology, abrupt transitions were
ound in epileptic seizures and asthma attacks [174]. For example, flickering may occur before epileptic seizures. In finance,
arket dynamics may contain information indicating an abrupt change. For example, increased trade volatility may occur
efore a main shock [231]. For other precursors of transitions in real systems, the reader is referred to Ref. [176].

.4. Entropy and complexity

.4.1. Introduction
Entropy is an important concept arising from statistical mechanics. It is a characteristic that describes the state of a

ystem composed of smaller components, and it has been used to be a general measure of complexity, with widespread
pplications. In classical thermodynamics, entropy is related to the loss of energy during an irreversible process, developed
y Rudolf Clausius in the early 1850s. The thermodynamic entropy S is derived from the heat flow δQ at a fixed
emperature T ,

S =

∫
δQ
T

. (74)

ote that the entropy of a system is defined only if it is in a thermodynamic equilibrium. The statistical mechanics
efinition of entropy was developed by Ludwig Boltzmann in 1870s via analyzing the statistical behavior of the
icroscopic components of a system as

S = kB lnΩ. (75)

ere S is the entropy of the macrostate, kB is the Boltzmann’s constant, and Ω standing the total number of possible
icrostates that yields the macrostate. When viewed in terms of information theory, Claude Shannon developed the very
eneral concept of information entropy, a fundamental cornerstone of information theory, to describe an analogous loss
f information [232]. It is a measure of the amount of information that is missing before reception. The definition of the
nformation entropy is,

S = −kS
∑

i

pi log pi, (76)

here kS = 1/log(2) (in bits), pi is the probability of each state. In quantum statistical mechanics, the concept of
ntropy has been developed by John von Neumann and is generally referred to as ‘‘von Neumann entropy’’. For a
uantum-mechanical system described by a density matrix ρ, the von Neumann entropy is,

S = −kB Tr(ρ log ρ), (77)

here Tr denotes the trace operator.
There exist also many other types of entropy, such as Gibbs, Residual, Approximate, Sinai–Kolmogorov, Sample,

ultiscale. Entropy has been proven useful in many real-world systems, including analysis of DNA sequences [233],
osmology and astrophysics [234–236], economics [237,238], and climate systems [239–241]. Each definition of entropy
ould give better results for some systems but fails for others. We will discuss in the following that entropy has three
elated interpretations [29] as a measure (i) irreversible changes, (ii) disorder and (iii) uncertainty.

.4.2. Entropy as irreversibility
The idea of irreversibility is central to the understanding of entropy. A process that is not reversible is usually called

rreversible. This concept arises in thermodynamics. It has been reported that all complex dynamic natural processes are
rreversible [242]. For an isolated system with an irreversible process, the entropy never decreases. This is known as the

econd law of thermodynamics.
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Fig. 14. Entropy as Irreversibility. a. Prototype of Heat Engine. b. Carnot Cycle P–V Diagram.

In order to better understand the behavior of entropy in an irreversible process, we consider the Carnot heat engine
nd the corresponding Carnot cycle. As shown in Fig. 14a, given by a piston with pressure P (external), and two heat
aths, one at a hot temperature TH and the other at a cold temperature TC with some material (a monatomic ideal gas)
nside the piston. During one Carnot cycle, QH heat flows out of the hot bath, heat QC flows into the cold bath, resulting
in a net work W = QH −QC . Carnot imagined a fully reversible heat engine, and the Carnot cycle moves the piston in and
out with the following four steps (see, Fig. 14 b, the Carnot cycle P–V diagram). (1) (i → ii): The gas is connected to the
ot bath, and the piston moves outward at a varying pressure and a fixed temperature TH . In this step, heat QH flows into
he piston. (2) (ii → iii): The piston expands at varying pressure P . (3) (iii → iv): The expanded gas is then connected to
he cold bath and compressed at a fixed temperature at TC . In this step, the heat QC flows out. (4) (iv → i): The piston is
ompressed and returns to the original state. In this step, there is no heat transfer.
The net work W done by the piston is the area inside P–V Loop (integration) in Fig. 14b,

W =

∫
cycle

PdV = Area inside PV Loop. (78)

ccording to the ideal gas law,

PV = NkBT (79)

here N is the number of particles, the total energy of the ideal gas inside the piston is given by the equipartition theorem

E = 3/2NkBT = 3/2PV , (80)

here E stands for the kinetic energy. During the first step, we get

QH = Eii − Ei + Wi,ii =
∫ ii
i PdV =

∫ ii
i

NkBTH
V dV = NkBTH log (Vii/Vi) . (81)

imilarly, for the third step, we have

QC = NkBTC log (Viv/Viii) . (82)

or the other two steps, there is no any heat flow, based on dE = −PdV = −
NkBT
V dV = 3/2NkBdT , and we have∫ iii

ii

dV
V

= log (Viii/Vii) =

∫ iii

ii
−3/2

dT
T

= −3/2 log (TC/TH) . (83)

he above equation gives Viii/Vii = (TH/TC )3/2 and Viv/Vi = (TH/TC )3/2. Thus Viii/Vii = Viv/Vi and hence

Viii

Viv
=

Vii

Vi
. (84)

ubstituting Eq. (84) into the heat flow, Eqs. (81) and (81), we yield Carnot’s fundamental result,

QH

TH
=

QC

TC
. (85)

et us define the heat flow ∆E = Q at a fixed temperature T . Then the entropy change ∆S is

∆S =
Q

. (86)

T
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ote that the above is equivalent to Eq. (74). This means that for a reversible Carnot engine, the entropy flows from the
ot bath QH/TH equals the entropy flows from the piston QC/TC , i.e., no entropy is created or destroyed. However, for any

irreversible real engines, entropy will increase.

2.4.3. Entropy as disorder
Traditionally, another interpretation of entropy is described as a measurement of the disorder or randomness of a

system. In thermodynamics, the entropy of mixing is the increase of entropy when two or more different types of particles
are mixed without chemical reactions. Consider that N molecules of an ideal gas are separated in a vessel with two equal
volumes V . The total unmixed entropy Sun is [29]

Sun = 2kB log
[
VN/2/(N/2)!

]
. (87)

ere we assume that the two separated ideal gases have the same masses and the same total energy. Let the partition
etween the gases be removed and they are allowed to mix. Then the mixed entropy Sm becomes

Sm = 2kB log
[
(2V )N/2/(N/2)!

]
. (88)

ccording to Eqs. (87) and (88), we obtain the increased entropy,

∆S = Sm − Sun = NkB [log(2V ) − log V ] = NkB log 2. (89)

he above equation means that there will be a gain kB log 2 in entropy per molecule during the mixing process. This
is since the temperatures and pressures are equal, and removing the partition of the vessel does not involve any heat
transfer, thus mixing of gases (e.g., by diffusion), always results in an increasing entropy. The mixing is spontaneous! The
diffusion of initially separated gases results in an increase in entropy. The process has increased the random distribution
of molecules. Therefore, it is appropriate to suggest a relationship between entropy and complexity (disorder).

2.4.4. Entropy as uncertainty
The third interpretation of entropy is as a measure of the uncertainty or ignorance of a complex system. This

interpretation is more general and strongly related to the information and memory. In this interpretation, the entropy is
not an intrinsic property but representing our knowledge about the system.

Next, we will focus on the non-equilibrium entropy and the information entropy to insulate how entropy can be
interpreted as uncertainty. The second law of thermodynamics states that the entropy of an isolated system never
decreases, and is unchanged if and only if all processes are reversible. What we are interested in is how to define the
entropy for non-equilibrium systems. Generally, for both non-equilibrium and equilibrium systems, we use a probability
distribution ρ, to define an ensemble of states. Given a probability distribution of a discrete set of states, the entropy is

Sdiscrete = −kB ⟨log pi⟩ = −kB
∑

i

pi log pi, (90)

here pi is the probability of i state. In the case of continuum distributions, the entropy becomes

Scontinuum = −kB⟨log ρ⟩ = −kB

∫
ρ log ρ. (91)

e consider a microcanonical ensemble, in which ρequil = 1/(Ω(E)δE), the non-equilibrium of the entropy is shifted
rom the equilibrium (Eq. (75)), and the entropy is

Smicro = −kB log ρequil = kB log(Ω(E)δE)
= kB log(Ω(E)) + kB log(δE).

(92)

For quantum systems, the non-equilibrium entropy can be described by the density matrix ρ, as in Eq. (77).
For non-thermodynamic systems, the temperature variable does not exist. Therefore we do not need to use Boltzmann’s

constant kB, but the constant kS = 1/log(2). Then Eq. (76) becomes

SS = −

∑
i

pi log2 pi, (93)

here the entropy is measured in bits. This is called information entropy, which was introduced by Shannon [232]. Informa-
tion entropy represents an ensemble of possible messages or images, and has important implications in communication
technologies (message passing) and computer science (data compression). Note that the non-equilibrium Shannon entropy
satisfies the following properties: (1) it is maximum for equal probabilities; (2) it is unaffected by extra states of zero
probability; and (3) it changes for conditional probabilities. For more details, we refer the reader to Ref. [29].

2.4.5. Approximate entropy, sample entropy and system sample entropy
In the following, we will highlight several types of entropy, including Approximate Entropy (ApEn), Sample entropy

(SampEn) and System Sample Entropy (SysSampEn), which have been developed to quantify the complexity in non-linear

time-series.
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pEn
The ApEn was introduced by Pincus in 1991 [243] motivated by the exact regularity statistics, Kolmogorov–Sinai (KS)

ntropy [244] and the K2 entropy [245]. It is used as a quantification of regularity in time-series data, in particular for
elatively short and noisy datasets. ApEn has a wide range of applications in areas from medical data, such as heart
rate [243], to finance system [246], psychology [247] and human factors engineering [248].

Definition of ApEn: Given a time series of data u(1), u(2), . . . , u(N). There are N raw data equidistant in time. It forms a
equence of vectors x(1) through x(N −m+1) defined by x(i) = [u(i), . . . , u(i+m−1)]. Here, m is an integer representing
he length of the data. Define the embedding distance d[x(i), x(j)] [249] between vectors x(i) and x(j) as the maximum
ifference in their respective scalar components. Then use x(1), x(2), . . . , x(N−m+1) to construct, for each i ⩽ N−m+1,
m
i (r) = (number of j ⩽ N − m + 1 such that d[x(i), x(j)] ⩽ r)/(N − m + 1). Here,

d[x(i), x(j)] = max
k=1,2,...,m

(|u(i + k − 1) − u(j + k − 1)|), (94)

here r is a positive real number which specifies a filtering level. Based on the Cm
i (r), the ApEn is defined as

Φm(r) = (N − m + 1)−1
N−m+1∑

i=1

log Cm
i (r). (95)

or fixed m and r , Eq. (95) becomes

ApEn(m, r) = lim
N→∞

[
Φm(r) − Φm+1(r)

]
. (96)

n particular, given N data points, the statistic formula is implemented

ApEn(m, r,N) = Φm(r) − Φm+1(r). (97)

ne should note that a similar entropy, called Eckmann–Ruelle (E-R) entropy [244], has been defined as,

E-R entropy = lim
r→0

lim
m→∞

lim
N→∞

[
Φm(r) − Φm+1(r)

]
. (98)

espite their algorithms being very similar, ApEn(m, r) is not intended to be an approximate value of the E–R entropy.
ompared to the K–S, E–R and K2 entropy, ApEn(m, r) has the following advantages [250]: (i) Less affected by noise; (ii) It
s robust to outliers; (iii) Lower computational demand, with good confidence; (iv) ApEn(m, r) is finite for stochastic,
oisy deterministic and composite processes; (v) Increasing ApEn(m, r) corresponds to intuitively increasing process
omplexity. ApEn(m, r) has been applied to classify the electroencephalogram (EEG) in psychiatric diseases, such as
chizophrenia [251], epilepsy [252], and addiction [253].

ampEn
Motivated by the concept of ApEn, Richman and Moorman developed the sample entropy (SampEn) to assess the

omplexity of physiological time-series signals, diagnosing diseased states [254]. SampEn is a modification of ApEn, but
as three advantages: (i) SampEn agrees much better than ApEn statistics with the theory for random numbers having
nown probabilistic character over a broad range of operating conditions; (ii) maintains relative consistency and (iii) has
residual bias for very short record lengths.
Definition of SampEn: Similar to the definition of ApEn: given a time series of N points, {u(j) : 1 ≤ j ≤ N} forms the

−m+ 1 vectors xm(i) for {i|1 ≤ i ≤ N −m+ 1}, where xm(i) = {u(i+ k) : 0 ≤ k ≤ m− 1} is the vector of m data points
rom u(i) to u(i + m − 1). The distance between two vectors is d[X(i), X(j)] = max{|u(i + k) − u(j + k)| : 0 ≤ k ≤ m − 1},
the maximum difference of their corresponding scalar components. Let Bi be the number of vectors xm(j) within r of xm(i)
and let Ai be the number of vectors xm+1(j) within r of xm+1(i). Here r represents the tolerance for accepting matches. It
is convenient to set the tolerance as r × SD, the standard deviation of the dataset. Then the sample entropy is defined as:

SampEn = − log
A
B
. (99)

t is clear that A will always be smaller or equal to B. Therefore, SampEn will be always either zero or positive. A smaller
alue of SampEn indicates more self-similarity in the dataset or less noise [254]. Note that the parameters N , m, and r

must be fixed for each calculation.

SysSampEn
One limitation of the aforementioned entropy is that it can only be applied to univariate or bivariate time series (cross-

ApEn) [254]. For a complex system with multivariate time series and spatial–temporal structures, Meng et al. proposed
the so called SysSampEn and applied it to study the climate system. Based on the SysSampEn, they could measure the
complexity (disorder) of a system composed of temperature anomaly time series and forecast the magnitude of an El
Niño event with a prediction horizon of 1 year and high accuracy [241].

Definition of SysSampEn: Given N interdependent time series xα(t) (α = 1, 2, . . . ,N; t = 1, 2, . . . , l) of length l
composing the system:
28



J. Fan, J. Meng, J. Ludescher et al. Physics Reports 896 (2021) 1–84

p
c
t
s
t
t

a

Fig. 15. Correlation between SysSampEn and El Niño magnitude.
Source: Reprinted figure from Ref. [241].

1. We select sub-records k of length m < l, starting at each qth data point, i.e., starting at t = k × q + 1 =

0 × q + 1, 1 × q + 1, 2 × q + 1, . . ., as long as k × q + m ≤ l. Thus a specific sub-sequence is denoted as
Xk

α(m, q) = {xα(k×q+1), xα(k×q+2), . . . , xα(k×q+m)}. Then we select n sub-sequences from each time series and
construct a set of N ×n template vectors from the system, i.e., Θ(m, q, n) = {Xk

α(m, q) : 0 ≤ k ≤ n−1, 1 ≤ α ≤ N}.
We assume that two vectors are close (similar) if their Euclidean distance d(X i

α(m, q), X j
β (m, q)) < γ ×max{σα, σβ}

(if α = β , then i ̸= j), where σα and σβ are the standard deviations of the time series xα(t) and xβ (t) respectively.
γ defines the similarity criterion and is a nonzero constant.

2. To examine the probability that two time series, which are close at m data points, still will be close at the next p
data points, we construct analogously another set Θ(m+ p, q, n) by selecting sub-records of length m+ p. To make
the number of template vectors of length m equal to that of length m + p, we choose n ≤

l−m−p
q + 1. In order to

reduce the parameter degrees of freedom and save calculation time, we take p = q, then n ≤
l−m
p . We assume that

two template vectors from the set Θ(m + p, q, n) are close if d(X i
α(m + p, q), X j

β (m + p, q)) < γ × max{σα, σβ} (if
α = β , then i ̸= j).

3. The SysSampEn of the system is defined as

SysSampEn
(
N,m, p, leff , γ

)
= − log

(
A
B

)
, (100)

where A is the number of close vector pairs from the set Θ(m+ p, q, n), B is the number of close vector pairs from
the set Θ(m, q, n), and leff (n) = n ∗ p + m, is the number of days that is used in the calculation of the SysSampEn.

Note that, when N = 1, p = 1, and leff = l, the SysSampEn is equivalent to the classical SampEn [254]. Appropriate
arameter values have to be identified since only certain value combinations can be used to estimate a system’s
omplexity with considerable accuracy. In order to achieve this, Meng et al. introduced two tests [241]: Spatial asynchrony
est and temporal disorder test. The SysSampEn was calculated for the climate system composed of the near surface air or
ea surface temperature anomaly time series in the Niño 3.4 region. It was found that a strong positive correlation between
he El Niño magnitudes and the values SysSampEn of its previous calendar year exists (Fig. 15A,B). Fig. 15C demonstrates
he calculation of the accuracy level, which allows to choose effective parameter combinations.

In addition, to reveal the mathematical meaning of the SysSampEn, Fig. 16 shows the logistic map as an example of
pplying the SysSampEn to estimate the system complexity and compare it with the Lyapunov exponents. It is found that
29
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Fig. 16. One logistic map example of SysSampEn that gives accurate estimation of the system complexity, i.e., higher values of the SysSampEn
indicate higher complexity of the system. For each system, 10 time series are generated from the logistic equation xn+1 = µxn(1 − xn) with the
same value of µ ∈ [2.5, 4], but for different initial conditions x0 ∈ [0.0001, 0.0002].
Source: Reprinted figure from Ref. [241].

higher (lower) values of the SysSampEn are strongly associated with higher (lower) Lyapunov exponents, which indicates
that the SysSampEn can well capture the complexity of the system.

