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Key Points: 

• The uncertainty in Soil organic carbon (SOC) change is dominated by differences 
between model structure rather than by climate forcing. 

• Soil input changes explain most variations in projected SOC change for natural 
vegetation across models at global and region. 

• The effective reduction in constrained SOC change depends on climate forcing and 
region considered. 
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Abstract 1 

Soil organic carbon changes (ΔSOC) are regulated by climate and land use change. Here, we 2 

analyze regional and global ΔSOC from 1861 to 2099 based on five Terrestrial Biosphere 3 

Models (TBMs) simulations of the Inter-Sectorial Impact Model Inter-comparison Project 4 

Phase 2b. The TBMs were driven by harmonized gridded land use change and bias-adjusted 5 

climate forcing data from different General Circulation Models (GCMs) for climate scenarios 6 

RCP2.6 and RCP6.0. Between 2005 and the end of this century, we estimated an increase of 7 

SOC for two scenarios with large uncertainty, which is dominated by differences between 8 

TBMs. We present a new emergent constraint approach to constrain future modeled ∆SOC 9 

over natural vegetation from RCP6.0 simulations using recent observed trends of net primary 10 

productivity as a proxy of litter inputs to soil pools. Our results showed that the uncertainties 11 

in constrained ΔSOC can be reduced in comparison with the original model ensemble, but 12 

constrained values of ∆SOC depend on the choice of a GCM and climate regions. For the 13 

reduction of the SOC density in areas where cropland expanded (∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) over 14 

natural vegetation as a result of land use change, the constrained ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 still 15 

features large uncertainties due to uncertain observed data. Our proposed emergent constraint 16 

approach appears to be valuable to reduce uncertainty on SOC projections, but it is limited 17 

here by the small number of models (five) and by the uncertainty in the observational data. 18 

Applications to larger ensembles from Earth System Models should be tested for the future. 19 
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1. Introduction 20 

Soil organic carbon (SOC) is the largest carbon pool in the terrestrial biosphere, 21 

containing 2.3~5.3 times more carbon than the vegetation and the atmosphere (Ciais et al. 22 

2014). Due to its large pool size and gross exchange fluxes representing annually more than 23 

10% of the mass of carbon in the atmosphere, soil carbon plays a very important role in 24 

regulating the global carbon cycle. Soil organic carbon change (ΔSOC) is controlled by input 25 

from plants (litter, exudates), by lateral fluxes (e.g. erosion of particulate organic matter, 26 

dissolved organic matter runoff) and by the rate of soil organic matter decomposition (Todd-27 

Brown et al., 2013; Carvalhais et al., 2014; Yan et al., 2014; Wu et al., 2018). These processes 28 

are affected by climate and land-use change. Land-use change over the last century was 29 

dominated by the conversion of forests and natural grasslands to cropland and pasture. 30 

During this process, SOC inputs are reduced because most of agricultural net primary 31 

production (NPP) is lower than that of natural systems (Kolby Smith et al., 2014; Neumann 32 

and Smith, 2018) and because only the non-harvested fraction of agricultural NPP is returned 33 

to SOC (Haberl et al., 2007; Krausmann et al., 2008). Climate change through temperature 34 

and precipitation changes, directly modifies both carbon input rates to SOC and 35 

decomposition rates. Quantifying and separating the effects of climate change and land use 36 

change on SOC change at regional and global scales to improve future ΔSOC projections is a 37 

key research challenge, which has implications for mitigation solutions based on increasing 38 

soil organic matter stocks in soils. 39 

Observational data are valuable to quantify the global spatial distribution of SOC 40 

(Harmonized World Soil Database (HWSD; FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), the 41 

Northern Circumpolar Soil Carbon Database (NCSCD; Tarnocai et al., 2009), the World 42 

Inventory of Soil Emission Potentials (WISE30sec; Batjes, 2016), the Unified North 43 

American Soil Map (UNASM; Liu et al., 2013), and the SoilsGrids250 database (Hengl et al., 44 

2017)). For evaluating, historical changes of SOC, there are only few sites where long-term 45 

measurements are available, especially for natural ecosystems. Meta-analysis of SOC 46 

changes after land use change were reported by previous studies (Post and Kwon, 2000; Guo 47 

and Gifford 2002; Li et al., 2017; 2018). Observed regional changes of SOC from inventories 48 
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are reported by some studies (Bellamy et al., 2005; Hamdi et al., 2013; Doetterl et al., 2015). 49 

Modeled estimates of global and regional SOC changes during the the historical 50 

period have been reported by terrestrial biosphere models (TBMs; e.g. Tian et al., 2015b) and 51 

in some cased data-driven models, e.g. Sanderman et al., (2017) for grasslands SOC losses 52 

due to past land use. For future projections, estimations of SOC changes are based on TBMs 53 

coupled with General Circulation Models (GCMs) or run offline with climate forcing from 54 

GCM simulations. Projections of SOC from coupled models are particularly uncertain 55 

(Nishina et al., 2014; Todd-Brown et al., 2014; Koven et al., 2015; Luo et al., 2016), partly 56 

because models are not well calibrated and evaluated against observed data (Xiao et al., 2014; 57 

Luo et al., 2016), and partly because carbon cycle coupled models have climate biases. 58 

Global SOC stocks were found to vary from 510 to 3040 Pg C in the period 1995-2005 59 

among 11 models of the Coupled Model Inter-comparison Project 5 (CMIP5) (Todd-Brown et 60 

al., 2013). This large range was attributed to differences in model structure, parameter values, 61 

and climate input fields. To better understand the different sources of model uncertainties, 62 

model-to-model variation in ΔSOC was decomposed into uncertainties due to initial SOC 63 

stocks (the SOC stocks during 1997-2006), relative changes in soil inputs and decomposition 64 

rates / turnover times following ideas proposed by Todd-Brown et al., (2014) and Koven et 65 

al., (2015). 66 

Compared to ensembles of SOC simulations from fully coupled GCMs that differ in 67 

their climate, ensembles of SOC simulations from offline TBMs forced by bias-adjusted 68 

climate forcing data allow us to focus on structural errors of TBMs. Over the historical period 69 

(i.e., 2010) during which climate forcing can be obtained from observations to drive TBMs, 70 

Tian et al., (2015b) analyzed SOC from 10 models of the Multi-scale Synthesis and 71 

Terrestrial Model Inter-comparison Project (MsTMIP). They found that i) the magnitude of 72 

SOC stocks ranged from 425 to 2111 Pg C across models, slightly narrower the range (510-73 

3040 Pg C during 1995-2005) of TBMs reported by Todd-Brown et al., (2013) and ii) 74 

cumulative SOC changes during the historical period differed from -70 to 86 PgC. This large 75 

spread suggests that model structural errors are dominant in both initial SOC stock and SOC 76 

changes simulations. Up to now, no study has linked systematic errors of modeled SOC 77 
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change errors between the historical period and future projections. 78 

The emergent constraint approach allows using historical simulations and observed 79 

data to reduce uncertainty in future projections of earth system variables (Hall et al., 2019). 80 

This approach relies on the assumption that historical or present-day differences between 81 

models and observed data are preserved in future projections and reflect stationary 82 

differences explained by models’ structure. Thus, if we can estimate an effective emergent 83 

constraint using contemporary observations, it helps to downweigh less realistic models and 84 

reduce the spread of the ensemble. This approach was applied to constrain for instance snow 85 

albedo temperature sensitivities (Hall et al., 2019), tropical carbon cycle sensitivity to 86 

warming (Cox et al., 2013), global ratio of plant transpiration to total terrestrial 87 

evapotranspiration (Lian et al., 2018), future yield changes (Zhao et al., 2016), and CO2 88 

fertilization of land photosynthesis (Wenzel et al., 2016). Such an approach was also applied 89 

to reduce the uncertainty in projections of permissible emissions for climate stabilization 90 

(Jones et al., 2006). In this study, we attempt to apply a new emergent constraint approach to 91 

reduce uncertainties related to future SOC changes (∆SOC) by an ensemble of offline 92 

terrestrial carbon cycle models, hereafter called terrestrial biosphere models or TBMs. 93 

Specifically, we aim to: 94 

(1) Compare ΔSOC in past and future from five different ISIMIP2b terrestrial 95 

biosphere models (LPJ-GUESS, LPJmL, VISIT, ORCHIDEE-MICT and DLEM) forced by 96 

the same set of bias-adjusted climate forcing from different climate models under two 97 

different greenhouse gas concentration pathways (RCP 2.6 and RCP 6.0) and corresponding 98 

land use scenarios. 99 

(2) Quantify the contributions of initial soil carbon, changes in decomposition rate, 100 

and changes in soil inputs to the model spread of ΔSOC in natural ecosystems, that is 101 

ecosystems where the climate and CO2 perturbation dominates SOC changes.  102 

(3) Reduce the model spread of ∆SOC in natural ecosystems caused by climate and 103 

CO2 driven soil carbon inputs changes, using observed input changes approximated by NPP 104 

trends, with an emergent constraint approach. 105 
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(4) Reduce the model spread of ΔSOC in ecosystems where land use conversion of 106 

natural ecosystems to croplands has been driving SOC, using observations of SOC densities 107 

changes before and after land use, with an emergent constraint approach. 108 

2. Methods 109 

2.1 ISIMIP2b biome models and simulation set-up 110 

The Inter-Sectoral Impact Model Intercomparison Project Phase 2b (ISIMIP2b) 111 

provides simulations of TBMs driven with several bias-adjusted climate fields and land use 112 

change scenarios for the period from 1861 to 2099 (Frieler et al., 2017). The ISIMIP2b 113 

models were driven by gridded, daily bias-adjusted climate from different CMIP5 GCMs 114 

(Lange 2016; Frieler et al., 2017), global annual atmospheric CO2 concentration, and 115 

harmonized annual land use maps (Klein Goldewijk et al., 2017). Models performed a spin 116 

up to simulate land carbon pools in 1860 as described in the protocol 117 

(https://www.isimip.org/protocol/#isimip2b). The use of bias-adjusted climate data ensures 118 

that TBMs are forced by climate that match observations in the last 40 years of the historical 119 

period, and that there is no discontinuity of climate forcing between the past and the future. 120 

