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Abstract
We study the manifestation of the competing interaction between the mean-field intensity and the
symmetry breaking coupling on the phenomenon of aging transition in an ensemble of limit-cycle
oscillators comprising of active and inactive oscillators. Further, we also introduce filtering in both
the intrinsic and extrinsic variables of the mean-field diffusive coupling to investigate the
counter-intuitive effect of both filterings. We find that large values of the mean-field intensity near
unity favor the oscillatory nature of the ensemble, whereas low values favor the onset of the aging
transition and heterogeneous dynamical states such as cluster oscillation death and chimera death
states even at low values of the symmetry breaking coupling strength. Heterogeneous dynamical
states predominates at large values of the coupling strength in all available parameter spaces. We
also uncover that even a weak intrinsic filtering favors the aging transition and heterogeneous
dynamical states, while a feeble extrinsic filtering favors the oscillatory state. Chimera death state is
observed among the active oscillators for the first time in the aging literature. Our results can lead
to engineering the dynamical states as desired by an appropriate choice of the control parameters.
Further, the transition from the oscillatory to the aging state occurs via an inverse Hopf
bifurcation, while the transition from the aging state to the cluster oscillation death states emerges
through a supercritical pitch-fork bifurcation. The deduced analytical bifurcation curves are in
good agreement with the numerical boundaries of the observed dynamical states.

1. Introduction

The framework of coupled nonlinear oscillators is a veritable black box facilitating the onset of a plethora of
intriguing collective dynamical behaviors mimicking several real-world phenomena such as clustering
[1–4], synchronization [1–5], death states [5–10], chimera states [11–13], etc. Coupled nonlinear
oscillators have also been used as a key framework to elucidate the nature of life, as their emerging dynamics
underlie circadian rhythms, heart contraction, event related synchronization/desynchronization responsible
for various cognitive, motor and sensory tasks, peristaltic motion of gastrointestinal tracts, etc cf ([14–18]).
The phenomenon of AG was introduced by Diado and Nakanishi [19] in view of understanding the
robustness of the self-oscillatory nature of the coupled oscillators and the underlying mechanism for the
loss of macroscopic activity due to an increase in the number of non-oscillatory oscillators because of some
kind of damages or deterioration similar to the cascading failures in networks and power grids [20].
Originally, AG was reported in an ensemble of globally coupled oscillators by increasing the proportion of
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inactive oscillators [19] and later it has been extended to diffusively coupled oscillators [21]. There lies a
growing body of evidence on the phenomenon of AG probing the mechanism for the loss of macroscopic
oscillations in an ensemble comprising active and inactive oscillators [21–35]. For instance, introducing
asymmetry in the dispersal rates found to enhance the meta-population survivability from local
extinctions [36].

AG, attributing to the manifestation of a homogeneous steady state among the ensemble of coupled
oscillators, has been reported so far only by adopting symmetry coupling [21–31, 33]. The role of symmetry
breaking coupling on the onset of the AG in an ensemble comprising active and inactive oscillators is
unclear yet. Further, the mean-field coupling is known to facilitate the onset of the homogeneous steady
state (amplitude death) in two-coupled oscillators [37, 38], where it was emphasized that ‘mean-field
coupling is a much stronger ‘trap’ to induce death compared to other coupling schemes’. So a next natural
question is whether the mean-field coupling can facilitate the onset of the homogeneous steady state in a
network of oscillators, comprising active and inactive ones, facilitating the AG? Indeed, the symmetry
breaking coupling is known to favor the onset of heterogeneous dynamical states [8, 9, 39]. Now, a more
curious question is what would be the manifestation of the competing interaction of the mean-field and the
symmetry breaking couplings on the AG? Further, very recent investigations have employed low-pass filters
(LPF) to revoke the stability of stable homogenous/inhomogeneous steady states and to revive the
oscillations in the same parameter space where the coupled oscillators suffered death (inactive) states
[40, 41], thereby increasing the robustness of the self-sustained oscillatory nature including the macroscopic
activity of the coupled oscillators. Notably, an LPF was deployed to introduce an additional unstable degree
of freedom in order to rule out the odd number limitation in the control theory [42]. In this paper, we
introduce the LPF in both variables of the mean-field diffusive coupling and investigate the effect of their
cut-off frequencies on the AG in addition to the competing effects of the mean-field and the symmetry
breaking couplings.