3. Applications

3.1. Climate system

The Earth’s Climate System is a highly complex and interactive system as defined by the Global Atmospheric
Research Programme (GARP) of the World Meteorological Organization (WMO) in 1975, as being composed of five major
components: the atmosphere, the hydrosphere, the cryosphere, the land surface and the biosphere. And in 1992, the
United Nations’ Framework Convention on Climate Change (FCCC) defined the climate system as ‘the totality of the
atmosphere, hydrosphere, biosphere and geosphere and their interactions’. Fig. 17 shows a schematic representation of
the most important components of the climate system and their potential changes. The atmosphere is the gaseous envelope
surrounding the solid planet and provides oxygen to most animal life at the Earth’s surface. It is the most unstable and
rapidly changing component. Currently, the atmosphere is made up primarily of nitrogen (78.1%) and oxygen (20.9%).
There are also a number of trace gases that cause of great concern for the future of the planet, including carbon dioxide
(CO2), methane (CH4) and ozone (O3). They are referred to as greenhouse gases (GHGs) and, along with water vapor,
provide the Earth with the greenhouse effect. Their effect is to keep our Earth warm, but not too warm. The hydrosphere
is the water on a planet, including oceans, seas, rivers, lakes and underground water. The cryosphere is the portion of the
Earth’s surface where water is in solid form, consisting of land ice (including ice shelves and glaciers), snow and sea ice.
It impacts the climate system greatly through its high albedo. Variations in the volume of the ice sheets are regarded
as one of the major factors for sea level rise. Land Surface, i.e., the ‘‘solid’’ Earth, creates the distribution of continents,
ocean basins, mountain ranges, etc. It influences the transformation of short-wave to long-wave radiation, reflectivity of
the Earth’s surface, reservoir of dust, transfer of momentum and energy of the land surface. The biosphere is the total sum
of all living things on the planet, including the organic cover of the land masses (vegetation, soil) and marine organisms.
It plays a vital role in exchanging of carbon between the different reservoirs, such as the concentration of CO2 in the
atmosphere, as well as the balances of other gases [255]. There are numerous interactions between the components,
by exchanging mass, heat and momentum. For instance, the ocean–atmosphere interaction is a strongly-coupled system
exchanging water vapor and heat through evaporation, among others. Each climate system component operates on a
rather broad of characteristic temporal and spatial scales. Note that the climate system itself is often considered as part
of the broader Earth System [2].

A fundamental factor in climate science analyses is the climate data, which provides information on changes in the
Earth’s ecosystem and supplies decision makers with a reliable knowledge base on the climate crisis and its impact. In
general, there are two data collection methods to gather quantitative and qualitative climate data (also briefly discussed
in Section 1.1): observations (instrumental, proxies and reanalysis) and climate models simulations. Observational data of
30
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Fig. 17. Schematic view of the most important components and associated processes of the climate system on a global scale.
Source: Figure is from the IPCC’s Fourth Assessment Report (AR4) [255].
© 2007 IPCC. Reproduced with permission.

he climate system are based on direct measurements and remote sensing from satellites, radar and other platforms. The
irst meteorological stations were established in Europe and North America. Global-scale observations in the instrumental
ra began in the mid-19th century for temperature and other climatic variables. The increase and quality of the
etwork of observations and the technology supporting the collection and storage of data have rapidly evolved form
950 onwards. Paleoclimate reconstructions extend some proxy records back hundreds to millions of years, including

coral records [10,256], tree rings records [13] for the last few millennia, as well as stalagmite δ18O time series [12],
Central-Mediterranean sediment [11] and ice-core records [257].

Climate studies require data of consistent spatial resolution and accuracy over long time intervals. To satisfy this goal,
some numerical weather prediction centers have started to produce so-called reanalyses that are obtained by subtle data
assimilation techniques which efficiently combine observational and numerical data. For example, the European Centre for
Medium-range Weather Forecasts (ECMWF) [258] provides the following reanalysis datasets: ERA5, ERA-Interim, CERA-
SAT, CERA-20C, ERA-20CM, ERA-40, ERA-20C and so on.4 The NCEP-NCAR Reanalysis I/II, 20th Century Reanalysis and
North American Regional Reanalysis (NARR)5 are produced in collaboration by the U.S. National Centers for Environmental
Prediction (NCEP) and the National Center for Atmospheric Research (NCAR) [259]. The JRA-25 and JRA-55 reanalysis6
are produced by the Japan Meteorological Agency (JMA) [260,261]. Note that most climatic variables or fields in these
reanalysis data agree very well with observed data, such as the geopotential fields over the continents of the Northern
Hemisphere. However, substantial differences persist in some fields over the Southern Hemisphere or those that are poorly
observed [262–266]. More details are summarized in Ref. [267].

Climate models are considered as the primary tools available for investigating the response of the climate system to
various forcings, for making climate predictions on seasonal to decadal time scales and for making projections of future
climate over the coming century and beyond. Climate models could be defined as a mathematical representation of the
climate system based on physical, chemical and biological principles. The models used in climate research range from
simple energy balance models to complex Earth System Models (ESMs), which can be slow and costly to use, even on

4 See https://www.ecmwf.int/en/forecasts/datasets/browse-reanalysis-datasets.
5 See https://psl.noaa.gov/data/gridded/reanalysis/.
6 See https://climatedataguide.ucar.edu/climate-data/jra-55/.
31
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igh-performance computers, and the results can only be approximations [17]. Here, we provide a brief overview of the
asic types of climate models: (i) Energy balance models propose a highly simplified version of the dynamic of the climate
ystem. They are zero- or one-dimensional models describing the surface temperature as a function of the energy balance
f the Earth, where the number of dimensions, from zero to three, refers to the number of independent space variables
sed in the model domain. For instance, the global mean surface temperature T̄s can be expressed as:

c
dT̄s
dt

= Ri − Ro

Ri = µQ0{1 − α(T̄s)}

Ro = σm(T̄s)(T̄s)4.

(101)

ere Ri and Ro are the absorbed shortwave radiation and outgoing longwave radiation. C is the heat capacity of Earth
ystem, in units of J m−2 K−1, α is the planetary albedo, m is the transmissivity of the atmosphere, a number less than 1
hat represents the greenhouse effect of the Earth’s atmosphere, σ ≈ 5.67 × 10−8 W m−2 K−4 is the Stefan–Boltzmann
onstant, µ is an insolation parameter equal to unity for present-day conditions. (ii) Atmosphere–Ocean General Circulation
Models (AOGCMs) are the most comprehensive standard climate models that are assessed in the IPCC Fourth Assessment
Report (AR). They are used to understand the dynamics of the physical components of the climate system (such as,
atmosphere, ocean, land and sea ice), and for making projections based on future GHGs and aerosol forcing. (iii) Earth
System Models (ESMs) are the current state-of-the-art models, and they expand on AOGCMs by including representation of
various biogeochemical cycles such as those involved in the carbon cycle, the sulfur cycle, or ozone. These models provide
the most comprehensive tools available for simulating the past and future response of the climate system to external
forcing, in which biogeochemical feedbacks play an important role. (iv) Regional Climate Models RCMs are limited-area
models with representations of climate processes comparable to those in the atmospheric and land surface components
of AOGCMs, though typically run without interactive ocean and sea ice. RCMs are often used to dynamically ‘downscale’
global model simulations for some particular geographical region to provide more detailed information. In addition, based
on the GCMs, the Intermediate Complexity models were developed to investigate the Earth systems on long timescales
or at a reduced computational cost [20]. A special application is to achieve reliable predictions of extreme events on a
sub-seasonal scale.

Taken together, climate models provide a comprehensive view of the variability and long-term changes in the climate
systems. However, assessing and forecasting climate extreme events, such as El Niño events and extreme rainfall, still
poses challenges. The difficulties are mainly due to the intrinsically rare and disruptive natural conditions. They are
strongly influenced by weather patterns, modes of variability, thermodynamic processes and various feedbacks. In the
following, we will provide an in-depth and detailed description of how the statistical physics methodologies introduced
in Section 2 can be applied to investigate and (or) predict various climate phenomena, such as El Niño–Southern Oscillation
(ENSO), Indian Summer Monsoon (ISM), Extreme Rainfall, Atmospheric Circulation and Atlantic Meridional Overturning
Circulation (AMOC).

3.1.1. El Niño–Southern Oscillation
One of the most important climate phenomena on year-to-year time scales is the El Niño Southern Oscillation (ENSO).

As mentioned in Section 2.3, ENSO can be regarded as a tipping element of the Earth system. El Niño is the warm
phase of the ENSO and is associated with a band of warm ocean water that develops in the central and east-central
equatorial Pacific, sometimes called El Niño basin [44]. The cool phase of ENSO is called La Niña, with SSTs in the eastern
Pacific below average. ENSO significantly impacts Earth’s ecosystems and human societies, by influencing temperatures
and precipitation around the globe, including the Americas, India and surrounding tropical continents [268–270]. These
remote effects are known as teleconnections [271].

Definition of El Niño: In this review, we use the Oceanic Niño Index (ONI) to define and distinguish the El Niño
and La Niña events. The ONI is one of the primary indices used to monitor the ONI. It is calculated by 3-month running
mean SST anomalies (based on centered 30-year base periods updated every 5 years) in an area of the east-central
equatorial Pacific Ocean, which is called the Niño 3.4 region (5◦S to 5◦N; 170◦W to 120◦W), see the Niño regions presented
in Fig. 18. If the ONI > +0.5◦C for at least five consecutive months, then the event is defined as an El Niño; whereas,
when ONI is < −0.5◦C for at least five consecutive months, the corresponding event is regarded as a La Niña. The ONI
is use for the operational definition of the ENSO phase by NOAA.7 There are also some other indices to measure the El
Niño events, such as, Niño 1+ 2, 3, 3.4, 4 and Trans-Niño indexes.8 Besides the SST, ENSO also influences other climate
variables like atmospheric pressure gradients, upper ocean currents and the thermocline depth [272].

ENSO transition mechanism in brief: In the following, we will describe the physical mechanism of ENSO. Bjerknes
first postulated that the ocean–atmosphere interaction is essential for ENSO and is now referred to as the Bjerknes
feedback [273]. This positive feedback mechanism is understood to be a prominent mechanism necessary for the
development of ENSO. Consider an initial SST anomaly in the central/eastern tropical Pacific. This anomaly reduces the

7 The values of ONI are here: https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.
8 For more details: https://climatedataguide.ucar.edu/climate-data/nino-sst-indices-nino-12-3-34-4-oni-and-tni.
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w

Fig. 18. Niño Regions. The Niño 3.4 region (5◦S to 5◦N; 170◦W to 120◦W); The Niño 4 region (5◦S to 5◦N; 160◦E to 150◦W); The Niño 3 region
(5◦S to 5◦N; 150◦W to 90◦W); The Niño 1+ 2 region (10◦S to 0 ◦; 90◦W to 80◦W).
Source: Figure is from NOAA.

east–west SST gradient and hence weakens the Walker circulation [274], resulting in a westerly wind anomaly. The
westerly wind anomaly, in turn, drives the ocean circulation change (easterly winds shoal the equatorial thermocline and
induce upwelling in the eastern Pacific, keeping the east cool) that further reinforces the SST anomaly. As a result of the
positive feedback, the tropical Pacific reaches a warm state, i.e., El Niño. Tziperman and Yu pointed out that the westerly
wind bursts, while partially stochastic, seem an inherent part of the large-scale deterministic ENSO dynamics [275].

Besides the positive Bjerknes feedback, the oscillatory nature of ENSO requires a negative feedback to turn the coupled
ocean–atmosphere system from a warm (El Niño) phase to a cold (La Niña) phase. Different negative feedbacks have been
proposed since the 1980s associated with the delayed oscillator, the western Pacific oscillator, the recharge–discharge
oscillator, and the advective–reflective oscillator. The delayed oscillator is a mechanism for the oscillatory nature of ENSO,
which was proposed by McCreary based on the Rossby wave reflection at the ocean western boundary [276]. Suarez
and Schopf introduced the delayed oscillator explaining the oscillatory feature of ENSO to emphasize the delayed effects
of oceanic wave reflection at the ocean western boundary [277]. Cane and Zebiak developed the first coupled ocean–
atmosphere model, and used it to predict ENSO [278,279]. The conceptual delayed oscillator model is represented as
follows:

dT
dt

= AT − BT (t − η) − εT 3, (102)

here T represents the SST anomaly in the equatorial eastern Pacific, A, B, η and ε are constants. The first term on the
right hand side of Eq. (102) stands for the Bjerknes positive feedback between the ocean and the atmosphere. The second
term represents the delayed negative feedback of wave reflection at the ocean western boundary. The last term is a cubic
damping term. It has been found that the delayed oscillator overlooks the role of the ocean–atmosphere interaction in
the western Pacific and also assumes that wave reflection at the ocean eastern boundary is not important [280].

Since the delayed oscillator does not consider the western-Pacific anomaly pattern, Weisberg and Wang [281]
developed a western-Pacific oscillator model for ENSO. This model stresses that the equatorial wind anomalies in the far
western Pacific play an important role in the evolution of ENSO. The western-Pacific oscillator model is represented as:

dT
dt

= aτ1 + b2τ2(t − δ) − εT 3, (103)

dh
dt

= −cτ1(t − λ) − Rhh, (104)

dτ1
dt

= dT − Rτ1τ1, (105)

dτ1
= dT − Rτ1τ1, (106)
dt
33
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dτ2
dt

= eh − Rτ2τ2 (107)

here T is the SST anomaly in the equatorial eastern Pacific, h is the thermocline-depth anomaly in the off-equatorial
estern Pacific, and τ1 and τ2 are the equatorial zonal wind-stress anomalies in the central Pacific and the western Pacific,
espectively. All model parameters are constants.

It has been found that the growth and decrease in sea level over the western Pacific Ocean are related to ENSO [282].
ased on these ideas Jin [283,284] developed a recharge–discharge oscillator model for ENSO that is represented by:

dT
dt

= CT + Dh − εT 3, (108)

dh
dt

= −ET − Rhh. (109)

here T is the SST anomaly in the equatorial eastern Pacific and h is the thermocline-depth anomaly in the equatorial
estern Pacific. The model parameters C,D, ε, E and Rh are constants. In particular, Eqs. (108) and (109) represent the
ischarge and recharge of tropical Pacific Ocean heat content.
Picaut et al. [285] proposed a conceptual model of the advective–reflective oscillator for ENSO. They found that the

ositive feedback results from ocean zonal currents that advect the western-Pacific warm pool (WPWP) towards the
ast. There are three negative feedbacks that tend to push the WPWP back to the western Pacific, include: (i) anomalous
onal current associated with wave reflection at the ocean western boundary, (ii) anomalous zonal current associated
ith wave reflection at the ocean eastern boundary and (iii) mean zonal current converging at the WPWP’s eastern edge.
nlike the other three oscillator models, the advective–reflective oscillator model does not have a set of simple and
euristic equations. Instead, they used a linear wind-forced ocean numerical model forced by wind anomalies, which
ere associated with the zonal current of the first baroclinic Kelvin and first meridional Rossby waves [195].
Moreover, based on the dynamics and thermodynamics of Zebiak and Cane’s coupled model, as well as all previous

NSO oscillator models, Wang [286] developed a unified ENSO oscillator ocean–atmosphere model with the hypothesis
hat ENSO may be a multi-mechanism phenomenon and their relative importance may depend on time. The unified ENSO
scillator model is formulated as:

dT
dt

= aτ1 − b1τ1(t − η) + b2τ2(t − δ) − b3τ1(t − µ) − εT 3, (110)

dh
dt

= −cτ1(t − λ) − Rhh, (111)

dτ1
dt

= dT − Rτ1τ1, (112)

dτ2
dt

= eh − Rτ2τ2, (113)

here T , h, τ1 and τ2 are variables that stand for the SST anomalies in the equatorial eastern Pacific, the thermocline-depth
nomalies in the off-equatorial western Pacific, the zonal wind-stress anomalies in the equatorial central Pacific and the
onal wind-stress anomalies in the equatorial western Pacific, respectively. For a given set of parameters, Eqs. (110)–(113)
an oscillate on interannual time scales.
El Niño forecasting:
Since the 1990s, both dynamical and statistical models have been used to model and forecast El Niño events,

roviding the society the opportunity to prepare for associated hazards such as heavy rains, floods and droughts [287,288].
lthough there are about 17 dynamic and 8 statistical models in CPC/IRI currently providing ENSO forecasts routinely, high
rediction skill is generally limited to about six months ahead, see the description in Fig. 19. The reason is the presence of
he so-called ‘‘spring predictability barrier’’ (SPB), where errors are greatly amplified due to the coupled feedbacks in the
quatorial ocean–atmosphere system [289,290]. After the spring, the ability of the models to predict successfully becomes
ncreasingly better.

In general, a poor skill in forecasts can be divided into two categories: imperfections in the forecast system (including,
rror in model parameterization of sub-grid-scale motions, the relative scarcity of points with data, errors in the
easurement of the data), and fundamental limits of predictability [272]. The fundamental limits are usually coming

rom the complex and chaotic nature of a system.
To overcome the limits of the SPB in El Niño forecasting, several CN-based approached were developed. For example, by

nalyzing the CN, Ludescher et al. found that a large-scale cooperative mode exists one calendar year before the warming
vent, linking the El Niño region and the rest of the ocean [291]. This mode is probably due to the emergence of El
iño acting as an autonomous component in the CN [61]. All nodes used in the CN are shown in Fig. 20a, where the 14
rid points in the El Niño basin [61] are in red and outside this domain there are 193 grid point in blue. The data is the
aily surface air temperature (SAT) from NCEP/NCAR reanalysis I. As described in Section 2, the first step is to remove
he seasonal trend by minus climatological average for each calendar day. And then, the links between the El Niño basin
34



J. Fan, J. Meng, J. Ludescher et al. Physics Reports 896 (2021) 1–84

J
2
S

t
S

a
s
s
N
p
t
L

p
a
w
t
t
u
t
d

Fig. 19. Spring Predictability Barrier. The El Niño forecasting skill of models based on February–October observations to predict the November–
anuary average value in the El Niño-3.4 region (see Fig. 18). Results are an average correlation coefficient from 20 models between
002–2011.
ource: Figure is from NOAA.