Note however that decadal and inter-annual variations of the ISIMIP2b climate forcing do not 121 

match observed climate variability since variability follows the one of each GCM. Decadal 122 

and inter-annual climate variability as well as historical climate trends thus differ between 123 

bias-adjusted GCMs. The key point is that the use of common bias-adjusted climate forcing 124 

for the historical period and the future in this study reduces the spread in SOC projections 125 

from TBMs compared to using TBMs fully coupled with climate models that have 126 

considerable climate differences. This makes it possible for us to focus on structural 127 

uncertainties from TBMs, and yet to examine the impact of different GCMs and scenarios for 128 

the future.  129 

Five TBMs from the ISIMIP2b biome sector were used (Table S1): LPJ-GUESS 130 

(Smith et al., 2014), LPJmL (Bondeau et al., 2007), VISIT (Ito and Inatomi 2012), DLEM 131 

(Tian et al., 2015a), and ORCHIDEE-MICT (Guimberteau et al., 2018). These models differ 132 

in their biogeochemical parameterizations and thus in their simulated response of SOC to 133 

climate and land use change (Table S1; Text S1) but they nevertheless share the same 134 
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philosophy for their soil carbon modules using first order kinetics equations applied to one to 135 

three pools adjusted by soil temperature and moisture. SOC stock at soil depth of 0-1 m was 136 

calculated from carbon mass in soil pool (litter was not included) based on ISIMIP2b 137 

simulations. All models simulated carbon cycling in terrestrial ecosystem with different 138 

discretization of vegetation into plant functional types (PFTs). Three models (ORCHIDEE-139 

MICT, LPJmL and DLEM) include permafrost. None of the models includes wetlands (Table 140 

S1). We selected TBM output from simulations driven by bias-adjusted daily climate forcing 141 

of four different GCMs: GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR and MIROC5 142 

(Frieler et al., 2017) at a spatial resolution of 0.5°×0.5° for the RCP 2.6 and RCP 6.0. An 143 

exception is ORCHIDEE-MICT, which used climate forcing at a resolution of 1.0°×1.0° and 144 

its results were downscaled to 0.5°×0.5°. 145 

Historical land use change (LUC) forcing for ISIMIP2b was derived from the LUH2 146 

gridded reconstruction based on HYDE3.2 data (Klein Goldewijk et al., 2017). The LUH2 147 

data was further disaggregated into annual land use maps with major crop types, rainfed and 148 

irrigated (Monfreda et al., 2008) for ISIMIP2b. Future land use change forcing was based on 149 

projections from the MAgPIE land use model (Popp et al., 2014; Stevanović et al., 2016) 150 

assuming population growth and economic development following the SSP2 storyline (Popp 151 

et al., 2017) and including climate change impacts on crop yields estimated by the LPJmL 152 

crop model (Müller and Robertson, 2014) for each RCP scenario (Frieler et al., 2017). To 153 

ensure continuity of spatially explicit land use change forcing from historical to future period, 154 

the LUH2 harmonization method was applied (Frieler et al., 2017).  155 

Variable agricultural area (cropland and pasture) from LUH2 was used as input to 156 

TBMs. Each model started from the same 1860 agricultural area from LUH2 and non-157 

harmonized pre-industrial natural vegetation distributions, and used different transition rules 158 

for converting a fraction of natural vegetation to LUH2 agriculture land (or vice-versa) in 159 

each grid cell, each year. The models did not report SOC for each PFT in each grid cell, 160 

which would have allowed a precise evaluation of SOC changes in agricultural land use type 161 

vs. natural PFTs, separately. To overcome this limitation, we calculated ‘∆SOC from cropland 162 

dominated areas’ by selecting only grid cells where the cropland fraction is larger than 30% 163 
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in 2005 (Figure S1).  164 

Three groups of simulations defined by the ISIMIP2b protocol were analyzed (Frieler 165 

et al., 2017; Table 1). Group 1 contains simulations driven by historical climate and land use 166 

change during 1861-2005. Group 2 contains simulations driven by future climate change with 167 

a fixed future land use map equal to that of year 2005. Group 2 simulations are thus driven 168 

only by climate change and named after CC. Group 3 contains simulations driven by both 169 

future climate and land use change (hereafter, CC+LUC). The difference of SOC between 170 

Group 2 and Group 3 simulations gives the effect of future land use change (LUC) assuming 171 

drivers are additive.  172 

<<Table 1>> 173 

We separated the analysis of ∆SOC between grid-cells dominated by cropland 174 

(cropland fraction more than 30% in 2005) and grid-cells with no or little cropland (cropland 175 

fraction less than 30% in 2005), defined as ‘natural vegetation’. 54.3% of these natural 176 

vegetation grids cells still include small cropland fractions (83.7% out of the 54.3% have a 177 

cropland fraction lower than 15.0%; Figure S1f). Grid cells dominated by historical cropland 178 

summed up to 10.0% of the global land grid cells (Figure S1f). For each of these two 179 

categories, a separate approach is used to constrain ∆SOC with different types of 180 

observations. 181 

2.2 Constraining ΔSOC in areas dominated by cropland 182 

Bookkeeping land use models, data-driven models and TBMs indicate that 183 

agricultural expansion caused a net soil carbon loss in the past (Hansis et al., 2015; Houghton 184 

and Nassikas 2017; Li et al., 2017; Sanderman et al., 2017). Generally, after conversion to 185 

cropland there is a SOC loss during the first years because cultivated land has a lower NPP 186 

than natural ecosystems (Kolby Smith et al., 2014; Neumann and Smith 2018), and because 187 

agricultural NPP is harvested and tillage accelerates SOC decomposition.  188 

To constrain historical ΔSOC from cropland dominated grid cells (Figure 1a) by 189 

observations, we hypothesized that there is a strong relationship between i) ΔSOC per unit 190 

area over the grid cells dominated by historical cropland expansion (∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒, 191 
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calculated as ΔSOC divided by the increased area of cropland) and ii) the difference of SOC 192 

per unit area between cropland and initial natural vegetation 193 

(Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛). For example, in the case of a grid cell that was 100% 194 

covered by natural vegetation in 1861 and is now 100% covered by cropland, 195 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is strictly equal to Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. The idea is that 196 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 can be obtained from observations of SOC density across 197 

different land use types in the same region, and then used to constrained modeled output of 198 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. The principle of this emergent constraint is illustrated in Figure 1a. It 199 

should be noted that the Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 will be affected by transient 200 

climate, especially by transient CO2, which would lead to a bias. 201 

To verify the above hypothesis, we established regional regressions between 202 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for each model between 1861 203 

and 2005. Eight regions were considered (Eurasia, North America, South America, West 204 

Eurasia, Australia, South Asia, and East Asia; Figure S1c-d). In each region, 205 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 was calculated as the difference of soil carbon stocks 206 

densities of grid cells dominated by cropland grid cells with a cropland fraction larger than 207 

50% in 2005 and grid cells with a natural vegetation fraction higher than 50% in 1861 in each 208 

region of Figure1c-d, based on historical simulations (Group 1). The choice of a 50% fraction 209 

threshold was made by considering the tradeoff between a strong relationship between 210 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (Figure S2) and a sufficient 211 

number of dominated cropland grids number (Figure S1e). The results of these regressions 212 

confirmed that ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are indeed 213 

strongly positively correlated across different TBMs (see in Sect. 3.3.3). Thus, it is justified 214 

to constrain modeled ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by observations of 215 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 using the emergent relationship illustrated in Figure 1a. We 216 

compiled field observations of the SOC density (Deng et al., 2016; Li et al., 2018; Nyawira et 217 

al., 2016), hereafter referred to as soc, for natural vegetation and cropland in each region, and 218 

calculated Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 as their difference; Figure S3).  219 

<<Figure 1>> 220 
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During the selection of field soc data, two criteria were considered: (1) studies must 221 

report cropland soc measurements; (2) soc measurements must come from paired adjacent 222 

sites, one with natural vegetation type and the other with cropland. Overall, 274 paired data 223 

were selected from 147 study sites (Figure S1c) to assess Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 224 

Those data were further classified into four transitions types involving cropland in different 225 

climate regions, including forest to cropland transitions in tropical region (F-C, Trop; 226 

n=78), forest to cropland transitions in temperate region (F-C, Temp; n=49), grassland to 227 

cropland in tropical region (G-C, Trop; n=15) and grassland to cropland in temperate region 228 

(G-C, Temp; n=132). In order to constrain modeled ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 by observed 229 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛, we selected the dominant type of transition to croplands in 230 

each region from the models (Figure S1b-d; Table 5) and corresponded it with observed 231 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in the climate zone of each region (Figure S1b-d). 232 

2.3 Constraining ΔSOC in areas of natural vegetation where SOC change is 233 
dominated by climate change 234 

In grid cells dominantly covered by natural vegetation with a cropland fraction less 235 

than 30% in 2005, we assumed that ΔSOC can be mainly explained by climate- and CO2-236 

induced shifts in the balance between litter input, and decomposition rates (Todd-Brown et 237 

al., 2013). Todd-Brown et al., (2014) showed that model-to-model variation in ΔSOC across 238 

the CMIP5 models could be explained (R2=0.89, p<0.01) by differences in initial soil carbon 239 

stocks combined with relative changes in soil inputs and decomposition rates. We used the 240 

same attribution method to quantify the impact of the three key variables on ΔSOC from 241 

ISIMIP2b models, based on Group 2 simulations (CC). Todd-Brown et al., (2014) assumed 242 

that ΔSOC from transient ESM model runs is equal to the difference of their equilibrium 243 

SOC pools between the end and the start of each run, so that ΔSOC can be written as:  244 

∆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐼𝐼𝑒𝑒𝑒𝑒𝑒𝑒
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