We consider an ensemble of limit-cycle oscillators with mean-field diffusive coupling breaking the
rotational symmetry of the coupled system. We find that the symmetry breaking coupling facilitates the
transition from cluster oscillatory state (COS) to the homogeneous state (AG) and then to heterogeneous
states, such as cluster oscillation death (COD) and chimera death (CD) states. COS state simply refers to
clusters of oscillatory state [43, 44]. AG refers to the loss of macroscopic oscillations, through stabilization
of trivial steady state, due to deterioration/failures of local nodes of the network [19]. CD is basically
reported as a sandwich of the dynamical nature of the chimera states [45] and the heterogeneous nature of
the oscillation death [7, 8]. The CD refers to coexisting coherent and incoherent domains comprising of
neighbouring oscillators populating the same branch and different branches, respectively, of the
inhomogeneous steady state [9, 46–48]. COD state refers to clusters of oscillation death state [48–50].
Nevertheless, limiting the mean-field interaction using the mean-field intensity parameter favors the onset
of the AG, COD and CD states even for low values of the symmetry breaking coupling strength, thereby
increasing the spread of these dynamical states in a large range of the coupling strength. Further, the cut-off
frequency of the intrinsic variable facilitates the onset of both the stable homogeneous and heterogeneous
steady states in a large range of the coupling strength. In contrast, the cut-off frequency of the extrinsic
variable facilitates the COS by switching the stability of the stable homogeneous and heterogeneous steady
states even in the presence of filtering in the intrinsic variable, which actually favors the stablilization of
both the steady states. COS comprising high and low amplitude oscillations corresponding to the active and
inactive oscillators, respectively, predominate and prevail for low values of the coupling strength in the
entire explored range of the mean-field parameter, intrinsic and extrinsic cut-off frequencies. Bistability
among the three different dynamical states is also observed in the system parameter space. We find that the
transition from COS to aging transition (AG) is mediated by an inverse Hopf bifurcation (HB), while the
transition from AG to COD is facilitated by a supercritical pitch-fork bifurcation (PB). Further, the
analytical critical curves corresponding to the HB and PB curves are also deduced for the mean-field
symmetry breaking coupling without any filtering. The PB curve is also deduced in the presence of intrinsic
and extrinsic filtering in the mean-field diffusive coupling. The analytical critical curves are found to agree
perfectly with the simulation results.

The plan of the paper is as follows. The paradigmatic model of the Stuart–Landau limit cycle oscillators
with a mean-field symmetry breaking coupling including filtering in both variables of the mean-field
diffusive coupling will be discussed in section 2. Dynamical transitions using the normalized global order
parameter, one parameter bifurcation diagram obtained using XPPAUT illustrating the effect of the filtering
in the coupling, and the manifestation of the competing interaction between the mean-field intensity
parameter and symmetry breaking coupling will be detailed in section 3. Global dynamical transitions using
various two parameter phase diagrams will be discussed in section 4, and in section 5, we will provide a
summary and conclusions.
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2. Model

We consider an ensemble of the paradigmatic Stuart–Landau limit-cycle oscillators, which represents the
normal form of the HB and hence many nonlinear oscillators exhibiting HB can be approximated as
Stuart–Landau oscillator [51–53], with LPF in both the intrinsic and extrinsic variables of the mean-field
diffusive coupling, whose governing equation of motion can be expressed as

żj =
(
λj + iω − |zj|2

)
zj + ε

(
Qu − vj

)
, (1a)

v̇j = α
(
−vj + Re(zj)

)
, (1b)

u̇ = β

(
−u +

1

N

N∑
k=1

Re(zj)

)
, (1c)

where zj = r eiθj = xj + iyj ∈ C, j = 1, . . . , N. xj and yj are the state variables of the system. λj is the
Hopf-bifurcation parameter with limit cycle oscillations for λj > 0 and a stable trivial steady state for
λj < 0. The active oscillators with limit cycle oscillations are assigned λj = 2, while those for the inactive
oscillators are chosen as λj = −1. The active oscillators are indexed as j ∈ 1, . . . , N(1 − p), while those of
the inactive oscillators are j ∈ N(1 − p) + 1, . . . , N, where the parameter p corresponds to the proportion of
the inactive oscillators. All the oscillators are active when p = 0, whereas all the oscillators are inactive for
p = 1. Intermediate values of 0 < p < 1 determine the proportion of active and inactive oscillators in the
ensemble. ω is the natural frequency of the oscillation, ε is the coupling strength, the mean-field intensity
parameter Q determines the degree of the mean-field interaction. Q = 1 quantifies the maximum
mean-field interaction, whereas Q < 1 corresponds to a limited mean-field interaction, which results in a
plethora of nontrivial intriguing dynamical states. For instance, Q controls the additional mortality in the
meta-population dynamics in ecology during their dispersal [54], Q is a quorum sensing parameter in the
context of the synthetic genetic oscillators controlling the degree of dilution [55–57]. The mean-field
extrinsic variable u(t) and the intrinsic variable vj(t) in the coupling are governed by the linear ordinary
differential equations for LPFs related to zj as in equations (2b) and (2c), respectively. LPF disperse and
attenuates the high frequency signals thereby filtering them and their harmonics, and passing only the low
frequency components. The cutoff frequencies α and β determine the degree of attenuation of the intrinsic
and extrinsic signals, respectively. In the limit of α→∞, vj = Re(zj) and in the limit of β →∞,