Fig. 20. Climate Network and El Niño forecasting algorithm. a. The nodes in CN. Each node inside the El Niño basin (solid red symbols) is linked
to each node outside the basin (open blue symbols). The red rectangle denotes the Niño 3.4 region. b. The red curve is the average link weight
S(t) of the CN, the horizontal line indicates the decision threshold Θ = 2.82, and the blue areas show the El Niño events. When S(t) crosses the
hreshold from below, an alarm is given that an El Niño event will start in the following calendar year.
ource: Reprinted figure from Ref. [291].

nd outside (see Fig. 20a) are considered. The strength Wi,j(t) of each link is computed according to Eq. (15). The mean
trength S(t) of the dynamical links in the CN is obtained by simply averaging over all individual link strengths. Fig. 20b,
hows the time evolution of S(t) for the learning (top) and forecasting (bottom) phases. They found that before an El
iño event, S(t) tends to increase. They marked an alarm when S(t) crosses a threshold Θ = 2.82 (see Fig. 20b). The
rediction accuracy, through Receiver Operating Characteristic (ROC)-type analysis (explained later), is much better than
he 12-months forecasts based on climate models. Based on these findings regarding the temporal evolution of the CN,
udescher et al. successfully predicted the onset of the 2014–2016 El Niño event [292].
Motivated by this work, Meng et al. developed a multidisciplinary approach combining climate, network, and

ercolation theory to predict the onset of El Niño [65]. Their method can forecast El Niño events 1 year-ahead, with
high prediction accuracy of 70%, and a low false alarm of only 4%. Different from [291], they consider the global CN
ith initially 726 isolated nodes. Links are added one by one according to the link strength, i.e., first adding the link with
he highest weight, and continue selecting links ordered by decreasing weight. During the evolution of the CN, they found
hat the structure of the network changes violently approximately one year ahead of El Niño events, and thus suggest to
se the largest size change of the largest cluster (percolation cluster) ∆ [see Eq. (48)] as a percolation-based precursor,
o forecast El Niño events. In addition, based on finite size scaling analysis, they found that the percolation process is
iscontinuous.
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Fig. 21. The El Niño forecasting algorithm. a. The red curve is the forecasting index defined in Eq. (115), the blue line stands for the ONI. The
horizontal black dashed line indicates FI = 0, and the blue shades under the ONI curve indicate the El Niño periods. True positive forecasts are
marked by the green arrows, while false alarms are marked in black dashed arrows. The purple arrow is the alarm for 2018–2019 El Niño event.
b. A detailed view of FI(t) and the ONI since May 2012.
Source: Reprinted figure from Ref. [66].

To forecast both the onset and magnitude of El Niño events, another sophisticated network-based approach was
developed by Meng et al. [66]. They proposed a new forecasting index based on CN links representing the similarity of
low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. They found that
significant upward trends in the index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since
the end of last El Niño forecasts the magnitude of the following event. Their index was also tested on several datasets,
including ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5. They defined the degree of coherence/disorder
of the Niño 3.4 region as,

C(t) =
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

C (t)
i,j (θ ), (114)

where N is the number of nodes in the Niño 3.4 region and C (t)
i,j (θ ) stands for the max value of the time-delayed

cross-correlation function, see Eqs. (12) and (13). The forecasting index (FI) was proposed as a function of time (months),

FI(t) =
1

m + 1

m∑
a=0

ln C(t − a) − ln C(t) (115)

here a = 0 indicates that the average of ln(C) includes the current month, while m is the total number of months
receding t since Jan. 1981. We show the time evolution of the FI and ONI in Fig. 21 by using the ERA-Interim dataset.
ased on the temporal evolution of the FI, they successfully predicted the onset of the 2018–2019 El Niño event, see the
urple star above the purple arrow in Fig. 21b.
Note that one can use the peak of the FI to predict the magnitude of the following El Niño event. This peak value is

etermined from the end of the last event to the start of a new event, which means that we should wait until the new
vent begins to occur. To further improve the forecasting skill, in particular, the magnitude forecasting with a long lead
ime. Meng et al. [241] developed the SysSampEn method, see more details in Section 2.4.5. It is defined in Eq. (100) and
hown in Fig. 15a. The correlation between the magnitude of the El Niño events and the SysSampEn can reach to r = 0.99
see Fig. 15b]. They further used this correlation to forecast the magnitude of an El Niño with a prediction horizon of 1
ear and high accuracy (i.e., Root Mean Square Error = 0.23 ◦C for the average of the individual datasets forecasts). In

particular, for the 2018–2019 El Niño event, they forecasted a weak El Niño with a magnitude of 1.11±0.23 ◦C, compared
to the observed value 0.9 ◦C.

Recently, Feng et al. combined machine learning techniques and climate networks to apply to El Niño predictions,
especially for the occurrence of El Niño events and the development of the NINO 3.4 index over time [293]. In Ref. [294],
36
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Fig. 22. El Niño remote impacts: teleconnections, during the boreal winter months December–January–February. Regions with statistically
eliable relation of precipitation and surface air temperature to a warm ENSO episode.
ource: Figure is reproduced with permission from NOAA.

etersik and Dijkstra applied Gaussian density neural network and quantile regression neural network ensembles to
redict ENSO. Classical machine learning models for prediction usually only predict a point value, e.g., the ONI. In contrast,
heir models forecast directly a probability distribution for the ONI. In particular, they found that their machine learning
odels have a high-correlation skill (r = 0.5) for long lead times (12 months ahead) for an evaluation period between

1963 and 2017. In Ref. [295], Ham, Kim and Luo used transfer learning to train a convolutional neural network on historical
simulations and reanalysis, and developed the heat map analyses. They found that a statistical forecast model employing
a deep-learning approach produces skillful ENSO forecasts for lead times of up to one and a half years. A review of ENSO
prediction based on modern machine learning and artificial neural networks was reported in Ref. [296].

ENSO remote impacts: teleconnections
As introduced above, the ENSO phenomenon mainly lies in the Pacific ocean. However, its effects are felt over a large

part of the Earth. These remote effects are usually called teleconnections, emphasizing that changing climatic conditions
in one place can affect areas far from the source [271,297]. A teleconnection is usually indicated by the correlation
between the values observed at two separate locations or regions. It is related to a pattern of variability, associated with
atmospheric wave propagation, the presence of ocean currents, etc. For example, the teleconnections associated with
the North Atlantic Oscillation (NAO) and ENSO are main examples of long-range correlations that can be found in the
atmosphere. Because of those global teleconnections, El Niño leads to higher precipitation in the central Pacific and dry
conditions over Indonesia and Northern Australia, much drier and warmer conditions in Mozambique, while the western
USA tends to be wetter. Fig. 22 shows weather patterns statistically associated with El Niño conditions during the boreal
winter months December–January–February. The regions that have been shown with some degree of reliability to be
affected by warm ENSO phases are highlighted, for example, warm-vs.-cold and wet-vs.-dry anomalies. The effects for
cold phases of ENSO, La Niña, are in approximately the same regions, but with the opposite sign.

The basic mechanism of ENSO remote influences are produced in the atmosphere via large-scale atmospheric waves,
such as Rossby waves. Rossby waves are fundamental for the understanding of weather systems in the atmosphere and
the large-scale circulation in the ocean. They depend fundamentally upon the variation of the Coriolis parameter with
latitude. In the so called β-plain approximation, the Coriolis parameter varies linearly with latitude where

β =
2Ω
R

cosφ, (116)

here φ is the latitude, Ω is the angular speed of the Earth’s rotation, and R is the mean radius of the Earth. The
avelength of atmospheric Rossby wave is about 6000 km. The atmospheric wave dynamics are akin to those observed in
he ocean for ENSO in that they involve a transfer of atmospheric mass by anomalous winds, which in turn affect pressure
nd winds.
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In order to assess if a region has an ENSO connection, Fan et al. applied the Pearson correlation CNs approach to
nvestigate the global remote impacts of El Niño and La Niña [64]. They refer to the Niño 3.4 region as the El Niño Basin
ENB). The CNs were constructed by using only directed links from the ENB to regions outside the ENB (‘‘in’’-links)
ased on the global daily SAT fields of the NCEP/NCAR reanalysis and EAR-Interim datasets. The links’ strengths are
omputed according to Eqs. (12), (13) and (15). They identified the value of the highest peak of the absolute value of
he cross-correlation function Cy

i,j(τ ) and denote the corresponding time lag as θ
y
i,j. The adjacency matrix of a CN became

Ay
i,j = (1 − δi,j)H(θ y

i,j), (117)

here H(x) is the Heaviside step function for which H(x ≥ 0) = 1 and H(x < 0) = 0. The ‘‘in’’ and ‘‘out’’ degrees of each
ode are defined as Iyi =

∑
j A

y
j,i, O

y
i =

∑
j A

y
i,j respectively, quantifying the number of links into a node or out from a

node. The total ‘‘in’’ weights for each node outside the ENB using are defined as

IN
(
Cy
i

)
=

∑
j∈ENB

Ay
j,iC

y
j,i(θ )

IN
(
W y

i

)
=

∑
i∈ENB

Ay
j,iW

y
j,i.

(118)

The values of IN(Cy
i ) and IN(W y

i ) reflect the impacts of the ENB. Specifically, if there are no ‘‘in’’ links for a node, both the
‘‘in’’ degree and ‘‘in’’ weights are zero, indicating no impact of ENB. Based on the ONI, the time is divided into El Niño ,
La Niña and normal years. The ‘‘in’’-weighted degree fields for El Niño and La Niña are calculated by taking the average
of the same type of events

IN (Ci) =

∑
y∈EY(LY)

IN
(
Cy
i

)
/S

IN (Wi) =

∑
y∈EY(LY)

IN
(
W y

i

)
/S,

(119)

where S =
∑

y∈EY(LY) I
y
i , and ‘‘EY’’ and ‘‘LY’’ refer to the years in which El Niño and La Niña start. The number of nodes

with zero in-degree is defined as Ny and the average in-weights per node is

Cy
=

∑
i̸∈ENB

∑
j∈ENB

Ay
j,i | Cy

j,i(θ ) | /Ny. (120)

Fig. 23(a–d) shows that, the affected regions by El Niño and La Niña, are characterized by relatively high in-weights
(using C and W ). For comparison, mean winter (Dec–Feb) temperature anomalies during El Niño and La Niña years are
shown in Fig. 23 (e–f). A quantitative analysis of the area that is affected/unaffected during El Niño and La Niña years is
shown in Fig. 24, where El Niño and La Niña years are respectively emphasized by the red and blue shading. The network
analysis reveals strongly (high Cy) localized (low Ny) impacts of ENSO, i.e., these stronger in-weighted activities are found
to be concentrated in very localized areas, whereas a large fraction of the globe is not influenced by the events (low Ny

means that fewer nodes are influenced).
Diversity of El Niño
It has been reported that there are different types of El Niño events, such as the canonical eastern Pacific (EP) and the

Modoki central Pacific (CP) types [298,299]. They are classified based on spatial patterns of the SST anomaly. For instance,
the strongest SST anomalies associated with the EP types are located off the coast of South America. However, for CP
types, the strongest SST anomalies are located near the International Date Line. In Ref. [300], Wiedermann et al. proposed
an index based on evolving CNs to objectively discriminate different types of El Niño and La Niña episodes. In particular,
they find that their network index displays a sharp peak during EP events, whereas during CP events it remains close to
the observed values during normal years. Based on the CNs analysis, Lu et al. developed a new approach to estimate the
impacts of El Niño events in advance, as well as predicted the types of El Niño events [301].

3.1.2. Indian summer monsoon
The Indian Summer Monsoon (ISM) is the most prominent among the world’s monsoon systems and has a decisive

influence on India’s agricultural output and economy. The ISM delivers more than 70% of the country’s annual rainfall.
The prediction of the ISM timing (onset date and withdrawal date) as well as the ISM rainfall is a vital issue for the
Indian subcontinent and strongly affects the gross domestic product of the country, up to 22% of which is determined
by agriculture [302]. A slight deviation of the timing manifested as delay (or early arrival) may lead to drastic droughts
(floods). Also, swings in the amount of rainfall, even with variations of only 10%, can cause severe flooding or drought,
causing damages to infrastructure and loss of crops and livelihoods of the population [303]. The onset of the ISM takes
place abruptly and the long lead-time operational forecasts for the onset, withdrawal and rainfall amount have shown
little skill in the recent decades.
38



J. Fan, J. Meng, J. Ludescher et al. Physics Reports 896 (2021) 1–84

C
S

t
l
f
m
e
e
s

I
a
r
a
a
r
b

r

Fig. 23. El Niño remote impacts: Climate Networks. (a), (c) ‘‘In’’-weight maps (using C and W ) for El Niño events. (b),(d), ‘‘In’’-weight maps (using
and W ) for La Niña events. (e), (f) Mean winter (Dec–Feb) temperature anomalies during El Niño and La Niña.

ource: Reprinted figure from Ref. [64].

ISM onset and withdrawal forecasting
Several statistical climate models have been developed for ISM onset and withdrawal dates forecasting with different

imescales from short-range (up to 4 days), medium-range (4–10 days) [304,305] to extended-range (10–30 days) and
ong-range (more than 30 days) forecasts [306]. In particular, the Indian Meteorological Department (IMD) provides a
orecast of the monsoon onset 21 days in advance, with an accuracy of ± 4 days. Note that most of the ISM forecasting
odels are based on the input values, including SST, mean sea level pressure, tropospheric moisture, moist static
nergy, outgoing longwave radiation, wind fields, etc [307–311]. However, there are still impending challenges in the
xisting forecasting methods: (i) The false monsoon onsets mostly related to non-monsoonal atmospheric circulation
ystems [312]; (ii) the limitations in predicting a withdrawal data earlier than 1st September.
To overcome these challenges, Stolbova et al. proposed a novel tipping elements approach to accurately forecast the

SM onset and withdrawal dates [95]. This approach relies on the combination of two methodologies: the climate network
nalysis and the nonlinear dynamics. First, the analysis of the network of extreme rainfall events allows to identify and
eveal the teleconnection between the most active hubs, the Eastern Ghats (EG) and North Pakistan (NP). Second, the
pplication of the nonlinear dynamics through the analysis of fluctuations allows to detect the critical transitions, which
re used to define the tipping elements of the ISM. Later, the EG and NP were chosen as optimal observation locations or
eference points (RPs) to predict the ISM monsoon onset and withdrawal. It was discovered that there is a tipping point
etween these RPs for the SAT and relative humidity, which yields a very successful prediction scheme.
The ISM CN is focused on the monsoon region (62.5–97.5◦E, 5.0–40.0◦N) with a spatial resolution of 2.5 degrees, which

esults in 15 × 15 = 225 grid points, see Fig. 25. The near SAT (T ) at 1000 hPa, relative humidity (rh) at 1000 hPa, and
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Fig. 24. Strongly localized impacts of ENSO. (a) The ONI as a function of time. (b) The evolution of the number of nodes that have in-links with
time. (c) The evolution of the average in-weights per node with time. El Niño and La Niña periods are respectively emphasized by the red and blue
shading.
Source: Reprinted figure from Ref. [64].

Fig. 25. Pre-monsoon growth of the variance of fluctuations σ̄ 2 defined in Eq. (121) of the weekly mean values of near SAT T . (a) 21 days,
b) 7 days, and (c) 1 day before the ISM onset in the Eastern Ghats (EG), d = c − a. Composites are for the period 1958–2001 and were calculated
rom the ERA40 reanalysis dataset, 700 hPa winds are indicated by the blue lines. Two boxes refer to the RPs: North Pakistan, NP (blue) and EG
pink). (e) Growth of the variance of fluctuations in NP (blue), EG (pink), and averaged over the Indian subcontinent (IS) at approaching the onset
ate of the monsoon.
ource: Figure from Ref. [95].
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ind fields at 700 hPa were used. The variance σ 2 of (T ) and (rh) for each grid point are firstly calculated as [95]

σ 2(x, d, w, y) = ⟨
[
x
(
t∗(y) − d − k

)
− x̄

(
t∗(y) − d − k

)]2
⟩w =

=

w∑
k=1

1
w

[
x
(
t∗(y) − d − k

)
−

w∑
i=1

x (t∗(y) − d − i)
w

]2

,
(121)

here x(t) stands for a time series, w is the length of the time window, d is the number of days before the onset of the
ISM, y is a given year, and t∗(y) is the onset date for the given year y. The time average value of σ 2 is simply expressed
s

σ̄ 2(x, d, w) = ⟨σ 2(x, d, w, y)⟩y =

Y∑
y=1

σ 2(x, d, w, y)
Y

, (122)

here Y stands for the total number of years. The results are shown in Fig. 25. It has been confirmed that the EG and NP
egions experience the highest growth of σ̄ 2 for both T and rh, when approaching the monsoon onset date. It has been
urther discovered that there exist two intersections in the RPs for the average time series during the period from 1951
o 2014. At both intersections, it coincides with the mean values of the onset and withdraw as determined by the IMD
ith a standard deviation of ±5 days for the EG region, see Fig. 26. Thus, this allows to derive a prediction scheme for

orecasting the onset and withdrawal of the ISM in the EG, based on the trends of T and rh in the RPs.
Next, a linear trend estimation for the two RPs is performed and compared with the trends of the mean time series of

he training period (1951–1965). The slopes of the trends for the RPs provided an estimation of an early, normal, or late
onsoon arrival: a greater than average slope of T will lead to an earlier than usual onset, and vice versa. Trends of rh

n the RPs in comparison with the average trends for the training period add up to the predictability of the onset: higher
han average values of the relative humidity lead to a late onset, and vice versa.

It has also been found that the ISM onset coincides with the date when T in the EG and in NP become equal (see
ig. 26a). Therefore, for the forecasting of the onset, one should predict when T for the EG will abruptly decrease and
ntersect T for NP. Finally, the prediction scheme of the withdrawal is based on the symmetry of T changes in NP during
he year. The withdrawal is estimated as the intersection of the projected T decrease in NP and the T in the EG during
he monsoon season (see Fig. 26c).