− 𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

         (1) 245 

Where I is the soil carbon input approximated by net primary productivity (NPP), k 246 

the decomposition rate and calculated from global heterotrophic respiration divided by soil 247 

carbon stocks; and subscripts end and start are for the initial and final state of a simulation. 248 
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Here we consider the period of 2040-2049 for RCP 2.6 and 2090-2099 for RCP 6.0 as the 249 

final state, and the period of 1995-2005 as the initial state. The choice of 2040-2049 as the 250 

final state for RCP 2.6 is because in this scenario, atmospheric CO2 concentration that drives 251 

the positive trend of NPP and soil C inputs through the CO2 fertilization effect present in all 252 

TBMs, peaks by 2050s and decreases thereafter (Meinshausen et al., 2011). After that date, 253 

decreasing CO2 may cause a decrease of NPP and soil C input, inducing a decrease of SOC 254 

with a time delay, which complicates the use of equation (1). Equation (1) can be rearranged 255 

into:  256 

∆𝑆𝑆𝑆𝑆𝑆𝑆 = 𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = �
1+ ∆𝐼𝐼

𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

1+ ∆𝑘𝑘
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

-1� × 𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠       (2) 257 

Using regression analysis of modeled ∆SOC with the terms on the right-hand side of 258 

Eq. (2), we assessed the relative contributions of changes in soil inputs (1 + ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

), changes in 259 

decomposition rate (1 + ∆𝑘𝑘
𝑘𝑘𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

), and initial soil carbon stocks (𝐶𝐶𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) to the modeled ΔSOC. 260 

The regression is executed across different TBMs for each GCM (i.e., one regression for each 261 

GCM) averaging all variables over grid cells with natural vegetation.  262 

We used a two-steps emergent constraint (Figure 1b). The first step is to constrain 263 

future ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 from past NPP trends, if there is a strong enough linear relationship between 264 

these two variables across TBMs. To test for such a relationship, we established linear 265 

regressions between future ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and past NPP trends during 2001-2015 from the different 266 

models, and then, we used the observed NPP trends to constrain ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

. In the second step, we 267 

established linear regressions between future ∆SOC and 1 + ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 from models from Eq. 2, 268 

and then used the constrained future ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 from the first step to constrain future ∆SOC. This 269 

strategy is summarized in Figure 1b. We constrain ΔSOC for global natural vegetation and 270 

each climate region using the same emergent constraint than above. 271 

The hypothesis behind this two-step emergent constraint is that future carbon input 272 

changes can be constrained from observation-based trends of past NPP. The trends of 273 
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observed NPP were derived from trends of observation-based photosynthesis (GPP) from 274 

gridded datasets assuming a constant ratio of NPP to GPP equal to 0.45 (He et al., 2018). GPP 275 

trends were estimated from two data-driven models that include both the effect of rising CO2 276 

on photosynthesis and satellite observed trends of leaf area (Jiang and Ryu 2016; Wang et al., 277 

2017). Note that we did not to use trends of satellite based NPP models based on AVHRR 278 

greenness data and light-use efficiency (LUE) models (Kolby Smith et al., 2015) and on 279 

MODIS (Zhao and Running 2010) because their LUE formulation ignores the fertilization 280 

effect of increasing CO2 and thus likely underestimates NPP trends in this approach (De 281 

Kauwe et al., 2016). 282 

The two GPP data-driven models are the P-model (Wang et al., 2017; Stocker et al., 283 

2019) and the breathing earth system simulator (BESS) model simulations (Ryu et al., 2011; 284 

Jiang and Ryu 2016) during the period of 2001-2015. The P-model is a LUE model in which 285 

LUE is depends on environmental condition (air temperature, vapor pressure deficit, 286 

elevation) and CO2 concentrations, with an optimality principle that predicts stomatal 287 

conductance and foliar photosynthetic traits based on a standard model for C3 leaf 288 

photosynthesis. The bias of the P-model for global GPP is 3.81% (Wang et al., 2017). BESS 289 

is a process-based GPP model that use remotely sensed data of land surface and air 290 

temperature, leaf area index (LAI), CO2 concentrations and canopy information. The bias of 291 

BESS for global GPP is 1.92% (Jiang and Ryu 2016). Significant increase in NPP are 292 

produced by those two data-driven approaches. Models in natural ecosystem during the 293 

period of 2001-2015, with a trend of 0.11 Pg C yr-2 in BESS and a trend of 0.21 Pg C yr-2 in 294 

P-Model. Larger increase in NPP was found in P-model for tropical, temperate and boreal 295 

regions (Table S2). 296 

In the two-step emergent constraint approach illustrated in Figure 1b, uncertainties in 297 

constrained ∆SOC are a function of uncertainties in litter carbon input trend constrained by 298 

the observed trend of NPP, and in the linear regression slopes of regressions between ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 299 

and past input changes, and between ∆SOC and (1 + ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

) are considered. The uncertainty in 300 

constrained ΔSOC is calculated as in Stegehuis et al., (2013) by: 301 
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𝜎𝜎∆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝛽𝛽2𝜎𝜎 ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

2 + 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟_∆𝑆𝑆𝑆𝑆𝑆𝑆
2          (3) 302 

σ ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= �𝛼𝛼2𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟_𝑜𝑜𝑜𝑜𝑜𝑜
2           (4) 303 

where 𝜎𝜎ΔSOC, σ ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜 are the uncertainties in constrained ΔSOC, the 304 

uncertainties in ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and uncertainties in the past NPP trend based on two datasets. β and 305 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟_∆𝑆𝑆𝑆𝑆𝑆𝑆 indicate the slope and standard deviation of the residuals from linear regression 306 

between ΔSOC and 1 + ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

. Similarly, α and 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟_𝑜𝑜𝑜𝑜𝑜𝑜 present the linear regression between 307 

∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and past NPP trend. 308 

Last, in the attribution of ∆SOC differences for natural vegetation between models 309 

given by equation (2), the term related to initial SOC stocks differences across models can 310 

also be constrained from observations. Three global SOC datasets were used for this purpose, 311 

the HWSD (FAO/IIASA/ISRIC/ISSCAS/JRC, 2012), the NCSCD (Tarnocai et al., 2009) and 312 

the WISE30sec (Batjes 2016).  313 

3. Results 314 

3.1 Changes in the modeled global soil carbon 315 

We found large differences in simulated global ΔSOC for the historical period (1861-316 

2005; Group 1 simulations), ranging from -81.3 Pg C (LPJmL driven by IPSL-CM5-LR 317 

climate) to 88.8 Pg C (VISIT driven by HadGEM2-ES climate; Figure 2; Table 2). For the 318 

future period of 2006-2099 in Group 2 simulations with CC+LUC effects, model differences 319 

of global ΔSOC are also large, going from -9.4 Pg C (LPJmL driven by HadGEM2-ES 320 

climate forcing) to 114.7 Pg C (VISIT driven by GFDL-ESM2M climate) for RCP 2.6 and 321 

from -30.1 Pg C (LPJmL driven by IPSL-CM5-LR climate) to 176.5 Pg C (VISIT driven by 322 

MIROC5 climate) for RCP 6.0 (Figure 2; Table 2). 323 

<<Figure 2>> 324 

<<Table 2>> 325 

The interquartile range (IQR, the difference between 75th and 25th percentile of the 326 
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data) of future ∆SOC across all GCMs forcing data and TBMs is larger for RCP 6.0 (81.9 Pg 327 

C) than that for RCP 2.6 (73.9 Pg C; Figure 3a, Table S3). The larger IQR of ∆SOC for RCP 328 

6.0 is partly explained by diverging model responses to climate change alone, with an IQR of 329 

69.6 Pg C from the effects of climate change alone in RCP 6.0 compared to a climate change 330 

induced IQR of 19.9 Pg C in RCP 2.6 (Figure 3b; Table S3). The difference in IQR of ∆SOC 331 

between RCP 6.0 (IQR=14.2) and RCP 2.6 (IQR=25.5) was reduced when considering the 332 

effects of LUC alone, even though a larger IQR was found in RCP 2.6. The IQR of ∆SOC 333 

caused by different GCMs forcing, obtained by averaging all TBMs outputs for the same 334 

GCM, is smaller than the IQR across TBMs, with an IQR across GCMs of 15.2 Pg C in RCP 335 

2.6 and 30.6 Pg C in RCP 6.0 (Figure 3a). The spread of ∆SOC is thus mainly due to 336 

structural differences in TBMs, with an IQR of 56.8 Pg C across TBMs for RCP 2.6 and 73.7 337 

Pg C for RCP 6.0 (fourth column of Figure 3a). The relative shares of both GCM versus 338 

TBM-related uncertainties are similar for both scenarios (Figure 3a-c). 339 

<<Figure 3>> 340 

Under effects of CC+LUC, the change of SOC during 2006-2099 is a net increase of 341 

41.8 ± 43.9 Pg C (3.2 ± 3.4%) for RCP 2.6, and of 48.5 ± 63.3 Pg C (3.8± 4.8%) for RCP 6.0 342 

across all TBMs and GCMs (Figure 2; Table 2). Climate change alone caused larger SOC 343 

changes of 46.8 ± 58.2 Pg C (3.4 ± 4.3%) under RCP 6.0 than 15.3 ± 20.8 Pg C (1.2 ± 1.3%) 344 

under RCP 2.6 (Table 2). In addition, LUC alone after 2005 caused a SOC increase of 28.2 ± 345 

31.4 Pg C under RCP 2.6 and 2.7 ± 5.9 Pg C under RCP 6.0. The LUC forcing alone 346 

impacted future ∆SOC in LPJmL, ORCHIDEE-MICT, DLEM and VISIT, but had no obvious 347 

effect in LPJ-GUESS (Figure S4a-b). 348 

Given the fact that differences in the projected ΔSOC are partly driven by different 349 

trends in NPP (see equation 2), we further examined the simulated evolution of NPP with 350 

time (Figure 3; Figure S4-5 for each model). All models simulated increased NPP in the 351 

future, of 7.3 ± 3.2 Pg C yr-1 (11.9 ± 5.2%) under RCP 2.6 and of 18.3 ± 4.9 Pg C yr-1 (29.7 ± 352 