The prediction is regarded as successful if the time difference between the predicted onset and the real one is ≤ 7 days
or the onset and ≤ 10 days for the withdrawal [95]. The proposed scheme using T results in 74% successful predictions
f the onset when made on day 125 of the year (April 10). The prediction scheme for the withdrawal succeeds in 84% of
he years when made on day 205 (July 25). Based on this prediction scheme, they successfully predicted both the onset
nd withdrawal since 2016 in the EG region.9
ISM rainfall forecasting
The ISM is one of the most prominent monsoon systems. It affects the Indian subcontinent, where it is one of the oldest

nd most anticipated weather phenomena. Several theories have been proposed to explain the underlying mechanism
f the monsoon. For example, the sea breeze theory: because of the differences in the specific heat capacity of land and
ater, continents heat up faster than seas. Consequently, the air above coastal lands heats up faster than the air above seas.
hese create areas of low air pressure above coastal lands compared with pressure over the seas, resulting moisture-laden
inds to flow from the seas onto the lands. On reaching land, these winds rise because of the geographical relief, cooling
diabatically and leading to orographic rains. However, the understanding and predictability of ISM are still evolving.
The All India Rainfall Index (AIRI) is the total amount of ISM June-to-September rainfall averaged over the entire Indian

ubcontinent. It is the IMD’s primary indicator for monitoring the ISM rainfall [313]. An accurate long-term prediction of
he ISMR is crucial for taking timely actions and mitigation activities. Over the last few decades, great efforts have been
ndertaken to understand the basic physics of the monsoon, and to improve the prediction skill for the AIRI [314–320].
owever, both methods have the challenge of unstable relationships with the predictors over time, as observed during the
ecent years due to a weakened coupling between the boundary forcing and the Indian monsoon [321,322]. In particular,
he forecasting skill (cross correlation) of the official operational forecasts made by IMD statistical models is −0.12 for
989–2012, for the five ENSEMBLE models’ multi-model ensemble is 0.09 and the four APCC/CliPAS models’ MME skill is
.24 after 1989. It was discovered that the recent failure is largely due to the models’ inability to capture new predictability
ources emerging during the recent global warming [303].
Traditionally, the April–May SST anomaly in the Niño 3 or Niño 3.4 region was used as a predictor for the ISMR predic-

ion. This is since the ISMR variations are primarily driven by the EP-ENSO through tropical teleconnections [314,315]. This
nverse relationship between the AIRI and EP-ENSO, however, has weakened in recent decades [270]. It has been found
hat the CP-ENSO has also distinct teleconnections and affects on the ISMR [324]. Based on this physical mechanism,
ang et al. [303] proposed four physical–empirical AIRI predictors, EP-ENSO predictor (EPT), CP-ENSO predictor (CPT),
ega-ENSO predictor (PSH) and Anomalous Asian Low (NAT). The EPT is defined as: May minus March east–west SST

9 For more detailed and updated information have a look at PIK’s information page on the Indian Summer Monsoon Forecast: https://www.pik-
potsdam.de/services/infodesk/forecasting-indian-monsoon.
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Fig. 26. Prediction of onset date (OD) and withdrawal date (WD) of the ISM: case study 2012. Left column: prediction of the OD; right column:
D in the Eastern Ghats (EG). (a), (c): air temperature at 1000 hPa; (b), (d) relative humidity at 1000 hPa. Time series from the reference points:
4-year mean (black) and 2012 values for North Pakistan (NP) (blue) and the EG (red). Gray lines show the time series from NP and EG for the training
eriod of 14 years. Saturation temperature Tsat (a) and saturation humidity rhsat (c) are marked by horizontal black solid lines (Tsat = Tonset , Tonset and
hsat calculated as the intersection of mean time series for the training period from the EG and NP), and the day of the saturation (dsat ) (when the
emperature in the EG in 2012 reaches Tsat ) by vertical dark blue lines. The orange lines indicate trends to the mean time series in NP and EG for
he training period, light blue are the trends for 2012. Black solid lines indicate mean values of the OD (⟨OD⟩) and WD (⟨WD⟩) for the training
eriod. Vertical dotted gray lines correspond to the predicted onset

(
ODp

)
and withdrawal dates

(
WDp

)
, while vertical solid gray lines are the actual

onset and withdrawal dates for 2012.
Source: Figure from Ref. [95].

dipole tendency: DSST∗ (20◦S-5◦N, 150◦E–170◦E) minus DSST (10◦S–10◦N, 110◦W–80◦W); the CPT is defined as: May
minus April SST north–south dipole tendency: DSST† (10 ◦–25◦S, 170◦E–160◦W) minus DSST (5◦–20◦N, 180 ◦–150◦W);
the PSH is defined as: April–May mean SLP averaged over (40 ◦ S–10◦S, 160◦W–90◦W) and (10◦N–30◦N, 180◦–130◦W);
he NAT is defined as: May minus March SLP averaged over (45◦N–60◦N, 95◦E–125◦E). DSST∗ means the difference of the
ST between May and March (May minus March). DSST† means the difference of SST between May and April (May minus
pril). These predictors (EPT) produce an independent forecast skill of 0.51 for 1989–2012 and a 92-year retrospective
orecast skill of 0.64 for 1921–2012. However, the forecasting lead-time for this model is quite short, i.e., starting from
ay (one month lead-time) or June (IMD’s operational model).
In order to achieve the goal of a long-term and reliable prediction of the ISM rainfall, Fan et al. constructed a series

f dynamical and physical CNs based on the global near SAT field [323]. It was uncovered that some characteristics of
he directed and weighted CNs can serve as efficient long-term predictors for ISM rainfall forecasting. The developed
rediction method produces a forecast skill of 0.5 with a 5-month lead-time in advance by using the previous calendar
ear’s data. The skill of the forecasting, is comparable to the current state-of-the-art models, however, with quite a short
i.e., within one month) lead-time. The new network-based prediction approach is described as follows.

CN construction: Based on the NCEP/NCAR reanalysis daily SAT anomalies data, a CN is constructed for each calendar
ear from 1948 to the present. In the work, 726 nodes are selected, such that the globe is covered approximately
omogeneously [61]. The link strength and direction are determined based on a similarity measure between the
emperature anomaly time series of the nodes [see Eqs. (12)–(16)]. A pair of nodes is defined to be connected only if
heir link is within the top 5% positive strength, which is also corresponding to a statistical significance of above the 95%
onfidence level.
Network Predictors Mining: To mine the dynamic network predictors for the AIRI, the cross correlation between the

bserved AIRI and the time series of network in-degree K y
i [see Eq. (6)] for each node i on the globe is calculated. Because

he forecasting skill of the AIRI became very poor in the IMD operational forecasts and other models since the year
989 [303], the record is divided into two consecutive periods, i.e., (i) 1950–1988, as the training period and (ii) 1989–
018, as the retrospective forecast period. For the training period, the correlation coefficients are shown in Fig. 27a. It
as found that the in-degree index for some nodes captures well the behavior of the AIRI. Particularly, the node (in
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Fig. 27. Schematic of ISM rainfall forecasting based on climate networks. (a) The correlation coefficients between observed AIRI and in-degree
ime series during the training period for all nodes. (b) Scatter plots of the observed AIRI versus the optimized network predictor (i.e., the in-degree
ime series of the key node in the yellow box) in the training period. (c) Scatter plots of the observed AIRI versus the predicted AIRI during the
orecast period 1989–2018. (d) Teleconnection path between the key node in South Atlantic and Indian subcontinent. Black × in panel (a) represent
he regions with correlations significant at the 95% confidence level (Student’s t-test). The recent five years are highlighted in red in panel (c). The
olors and gray arrows depict the magnitudes and directions of the 850 hPa winds on 12th August 2014 during the Indian summer monsoon season
n panel (d).
ource: Reprinted figure from Ref. [323].

he region marked by a yellow box in Fig. 27a) having the maximal correlation r is located in the South Atlantic ocean
(30◦S, 30◦W)]. Fig. 27b shows that the value of this maximal correlation is r = 0.49, with a student t-test significance of
< 0.01. Therefore, the in-degree index of this key node is regarded as the optimized network predictor for the AIRI.
AIRI Forecasting: Next, the forecasting capability of the network predictor during the period 1989–2018 is tested. To

btain the forecasted value of the AIRI for one specific year, the forecasted year’s predictor value (i.e., the previous year’s
etwork in-degree of the key node) is substituted into the least square linear regression equation. This equation used for
rediction is derived using only the past information. The independent forecast skill for the period 1989–2018 becomes
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Fig. 28. Physical mechanisms of ISM rainfall forecasting. Correlation between the seasonal mean (Jun–Sep) Niño 3.4 SST and (a) SSTs (b) rainfall
at each grid point. Statistically significant (95% confidence level) correlations are stippled.
Source: Reprinted figure from Ref. [323].

then ∼ 0.50, which is significantly higher than the IMD operational forecast skill [see Fig. 27c]. The result indicates the
good accuracy of the network-based predictor with the long lead-time of 5 months. Finally, based on 2018’s data, the AIRI
for 2019 is forecasted as 949.87 mm, a 7% departure percentage compared to10 the long-term average, which is 887.5 mm.
he actual value of the AIRI for 2019 was 968.3 mm.
In the following, a potential physical mechanism is discussed. From a meteorological perspective, the teleconnection

etween the key node’s location in the mid-latitude of the South West Atlantic Ocean and the Indian subcontinent is
o coincidence. The orography of the Eastern coast of the South American continent is prone to the formation of an
nticyclone at mid-latitude due to the interaction with mid-latitude Westerlies (winds that blow from the west at the
urface level between 30◦and 60◦S). Moreover, there is the influence of the South polar jet stream, which appears within
the upper air Westerlies. The acceleration/deceleration of the South polar jet stream induces areas of low/high pressure,
respectively, which links to the formation of cyclones and anticyclones. Because the South polar jet stream strengthens
and weakens seasonally, and from year to year, it synchronizes with the variability in the strength of the circulation
centered around the location of the key node. One of the possible data-based teleconnection paths is shown in Fig. 27d.
Hence, the key node location is sort of the nexus of the South Atlantic circulation, the south polar jet stream and the main
atmospheric circulations patterns over the Indian Ocean. It explains why we observe a significant correlation between the
network characteristics of the key node and the AIRI.

Further analyses are performed and reveal that the physical mechanisms are related to (i) the network delayed ENSO
teleconnection, i.e., the in-degree index is locally minimized in the previous calendar year of the El Niño onset. (ii) The
ENSO-Monsoon teleconnection [270,325,326], i.e., the AIRI anomaly and the Niño 3.4 SST anomaly index are negatively
correlated. The spatial correlation maps between the Niño 3.4 SST anomaly index with both the SST as well as the rainfall
index for all nodes are presented in Fig. 28. These results indicate that the Niño 3.4 SST anomaly index is significantly
anti-correlated with the SST in the equatorial Indian ocean and also heavily influences the rainfall pattern over the Indian
land region.

10 The observed AIRI data can be found in https://mausam.imd.gov.in/imd_latest/contents/rainfall_time_series.php.
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Fig. 29. Degree centrality of the event synchronization CN for extreme rainfall over the Indian subcontinent. The extreme events threshold is
a) α = 94% and (b) α = 90%.
ource: Figure from Ref. [92].

Moreover, the network-based approach can be also successfully applied to forecast the Indian homogeneous region
ainfall as a prediction scheme, including two specific homogeneous regions [323]: (1) the Central India Rainfall Index;
2) the East & Northeast India Rainfall Index.

In addition, there is solid evidence which reveals that climate change affects the forecast skills. The considerable
arming trend in the last 70 years – the 850 hPa temperature in the key node area has risen 2.5 ◦C – substantially

mpacted the key node region. An increase of the in-degree index and a change in the structure of the network itself are
bserved. Concurrently with these changes, the prediction skill of this forecasting method for the ISM rainfall amount is
mproving substantially [323].

.1.3. Extreme rainfall
Extreme precipitation events have produced more rain and have become more common since the 1950s in many

egions of the world. Heavy precipitation may pose threats to our society. The most immediate impact is the threat
f flooding. This risk can be heightened in urban and agricultural areas. In addition to flooding, extreme precipitation
lso increases the risk of landslides. Excessive precipitation can also degrade water quality, harming human health
nd ecosystems. Thus is crucial to predict extreme rainfall events and to establish an early warning system for them.
owever, the analysis of spatial patterns of co-variability of such events is challenging because traditional techniques
ased on principal component analysis of the covariance matrix only capture the first two statistical moments of the data
istribution and are not suitable to analyze the behavior in the tails of the respective distributions [327].
Extreme Rainfall over India
To overcome these challenges, Malik et al. applied the CNs approach to analyze the spatial and temporal patterns of

xtreme rainfall during the ISM [92,328]. This approach is based on the event synchronization method (see Section 2.1.3).
n Ref. [328], the dataset is a daily precipitation gridded set for 1961–2004 developed as part of the project—Asian
recipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources.11 Then they
xtracted the data for the South Asian region at a 0.5 degree resolution. For calculating the event synchronization, two
ifferent thresholds of α = 94th percentile and α = 90th percentile were chosen to obtain the extreme event time series,

referring to very heavy and heavy rainfall events, respectively. Next, they computed the strength of synchronization Qij and
the delay behavior qij between each pair of the grid sites i and j [see Eq. (20)]. After normalizing it holds, that 0 ≤ Qij ≤ 1
nd −1 ≤ qij ≤ 1, where Qij = 1 means complete synchronization, and Qij = 0 stands for the absence of synchronization;

and qij = 1 means that events at i precede events in j. The CN is then constructed by selecting only pairs of sites that
show strong correlations, and the time lags between the events are used to define the direction of the links.

The spatial structures, organization, and scales of the extreme rainfall over India during the ISM period were
investigated. Fig. 29 exhibits that the degree centrality [see Eq. (4)] of the CNs reveals well-defined spatial structures
in the monsoonal extreme precipitation [92]. Based on the median of the geographical length of the links, calculated
using the formula for the spherical Earth projected onto a plane, it has been uncovered that extreme rainfall events are
synchronized up to 250 km for most of the region. They further found that such a spatial organization opens the possibility
for predictions of a probable spatial extent of monsoonal rainfall activity without delay, e.g., for most of the subcontinent,
the accuracy of the prediction ϵ is above 70% and even reaches up to 100% in certain places [92].

11 It is freely downloadable from: https://www.chikyu.ac.jp/precip/.
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Extreme Rainfall over South America
This event synchronization CN approach was also applied to predict extreme rainfall events in the Central Andes of

outh America [94]. Based on the real-time satellite-derived rainfall data, TRMM 3B42V7 [329], Boers et al. were able
o predict more than 60% of the rainfall events above the 99th percentile in the Central Andes, and even 90% during El
iño conditions. The interplay of northward migrating frontal systems and a low-level wind channel from the western
mazon to the subtropics are considered as the responsible mechanism.
Extreme rainfall events are defined as times with threshold α = 99% for all Dec–Jan–Feb seasons in the spatial domain

85◦W, 30◦W) and (40◦S, 15◦N), at a resolution of 0.25◦, and 3-hourly temporal resolution for the time period from 1998
o 2012. After the construction of the event synchronization CN (see Section 2.1.3), the network divergence ∆S is defined
s

∆Si := S ini − Souti :=

N∑
j=1

Aij −

N∑
j=1

Aji, (123)

where Sin and Sout stand for the in-strength and out-strength respectively at each node. Positive values of ∆S indicate
sinks of the network; negative values indicate sources. The strength out of and into a region R is

S ini (R) =
1
|R|

∑
j∈R

Aij, (124)

Souti (R) =
1
|R|

∑
j∈R

Aji, (125)

here |R| denotes the number of grid points contained in R.
Fig. 30a shows the network divergence ∆S (defined in Eq. (123)), which estimates the dynamics and temporal order

f extreme rainfall in South America. The boxes labeled 1 to 7 are used for the tracking of extreme events. It was found
hat the most pronounced source region of the rainfall network is South Eastern South America (SESA), defined as the box
anging from (60◦W, 53◦W) to (35◦S, 30◦S). Fig. 30b depicts where synchronized extreme events occur within 2 days after
xtreme events occurred in SESA, measured by Souti (SESA). For comparison, Souti (SESA) is shown in Fig. 30c. This analysis
eveals that extreme events in SESA are followed by extreme events along a narrow band following the eastern Andean
lopes up to western Bolivia, while they are only preceded by extreme events to the southwest. Based on the propagation
f extreme rainfall from SESA to the eastern Central Andes (ECA), see Fig. 30d, a prediction for the extreme rainfall for
he ECA within 2 days is made after they occurred in SESA. It should be noted that these extreme rainfall events could
ot be forecasted by using other methods.
Extreme Rainfall over the Globe
The event synchronization CN method was also applied to investigate the global pattern of extreme-rainfall by Boers

t al. [96]. The gauge-calibrated, satellite-derived rainfall dataset TRMM 3B42 V731, with daily temporal resolution, from
0◦N to 50◦S for the period 1998–2016 is used. The extreme rainfall event thresholds are 80th, 81th, . . . , 99th of the wet
ays (>1 mm) for the Jun–Jul–Aug season. Note that consecutive days with rainfall above the threshold are considered as
ingle events and placed on the first day of the occurrence. To study the robustness of the method, Global Precipitation
limatology Project32 and NCEP/NCAR Reanalysis 1 data were also tested.
First, the synchronization of extreme events for each pair of nodes is computed (see Section 2.1.3). Network links are

dded between two nodes if the corresponding synchronization values are significant, p < 0.005. The global distribution
f the spatial distances for which significant synchronizations occur was studied. This distribution decays as a power law
(d) ∼ d−α , with an exponent α very close to 1 for distances d < 2500 km, but exhibits a super-power-law behavior
or longer distances. The scale-break indicates that the significant links can be divided into two distinct classes: (i) links
ssociated with regional weather systems with distances up to 2500 km, which include mesoscale convective systems
nd tropical cyclones; and (ii) links associated with global-scale teleconnections. Such teleconnections are generally
nderstood to be caused either by direct signal transport due to large-scale atmospheric circulations or by propagating
aves triggered by disturbances of these circulations [96]. In Fig. 31, the teleconnection pattern for south-central Asia
SCA) for events above the 95th percentile is presented. Pronounced link bundles connecting SCA with eastern Asia,
he African tropics, large parts of Europe and the eastern coast of North America, as well as the Southern Hemisphere
xtratropics are apparent. Further analysis reveals that the Rossby waves can be regarded as the physical mechanism
nderlying these global teleconnection patterns.

.1.4. Atmospheric circulation and global warming
Earth’s atmosphere, made up essentially of the gases that surround our planet, consists of circulation patterns that

ove air from one location to another and from the surface to top elevations. The atmospheric circulation is controlled
y Earth’s rotation, barometric pressure, topography, ocean currents, and differences in temperature, salinity, etc.
Latitude structure of the circulation
Since latitudinal gradients in solar energy input are dominant drivers of the atmospheric circulation, its primary

eatures depend on the latitude. We show an idealized depiction of the large-scale atmospheric circulation on Earth in
46
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Fig. 30. Event synchronization CN for extreme rainfall over South America. (a) Network divergence, ∆S, is defined as the difference of in-strength
and out-strength at each node (see Eq. (123)). The boxes labeled 1 to 7 are used for the tracking of extreme events. (b) Strength out of SESA, Souti (SESA),
which is the average out-Strength restricted to SESA ((see Eq. (124))). (c) Strength in of SESA, S ini (SESA), which is the average in-Strength restricted
to SESA ((see Eq. (125))). (d) Temporal evolution of extreme rainfall events from SESA to ECA along the sequence of boxes indicated in (a).
Source: Figure from Ref. [94].

Fig. 32, which schematizes the main features of the circulation, both in a latitude–height plane and in the horizontal,
without yet considering longitudinal variations due to continents, oceans, etc. This represents the circulation in an average
over all longitudes, known as a zonal average. As we see, there are three large-scale convection cells in both hemisphere.

(i) The Hadley cell is a thermally driven, overturning circulation that tends to rise in the tropics and sink at slightly
higher latitudes. Warming from the surface near the equator is transferred upward through a deep layer by convection
clouds. The rising air spreads poleward and cools slowly, returning to the surface and then moves towards the equator.
Roughly speaking, the Hadley circulation transports heat to about 30◦latitude, and the average effect of the transient
weather disturbances transports the heat further poleward.

(ii) The Ferrel cell is also called mid-latitude cell. In the Ferrel cell, air flows poleward and eastward near the surface
and equatorward and westward at higher altitudes; this movement is the reverse of the airflow in the Hadley cell. It was
the first to account for the westerly winds between latitudes 35◦ and 60◦ in both hemispheres.

(iii) The Polar cell is the smallest and weakest cell, which extends from between 60◦ and 70◦ north and south to the
oles. Air in these cells sinks over the highest latitudes and flows out towards the lower latitudes at the surface. Note that
he idealized picture of the atmospheric circulation based on latitude is a reasonable first approximation, but land–ocean
ontrasts and other variations in longitude are also important.
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Fig. 31. Event synchronization CN for extreme rainfall over globe. Teleconnection pattern for south-central Asia (SCA) for events above the 95th
percentile. (a) Links connected to SCA, before correcting for the multiple-comparison bias. (b) Link bundles attached to SCA, after correcting for the
multiple-comparison bias.
Source: Figure from Ref. [96].

Climate Change Effects on Atmospheric Circulations
Climate change strongly affects the mode of atmospheric circulations, especially, the Hadley cell, which plays a pivotal

role in the Earth’s climate by transporting energy and heat poleward [330–332]. An analysis of satellite observations
indicates a poleward expansion of the Hadley cell by 2◦ latitude from 1979 to 2005 [330]. A possible mechanism for the
hanges in the Hadley cell and its relation to global warming has been reported [331]. Also, a possible mechanism for
he changes in the Hadley cell’s strength and its relation to global warming was developed in [332]. Both aforementioned
bservations and theories suggest a weakening and poleward expansion of the Hadley cell under global warming.
As is well known, the locations of the subtropical dry zones and the major tropical/subtropical deserts are associated

ith the subsiding branches of the Hadley cell [333]. Therefore, the poleward expansion of the Hadley cell may result in a
rier future in some tropical/subtropical regions [331]. In addition, the poleward migration of the location of the tropical
yclone maximum intensity is also considered as a consequence of the expansion of the Hadley cell [334].
The strength of the Hadley cell is calculated using the observed zonal-mean meridional wind in the stream function
[335],

[V ] =
g

2πR cosφ

∂Ψ

∂p
, (126)

here V is the meridional velocity in pressure coordinates, R is the mean radius of the Earth, and p is the pressure. The
operators ¯and [ ] stand for temporal and zonal averaging, respectively. When computing the Ψ field, we usually assume

= 0 at the top of the atmosphere and integrating Eq. (126) downward to the surface. The intensity of the Hadley cell is
uch stronger in winter than in summer. To quantify the edges of the Hadley cell, the maximum of the absolute value of
at 500 hPa is first determined (Ψ ), and then the edges are identified as the first latitude poleward of the maximum
500
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Fig. 32. Schematic of major features of the atmospheric circulation. The average circulation is idealized as being independent of longitude and
symmetric about the equator.
Source: The figure is from https://courses.lumenlearning.com/geophysical/chapter/global-atmospheric-circulations/.

at which Ψ500 becomes zero [331]. Theories of the Hadley cell suggest that the meridional extent should scale with the
height of the tropopause H [336],

φH ∼

(
gH∆H

Ω2R2

) 1
2

, (127)

here H was computed from temperature data as the lowest pressure level at which the lapse rate decreases to
◦C/km [337], ∆H is the tropospheric mean meridional potential temperature gradient, and Ω is the angular velocity of

he earth. From the thermodynamic equation and the mass continuity equation [335], the meridional overturning stream
unction Ψ of the circulation scales as,

Ψ ∼

(
gH∆H

Ω2R2

) 3
2 RH∆H

τ∆V
∝

H
5
2 ∆

2
5
H

∆V
, (128)

here ∆V is the dry static stability of the tropical troposphere and τ is the characteristic overturning time scale of the
irculation.
Although the conventional analysis of satellite observations and the climate change simulations suggests a poleward

xpansion of the Hadley cell, there are still two challenges. (i) The latitude–longitude structure of this expansion is not
ully resolved. (ii) In contrast to models and theoretical considerations, which predict a decreasing intensity, an increasing
rend was found in the intensity of the Hadley cell in reanalysis datasets [338]. To overcome these unsolved issues, Fanet al.
eveloped an approach based on network and percolation frameworks to study the impacts of climate changes on the
tmospheric circulations [67]. They found an abrupt transition during the evolution of the climate network, indicating
consistent poleward expansion of the largest cluster that corresponds to the tropical area, as well as a weakening of

he strength of link in the tropics. This was found in both the reanalysis data and the CMIP5 simulations. The underlying
echanism for the observed expansion of the tropical cluster was linked to the weakening and expansion of the Hadley
ell.
49
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Fig. 33. The network-percolation approach to the atmospheric circulation. Snapshots of the component structures of the CN. (a) Just before the
ercolation threshold. (b) The giant cluster relative size G1 versus the fraction of total number of links r , for real (red), spatially shuffled (blue) and
emporally shuffled (purple) records. (c) Just before the formation of the spanning cluster (at the second largest jump at r ≈ 0.8). (d) The PDF of
the weight of links Wi,j around the globe, in real (solid line) and shuffled (dashed lines) data. The vertical line (orange) indicates the strength of
the critical link, Wc , at the percolation threshold rc ≈ 0.53.
Source: Reprinted figure from Ref. [67].

In Ref. [67], the CNs were embedded into a two-dimensional lattice, where only nearest neighbor links are considered.
The strength of each link are calculated based on Eq. (15), with the month-to-month temperature difference. The links are
sorted in decreasing order of strength and then added one by one according to the decreasing strength. More specifically,
the nodes that are more similar are connected first. Existing clusters grow when a new link connects one cluster to
another one. Then the CN undergoes an abrupt and statistically significant phase transition, i.e., exhibiting a significant
discontinuity in the order parameter G1, the relative size of the largest cluster. Due to the Earth’s spherical shape, the
largest component in the climate networks is redefined as

G1(M) =

max
[∑

i∈S1(M) cos(φi), . . . ,
∑

i∈Sm(M) cos(φi), . . . ,
]

∑N
i=1 cos(φi)

, (129)

here φi is the latitude of node i. The percolation threshold is determined according to Eq. (48), i.e., the step with the
argest jump is regarded as the phase transition point. Fig. 33(a) shows the CN component structure in the global map at
he percolation threshold. Just before this jump, the CN is characterized by three major communities; the largest one is
ocated in the tropical region; the second and third largest are located in the high latitudes of the southern and northern
emispheres. Fig. 33(b) depicts the relative size of the largest cluster, G1, as a function of the link occupation probability
in the evolution of the CN. It has been found that G1 exhibits an abrupt jump at the percolation threshold rc ≈ 0.53.
he probability density function (PDF) of the weight Wi,j of links is shown in Fig. 33(d).
To determine the temporal evolution of the largest component Gc , and its intensity Wc (the weight of the critical

ink that leads to the largest transition), a sequence of networks based on successive and non-overlapping temporal
indows with lengths of 5 years each was constructed. The results suggested that the tropical cluster is expanding
oleward, meanwhile, its intensity decreases significantly with time. The robust weakening and poleward expansion of
he tropical component have been observed both in the reanalysis data and in 31 CMIP5 models. The network-percolation
pproach was also used to identify the climate change response, by comparing the topology of the tropical component
or the first and last twenty years of the 21st century, i.e., 2080–2100 vs. 2006–2026. It was found that some regions, for
xample, northern India, southern Africa, and western Australia have a higher probability to be influenced by the tropical
omponent, whereas the impacts in other regions, e.g., the Northeast Pacific, will become weaker in the future.
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Fig. 34. Slowdown of the Atlantic Meridional Overturning Circulation (AMOC). Comparison of SST trends in model and observations. Linear SST
rends for the CM2.6 climate model of the Geophysical Fluid Dynamics Laboratory during a CO2-doubling experiment (left) and in a control run
with fixed CO2 concentrations (middle). Right, Linear SST trends for the observed HadISST data from 1870 to 2016. The data is shown from the
November–May season.
Source: Figure from Ref. [160].

3.1.5. Atlantic meridional overturning circulation
The Atlantic Meridional Overturning Circulation (AMOC) is a crucial part of the climate system in the North Atlantic.

It has a major impact on climate because of its redistributing meridional heat transport [339,340]. The AMOC has been
identified as one of the important tipping elements of the Earth system [23]. Changes in the AMOC have not only affected
the North Atlantic and surrounding landmasses, but have also had global impacts [156]. For example, negative change
leads to increasing storminess in southern Europe [341], connects to above average sea-level rise at the US east coast [342],
and associates with increasing drought in the Sahel (for both frequency and intensity) [343]. Recently, Caesar et al.
provided solid evidence for a weakening of the AMOC by about 3 ± 1 (around 15%) sverdrups since the mid-twentieth
century [160]. This weakening is revealed by the consisting of a pattern of cooling in the subpolar Atlantic Ocean and
warming in the Gulf Stream region (see Fig. 34). The slowdown of the AMOC was found in both in a high-resolution
climate model (CM2.6) in response to increasing atmospheric carbon dioxide concentrations, and in the observed HadISST
data since the late 19th century. An improved SST-based AMOC index (the subpolar cold patch) was developed, which is
optimized in its regional and seasonal coverage to reconstruct AMOC changes. In particular, it was found that the AMOC
decline since the 1950s is very likely to be largely anthropogenic. This slowdown of the AMOC is mainly caused by the
gradually varying freshwater forcing in the northern North Atlantic.

The AMOC is the zonally averaged volume transport and its strength at 26◦N in the Atlantic and is now routinely
monitored by the RAPID-MOCHA array [344]. Mean patterns of the meridional overturning circulation in the Atlantic are
determined from the Community Earth System Model (CESM) simulation [345,346]. The AMOC has its maximum at about
1000 m depth around the separation latitude of the Gulf Stream with a strength of about 20 Sv. Since a future collapse
of the AMOC has been identified as a tipping element, it is therefore crucial to develop early warning indicators for such
a potential collapse. As we discussed in Section 2.3, various techniques have been developed and successfully applied
to detect early warning indicators in single time series used based on the concepts of critical slowing down [177]. In
particular, early warning indicators for the tipping point of the AMOC have been discussed in [179,181].

Recently, several CN-based warning-signals have been proposed by analyzing the correlations for the AMOC collapse
that efficiently monitor spatial changes in deep ocean circulation. Specifically, the values of the mean degree, its kurtosis,
assortativity, and clustering increase when approaching a tipping point [69,70]. The CN methodology is applied to
temperature time series from an idealized ocean model of the AMOC, as well as to AMOC strength time series from
a coupled atmosphere–ocean GCM. In addition, the optimal locations of measurement of the AMOC are formulated to
provide early warning signals of a collapse through the analysis of the performance of this indicator. Next, we will provide
an overview of these CN-based early warning indicators for the collapse of the AMOC.

Mheen et al. [69] used a dimensional (meridional-depth) idealized ocean model of the AMOC, where tipping points
can be explicitly computed. In this model, there are two active tracers: temperature T and salinity S, which are related
to the density ρ by a linear equation of state [347]

ρ = ρ 1 − α T − T + α S − S , (130)
0 ( T ( 0) S ( 0))
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Fig. 35. Tipping points of the AMOC in the idealized ocean model. (a) Bifurcation diagram with the sum of the maximum (Ψ+) meridional
verturning stream function and minimum (Ψ−) meridional overturning stream function vs. the anomalous freshwater flux strength β . (b) Pattern
f the meridional overturning stream function (Ψ ) at the upper stable branch. (c) Pattern of Ψ at the lower stable branch.
ource: Reprinted figure from Ref. [69].

here αT and αS are the thermal expansion and saline contraction coefficients, respectively, and ρ0, T0 and S0 are reference
uantities. The surface freshwater forcing FS , which can be applied as a virtual salt flux, is

FS(φ) =
(γ + η)
cosφ

cosπ
φ

φN
+ βFp(φ) − Q , (131)

here φ indicates latitude, φN is the northern boundary of the equatorially symmetric domain, γ is the strength of the
ackground freshwater forcing, and η is a white noise term. β is the strength of an anomalous freshwater flux which is
nly applied over the area [40◦N, 60◦N], and Q is a constant used to normalize the surface-integrated salt flux from 0 to 1
or all parameter values. As shown in Fig. 35, the bifurcation diagram of the AMOC in the idealized ocean model indicates
he existence of tipping points at L1 and L2. The model was discretized on a 32 × 16 spatial grid, with four values of β

lose to L1, labeled A, B, C and D. The output of this model is the temperature field time series.
Next, an undirected and unweighted CN is constructed based on the Pearson correlation method (see Section 2.1) with

o time lags and a threshold Cc = 0.7 [69], i.e, if the correlation Ci,j > Cc , the corresponding two nodes i and j are
onnected. Four network-based indicators Ed, Ec , Kd and Kc were developed to study the dynamic evolution of the AMOC.
ere Ed is defined as the expectation value of the normalized degree distribution d/dmax; Ec is defined as the expectation
alue of the normalized clustering coefficients c/cmax; Kd is the kurtosis of the degree distribution; and Kc is the kurtosis
f the clustering coefficients distribution. These four network indicators are presented in Fig. 36. It was found that E
d
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Fig. 36. Early warning signals of the AMOC. (a) Time series of the maximum value of the AMOC. (b) Transient change of β versus time from 0.05
to 0.17 myr−1 during 35,000 years. (c) Th lag-1 autocorrelation of the projection of the time series onto the first EOF. (d) The DFA exponent, using
linear (up) and quadratic (down) detrending. (e) Standard deviation of the AMOC. (f) Fraction of the time spent below the 0.5 percentile of the
AMOC strength. (g) The network-based indicators Ed (circles) and Ec (squares). (h) Same as (g) but for the kurtosis (Kd (circles) and Kc (squares).
The vertical dashed line indicates the value of β at the tipping point.
Source: Figure from Ref. [69].

increases steeply and smoothly when the tipping point L1 is approached. The explanation for this increase is based on
the increased dominance of the first EOF in the variance of the solution in a large part of the domain. The same holds
for the indicator Ec (Fig. 36g). The kurtosis distributions Kd and Kc (Fig. 36h) show even more clearly a strong increase
hen the tipping point L1 is approached before the collapse. Note that the CNs were constructed from the full spatial
emperature field using a sliding window of 5000 years with a shift of 1000 years. The results were not sensitive to the
liding window length. For comparison, previously suggested early warning indicators of the transition in the same AMOC
ime series, such as, lag-1 autocorrelation, DFA, standard deviation (see our discussion in Section 2.3) are also plotted in
ig. 36 and tend to exhibit a rapid increase/decrease when approaching the tipping point. In particular, the coefficient
f the lag-1 autocorrelation (Fig. 36c) reaches its maximum near the tipping point indicating a critical slowdown of the
MOC. However, it has been found that the indicator is not monotonic and also increases when the AMOC is still far
rom the transition. The DFA analysis shown in Fig. 36d does not indicate early warnings of a transition. Fig. 36e depicts
he standard deviation of the AMOC record. It shows a steady increase towards the transition but it is difficult to set a
hreshold for an alarm. In Fig. 36f, the fraction of the time spent below the 0.5 percentile (estimated based on the first
000 years) of the AMOC strength is shown. This indicator displays a much sharper increase, but it is a rather ad-hoc
easure which depends on a calibration in the far past [69].
The same CNs-based analysis was also performed in a more realistic Fast Met Office/UK Universities Simulator

FAMOUS) model by Feng et al. [70]. The FAMOUS model is a reduction for Hadley Centre Coupled Model with a lower
esolution ocean and atmosphere component. The annual mean of AMOC strength data were obtained from a control
imulation and from a freshwater-perturbed (referred to as ‘‘hosing’’) simulation of the FAMOUS model. In the hosing
imulation, the freshwater flux over the extratropical North Atlantic was increased linearly from zero to 1.0 Sv over
000 years [70]. The complete AMOC streamfunction field for each of the six 100-year equilibrium simulations has been
onsidered. It was found that when the freshwater forcing is increased, a high degree in the network – indicating high
patial AMOC correlations – first appears at nodes in the South Atlantic at about 1000 m depth. The kurtosis Kd of the
N was introduced as an effective indicator to capture the changes in the topology of the degree field. For the hosing
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Fig. 37. ETOPO1 Global Relief Model. ETOPO1 is a 1 arc-minute global relief model of the Earth’s surface that integrates land topography and ocean
bathymetry. The present mean sea level (zero height) is assumed as a vertical datum of the height relief.
Source: Figure is from NOAA https://www.ngdc.noaa.gov/mgg/global/.

simulation, there is a strong increase of Kd to values far extending those for the control simulation significantly before
the collapse time. However, the critical slowdown indicators variance and lag-1 autocorrelation do not show any early
warning signal. Moreover, the kurtosis Kd can also be used to determine the optimal observation locations of the AMOC,
which provides a strong anomalous signal at least 100 years before the transition.