7.9%) under RCP 6.0 driven by CC+LUC (Figure 3d; Table S4). Similar to the uncertainty of 353 

∆SOC (here, expressed as IQR), the uncertainty of ∆NPP mainly come from differences of 354 

TBMs and from the two RCP scenarios rather than from differences of GCM forcing, a result 355 
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consistent with the dominant attribution of uncertainties on ΔSOC to differences of TBMs 356 

(Figure 3d).  357 

An accelerated decomposition rate (increase of k; positive ∆k) of global SOC was 358 

simulated by all models, with a mean increase of 2.8 ± 1.0 10-3 yr-1 (-8.0 ± 3.9%) under RCP 359 

2.6 and 7.7 ± 1.8 10-3 yr-1 (21.0 ± 4.5%) under RCP 6.0, respectively (Figure 3g; Table S5). 360 

Similar to the variations in the simulated global ΔSOC and global ΔNPP, the spread of global 361 

decomposition rate (Δk) among simulations were mostly attributed to differences in TBMs 362 

and RCPs rather than to differences of GCMs (Figure 3g). 363 

3.2 Contribution of initial soil carbon, decomposition rate, soil inputs to soil carbon 364 
changes of natural ecosystems 365 

For the RCP 6.0 scenario, we decomposed model differences of ΔSOC into 366 

differences explained by soil inputs, decomposition rates, initial soil carbon stocks using 367 

Equation 2. We found that these three variables altogether explain 84% - 91% of the variation 368 

in global ΔSOC across TBMs, this range being from the different GCMs (all p < 0.1; Figure 369 

4). The initial soil carbon stocks and change in decomposition rate do not show significant 370 

correlation with global ΔSOC among TBMs, for any GCM. Instead, most of the ΔSOC 371 

differences between TBMs can be explained by their different changes in soil inputs (Figure 372 

4d, i, n, s). Different changes in soil inputs explain 52% - 89% of the global ΔSOC across the 373 

five TBMs, depending on the GCM considered (Figure 4). Regression slopes (between 374 

original modeled ∆SOC and predicted values from Eq. 2) are similar between GCMs (ranging 375 

from 0.63 to 0.76; Figure 4a, f, k, p). For the RCP 2.6 scenario, no significant relationship 376 

between simulated ΔSOC and predicted values from Eq. 2 was found across the different 377 

TBMs (Figure S6). This is because in RCP 2.6, climate change is small and CO2 378 

concentration increases much less (63.9 ppm from 2005-2050) compared to RCP6.0 (287.6 379 

ppm from 2005-2099) and does not produce a change of SOC large enough to be attributed to 380 

the factors considered in equation 2. 381 

<<Figure 4>> 382 

Using Eqn. 2, we further separated ∆SOC for tropical, temperate and boreal regions 383 

(Figure 5-7). The relative changes in soil input, decomposition rates, and initial soil carbon 384 
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stocks altogether explain 81% - 96% of tropical ΔSOC (slopes from 0.58 to 0.83), 81% - 96% 385 

of temperate ∆SOC (slopes from 0.47 to 0.71), and 75% - 95% of boreal ∆SOC (slopes range 386 

from 0.26 to 0.45) (Figure 5-7). In the tropical region, most of ∆SOC differences between 387 

TBMs can be attributed to differences in changes of soil inputs (R2=0.43-0.92) and initial soil 388 

carbon (R2=0.44-0.90). For simulations driven by HadGEM2-ES GCM in the tropical region, 389 

initial soil carbon can explain more of the ∆SOC differences between TBMs than change in 390 

soil inputs (Figure 5). In both temperate and boreal region, differences in changes in soil 391 

inputs explain most of the differences in ΔSOC across TBMs (Figure 6-7). 392 

<<Figure 5>> 393 

<<Figure 6>> 394 

<<Figure 7>> 395 

3.3 Constraining future ΔSOC by observations 396 

3.3.1 Constrained global ΔSOC for natural vegetation  397 

As explained in Section 2.3, we used observed NPP trends to constrain ΔSOC over 398 

grid cells dominated by natural vegetation (Figure 1b) for simulations driven by RCP 6.0. We 399 

recall here that the results of RCP 2.6 are not shown because they produced small ∆NPP and 400 

∆SOC except for MIROC5 climate forcing in the tropical region (Figure S6-S9), and thus are 401 

not suitable for applying our emergent constraint approach (see Methods). We found 402 

significant linear relationships between modeled ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and modeled NPP trend during 2001-403 

2015 across TBMs (R2 ranging from 0.85 to 0.95) for three out of four GCM forcing (GFDL-404 

ESM2M, HadGEM2-ES, and IPSL-CM5A-LR). This is shown in Figure 4, the last column of 405 

plots. For MIROC5, the relationship between modeled ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and modeled NPP trend was not 406 

significant (p = 0.20; R2 = 0.47; Figure 4t). Here, we use observed NPP trends (grey areas) 407 

and the linear relationships above to constrain future input changes ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (purple areas in 408 

Figure 4e, j, o, t). Then, the constrained ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (purple areas in the fourth column of Figure 4) 409 

was used to constrain ∆SOC (green areas in Figure 4d, i, n, s), according to the principle 410 
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illustrated in Figure 1b. 411 

Using the two-step emergent constraint with all uncertainties propagated (Eqs. 3 and 412 

4), we constrained global ∆SOC values of 25.2 ± 42.4 Pg C with GFDL-ESM2M, -36.9 ± 413 

67.3 Pg C with HadGEM2-ES, 1.4 ± 42.6 Pg C with IPSL-CM5A-LR, and 38.8 ± 54.1 Pg C 414 

with MIROC5 (Table 3; Figure 4). These constrained global ΔSOC values were all lower than 415 

the original ensemble means of ∆SOC (Figure 4; Table 3). For HadGEM2-ES, the 416 

constrained global ΔSOC was even constrained to be a net loss whereas it was simulated as a 417 

gain in the original ensemble mean of the TBMs (19.0 ± 53.9 Pg C). We acknowledged that 418 

uncertainties of observed NPP trends combined with uncertainties in the regressions led to 419 

only a marginal uncertainty reduction of constrained vs. original ∆SOC, given the small set of 420 

TBMs examined in this study. The linear relationships shown in Figure 4 were based only on 421 

five TBMs, and a larger ensemble of models should make the emergent constraint more 422 

effective, with more expected model outliers. Here, we found that 15 out of 19 of the original 423 

∆SOC simulations were within 1-sigma uncertainty of constrained ∆SOC, one outlier being 424 

the VISIT model (Figure 4; Table 3). 425 

<<Table 3>> 426 

3.3.2 Constrained regional ΔSOC for natural vegetation  427 

Significant linear relationships between modeled ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and modeled NPP trends 428 

during 2001-2015 were found in all GCMs in the temperate region for natural vegetation 429 

(Figure 6e, j, o, t) and in one GCM (i.e., HadGEM2-ES) forcing in the boreal region (Figure 430 

7j), but not in the tropical region (Figure 5e, j, o, t). Constrained temperate ΔSOC showed 431 

large differences between different GCMs (Table 3; Figure 6), ranging from -96.5 ± 61.7 Pg 432 

C for HadGEM2-ES to 65.5 ± 44.2 Pg C for GFDL-ESM2M. Constrained ΔSOC in the 433 

temperate region can be either higher than (driven by GFDL-ESM2M and MIROC5 climate) 434 

or lower than (driven by HadGEM2-ES and IPSL-CM5A-LR climate) the original model 435 

ensemble mean (Table 3). The uncertainty range of constrained temperate ∆SOC is slightly 436 

reduced with GFDL-ESM2M, IPSL-CM5A-LR, and MIROC5 climate (by 3.6 – 13.2 Pg C). 437 

With HadGEM2-ES climate, the uncertainty range of constrained ΔSOC was not reduced, 438 
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because observed NPP trends are much smaller than in the model ensemble forced by this 439 

GCM, and constrained ∆SOC is extrapolated outside the range of TBMs in Table 3. For 440 

temperate region only 10 out of 19 constrained ∆SOC values were within the 1-sigma 441 

uncertainty of the original ∆SOC ensemble, which indicates that observed NPP trends imply 442 

a strong change of constrained vs. original SOC changes, and thus that the quality of 443 

observational data is critical. 444 

The lower constrained ∆SOC values obtained for HadGEM2-ES climate compared to 445 

other GCMs, globally and for the temperate and boreal regions is due to the much higher 446 

regression slope and lower intercept between ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and observed NPP trend for this GCM, 447 

which caused lower constrained 1 + ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and thus lower constrained ∆SOC. In the tropical 448 

region, however, the constrained ∆SOC for HadGEM2-ES is significantly higher than under 449 

the other GCMs because less TBMs used this GCM; DLEM did not provide HadGEM2-ES 450 

GCM output and Figure S10 shows the results after excluding DLEM. In addition, the 451 

uncertainty of the constrained ∆SOC from HadGEM2-ES is larger than those from other 452 

GCMs, due to the high regression slope between ∆SOC and 1 + ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 (simulations driven by 453 

HadGEM2-ES have the highest slopes globally, and in tropical and temperate regions) and 454 

the uncertainty of constrained ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎

 is determined by the regression slope between ∆𝐼𝐼
𝐼𝐼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

 and 455 

modeled NPP trend. 456 

We found no significant relationships between ΔSOC and initial soil carbon across 457 

TBMs at global scale (Figure 4), which prevent us using observed global initial SOC stocks 458 

to constrain future ∆SOC. However, there are positive relationships in the tropics, but 459 

significant only for the HadGEM2-ES GCM (R2=0.90, p = 0.05; Figure 5g). A lower 460 

constrained ΔSOC was found from HadGEM2-ES (-4.8 ± 2.3 Pg C) than in the original 461 

ensembles (4.7 ± 21.1 Pg C) using initial SOC stocks as a constraint. Such constrained ∆SOC 462 

was smaller than that constrained by NPP trend (14.4 ± 21.6 Pg C; Figure 5; Table 3). It 463 

should be noted that none of the constrained ΔSOC values were within a 1-sigma uncertainty 464 

of the original ΔSOC ensemble in such constrained ΔSOC. 465 
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3.3.3 Constrained future ΔSOC from cropland expansion 466 