3.2. Earth geometric surface relief

The topography or bathymetry of the Earth shows complex multifractal structures and scaling properties [34,348–350],
which can be regarded as a consequence of plate tectonic processes. Revealing the relations between geometrical features
of terrestrial surfaces and their internal geological processes has long been a fundamental challenge in the Earth sciences.
The plate tectonic theory is usually used to study most of the major surface topographic features of the Earth [351]. It has
been reported that there exist strong connections between the ocean bottom topography and the Earth’s climate [352].
Moreover, the surface topography of the Earth plays a remarkable role in the dynamical evolution of oceans, especially,
in regard to global climate change and sea level rising. Sea level rise is one of the major consequences of global climate
warming [353] and the effects in combination with storm surges and other extreme events have been observed [354].
Decreasing global CO2 emissions is crucial for limiting the risks of sea-level rise. It is estimated that the median sea-level
rise will be between 0.7 and 1.2 m until the year 2300 even within the constraints of the Paris Agreement [355]. The
world’s large ice sheets in Greenland and Antarctica are considered to be the largest possible contributors to sea level rise.
If these ice sheets melt completely, the sea level would rise about 7 m, 5 m and 53 m from the Greenland ice sheet, the
West Antarctic ice sheet, and the East Antarctic ice sheet, respectively. There is thus a great interest in clarifying/predicting
the influenced areas in response to sea level rise.

Recently, the ETOPO1 Global Relief Model was released and provided new opportunities for a better understanding
of Earth’s surface processes based on geomorphic signatures [356]. ETOPO1 is a 1 arc-minute global relief model of the
Earth’s surface that integrates land topography and ocean bathymetry and was developed by NOAA. It was built from
global and regional datasets and used to calculate the volumes of the world’s oceans and to derive a hypsographic curve
of Earth’s surface (see Fig. 37).

In this Section, we will review statistical properties of the Earth geometric surface relief using percolation theory. Their
fractal structure and scaling will also be discussed. In particular, the present mean sea level on Earth will be shown to
coincide with the critical threshold in a percolation description of the global topography; strong evidence reveals abrupt
transitions that occurred during the evolution of the Earth’s relief network, indicative of a continental/cluster aggregation.
This could help us to identify the critical nodes or locations that will be more exposed to global climate change.

3.2.1. Self-similarity and long-range correlations
Self-similarity and long-range correlations are remarkable features of the Earth’s surface topography [34]. Starting

about 30 years ago, new ideas in nonlinear dynamics, particularly fractals and scaling, provoked an explosive growth of
research both in modeling and in experimentally characterizing the solid earth geophysics including the topography, for
54
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review see Ref. [357]. The power spectrum S of linear transects of Earth’s topography follows the scaling relation S(k) ∼
−βc , where k stands for the wave number [34]. Such a scaling relation was used to measure the self-similarity of the
arth’s surface topography. Moreover, similar scaling relations have been identified in Earth’s sea-floor topography [358],
he topology of river networks [359], as well as natural rock surfaces [360].

The long-range correlation features of the Earth’s surface topography can be described in the following way. The
xponent βc in the power-law spectrum is related to the Hurst exponent H in fractional Brownian motion (fBm) via
c = 2H + 1, which results in H ≃ 0.5 for the Earth’s topography. Whereas further universal multifractal parameters
stimated for specific parts have resulted in a much more complex structure, i.e., H = 0.46, 0.66, 0.77 for bathymetry,

continents and continental margins, respectively [348].
The third characteristic of the Earth’s surface topography is the well known bimodal distribution, as a consequence of

plate tectonic processes [361]. It indicates the topographic dichotomy of continents and ocean basins.

3.2.2. Landmass and oceanic clusters
Although the classical pate tectonic theory provided a framework that might explain most of the major surface

topographic features of the Earth, a percolation-based description as discussed in Section 2.2 was developed to study the
geometrical features of the Earth from a statistical physics perspective [127,130]. The analysis is based on high-resolution
ETOPO1 global relief records. The resolution is 1 arc-minute, i.e., N = 10800 × 21600 grid points. The present mean sea
level (zero height) is assumed as a vertical datum of the height relief h(φi, θi), where φi, θi are the corresponding latitude
and longitude of grid point i.

In Ref. [127], the hypothetical water level was considered as the percolation control parameter. When it is decreased
from the highest to lowest available heights on Earth, there occurs a geometrical percolation phase transition at a critical
level hc around which most parts of landmass join together. Fig. 38 illustrates the landmass cluster aggregation by
decreasing the sea level from h = 100 m (top) to h = −3520 m (bottom). To determine the percolation threshold,
the probability of any nodes to be part of the largest island was defined as the order parameter; the mean island
size χ (analogous to the susceptibility of the system) was defined as, χ =

∑
′

s s
2ns(h)/

∑
′

s sns(h), where ns(h) denotes
he average number of islands of size s at level h and the prime on the sums stands for the exclusion of the largest
sland; the correlation length ξ is defined as the average distance of nodes belonging to the same island cluster, ξ 2

=
′

s 2R
2
s s

2ns(h)/
∑

′

s s
2ns(h), where Rs is the radius of gyration of a given s cluster. It has been found that the order parameter

or islands has an abrupt jump around the zero height level h = 0, i.e., right at the present mean sea level (Fig. 39a). It
as furthermore found, that both quantities χ and ξ become divergent at the present mean sea level, see Fig. 39b. From
hese results, the most remarkable observation is that the critical level hc coincides with the present mean sea level h = 0
n Earth. This may suggest the important role of water on Earth and shed new light on the tectonic plate motion [127].
The same percolation analysis was also performed for the oceanic clusters, i.e., the hypothetical water level was

ncreased from the lowest to highest. Fig. 39b gives rise to a discontinuous jump in the oceanic order parameter at
round −3640 m. Further investigation in the lunar topography reveals various characteristic features of the Moon. It
as found that the critical level for the Moon has the same amount of land and oceans at the threshold, indicating a
urely geometrical phase transition [127].

.2.3. Origin of the discontinuity
It has been reported that a random network or lattice system always undergoes a continuous percolation phase

ransition and shows standard scaling features [81]. Yet, the order of the percolation transition for the Earth’s topography
s still an open question. To answer this, Fan et al. developed a more sophisticated percolation-based method [130]. The
ercolation model was defined as follows: starting from an unoccupied lattice, the sites are occupied one by one according
o their ranking, i.e., first choosing the site with the largest height, then the second, etc. At each step, the fraction of
ccupied sites p increases by the inverse of the total number of sites N in the Earth’s relief landscape. By this procedure,
configuration of occupied sites is continually obtained at every p. Here all the grid points in the ETOPO1 Global Relief
odel were ranked according to their height h(φi, θi), from the largest to the smallest value.
In the following, the size of the percolation landmass (oceanic) clusters s was calculated based on Eq. (129) due to the

arth’s spherical nature. The size of the ith gap gi at each fraction p is defined as follows:

gi(p) ≡ s(p) − s(p − 1/N). (132)

pecifically, here g1 denotes the largest gap, g2 indicates the second largest gap, etc. The larger the gap gi is, the larger are
he two clusters before merging. The dynamical evolution of the largest landmass cluster s as a function of the fraction of
ccupied nodes p is shown in Fig. 40a. It was found that Earth’s relief network undergoes several abrupt and statistically
ignificant phase transitions, i.e., exhibiting a discontinuity in the order parameter s. Fig. 40b shows the network clusters
andmass structure at the percolation threshold (just before the largest gap g1). The results reveal that the network, just
efore this jump, is characterized by four major communities: the largest one being the Afro-Eurasia continental landmass,
he second largest cluster is the Americas, the third is located in Antarctica, and the fourth is Oceania. Notably, there exists
critical node (64.458333◦N, 171.141667◦W) that connects the largest and second largest clusters at the percolation

hreshold p ≈ 0.321, with altitude level h = −43 m, under the current sea level.
c
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Fig. 38. Schematic illustration of the landmass cluster aggregation by decreasing the sea level. The nodes are occupied if its corresponding
eight is above the given threshold h. Different colors stand for different clusters.
ource: Figure from Ref. [127].

Fig. 39. Percolation analysis of the Earth’s topography. (a) Relative surface area of the largest island (circles) and the largest sea (triangles) as a
function of the sea level. The landmass critical level is close to the current sea level h = 0, whereas, the oceanic critical level is close to the level
h = −3287 m at which the total island and oceanic surface areas are equal. (b) The correlation length ξ and mean island size χ as a function of
the sea level. The dashed line marks a geometrical percolation phase transition at the present mean sea level.
Source: Reprinted figure from Ref. [127].
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Fig. 40. Percolation analysis of the Earth’s topography. (a) The largest landmass cluster relative size s as a function of the fraction p of the total
landmass for real (green) and shuffled (red) Earth relief records. g1–g5 indicate the five largest gaps, defined in Eq. (132). (b) Snapshots of the
landmass clusters of the Earth’s surface topography network at the percolation threshold, p = 0.321. The star indicates the critical node.
Source: Reprinted figure from Ref. [130].

The same analysis has also been applied for the oceanic clusters, i.e., the nodes are occupied one by one according to
their height level in increasing order. It also has given rise to a discontinuous jump in the oceanic order parameter at
the percolation threshold pc ≈ 0.379 with an altitude level h = −3621 m. This is very close to the result h = −3640

reported in Ref. [127]. Note that the critical node, (59.908333◦S, 161.308333◦E), connects the Atlantic+Indian Ocean
Plate to the Pacific Plate. It is worth noting that the role of the largest cluster on the landmass structures is different
from that on the oceanic one. These differences reveal the complex and different structure of the Earth’s topography
(continents) and bathymetry (oceans). This dichotomy is manifested in the well-known bimodal distribution of the Earth’s
topography [361].

To demonstrate the order of the percolation phase transition in Earth’s relief network, a finite-size effects analysis was
performed by altering the resolution of the nodes. The largest gap g1(L) was calculated for a given system size L. Here, L
s defined as the number of nodes in the zonal direction. According to Eq. (49), if g1(L) → 0 as L → ∞, the corresponding
iant cluster is assumed to undergo a continuous percolation; otherwise, the corresponding percolation is assumed to be
iscontinuous [147,153]. In addition, the size of the order parameter at the percolation threshold [just before the largest
ump g1], sc(L), was also studied [see Eq. (51)]. The results are shown in Fig. 41a and b, which indicate a discontinuous
ercolation since (1) g1(L) tends to be a non-zero constant; (2) df − d = 0, also indicates a discontinuous percolation.
or comparison, a randomized topography obtained from the shuffling (spatial randomizing the height profile) of the
riginal data was also considered (see Fig. 41a and b). The numerical results for the shuffled case, suggest a continuous
ercolation transition with known critical exponents β/ν = 5/48 ≈ 0.104 and df = 91/48 [106,107], as expected when
he long-range correlations were destroyed.

In order to reveal the origin of the discontinuity, Fan et al. [130] further studied the percolation on 2D fBm surfaces
ith Hurst exponent H [362,363]. The parameter H is usually between 0 and 1, where 0 is very noisy, and 1 is smoother.
he Earth’s rough surfaces can be modeled via a fBm [364], and the estimation for the Earth continents topography is
= 0.66 [348]. Next, the percolation analysis on fBm surfaces with H = 0.66 was performed. Similar to the real network,

he largest cluster s also exhibited abrupt transitions around p ≈ 0.3. The largest gap g1(H, L) (average) as a function of
ystem size L is shown in Fig. 41c. It was found that the percolation on fBm surfaces with H = 0.66 is discontinuous, since
1(H, L) tends to be a non-zero constant when L → ∞. The percolation threshold pc(H, L) corresponding to the largest
ap during the evolution of site percolation is shown in Fig. 41d. The values are robust and agree well with the real data
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Fig. 41. Finite size analysis of the percolation in Earth’s relief network. (a) Log–log plot of the largest gap g1 vs. the network system size L for
riginal real data (red) and shuffled data (blue). (b) Log–log plot of the largest landmass cluster relative size sc at the percolation threshold vs. L for
eal data (red) and shuffled data (blue). (c) The average of the largest jump g1(H, L) as a function of system size L; (d) the corresponding percolation
hreshold pc (H, L) as a function of L for percolation on 2D fractional Brownian motion surfaces with the Hurst exponent H = 0.66.
Source: Reprinted figure from Ref. [130].

where pc ≈ 0.321 [see Fig. 38]. This indicates that the combined percolation and fBm methods can be used as an efficient
tool to investigate the Earth’s surface topography.

3.3. Earthquake systems

Earthquakes are one of the most devastating natural disasters that plague society. Thus, reliable and skillful earthquake
forecasts over different time scales (from days to decades) are essential for establishing rational seismic risk reduction
strategies and to enhance preparedness and resilience. The earthquake process is a complex spatio-temporal phenomenon,
and has been thought to be an example of self-organized criticality systems, in which events occur as cascades on a wide
range of sizes, each determined by fine details of the rupture process. Despite rapid progress in the latter part of the
20th century, the study of earthquakes, like the science of many other complex natural systems, is still in its juvenile
stages of exploration and discovery. The scientific challenge is how to understand the earthquake phenomena that are
both profound and practical, in particular, the deterministic prediction of specific event sizes, their locations, and times.
Recently, probabilistic forecasting, based on statistical patterns of earthquake occurrence, became a much more realistic
goal, and has been actively explored and tested in global initiatives [36].

In this section, we will first present a description of the phenomenological laws of earthquake occurrence, and scale
invariance and the intertime distribution is also briefly discussed. Then we will review how the statistical mechanics
approach (memory analysis) can be applied to improve the forecasting skill for real earthquake catalogs.

3.3.1. Scale invariance and the inter-event distribution
First, we introduce some fundamental quantities that characterize earthquake occurrence. This information, such as

occurrence time, hypocentral location, earthquake magnitude and depth, is usually reported in seismic catalogs available
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Fig. 42. Gutenberg–Richter law for the Israeli earthquake catalog. (a) Map of the events present in the selected area. (b) Cumulative number as
a function of magnitude. The orange line is the fit of the distribution based on Eq. (133), with a = 5.36 and b = 0.97.

nline for different geographic areas, for instance, the United States Geological Survey (USGS) earthquake catalog.12 We
resent here the main phenomenological laws for the statistical distribution of these quantities.
The most common method of describing the size of an earthquake is the Richter magnitude scale m, which takes the

ogarithm of the ground displacement as measured by a seismograph, and applies a correction which varies with the
istance from the earthquake to the seismograph [365]. The characteristic size of the fractured area L, as well as the
aulting duration τ , can be both expressed in terms of the magnitude as L ∝ τ ∝ 100.5m.

Next, we will give some well established empirical basic laws of earthquakes. In seismology, the Gutenberg–Richter
GR) law expresses the relationship between the magnitude m and cumulative number of earthquakes N in any given
egion and time period with magnitude larger or equal to m, which exhibits an exponential decay [366]

logN = a − bm, (133)

here a and b are fitting parameters. We show the Gutenberg–Richter law for the Israeli earthquake catalog as an example,
n Fig. 42. The b-value of the Gutenberg and Richter law has been calculated using the approach described by Marzocchi
nd Sandri [367]. The value was found to be equal to 0.97 ± 0.02. The intercept of the fit line defines the a-value that
xplains the earthquake rate for the region selected. In our case a = 5.36. As expected, different catalogs exhibit different
eismicity levels quantified by the magnitude range and by the total number of events, corresponding to different values of
he constant a. Conversely, the parameter b appears to be quite independent of the geographical region and the temporal
nterval. Typical experimental results provide b ≃ 1 for tectonic earthquakes.