We found a significant positive relationship between the simulated SOC density 467 

changes across grid-cells with cropland expansion ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  and the soil 468 

carbon density difference between cropland in 2005 and initial natural vegetation in 1861, 469 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in all LUC regions except for East Asia (Figure 8). The 470 

coefficient of determination (R2) of those relationships are high in all regions (ranging from 471 

0.79 to 0.97 across regions) except for South Asia (R2=0.49). That means the ∆SOC due to 472 

LUC outweighs ∆SOC due to climate change over grid cells with cropland expansion. The 473 

slopes of the relationships between ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and 474 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are different in each region, ranging from 0.90 kg C m-2 (kg 475 

C m-2)-1 in South Asia to 3.15 kg C m-2 (kg C m-2)-1 in West Eurasia. Following the emergent 476 

constraint principle described in the method section, we constrain 477 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 from observed values of Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛. 478 

<<Figure 8>> 479 

In LUC dominated areas, the constrained global ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 was -0.29 ± 480 

5.56 kg C m-2 which is a smaller loss than the original modeled range of -0.61 ± 2.15 kg C m-481 

2 but this constrained value has a large uncertainty (Figure 8; Figure S3; Table 4). However, 482 

larger constrained carbon loss (∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) than from the unconstrained 483 

simulations were found in Eurasia, North America, South America, Africa, West Eurasia and 484 

Australia (Table 4). For example, constrained ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is of -2.78 ± 9.92 kg C 485 

m-2 in North America compared to the original mean value of -1.43 ± 2.85 kg C m-2 for that 486 

region. Constrained ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is a loss of -3.45 ± 12.84 kg C m-2 in Australia 487 

compared to the original ensemble mean of 0.45 ± 2.53 kg C m-2. In addition, large 488 

differences in constrained ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 also can be found in regions characterized 489 

by carbon losses, ranging from -5.94 ± 17.68 kg C m-2 (West Eurasia) to -1.66 ± 2.27 kg C m-490 
2 (Africa) .We found that all simulated ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  is within 1-sigma uncertainty 491 

of the constrained values in LUC region (Figure 8; Table 4) but the spread of constrained 492 

∆soc is always larger than that in the original model ensemble.  493 

By multiplying these constrained changes of SOC densities by the area of historical 494 
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cropland expansion, we constrained a carbon loss induced by cropland expansion of -1.03 ± 495 

19.94 Pg C during 1861-2005 (Table 5). There are differences between regions of historical 496 

cropland expansion, with a maximum loss in North America (-2.79 ± 9.96 Pg C), a minimum 497 

loss in South America (-0.36 ± 1.92 Pg C), and a neutral carbon change in East Asia (0.05 ± 498 

0.01 Pg C) and South Asia (0.42 ± 1.53 Pg C).  499 

Future regional SOC changes associated with cropland expansion were constrained by 500 

multiplying future cropland expansion areas (Figure S11) by constrained estimates of 501 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (Table 5). We inferred small future carbon losses from future 502 

cropland expansion for RCP 2.6 and RCP 6.0 in Eurasia, North America, South America, 503 

Africa, West Eurasia, and Australia, and small carbon gains in South Asia and East Asia 504 

(Table 5). In North America, no cropland expansion occurs under RCP 6.0. Overall, there is 505 

no large cropland expansion. Global constrained carbon losses from future cropland 506 

expansion are -0.19 ± 3.72 Pg C for RCP 2.6 and -0.18 ± 3.52 Pg C for RCP 6.0, 507 

respectively. 508 

<<Table 4>> 509 

<<Table 5>> 510 

3.4 Comparison of initial SOC stocks for natural vegetation  511 

We compared initial soil carbon stocks between modeled and observed datasets for 512 

grid-cells with natural vegetation. The mean global soil carbon stock over the period of 1995-513 

2005 across all GCMs and TBMs was 1421.6 Pg C with a range of 702.6-2008.3 Pg C (Table 514 

6). The mean value was higher than that from three datasets of 1202.4 Pg C, but the observed 515 

range of 1094.8-1283.9 Pg C was much smaller than the spread of models, indicating that 516 

even with the same climate forcing, models are inconsistent with the observed SOC stocks 517 

(Table 6). Yet, there was a slightly smaller spread between ISIMIP2b TBMs than the CMIP5 518 

ESMs, that gave a mean value of 1520 Pg C and a range of 510~3040 Pg C (Todd-Brown et 519 

al., 2013). DLEM forced by MIROC5 has the lowest SOC (702.6 Pg C) and ORCHIDEE-520 

MICT forced by IPSL-CM5A-LR has the highest value (2008.3 Pg C). In temperate region, 521 

SOC from all GCMs and TBMs had a median value of 762.8 Pg C with an IQR of 708.5 Pg 522 
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C, slightly higher but comparable to the observed value (mean 717.3 Pg C with a range of 523 

645.9~758.0 Pg C across datasets). Modeled SOC in the tropical region had a median value 524 

of 381.6 Pg C with an IQR of 231.6 Pg C, consistent with observed datasets (mean of 371.8 525 

Pg C with a range of 362.4~376.5 Pg C). Modeled SOC in the boreal region took a median 526 

value of 110.8 Pg C with an IQR of 238.6 Pg C, consistent with observed datasets (mean of 527 

113.3 Pg C with a range of 72.6-159.3 Pg C). Largest IQR of SOC in temperate region rather 528 

than in tropical and boreal region was found, which indicate that large uncertainties in SOC 529 

of TBMs comes from the temperate region. 530 

<<Table 6>>  531 

4. Discussion 532 

4.1 Large modeled differences of projected future ΔSOC 533 

Previous studies reported that a large range of initial or present-day SOC stocks 534 

simulated by TBMs when they are coupled to climate model or run offline with the same 535 

climate forcing, going from 510 Pg C to 3040 Pg C for 11 TBMs part of the CMIP5 ESMs 536 

(Todd-Brown et al., 2014) and from 425 Pg C to 2111 Pg C among 10 offline TBMs in 537 

MsTMIP (Tian et al., 2015b). The CMIP5 models have biases in climate causing a bias of 538 

SOC, whereas the MsTMIP models only covered the historical period. In this study, historical 539 

and future projections of SOC with bias-adjusted climate and harmonized land use change 540 

forcing make it possible to examine ΔSOC driven by climate and land use change 541 

continuously for the historical period and the future.  542 

We found that simulated global ΔSOC during the historical period (1861-2005) is a 543 

small increase, with a median value of 16.51 Pg C and a large range going from -81.3 to 88.8 544 

Pg C (Table 2). This result from ISIMIP2b models is higher but comparable to MsTMIP that 545 

gave a median change of 3.39 Pg C from 1901 to 2010, with a range of -70.2 – 85.9 Pg C 546 

(Tian et al., (2015b). Besides, our results show that most models project a future global SOC 547 

increase under the RCP 2.6 scenario (2005-2099; median value of 31.91 Pg C) and under 548 

RCP 6.0 scenario (2005-2099; median value of 31.40 Pg C). The global ΔSOC reported here 549 

is slightly higher but narrower than estimates from 11 ESMs presented in Todd-Brown et al., 550 
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(2014) for the RCP 8.5 scenario, with a median increase of 15 Pg C and a range of -72 – 253 551 

Pg C. 552 

Our results showed that uncertainties in ∆SOC were more attributed to structural 553 

differences between TBMs rather than to differences in GCMs (Figure 3). The ISMIP2b 554 

TBMs used the same protocol for spin-up, the same input data, land use change data, and 555 

climate forcing (Tian et al., 2015b; Frieler et al., 2017). Yet, even if GCM bias adjustment 556 

was applied to match observed mean climate period 1960-1990 (Hempel et al., 2013) the 557 

different GCM forcing data have distinct climate variability for the historical period, and 558 

differences in future climate as well (Table S6) due to different GCMs climate sensitivities. 559 

Furthermore, the vegetation distribution was not harmonized between models which 560 

introduced inconsistencies in the simulation of SOC between models. 561 

4.2 Uncertainties in constrained ΔSOC for dominated area by natural vegetation  562 

It is known that future ΔSOC is sensitive to climate via both changes in soil input and 563 

decomposition (Jones et al., 2005; Todd-Brown et al., 2013; Carvalhais et al., 2014; Yan et 564 

al., 2014). Our results showed that soil input changes explain most of the simulated ∆SOC 565 

across the ISIMIP2b TBMs at global scale and also in different regions, the rest of variation 566 

being explained by the interaction between initial soil carbon stocks, decomposition rate and 567 

changes in soil inputs for RCP 6.0 (Figure 4-7). Such results are consistent with previous 568 

study with 11 ESMs from CMIP5 (Todd-Brown et al., 2014).  569 

We showed that the success of using observed recent NPP trend as a constraint for 570 

future ∆SOC over natural vegetation depends on the choice of the GCM. Our proposed 571 

emergent constrained worked well with the HadGEM2-ES in the boreal region and with all 572 

GCMs in the temperate region. It also works for constraining global ∆SOC, with a given 573 

GCM but provides diverging results between different GCMs. This is because GCMs differ in 574 

their regional patterns of climate change, with possible compensating effects of climate 575 

change on ∆SOC between different regions, for instance decreased rainfall reducing input and 576 

increased temperature increasing them. The failure to reliably constrain ΔSOC at the regional 577 

scale for the tropical and boreal regions with most GCMs may be attributed to the 578 

uncertainties in observed NPP trends and the weak relationships established for the emergent 579 
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constraint when it is applied at regional scale. The NPP trend in the P-model is stronger than 580 

in the BESS model (Table S2), possibly because nutrient limitations are not included in the P-581 

model (Jiang and Ryu 2016; Wang et al., 2017). Previous studies indicated that NPP is 582 

strongly limited by N availability in many ecosystems, especially in boreal forests (Hickler et 583 

al., 2015). In addition, observed NPP trend based on satellite observation includes implicitly 584 

the management of forest and pasture, which is ignored in ISIMIP2b models. Due to the 585 

small number of TBMs used to establish emergent constraint relationships, with only five 586 

TBMs in this study, the R2 of linear regressions between NPP trend and future input change 587 

(0.27-0.51) were low in the tropical region (Figure 5). It should be noted that an effective 588 

constrained ΔSOC is based on a significant relationship between ΔSOC and changes in soil 589 

input. Applying the same approach for CMIP5 and CMIP6 models should offer larger 590 

ensembles with likely a larger spread and a better-defined relationship to constrain SOC 591 

changes. 592 

4.3 Uncertainties in constrained Δsoc for dominated area by cropland  593 

We showed that soil carbon losses in LUC dominated regions are mostly caused by 594 

conversion of natural vegetation to cropland, consistent with previous studies (Guo and 595 

Gifford 2002; Don et al., 2011; Poeplau et al., 2011; Wei et al., 2014; Deng et al., 2016; Li et 596 

al., 2018). For example, the meta-analysis by Guo and Gifford (2002) found a SOC decline of 597 

42% and 59% after LUC from forest to cropland and pasture to cropland. Models that do not 598 

reduce soil C input from harvested cropland NPP tend to underestimate SOC reductions from 599 

cropland expansion (-2.64 ± 8.43 Pg C vs. -1.03 ± 19.94 Pg C for modeled vs. estimated 600 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒; Table 5). In addition, we found that the simulated 601 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is generally within 1-sigma uncertainty of the constrained 602 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. Such large uncertainties in constrained ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 reflect 603 

uncertainties of Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 from meta-analysis data (Table 4).  604 

Previous studies indicated that anthropogenic land use changes have resulted into 605 

about 50 million km2 being used for cropland (about 12% of the total ice-free land area) and 606 

pasture (about 26% of the total ice-free land area) (Foley et al., 2007; 2011). In ISIMIP2b 607 

simulations, the area of cropland and pasture increases in both the past the future (Figure 608 
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S11-S12; Table S7). For example, the cropland area expands from 5.9 × 106 km2 in 1861 to 609 

14.6 × 106 km2 in 2005 (Table S7). 610 

Based on constrained ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 and future cropland area, we tentatively 611 

suggest that future cropland expansion will result in carbon losses in most of regions (Table 612 

5; Figure S11-S12). These results are consistent with previous studies reporting that land use 613 

will be an important driver of SOC in the future (Lozano-Garcia et al., 2017; Molotoks et al., 614 

2018). The degree of cropland expansion results in SOC change partially dependent upon the 615 

land management practices (i.e., harvest), soil condition (e.g., soil properties and soil type) 616 

and climate condition. Crop harvest for bioenergy production can reduce inputs to the soil 617 

and diminish soil fertility (Powlson et al., 2011). In general, SOC decreases when land use 618 

conversion is from forest to cropland, but varies with forest type and cultivation stage (Wei et 619 

al., 2014). The conversion from natural vegetation to cropland breaks down the aggregate 620 

structure that physically protects SOC from microbial decomposition (Wei et al., 2013), 621 

leading to more available SOC for microbial attacks. Future increased temperature will result 622 

in greater SOC losses by increasing decomposition rate but also cause a positive feedback 623 

between SOC mineralization and global warming.  624 

Previous studies have highlighted the importance of accounting for agricultural land 625 

and management (e.g., harvest, grazing, tillage, residue management) in model simulations 626 

(Pugh et al., 2015). In this study, modeled SOC from cropland expansion showed large 627 

difference between models, which are related to different cropland management schemes and 628 

implies large uncertainty in future projections. Theoretically, crop harvest reduces carbon 629 

input into soil. In this study, four models (i.e., VISIT, LPJmL, ORCHIDEE-MICT and 630 

DLEM) include cropland harvest in their parameterization. LPJmL, ORCHIDEE-MICT and 631 

DLEM actually consider that harvested carbon is released as CO2 to the atmosphere. As a 632 

result, negative Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 were observed from those three models that 633 

do not allocate crop harvest to soil pools (Figure S3). However, the residual part of the 634 

harvest NPP of cropland from VISIT return to field as litter, which explains positive 635 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑔𝑔 values in most regions. The LPJ-GUESS version used in 636 

ISIMIP2b did not consider crop harvest. Therefore, how to treat crop harvest and the 637 
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management of crop residue is a key source of uncertainty for modeling SOC changes from 638 

cropland expansion in the ISIMIP2b models. We recommend a better treatment of harvested 639 

crop carbon in TBMs, accounting for the harvest flux to leave the system rather than 640 

allocating harvests to SOC pools.  641 

In addition, it is important to note that not all models have taken into account tillage 642 

process except for ORCHIDEE-MICT. ORCHIDEE-MICT considers the effect of tillage by 643 

increasing decomposition rate in cropland to mimic increased soil oxygenation and 644 

accelerated decomposition of SOC after tillage (Gervois et al., 2008). In general, tillage can 645 

improve the decomposition of crop residues by facilitating contact between plant tissue and 646 

soil aggregate surface (Bronick and Lal, 2005) and increases the availability of nutrients for 647 

plant growth through distributing organic matter. In conjunction with this, the effectiveness of 648 

tillage on SOC in comparison to no-tillage is controversial (Angers and Eriksen-Hamel, 649 

2008; Virto et al., 2012). Several studies observed an increase of soil organic matter and 650 

carbon with no-tillage or conservation tillage (minimum tillage) in the top soil layer (Vogeler 651 

et al., 2009; Powlson et al., 2012; Pinheiro et al., 2015). However, such effect is partly or 652 

completely offset by greater SOC content in the deeper soil layers under conventional tillage 653 

(complete inversion of soil through ploughing; Álvaro-Fuentes et al., 2013). These 654 

discrepancies are not surprising since tillage effects integrate a complex set of biological and 655 

environmental factors, such as the management practices (e.g., fertilization; Gregorich et al., 656 

2005), crop performance (e.g., cropping intensity and crop types; VandenBygaart et al., 657 

2003), and climate conditions (e.g., soil temperature and soil moisture; Snyder et al., 2009). 658 

In the TBMs used here, the effect of tillage is either represented as a scaling factor increasing 659 

the SOC decomposition rate in ORCHIDEE-MICT (Gervois et al., 2008) or ignored in other 660 

models. A newer version of LPJmL now incorporates two processes directly affected by 661 

tillage, including surface litter reduction from tillage management and decreased bulk soil 662 

density affecting soil hydrology (Lutz et al., 2019).  663 

4.4 How to improve emergent constraints on soil carbon changes 664 

The use of an emergent constraint to constrain an ensemble of model results requires 665 

i) a strong regression relationship between the target variable to be constrained and the 666 
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variable used to predict this target (e.g., NPP trends and Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) and 667 

ii) available observed data. If a strong enough emergent relationship can be established, then 668 

it can be confidently combined with observation to produce a constrained target variable. In 669 

our study, the hypothesis behind this two-step emergent constraint for SOC changes of 670 

natural vegetation is that future carbon input changes can be constrained from observation-671 

based trends of past NPP. This hypothesis was verified but observed trends of NPP were 672 

different between the two products considered. The hypothesis to constrain 673 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 is that this target variable is related to mean soc differences between 674 

cropland and historical natural vegetation. This hypothesis was verified but observed 675 

Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 shows a large spread from current meta-analysis, limiting the 676 

success of this approach. We recommend to pursue this approach but select meta-analysis 677 

data and use PFT specific SOC output from models, instead of grid cell averages with 678 

cropland fraction above a threshold as it was done here because ISIMIP models did not report 679 

PFT specific carbon variables. 680 

4.5 Limitations  681 

Despite much work to incorporate agricultural process in current models (Ciais et al., 682 

2011; Ito and Inatomi, 2012; Lutz et al., 2019; Pugh et al., 2015; Tian et al., 2010; Wu et al., 683 

2016), some limitations still remain for projection of SOC in our modeling approach. Carbon 684 

capture and storage in cropland are dependent on management practices. Practices such as 685 

tillage, crop rotation, crop residue management, etc. are very important to soil carbon 686 

decomposition but are not included in all models. Moreover, the inclusion of nitrogenous 687 

fertilizers was found to be a limiting factor in the amount of carbon stored (Drewniak et al., 688 

2015). Likewise, nitrogen limitation is not considered in all models (Table S1). In addition, 689 

the application of genetically engineered crop with enhanced root exudates may affect soil 690 

functions and microbial diversity (Motavalli et al., 2004), which are important factors 691 

affecting soil carbon decomposition. Further research is needed to develop approaches able to 692 

represent such important management practices in models to fully evaluate the importance of 693 

agricultural practices for soil carbon.  694 
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5. Conclusion 695 

SOC changes have been significantly influenced by climate and land use change over 696 

the past century. Even though an increasing number of data sets are available to constrain 697 

future simulations, large differences between climate scenarios and TBMs remain, which 698 

implies large uncertainty of future projections. We show that uncertainties in future ΔSOC 699 

can be primarily attributed to the structural differences between TBMs rather than difference 700 

in GCMs. For RCP 2.6 land use change is the dominant driver of future ΔSOC, while for 701 

RCP 6.0 the climate change effect dominates. Soil input changes explain most of variations in 702 

projected ∆SOC across the TBMs globally and in different climate regions. Applying an 703 

emergent constraint for ΔSOC to climate change under RCP 6.0, our results showed a 704 

reduction in constrained ΔSOC compared to original modelled ensembles for all GCMs in the 705 

temperate region, and one GCM (i.e., HadGEM2-ES) globally and in the boreal region. In 706 

cropland dominated areas, SOC will continue to diminish under RCP 2.6 (-0.19 ± 3.72 Pg C) 707 

and RCP 6.0 (-0.18 ± 3.52 Pg C) due to cropland expansion, but with gains and losses 708 

compensating between regions. In cropland dominated areas, the large spread in constrained 709 

∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 comes from uncertainties of observations. The idea of an emergent 710 

constraint approach purposefully reduced uncertainties in future projections of SOC. 711 