The second empirical law, the Omori law, was first described by the seismologist Omori in 1894 [368],

n(t) = K/(c + t)p, (134)

here n(t) is the aftershock rate, t is the time elapsed from the mainshock occurrence; K and c are empirical constants
ontrolling, respectively, the total number of aftershocks n(t) and the onset of the power law decay. p is a third constant,
hich modifies the decay rate and typically falls in the range 0.7–1.5.
The magnitude of an event understandably influences the number of aftershocks triggered by it, i.e., the larger the

ainshock magnitude, the larger is the total number of triggered aftershocks. This property is known as the productivity
aw, stating that the number of aftershocks nA [integral of Eq. (134)] belonging to a sequence increases exponentially with
he mainshock magnitude mM ,

nA ∝ 10αMmM , (135)

he parameter αM is typically small for swarm-type activity, and large for clear primary aftershock sequences [369].
The distribution of waiting times between seismic events has generated much attention and discussion over the

ast decades, since it was considered to have a universal scaling form [370]. Bak et al. proposed, for the first time, a
nified scaling law for the waiting times between earthquakes, expressing a hierarchical organization in time, space, and
agnitude. They considered the California earthquake catalog and covered the region with a grid of cells of size L × L.

12 https://earthquake.usgs.gov/data/.
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Fig. 43. Unified Scaling Law for Earthquakes. (a) The distribution PS,L(T ) of interoccurrence time T between earthquakes with magnitude m greater
than log10 S within an area of linear size L for the California catalog. (b) The scaling function, see Eq. (136), for the data in (a) with T > 38 s rescaled
with TαPS,L(T ) as a function of the variable x = cTS−bLdf , with c = 10−4 . The data collapse implies a unified law for earthquakes. The solid circles,
squares, and triangles correspond to magnitude cutoffs Mc = 2, 3, and 4, respectively. The color coding represents the linear size L = 0.25◦ (black),
.5◦ (red), 1◦ (green), 2◦ (blue), and 4◦ (orange) of the cells.

Source: Reprinted figure from Ref. [370].

Then they analyzed the inter-event times for each cell and calculated a histogram of the inter-event times PS,L whose
agnitudes are greater than m = log(S); this was repeated for different values of L and minimum magnitudes (see
ig. 43a). It was found that if they rescaled the inter-event times T by S−bLdf (where b is the Gutenberg–Richter b -value
nd df is the spatial fractal dimension), and rescaled PS,L by Tα , where α is some exponent, the distribution of waiting
imes all appeared to collapse onto a single curve (Fig. 43b). The scaling hypothesis was thus expressed as

TαPS,L(T ) = f
(
TS−bLdf

)
, (136)

here α ≈ 1 can be identified as the Omori-law exponent for aftershocks, b ≈ 1 is the b value in the Gutenberg–Richter
aw, and df ≈ 1.2 describes the 2d fractal dimension of the location of epicenters projected onto the surface of the
arth [370].
Subsequently, Corral [371] has discovered that the probability density function Dxy(τ ) of the inter-occurrence time τ

an be simplified to the scaling form

Dxy(τ ) = Rxyf (Rxyτ ), (137)

here Rxy stands for the mean seismic rate that refers to the (x, y) region. The scaling function f can be expressed by a
eneralized Gamma distribution,

f (θ ) = C
1

θ1−γ
exp

(
−θ δ/B

)
, (138)

ith the parameters γ = 0.67 ± 0.05, δ = 0.98 ± 0.05, B = 1.58 ± 0.15, and C = 0.50 ± 0.10. Corral verified the above
caling hypothesis by considering data from the global worldwide catalog from the National Earthquake Information
enter (NEIC)13 and several local catalogs: The Southern California Earthquake Center (SCEC),14 the Japan University
etwork Earthquake Catalog (JUNEC),15 the Bulletins of the IGN (the Iberian Peninsula and the North of Africa),16 and the
GS catalog (the British Islands and the North Sea).17 The inter-event time distributions for the different geographic areas
nd for different values of the lower magnitude can be collapsed into a universal scaling function, as shown in Fig. 44.
Bak et al. and Corral are the main two proponents of the idea of a universal scaling law. The validity of the scaling

elation Eq. (138) has attracted much interest. For example, Saichev and Sornette [372] carried out an extensive analysis
o determine the distribution of the inter-event time based on the Epidemic-Type Aftershock Sequences (ETAS) model
see more details in the following section), and they found that it is only approximately universal and of a gamma form,
ssuming that p in Eq. (134) has a value close to 1, and the branching ratio of seismicity, the average number of events each
vent triggers, is around 0.7–1. Then Molchan [373] published a rigorous mathematical study on the earthquake inter-
vent time, and proved that if the scaling distribution would be universal, the functional form must follow an exponential

13 http://earthquake.usgs.gov/contactus/golden/neic.php.
14 http://service.scedc.caltech.edu/eq-catalogs/.
15 http://wwweic.eri.u-tokyo.ac.jp/CATALOG/junec/.
16 https://www.ign.es/web/ign/portal.
17 http://www.earthquakes.bgs.ac.uk/.
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Fig. 44. Recurrence-time distributions without and with re-scaling. (a) Probability densities from the NEIC worldwide catalog. (b) Previous data,
fter re-scaling, with a fit of the scaling function f , see Eq. (138).
ource: Reprinted figure from Ref. [371].

unction. Touati et al. analyzed the variation of the distribution for both real data (SCEC catalog) and ETAS simulation
ata, and suggested that it is not universal [374]. They have shown that the distribution is a bimodal mixture distribution
ominated by correlated aftershocks at short waiting times and independent events at longer times.

.3.2. Modeling seismic time series by the point process approach
There are various statistical earthquake models for describing the occurrences process of earthquakes that can be

sed for real-time earthquake forecasts [375]. The principle of these models is to evaluate the probabilities of earthquake
ccurrence by using a point process approach. Among the different models, the ETAS model, which describes the features
f earthquake clustering of mainshocks, foreshocks and aftershocks, has become a standard model for testing hypotheses
nd a starting point for short-term earthquake forecasts [376–379].
Here we will focus on the ETAS model, which is used to generate synthetic earthquake catalogs. The ETAS model was

eveloped by Ogata [369,380,381] who observed that seismic activity can be well described by the Gutenberg–Richter
aw Eq. (133), and the Omori law Eq. (134). The conditional rate in the ETAS model is given by,

λ(t|Ht ) = µ + A
∑
i:ti<t

exp[αM (mi − Mz)]
(
1 +

t − ti
c

)−p

, (139)

here ti are the times of the past events and mi are their magnitudes; Ht = {(ti,mi); ti < t} is the history of occurrence.
(t|Ht ) provides the probability to have an earthquake above a threshold magnitude Mz at time t , given the earthquake

history. Here, A = K/cp is the occurrence rate of earthquakes in the Omori law at zero lag [374], and αM is called the
productivity parameter defined in Eq. (135). The ETAS model can also be written in terms of a stochastic integral [382],

λ (t|Ht) = µ +

∫
∞

m1

∫ t

0

K
(t − s + c)p

· eαM (m−Mz )N(ds, dm), (140)

where N(ds, dm) = 1 if an infinitesimal element (ds, dm) would include an event (ti,mi) for some i, otherwise N(ds, dm) =

0. The five parameters (µ, A, c, αM , p) represent some characteristics of seismic activity of the region. Therefore, they vary
spatially, and also temporally in some cases.

Then the ETAS model was extended to a space–time phase with the conditional intensity function [383],

λ (t, x, y|Ht) = µ(x, y) +

∑
i:ti<t

κ (mi) g (t − ti) f (x − xi, y − yi|mi) , (141)

where µ(x, y) still is the background intensity, which is a function of space, but not of time; κ(m) is the expected number
of events triggered from an event of a magnitude m in the form

κ(m) = A exp [α (m − Mz)] , (142)

g(t) is the probability density function of the occurrence times of the triggered events,

g(t) =
p − 1
c

(
1 +

t
c

)−p

. (143)

(x, y|m) is the spatial distribution of the triggered events, which can be expressed in the following two ways: a
hort-range Gaussian decay,

f (x, y|m) =
1

2 α (m−M )
exp

[
−

x2 + y2
2 α (m−M )

]
, (144)
2πD e M z 2D e M z

61



J. Fan, J. Meng, J. Ludescher et al. Physics Reports 896 (2021) 1–84

S

o

T
s
d

3

t
o
A
p
b
t
(
s
i

t
m

d

Fig. 45. Detrended fluctuation analysis of the interoccurrence times from the Californian catalogs. (a) For all earthquakes with magnitude M ≥ 2,
and (b) M ≥ 3. Black circles indicate the SCEC catalog (1995–1998) and red squares stand for the NCSN catalog (1995–1998), blue triangles represent
an artificial Gutenberg–Richter distributed correlated dataset with α = 0.8. The open symbols show the DFA0 results and the filled symbols the
DFA1 results. The corresponding slopes are represented by straight lines with α ≈ 0.75.
ource: Figure from Ref. [388].

r a long-range inverse power decay,

f (x, y|m) =
(q − 1)D2(q−1)eαM (q−1)(m−Mz )

π
[
x2 + y2 + D2eαM (m−Mz )

]q , q > 1. (145)

he ETAS model has been successfully used for operational earthquake forecasting, e.g., the complex Amatrice–Norcia
eismic sequence [384], next-day earthquake forecasts for the Japan region [385] and California region [386]. More general
iscussions on modeling seismic time series by the point process approach are given in Ref. [387].

.3.3. Memory analysis
In this subsection, we will review the memory analysis that has been applied to seismic records. The first method is

he so-called detrended fluctuation analysis (DFA), which is used to detect long-range correlations or long-term memory
f diverse time series, such as DNA sequences and climate records [180]. Details of the DFA are presented in Section 2.3.3.
ccording to Eq. (70), if the time series has a long-term memory, the fluctuation function F (n) increases according to a
ower-law relation with a exponent α. The DFA has been applied to earthquake interoccurrence times for the first time
y Lennartz et al. [388]. They tested the real and the synthetic records for long-term correlations by employing the first
wo orders of the detrended fluctuation analysis DFA0 and DFA1 on the SCEC catalog (1995–1998) and the NCSN catalog
1995–1998). They found that there exists a long-term memory between seismic events in the Californian catalogs, which
how up in characteristic fluctuations in both magnitudes and interoccurrence times. Both DFA0 and DFA1 have resulted
n a DFA exponent α ≈ 0.75, independently of the threshold Mz and the catalog, see Fig. 45.

A similar analysis, DFA2, has been applied to the real Israeli and Italian catalogs by Fan et al. [212]. They found that
he exponent α was also very close to 0.75 for the inter-occurrence time series between earthquake events with different
agnitude threshold Mz . Figs. 46a–d show the DFA2 results. They also performed DFA on other seismic variables, such as

the number of earthquake events and the released energy within a coarse time window dt . The energy of earthquakes was
efined as S(t) =

∑E(t)
l=1 10

3
2Ml(t), where E(t) denotes the number of events that occurred between t and t + dt , and Ml(t)

denotes the magnitude of the event. To deal with more homogeneous time series, Fan et al. switched to s(t) = log(S(t))
for S(t) > 1 and zero for S(t) ≤ 1 and e(t) = log(E(t)) for E(t) > 1 and zero for E(t) ≤ 1 [212]. Next, applying the DFA
analysis for the time series s(t) and e(t) in the Israeli and Italian catalogs, with different time windows dt , were tested.
It was found that for both regions and for all studied magnitudes, the value of the scaling exponent α is quite robust
∼ 0.75, i.e., the size of dt does not affect the memory exponent α. Thus, the return intervals, the number of events and
the released energy are significantly long-term correlated and have a very similar scaling exponent. The memory analysis
has also been applied on the ETAS model. The DFA2 of the inter-occurrence times, with the parameters A = 6.26, µ = 0.2,
p = 1.1, αM = 1.5 and c = 0.007, see Eq. (139), yields α ≈ 0.75 and is shown in Fig. 46e.

Another common method for studying memory in the occurrence of earthquakes is called conditional probability (CP),
which was introduced by Livina et al. [389]. Considering a time series of recurrence intervals, they sorted it in ascending
order and divided it into four 25% quantiles; i.e., the first quantile, Q1, represents the shortest 25% of waiting times, etc.
The distribution of recurrence times τ , that follow a prior recurrence time τ0, P(τ |τ0), was studied, where τ0 belongs to
either one of the quantiles at the extremes, Q1 or Q4. Note that for records without memory, P(τ |τ0) should be independent
of τ and should be identical to P(τ ). For the real data, Livina et al. found that P(τ |τ ) depends strongly on the previous
0 0
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Fig. 46. Interoccurrence time series and DFA from the Israeli, Italian and ETAS catalogs. (a) Interoccurrence time series between earthquake
vents from the Israeli (a) and Italian (b) catalogs using magnitude threshold Mz . DFA of the interoccurrence times from the (c) Israeli and (d) Italian

catalogs with different Mz values. (d) DFA of the interoccurrence times from the ETAS model, with parameters A = 6.26, µ = 0.2, p = 1.1, αM = 1.5
nd c = 0.007, see Eq. (139). The solid line is the best fitting line with slope α = 0.75, R-square > 0.99. For comparison, the shuffled data with
lope α = 0.5, indicating no memory, are presented in (d).
ource: Reprinted figure from Ref. [212].

ecurrence time τ0, such that short recurrence times lead to short ones, and long recurrence times follow long ones (see
igs. 47a, c for the Israeli and Italian catalogs). To quantify and measure the level of memory, Fan et al. analyzed the
umulative distribution function (CDF) of the recurrence times and denoted the CDF for Q , Q and Q as CQ (τ ), CQ (τ )
1 4 1
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Fig. 47. Memory analyses for the Israeli, Italian and ETAS catalogs. (a, c, e) Conditional PDF and (b, d, f) CDF of the recurrence times τ for the
(a, b) Israeli catalog above the threshold Mc = 2.0, for the (c, d) Italian catalog above the threshold Mc = 3.0 and for the (e, f) ETAS catalog above
the threshold Mc = 2.0.
Source: Reprinted figure from Ref. [212].

and CQ4(τ ), respectively. The strength of the memory for Q1 is defined as

ρ1 =

∫
(CQ1(τ ) − CQ (τ ))dτ/

∫
dτ , (146)

and similarly, the level of memory for Q4 is

ρ4 =

∫
(CQ4(τ ) − CQ (τ ))dτ/

∫
dτ . (147)

Thus, 0 ≤ ρ1 ≤ 1 and −1 ≤ ρ4 ≤ 0, and higher |ρ1| (or |ρ4|), imply stronger memory and ρ1 = 0 (or ρ4 = 0), implies
no memory [212]. The results are shown in Fig. 47b and d for the Israeli and Italian earthquake catalogs. They found
ρ1 = 0.248, ρ4 = −0.193 for Q1 and Q4 of the Israeli catalog, whereas ρ1 = 0.260, ρ4 = −0.153 for Q1 and Q4 of
the Italian catalog [212]. Further study suggests that the values of ρ are robust and do not depend on Mz . To study the
dependence of the correlations (α, ρ1, and ρ4) on the geographical location (tectonic setting), they performed the DFA and
CP analysis for other earthquake catalogs, including New Zealand, Southern California Earthquake Center, Japan unified
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t has been found that for all catalogs and for all studied magnitudes the values of α, ρ1, and ρ4 are quite robust.

Finally, the memory analyses DFA2 and CP, were performed in ETAS models, by measuring the coefficients α, ρ1 and
ρ4, as shown in Figs. 46 and 47. The results indicate that the empirically observed earthquake memory (for Israeli catalog)
can be reproduced only for a narrow range of the model’s parameters. Moreover, the origin of memory in the ETAS model
is influenced by: (i) the model’s background (noise) rate parameter µ which, affects the memory through the interference
of temporally overlapping aftershock subsequences, i.e., smaller µ leads to stronger memory, and (ii) the branching ratio
n′

=
Ac
p−1

β

β−αM
: the exponent relating the production of aftershocks as a function of magnitude, αM , and the power p of

Omori’s law can also affect the memory through the branching ratio of the ETAS model, i.e., smaller p and larger αM result
in a stronger memory (see Figures. 11 and 12 in Ref. [212]).

More recently, a lagged CP method was introduced by Zhang et al. to study a possible long-term memory in both the
interevent times and distances of earthquakes [390]. The CP of times and distances were defined as ρ (τk|τ0) and ρ (rk|r0),
respectively, where τ0 (r0) belongs to the Q1 or Q3 group. τk (rk) is the lagged kth inter-event time that follows τ0 (r0).
In order to quantify the level of memory, S (τk|τ0) ≡ 1 − s13 was introduced, where s13 is the common area of the PDF
between Q1 and Q3. Here S (τk|τ0) ∈ [0, 1]. Similarly, S (rk|r0) represents the level of memory for the inter-event distances.
Interestingly, it has been shown that S(k) can be expressed by the following scaling form,

S(k) = L−duF (k · 10bMz )10aMz , (148)

here du and a are constants, b = 1 as for the Gutenberg–Richter law. The distribution of S (τk|τ0), S (rk|r0) and their
corresponding scaling functions for the Italian catalog are presented in Fig. 48, where du = 0.14 and a = 0.09 for the
inter-event times τ ; du = −0.08 and a = 0.24 for the inter-event distances r . The scaling functions shown in Fig. 48c
and d suggest a crossover between two distinct power-law relations with F (x) ∼ x−γ . Both scaling functions exhibit
a significant crossover at k · 10bMz ≃ 105. These results indicate that the memory measure of different grid sizes and
different magnitude thresholds can be rescaled into a single function. However, it was found that the memory function
in the ETAS model is very different from that of real earthquake catalogs, i.e., the model’s memory is weaker (stronger)
on short (long) timescale compared to the real catalogs. Moreover, the model does not exhibit a clear crossover observed
in the real catalogs.