Although the uncertainties in constrain ΔSOC are still relatively high, as more accurate 712 

observation data and more model simulations become available, applying an emergent 713 

constraint approach to improve the accuracy of future ΔSOC projections is a promising 714 

research avenue. More importantly, understanding how SOC could be impacted by future 715 

climate change and land use changes can effectively help land managers and policymakers to 716 

develop appropriate land planning strategies.  717 
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Table 1 Description of scenario design used from ISIMIP2b. 1013 

ISIMIP2b simulations Driver Description 
Group 1 Historical (1861-2005) Climate + Land use  The effects of historical climate change with varying land use change 
Group 2 only CC (2006-2099) Climate + Fixed land use Pure effect of future climate change assuming fixed year 2005 levels of land 

use change under RCP 2.6 and 6.0 scenario 
Group 3 CC+LUC (2006-2099) Climate + Land use  The effects of future climate change and land use change from 2005 onwards 

associated with RCP 2.6 and 6.0 scenario 
Group3-Group2 only LUC (2006-2099) Land use  Pure effect of future land use change under RCP 2.6 and 6.0 scenario 

Note: you can find different climate and land use change -impacts simulation data (the simulation round, sectors, scenarios, variables, time period etc.) at 1014 
https://esg.pik-potsdam.de/projects/isimip/. 1015 
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Table 2 Modeled global soil carbon changes (ΔSOC) during historical period (1861-2005), and during future period (2006-2099) under both the 1016 

effects of climate change and land use change (CC+LUC), the effect of only climate change (CC) and the effect of only land use change (LUC) 1017 

based on RCP 2.6 and 6.0. The bold and bold-italic indicates the largest and smallest value, respectively. The ΔSOC is the difference in SOC 1018 

compared to the means of 1861-1870. 1019 

ΔSOC (Pg C) History  
Future (2099-2005) 

RCP 2.6  RCP 6.0 
TBMs GCM 2005-1861 CC+LUC CC LUC   CC+LUC CC LUC 

LPJ-GUESS 

GFDL-ESM2M 16.5  14.9  15.1  -0.2    18.3  18.4  -0.1  
HadGEM2-ES  26.0  -0.5  -0.6  0.1   -11.3  -11.4  0.1  
IPSL-CM5A-LR 9.3  1.9  1.8  0.1   -1.9  -1.8  -0.1  
MIROC5 23.4  5.6  5.8  -0.2    13.2  13.4  -0.2  

LPJmL 

GFDL-ESM2M -52.1  31.9  11.7  20.2   10.0  12.1  -2.1  
HadGEM2-ES  -38.6  -9.4  -28.2  18.8   -22.9  -19.4  -3.5  
IPSL-CM5A-LR -81.3  -8.0  -25.5  17.4   -30.1  -25.3  -4.8  
MIROC5 -45.0  28.0  5.9  22.1   31.4  36.3  -4.9  

VISIT 

GFDL-ESM2M 71.4  114.7  38.5  76.3    154.9  148.9  6.0  
HadGEM2-ES  88.8  109.9  22.8  87.1   118.4  109.4  8.9  
IPSL-CM5A-LR 46.1  112.7  28.4  84.3   141.0  132.5  8.5  
MIROC5 72.5  103.9  25.5  78.4    176.5  171.5  5.0  

ORCHIDEE-MICT 

GFDL-ESM2M 22.6  71.7  55.1  16.6   80.9  80.6  0.3  
HadGEM2-ES  18.0  -- 11.3  --  -- 21.4  -- 
IPSL-CM5A-LR -17.4  33.3  17.9  15.4   35.0  36.9  -1.9  
MIROC5 34.2  -- 47.8  --  -- 89.9  -- 

DLEM 
GFDL-ESM2M 7.2  34.5  20.1  14.4    38.6  26.8  11.8  
IPSL-CM5A-LR 4.3  30.3  15.2  15.0   30.8  19.7  11.0  
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MIROC5 9.7  36.0  21.8  14.2    40.9  29.2  11.7  
Model range -81.3~88.8 -9.4~114.7 -28.2~55.1 -0.2~87.1   -30.1~176.5 -25.3~171.5 -4.9-11.8 
Model mean 11.4  41.8  15.3  28.2   48.5  46.8  2.7  
Model Median 16.51  31.91  15.22  16.61    31.40  26.83  0.14  

 1020 
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Table 3 Modeled ΔSOC (unit, Pg C), constrained ΔSOC by NPP trends over the period of 2001-2015 and constrained ΔSOC by initial SOC 1021 

(1995-2005) under RCP 6.0 scenario in natural vegetation grid-cells (exclude the cropland) and its different climate region across different 1022 

GCMs. The number indicates the number of TBMs with modeled ∆SOC within 1-sigma uncertainty of the constrained ∆SOC. Bold values 1023 

indicate the constrained ΔSOC based on a significant relationship between ΔSOC and NPP or initial SOC, respectively. A p value ≤0.1 was 1024 

considered significant. 1025 

Classification Modeled ΔSOC   Constrained ΔSOC by NPP   Constrained ΔSOC by initial SOC 
    Mean 1σ   Mean 1σ Within 1σ uncertainty   Mean 1σ Within 1σ uncertainty 
Global Natural vegetation           
 GFDL-ESM2M 47.9  49.4   25.2  42.2  4.0  49.0  0.6  0 

 HadGEM2-ES  19.0  53.9   -36.9  67.3  3.0  45.6  6.8  0 

 IPSL-CM5A-LR 26.1  54.6   1.4  42.6  4.0  33.1  3.4  0 
  MIROC5 54.9  53.1    38.8  54.1  4.0   54.8  0.1  0 
Climate Tropical region                
Region GFDL-ESM2M 14.4  10.4   4.9  9.0  3.0  16.1  0.6  0 

 HadGEM2-ES  4.7  21.1   14.4  21.6  3.0  -4.8  2.3  0 

 IPSL-CM5A-LR 9.3  14.1   6.2  13.3  4.0  10.3  0.8  0 

 MIROC5 20.3  15.2    9.2  13.0  3.0   20.5  0.7  0 

 Temperate region           
 GFDL-ESM2M 31.3  46.2   65.5  44.2  2.0  36.3  2.0  0 

 HadGEM2-ES  12.7  56.8   -96.5  61.7  1.0  48.1  8.0  0 

 IPSL-CM5A-LR 14.8  57.0   -11.6  49.5  4.0  27.6  4.6  0 

 MIROC5 32.9  48.8    37.2  47.0  3.0   37.0  1.8  0 

 Boreal region           
 GFDL-ESM2M 2.2  7.1   2.5  7.1  3.0  3.1  1.1  0 

 HadGEM2-ES  1.6  19.3   -20.6  5.2  1.0  9.2  4.7  0 
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 IPSL-CM5A-LR 2.0  11.8   0.9  11.4  3.0  3.7  2.1  0 
  MIROC5 1.6  9.7    2.1  7.4  3.0   2.6  1.5  2 

 1026 
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Table 4 The global and regional soil carbon changes across cropland expansion area (∆𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 , calculated as ΔSOC divided by 1027 

the increased area of cropland; unit, kg C m-2) and the soil carbon density changes (𝚫𝚫𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏; unit, kg C m-2) between 1028 

initial natural vegetation (in 1861) and current cropland (in 2005) from original ISIMIP2b models and from the estimate constrained by meta-1029 

analysis data (𝚫𝚫𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏; unit, kg C m-2) in land use dominated areas. The number indicates the total model number with 1030 

modeled ∆𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 within 1-sigma uncertainty of the constrained ∆𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆.  1031 

Region LUC type 
Δ𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑎𝑎𝑛𝑛𝑛𝑛 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛   ∆𝑠𝑠𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 
Meta-analysis ISMIP2b   Constrained ISMIP2b number 

Eurasia G-C (temp) -1.51 ± 5.61 -0.39 ± 1.32  -2.46 ± 12.22 -0.15 ± 2.95 19 
North America  G-C (temp) -1.51 ± 5.61 -0.76 ± 1.57  -2.78 ± 9.92 -1.43 ± 2.85 19 
South America  G-C (temp) -1.51 ± 5.61 -0.50 ± 1.62  -1.89 ± 10.08 -0.22 ± 3.09 19 
Africa  G-C (trop) -1.62 ± 1.76 -0.42 ± 1.16  -1.66 ± 2.27 -0.18 ± 1.67 14 
West Eurasia  G-C (temp) -1.51 ± 5.61 -0.27 ± 0.99  -5.94 ± 17.68 -1.82 ± 3.35 19 
Australia  G-C (temp) -1.51 ± 5.61 0.20 ± 1.09  -3.45 ± 12.84 0.45 ± 2.53 19 
South Asia  F-C (trop) -2.14 ± 2.72 -2.25 ± 1.45  0.67 ± 2.45 0.12 ± 1.28 18 
East Asia  G-C (temp) -1.51 ± 5.61 -4.52 ± 3.85  0.27 ± 0.03 0.20 ± 1.81 0 
LUC region -- -1.74 ± 4.61 -1.74 ± 1.66   -0.29 ± 5.56 -0.61 ± 2.15 19 
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Table 5 The estimated regional soil carbon change (∆𝑺𝑺𝑺𝑺𝑺𝑺, Pg C) due to land use change in historical (1861-2005) and future period (2005-1033 

2099). The estimated ∆𝑺𝑺𝑺𝑺𝑺𝑺 was equal to the constrained ∆𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆  (kg C m-2) multiply crop expansion area (1012 m2) of each 1034 

region. 1035 

Region 
Modeled   Estimated ΔSOC 
Historical  Historical  RCP 2.6  RCP 6.0 

ΔSOC   Area ΔSOC   Area  ΔSOC   Area ΔSOC 
Eurasia -0.08 ± 1.32 0.406  -1.00 ± 4.96  0.020  -0.05 ± 0.24 0.011  -0.03 ± 0.14 
North America  -1.74 ± 3.08 1.004  -2.79 ± 9.96  0.039  -0.11 ± 0.38 0.000  0 
South America  -0.05 ± 0.65 0.190  -0.36 ± 1.92  0.179  -0.34 ± 1.80 0.152  -0.29 ± 1.53 
Africa  -0.09 ± 0.75 0.408  -0.68 ± 0.93  0.251  -0.42 ± 0.57 0.120  -0.20 ± 0.27 
West Eurasia  -0.10 ± 1.62 0.452  -2.69 ± 8.00  0.009  -0.05 ± 0.15 0.001  -0.01 ± 0.03 
Australia  0.18 ± 0.93 0.334  -1.15 ± 4.28  0.001  -0.003 ± 0.002 0.001  -0.002 ± 0.007 
South Asia  0.09 ± 0.88 0.623  0.42 ± 1.53  0.163  0.11 ± 0.40 0.348  0.23 ± 0.85 
East Asia  0.04 ± 0.34 0.171  0.05 ± 0.01  0.009  0.002 ± 0.001 <0.0001 <0.0001 
LUC region -2.64 ± 8.43 3.588  -1.03 ± 19.94   0.670  -0.19 ± 3.72 0.633  -0.18 ± 3.52 

Note, there is no crop expansion under RCP 6.0 in North America. 1036 
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Table 6 Global and natural ecosystem initial soil carbon stocks from different 1037 

database (without permafrost C) and GCMs during the period of 1995-2005 at soil 1038 

depth of 0-1 m. The bold and bold-italic indicates the largest and smallest value, 1039 

respectively.  1040 

Database/TBMs Data/GCMs 
Global Natural ecosystem (Pg C) 
(Pg C) Tropical Temperate Boreal Total 

Database HWSD 1265.8  376.4  645.9  72.6  1094.9  
 WISE30sec 1419.8  362.4  758.0  108.1  1228.5  
 HWSD+NCSCD 1454.4  376.5  748.1  159.3  1283.9  
 Mean 1380.0  371.8  717.3  113.3  1202.4  
LPJ-GUESS GFDL-ESM2M 1340.0  356.4  748.7  61.0  1166.1  
 HadGEM2-ES  1380.5  381.6  762.8  65.3  1209.7  
 IPSL-CM5A-LR 1357.4  367.0  746.2  52.3  1165.5  
 MIROC5 1380.9  401.1  755.1  46.4  1202.6  
LPJmL GFDL-ESM2M 2024.9  414.5  1210.3  271.6  1896.3  
 HadGEM2-ES  2055.3  450.6  1195.5  285.3  1931.4  
 IPSL-CM5A-LR 2074.2  432.3  1235.5  273.7  1941.5  
  MIROC5 2012.5  457.5  1168.7  259.7  1885.9  
VISIT GFDL-ESM2M 1287.6  308.6  745.8  110.8  1165.2  
 HadGEM2-ES  1334.8  317.0  782.4  112.7  1212.1  
 IPSL-CM5A-LR 1271.5  307.8  729.6  106.9  1144.3  
  MIROC5 1302.4  317.6  751.1  109.1  1177.8  
ORCHIDEE-
MICT 

GFDL-ESM2M 2164.6  459.8  1187.9  276.6  1924.4  
HadGEM2-ES  2207.6  472.4  1227.5  269.6  1969.5  
IPSL-CM5A-LR 2269.9  472.8  1250.9  284.7  2008.3  
MIROC5 2099.1  469.4  1136.0  252.9  1858.2  

DLEM GFDL-ESM2M 790.3  211.0  469.9  30.8  711.7  
 IPSL-CM5A-LR 817.2  224.4  483.5  29.1  737.0  
 MIROC5 780.3  204.0  468.8  29.7  702.6  
Model mean 1576.4  369.8  897.7  154.1  1421.6  
Model median 1380.5  381.6  762.8  110.8  1209.7  
Model IQR 1250.7  231.6  708.5  238.6  1175.7  

Notes: the total indicates the total soil carbon in grid cells dominated by natural 1041 
vegetation where the cropland fraction is less than 30% in 2005. 1042 
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 1043 

Figure 1 The framework of emergent constraint approach in areas dominated by land use change (a) and areas dominated by climate change (b).1044 
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 1045 

Figure 2 Changes of global soil organic carbon (ΔSOC) compared to the historical (1861-1046 

1870) under both the effects of climate change and land use change (CC+LUC), the effect of 1047 

climate change (Only CC) and the effect of land use change (Only LUC) based on RCP 2.6 1048 

and 6.0 during the period of 1871-2099.1049 
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 1050 

Figure 3 Change in global soil carbon (ΔSOC), net primarily productivity (ΔNPP), and 1051 

decomposition rate (Δk) according the effects of all data, RCPs (i.e., RCP 2.6 and RCP 6.0), 1052 

GCMs (i.e., four climate forcing, including GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR 1053 

and MIROC5), and TBMs (i.e., LPJ-GUESS, LPJmL, VISIT and ORCHIDEE-MICT) under 1054 

both effects of climate change and land use change (CC+LUC), the effect of climate change 1055 

(Only CC) and the effect of land use change (Only LUC) over the period of 2090-2099 1056 

compared to the means of 1996-2005. ‘All’ indicates the range obtained by averaging all 1057 

data; ‘RCPs’ indicates the range obtained by averaging all TBMs and GCMs outputs; 1058 

‘GCMs’ indicates the range obtained by averaging all TBMs outputs for each GCM; ‘TBMs’ 1059 

indicates the range obtained by averaging all GCMs outputs for each TBM.  1060 
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Figure 4 Change in global soil carbon stocks in area dominated by natural ecosystems 1062 

between start time (1995-2005) and end time (2090-2099) global means as a function of Eq. 1063 

(2) (the first column), the initial soil carbon stocks (𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔; the second column), the relative 1064 

change in decomposition rate ( 𝟏𝟏

𝟏𝟏+ ∆𝒌𝒌
𝒌𝒌𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

; the third column), and the relative change in soil 1065 

inputs (𝟏𝟏 + ∆𝑰𝑰
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

; the fourth column), and the relationship between future input change 1066 

(𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆−𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

) and NPP trend during the period of 2001-2015 across the ISIMIP2b TBMs (the 1067 

fifth column). All results shown here are from simulations driven by different GCMs’ climate 1068 

forcing under RCP 6.0 scenario. Group 2 simulations with climate change effect only are 1069 

used. The different colors indicate different TBMs. The black lines indicate the linear 1070 

regression across TBMs for each GCMs climate forcing. The dotted grey lines and grey areas 1071 

indicate the observation-based NPP trend for the period 2001-2015. The dotted purple lines 1072 

and purple areas indicate the constrained ∆𝑰𝑰
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

 and 𝟏𝟏 + ∆𝑰𝑰
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

. The dotted green lines and 1073 

green areas indicate the constrained ∆SOC. 1074 
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 1075 

Figure 5 Change in global soil carbon stocks in tropical region dominated by natural 1076 

ecosystems between start time (1995-2005) and end time (2090-2099) global means as a 1077 

function of Eq. (2) (the first column), the initial soil carbon stocks (𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔; the second 1078 

column), the relative change in decomposition rate ( 𝟏𝟏

𝟏𝟏+ ∆𝒌𝒌
𝒌𝒌𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

; the third column), and the 1079 

relative change in soil inputs (𝟏𝟏 + ∆𝑰𝑰
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

; the fourth column), and the relationship between 1080 

future input change (𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆−𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

) and NPP trend during the period of 2001-2015 across the 1081 

ISIMIP2b models (the fifth column). Detailed symbol and line information are in Figure 4.1082 
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 1083 

Figure 6 Change in global soil carbon stocks in temperate region dominated by natural 1084 

ecosystems between start time (1995-2005) and end time (2090-2099) global means as a 1085 

function of Eq. (2) (the first column), the initial soil carbon stocks (𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔; the second 1086 

column), the relative change in decomposition rate ( 𝟏𝟏

𝟏𝟏+ ∆𝒌𝒌
𝒌𝒌𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

; the third column), and the 1087 

relative change in soil inputs (𝟏𝟏 + ∆𝑰𝑰
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

; the fourth column), and the relationship between 1088 

future input change (𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆−𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

) and NPP trend during the period of 2001-2015 across the 1089 

ISIMIP2b models (the fifth column). Detailed symbol and line information are in Figure 4.1090 
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 1091 

Figure 7 Change in global soil carbon stocks in boreal region dominated by natural 1092 

ecosystems between start time (1995-2005) and end time (2090-2099) global means as a 1093 

function of Eq. (2) (the first column), the initial soil carbon stocks (𝑪𝑪𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔; the second 1094 

column), the relative change in decomposition rate ( 𝟏𝟏

𝟏𝟏+ ∆𝒌𝒌
𝒌𝒌𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

; the third column), and the 1095 

relative change in soil inputs (𝟏𝟏 + ∆𝑰𝑰
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

; the fourth column), and the relationship between 1096 

future input change (𝑰𝑰𝒆𝒆𝒆𝒆𝒆𝒆−𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔
𝑰𝑰𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔

) and NPP trend during the period of 2001-2015 across the 1097 

ISIMIP2b models (the fifth column). Detailed symbol and line information are in Figure 4.1098 
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 1099 

Figure 8 Relationship between modeled SOC density changes across cropland expansion 1100 

area (∆𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒂𝒂𝒂𝒂𝒂𝒂 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆) during the period of 1861-2005 and the soil carbon density 1101 

difference (𝚫𝚫𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏) between current cropland (in 2005) and initial 1102 

natural vegetation (in 1861). Group 1 simulations were used in this analysis. The bottom 1103 

center panel shows the results at global land use dominated areas. The different colors and 1104 

symbols indicate different climate forcing and models, respectively. The black lines indicate 1105 

the linear regression across all TBMs and all GCMs. The dotted grey lines and grey areas 1106 

indicate the observation-based meta-analysis data. The dotted purple lines and purple areas 1107 

indicate the constrained ∆𝒔𝒔𝒔𝒔𝒔𝒔𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄𝒄 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆. 1108 
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