3.3.4. Earthquake forecasting
Earthquakes are one of the most destructive natural disasters in the world. Skilled and reliable earthquake forecasting

remains an ultimate goal. The term earthquake prediction is usually referring to the specification of the occurrence time,
location or magnitude of a future earthquake. However, ‘‘the term earthquake forecasting usually refers to the evaluation
of the occurrence probability PΣ of an earthquake inside a hypercell of volume Σ centered in the point ω⃗ = (t, x, y, z,m).
Therefore, the fundamental quantity is the occurrence probability PΣ (ω⃗|ℓ) conditioned on the whole set of information ℓ
available at time t ’’ [36]. The probability of having an earthquake at time t , in the kth interval conditioned to the previous
history is

P
(
ζk = 1|Htk

)
= λ

(
ω⃗k|Htk

)
dΣ + O

(
dΣ2) , (149)

where λ is the local conditional rate as defined in Eqs. (139) or (141), ω⃗k denotes the center of the kth cell. The forecasting
probability, PΣ the integral over Σ of the occurrence rate λ

(
ω⃗k|Htk

)
, depends on the volume of the hypercell Σ , i.e., the

smaller Σ , the more accurate is the evaluation of λ. Secondly, the temporal extension T of Σ also influences the forecasting
accuracy. According to the time scale of T , one can separate arbitrarily Long-Term from Short-Term forecasting [391]:
earthquake Long-Term forecasting, for T in the interval of decades to centuries; Intermediate-Term forecasting, for T of
the order of months and Short-Term forecasting, for T in the interval from few seconds up to several weeks. Short-
Term forecasting is usually subdivided into post-seismic and pre-seismic forecasting, referring to the aftershock and
foreshock of a mainshock. It is notable that the post seismic forecasting is still very important from the point of view
of risk management, since aftershocks can have sizes comparable or even larger than their triggering mainshock. Long-
Term forecasting, however, is probably the most relevant from the engineering point of view, such as urban planning risk
assessment. Based on the early warning foreshock observations, one could successfully predict some big earthquakes, such
as the 1975 Haicheng, China earthquake [392] and the 1995 Kozani–Grevena, Greece earthquake [393]. Nevertheless, most
earthquakes do not present significant precursory patterns, e.g., the 2004 Parkfield (California) earthquake [394]. Thus the
evaluation of foreshocks or precursory patterns is still an open question. Since most earthquake models are based on the
well-established empirical laws, aftershock spatio-temporal occurrence clustering, as the ETAS model, they are able, in
some degree, to provide reliable risk assessment only for the Long-Term and the post-seismic Short-Term forecasting but
not for the foreshocks. Nevertheless, how to validate a forecasting model is still of great importance. In the following, we
will review various methods for evaluating earthquake predictions and earthquake forecasts.

Receiver operating characteristic diagram
The receiver operating characteristic (ROC) diagram is a graphical plot that illustrates the prediction quality of a

binary classifier system as its discrimination threshold is varied. For evaluating earthquake predictions, if an earthquake
is expected (‘‘YES’’) with a probability PΣ > Pt , where Pt is a threshold, we call it a hit, if an event has occurred; if

earthquakes are not expected (‘‘NO’’) in the cell, we call it a miss, if an event has occurred. Each ‘‘YES’’ prediction in which
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Fig. 48. The lagged CP memory analysis for the inter-event times and distances from the Italian catalog. The memory measures (a) S(τk|τ0) and
b) S(rk|r0) as a function of the lag index k. Rescaled memory measure (c) for inter-event times and (d) distances. Colors represent different grid
izes L. The shapes of the symbols represent different magnitude thresholds Mz .
ource: Reprinted figure from Ref. [390].

o corresponding earthquake is observed is a false alarm, and each ‘‘NO’’ prediction in which no earthquake occurred is
correct rejections. In this representation, there are four possible combinations of alarm declaration and event observation,
ee Table 1 for the number of each of these contingencies. Here we define a as the number of hits, b as the number of
alse alarms, c as the number of misses and d as the number of correct rejections, respectively. We define a true positive
ate (TPR) as

TPR =
a

a + c
, (150)

nd false positive rate (FPR) as

FPR =
b

b + d
. (151)

hen TPR and FPR are plotted together on the square [0,1] × [0,1], the resulting metric is called the ROC, whereas the
erfect prediction corresponds to the point with coordinates TPR = 1 and FPR = 0, the diagonal line represents the

long-term behavior of random guessing. One can obtain the full ROC curve by changing Pt continuously. Here we show
n aftershock forecasting ROC curve by using a deep learning method in Fig. 49 as an example.
The Molchan diagram
Closely related to the ROC is the Molchan diagram, which is an error diagram that allows to compare the prediction of

he test model and another generic reference model [396]. It is a plot of the miss rate, M = 1 − TPR, and the fraction of
xperiment space–time volume, F , occupied by alarms or YES predictions. The best prediction in the Molchan diagram is
he point (F = 0,M = 0). In particular, the probability of obtaining h or more hits by chance, given that there have been
66
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Fig. 49. An example of ROC curves based on the neural network. (a) The true positive rate is plotted versus the false alarm rate. (b) For a
synthetic case of a 60-km-long, right-lateral strike-slip fault (red lines) at a depth of 10 km. The dashed diagonal represents random prediction (the
null-hypothesis).
Source: Reprinted figure from Ref. [395].

Table 1
Contingency table for a binary event.

Observation

YES NO

Forecast YES a = number of hits b = number of false alarms
NO c = number of misses d = number of correct rejections
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observed target earthquakes, is described by the binomial distribution

ΓM =

n∑
i=n

[(
N
i

)
F i(1 − F )n−i

]
(152)

here
(

n
i

)
stands for the binomial coefficient. One can obtain a confidence level curve in the Molchan diagram by

ixing ΓM and changing F continuously. Therefore, a very small ΓM value suggests that the alarm set has high skill.
The Number test (N-test)
The N-test is used to access how well the total number of forecasted earthquakes Nforecast matches the number of

events observed Nobs [397]. The target earthquakes are assumed to follow a generalized Poisson distribution, and the
mass function of the negative binomial distribution (NBD) can be expressed as [384]

f (n; r, p) =
Γ (r + n)
n!Γ (r)

pn(1 − p)r , (153)

where Γ (r) is the gamma function, n is the number of target earthquakes, and r, p are the two parameters of the
distribution. Then NBD can be derived as

f (n; r, p) =

∫
∞

0
f1(n; λ)f2

(
λ; r,

1 − p
p

)
dλ, (154)

here f1(n; λ) is the Poisson distribution and λ is assumed to follow a gamma distribution

f2(λ; k, θ ) =
λk−1e−

λ
θ

θ kΓ (k)
, (155)

here k, θ are the parameters of the gamma distribution with r = k and p =
θ

1+θ
. Next, we calculate the parameters k

nd θ of the gamma distribution. To interpret the N-test results, one can use a one-sided test with an effective significance
alue αeff , which is half of the intended significance value α = 0.05. Fig. 50c shows an example of the N-test.
The Space test (S-test)
The S-test is a likelihood test where only the spatial distributions of the forecast and the observation are consid-

red [398]. The S-test can be summarized by a

ζ =
n {Si|Si ≤ S, Si ∈ Ss}

n {Ss}
, (156)

here Si is the ith simulated spatial likelihood, Ss is the set of simulated spatial likelihoods, S is the likelihood of the
patial forecast relative to the observed, n{A} is the number of elements in a set {A}. If ζ is less than critical significance
value α, the observed spatial distribution is inconsistent with the forecast. However, values close to 1 indicate optimal
spatial forecasts. We show an example of the S-test in Fig. 50a.

Besides the aforementioned methods, there are still various other methods that have been developed to evaluate the
accuracy of a forecasting model, such as, the Likelihood test (L-test), the Likelihood Ratio test (R-test) and the Magnitude
test (M-test). An instructive review on the evaluation of earthquake predictions and earthquake forecasts can be found
in Ref. [399].

As discussed in the last section, we studied the possible origin of memory in earthquakes for both real catalogs and
ETAS models. Here, we will show that the memory analysis can significantly improve the short-term forecasting rate for
the real earthquake catalog. In estimating the ETAS model parameters for a given earthquake catalog, the ETAS parameters
are commonly inverted from the data based on the point-process maximum likelihood (ML) method, by the Davidon–
Fletcher–Powell algorithm [380] or by simulated annealing [400]. For example, by using the ML method, one can obtain
µ = 0.2, A = 6.26, αM = 1.4, p = 1.13 and c = 0.007, see Eq. (139), for the Italian catalog [400]. When considering the
emory, however, the ETAS model can reproduce the same memory as in real catalogs, only for a small range of parameter
alues, i.e., µ = 0.2, A = 6.26, αM = 1.5, p = 1.1 and c = 0.007 [212]. As a test case the cumulative number of events, NC,

after the Capitignano 5.7 main shock that happened on 18 January 2017 [401], was forecasted by using the ETAS model.
The cumulative number at time t is calculated by integrating Eq. (139) from 0 to t . This way the forecasting accuracy
within 14 days after the main shock can be improved by more than 20% by considering the memory. Moreover, a revised
and generalized ETAS model was proposed recently by Zhang et al. in which the short- and long-term/distance memory
was reproduced accurately [402]. The new ETAS model is also found to significantly improve earthquake forecasting for
the Italian and South California earthquake catalogs.

4. Conclusions and perspectives

In this article, we have reviewed statistical physics and complex networks-based techniques that advance our
knowledge on the complex Earth system, a relatively novel branch of geophysics. These techniques can help to address
the understanding as well as the prediction of climate variability, Earth geometric relief features and earthquakes. In this
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Fig. 50. The statistical tests for earthquake forecasting for the complex Amatrice–Norcia seismic sequence. (a) The Space test (S-test). The red
ashed horizontal line is the critical value ζ = 0.05 for rejection. (b) Expected number of target earthquakes for each forecast. (c) The Space test
S-test): probability distribution of the expected number of target earthquakes with a 95% confidence interval (marked by red) and the observed
umber of target earthquakes (vertical dashed blue line). (d) The CDF of the forecast and observed frequency–magnitude distribution.
ource: Figure from Ref. [384].

ection we try to draw a few concluding remarks and address the perspectives that remain still open for future research.
e believe that these novel approaches will attract the attention of scientists in the related fields.
In Section 2 we started by describing the overall methodology based on statistical physics for analyzing important

spects of complex Earth subsystems. It includes complex networks, percolation theory, tipping points analysis, entropy
heory and complexity. Although it was shown that the aforementioned approaches can be successfully applied to Earth
ystems individually or in a combination, there is still a lot of work ahead in order to develop a proper and comprehensive
ramework. Among the different open problems to be solved, we highlight the following four: (i) The need of gathering a
etter knowledge and understanding on the underlying physical mechanisms; (ii) The need of extending concepts of CNs
o a more comprehensive description, such as multilayer climate networks [403]. This is since the climate is a coupled
nd multilayered system; (iii) The need of developing a universal theory of critical phenomena (percolation) in climate
ystems, in particular for out-of-equilibrium systems; (iv) The need of proposing a principle on how to anticipate the
ipping points and entropy of the Earth system by means of time series of multiple spatio-temporal variables.

In Section 3, we have continued by reviewing the applications of statistical physics approaches to different Earth
ubsystems. Specifically, five weather and climate dynamical scenarios were highlighted in Section 3.1, including, El
iño-Southern Oscillation, Indian summer monsoon, extreme rainfall, atmospheric circulation and Atlantic meridional
verturning circulation. We suggested that the evolving CNs (and other combined approaches) interactions and patterns
an serve as novel predictors which significantly improve the predictions. Beside the above mentioned scenarios, the
Ns method was also widely applied to other high-impact phenomena, such as the westward propagation of the
tlantic multidecadal oscillation [99], the detection of teleconnection paths [62], the identifying of causal gateways and
ediators [404], the early prediction of extreme stratospheric polar vortex states [405], the impacts of carbon dioxide

CO2) on global SAT [406], etc. In spite of the great achievements, there are still many unexplored problems related to
limate systems that merit further attention. Therefore, further topics are needed to be investigated, for example, (i) how
uman activities have changed and continue to change the Earth’s oceanic and atmospheric composition, some of these
hanges have a direct or indirect impact on the energy balance of the Earth and are thus drivers of climate change; (ii) The
tatistical mechanics and CNs behaviors in Earth System Models, ranging from simple energy balance models to general
irculation models; (iii) The projected short-term and long-term abrupt phase transitions in paleoclimate, in particular,
he role of sea ice and Snowball-Earth initiations [407–409]; (iv) Improving the predictability of severe convective weather
rocesses including thunderstorms, hail and tornadoes by using the CNs approach.
In Section 3.2, we have reviewed the current literature on the statistical features and the percolation framework of the

arth’s surface topography. We have pointed out the evidence for abrupt transitions that occurred during the evolution
f the Earth’s relief network, indicative of a continental/cluster aggregation. A further analysis via fractional Brownian
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Table A.2
Scientific acronyms.
Acronym Meaning

ACF Autocorrelation function
AIRI All India Rainfall Index
AMOC Atlantic Meridional Overturning Circulation
ApEn Approximate Entropy
CNs Climate networks
DFA Detrended fluctuation analysis
EBM Energy Balance Model
EEG Electroencephalogram
ENB El Niño Basin (ENB)
ENSO El Niño-Southern Oscillation
ESMs Earth System Models
ESS Earth System Science
ETAS Epidemic Type Aftershock Sequence
EWS Early warning signals
FAMOUS Fast Met Office/UK Universities Simulator (FAMOUS)
fBm fractional Brownian motion
GCM General Circulation Model
GHGs Greenhouse Gases
ISM Indian Summer Monsoon
NAO North Atlantic Oscillation
OD Onset date
ONI Oceanic Niño Index (ONI)
ROC Receiver Operating Characteristic
SampEn Sample entropy
SLP Sea Level Pressure
SST Sea Surface Temperature
SPB Spring Predictability Barrier
SysSampEn System Sample Entropy
WD Withdrawal date

motion models suggests that long-range correlations may play a key role in the observed discontinuity on Earth. This
research may facilitate the understanding of the geometrical phase transition on Earth, but also can be used to identify
the critical nodes for future global change in Earth’s relief network. In particular, (i) the future movement of tectonic
plates, as well as (ii) the dynamic evolution of these critical nodes are of key importance and thus need to be further
addressed.

In Section 3.3, we first presented a description of the well established empirical basic laws of earthquakes, including
he Gutenberg–Richter, Omori and productivity laws. We then discussed the scaling hypothesis of the inter-event
istributions. An epidemic-type aftershock sequence model (ETAS) and various methods for evaluating earthquake
redictions and earthquake forecasts have been also reviewed. At last, we have shown that the two proposed memory
nalysis approaches, DFA and CP, can significantly improve the short-term forecasting rate for real earthquake catalogs.
evertheless, earthquake prediction research has been plagued by controversy, and it remains an outstanding challenge.
esides the improvement of short-term aftershock forecasting, we also emphasize the potential of new directions. (i) The
ide applications of tipping points and memory analysis in theoretical earthquake models which account for accelerated
oment release and foreshock occurrence together with other precursory patterns, where mainshocks were treated as
haracteristic earthquakes within a seismic cycle [410]. (ii) The development of an earthquake forecasting model which is
mplemented for describing foreshock organization and memory behaviors. (iii) Motivated by the successful applications
f network theory to the prediction of climate phenomena, the proposing of an earthquake network framework based
n the occurrence time series [411], or in particular the seismic waves (elastic body and shear waves) and elastogravity
ignals preceding direct seismic waves [412].
One of the key features of statistical physics-based approaches reviewed here is the ability to better and reliably

orecast the complex Earth phenomena, such as El Niño events, extreme rainfall in the Eastern Central Andes, Indian
ummer monsoon, the collapse of the Atlantic multidecadal oscillation and the occurrence of earthquakes. Moreover, we
bserved that artificial intelligence and deep learning techniques [413] have achieved great success during recent years
n many fields, such as phase transitions in statistical physics [414–416], data-driven Earth system science [417], ENSO
orecasts [294,295], Indian monsoon rainfall [418], as well as the forecasting aftershock patterns [395] and detecting
arthquakes [419] in seismic systems. In fact, we are confident that the combination and complement of network-based
nd artificial intelligence-based skills will boost each other. For instance, an application of machine learning to network
ttribute vectors (products similarity) can predict successful and failing firms with much better accuracy than current
tate of the art techniques for market forecasting [420]. In addition, deep learning systems can be regarded as complex
etworks, which thus gain some insights into the structural and functional properties of the computational graph resulting

rom the learning process [421].
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Table A.3
Institutional acronyms.
Acronym Meaning

AR Assessment Report
CMIP Climate Model Intercomparison Project
ECMWF European Center for

Mid-range Weather Forecast
JUNEC Japan University Network Earthquake Catalog
IMD Indian Meteorological Department
IPCC Intergovernmental Panel on Climate Change
NCAR National Center for Atmospheric Research
NCEP National Center for Environmental Prediction
NEIC National Earthquake Information Center
PCMDI Program for Climate Model
SCEC Southern California Earthquake Center

As a final remark, there is still room for many approaches considering the analysis of climate resilience of societies,
ecosystems and economies by using the complex network theory. We currently lack appropriate models to better
understand or predict the effects of cascading failures [30] triggered by the increasing adverse effect of extreme
climate/weather events on interdependent critical infrastructures. Closing this knowledge gap is crucial for developing
means to achieve both climate and infrastructure resilience. Another very relevant subject of investigation that will
certainly attract huge attention is the assessing and quantifying of the complex climate–health relationships. There
is an overwhelming consensus that climate conditions, including temperatures and spatial–temporal distribution of
precipitation, has key implications for human health [422]. Moreover, the morbidity and outbreak of some disease,
such as the vector-borne (malaria and dengue fever) disease, the ongoing COVID-19 pandemic [423], and influenza are
strongly affected by the climate change or the environment [424–428]. However, the climatic influences are often excluded
from consideration in the traditional epidemiologic models [113], e.g., the SIR, SIRS and SEIR models. What we need to
emphasize is that traditional epidemiologic models with taking into account the climate factor could be a very promising
road towards a deeper understanding of epidemic processes and assess the health consequences of climate change both
regionally and globally.
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Appendix. Acronyms

This Appendix contains two tables of acronyms used throughout the paper: Table A.2 contains the scientific acronyms
and Table A.3 the institutional ones.
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