u =
∑

j
Re(zj)

N and hence the coupling in equation (1) reduces to the standard mean-field diffusive coupling.
Attenuation of the intrinsic and extrinsic signals will be stronger for relatively smaller α and β as the higher
frequencies and their harmonics are filtered out. In contrast, higher values of α and β correspond to a
relatively weak filtering. The mean-field coupling employed only in the xj variable explicitly breaks the
rotational symmetry of the coupled Stuart–Landau limit cycle oscillators thereby loosing the rotational
invariance under the transformation zj → zjeiθ .

3. Dynamical transitions

3.1. Dynamical transitions using order parameter
To elucidate the dynamical transitions as a function of the proportion of inactive oscillators p, the
normalized global order parameter K ≡ |Z(p)|/|Z(0)| is depicted in figures 1(a) and (b) for three different
values of the intrinsic and extrinsic cut-off frequencies α and β, respectively. The order parameter
Z = 1/N

∑N
j=1 zj, while Z(p) and Z(0) are the order parameters for 0 < p � 1 and p = 0, respectively.

K = 0 corroborates the onset of the AG. The total number of oscillators and the natural frequency of the
oscillation are fixed as N = 100 and ω = 3.0 throughout the manuscript. The coupling strength is fixed as
ε = 6.0 in figure 1. We find that the normalized order parameter K → 0 as p → 1 and saturates at K = 0
only when p = 1 as depicted in figure 1(a) for α = 3.0 and β = 8.0. However, the AG occurs at pc = 0.79
for α = 5.0 [see figure 1(a)] elucidating that the intrinsic cut-off frequency (weak intrinsic filtering) indeed
facilitates the onset of the AG even in the presence of a finite proportion of the active oscillators. It is also
evident from the figure that K saturates at the null value at pc = 0.36 for α = 8.0 strongly corroborating
that even a weak intrinsic filtering favors the onset of the AG despite the presence of a large proportion of
active oscillators.

In contrast, relatively weak filtering of the extrinsic variable favors the oscillatory state by destabilizing
the stable homogeneous steady state, that is the AG, of the ensemble of the limit-cycle oscillators. The
normalized order parameter K is depicted in figure 1(b) for three different β and α = 5.0. The AG occurs at
pc = 0.52 for β = 4.0. Upon increasing the cut-off frequency further, K acquires the null value only at
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Figure 1. Normalized global order parameter K as a function of the inactive ratio p of system (1) for (a) α = 3.0, 5.0 and
α = 8.0, and β = 8.0, and (b) β = 4.0, 8.0 and β = 12.0, and α = 5.0. Other parameters: a = 2.0, b = −1.0, ω = 3.0, Q = 0.5,
ε = 6.0 and N = 100. Normalized global order parameter K is plotted to idenfify the dynamical phase transitions. K attains null
value at p = pc elucidating onset of the AG, that is, loss of macroscopic oscillatory state. The network exhibits macroscopic
oscillations for p < pc and remains at the stable homogeneous trivial steady state, representing AG, for p > pc.

pc = 0.8 for β = 8.0 elucidating that the AG occurs for a rather higher value of p � 0.8. This implies that
large values of β (weak extrinsic filtering) favor the oscillatory state even in the presence of a large
proportion of inactive oscillators thereby increasing the robustness of the network and preserving the
macroscopic activity. For β = 12.0, the oscillatory state prevails in the range of p ∈ (0, 0.88) beyond which
the network of oscillators suffers the AG [see figure 1(b)]. Thus, it is evident that even a weak intrinsic
filtering favors the onset of the AG despite the presence of a large proportion of active oscillators, while the
weak extrinsic filtering favors the oscillatory state despite the presence of a large fraction of inactive
oscillators and intrinsic filtering, which actually favor the stable steady state. It is also to be noted that the
inverse effect is also true for strong filtering, that is, strong intrinsic (extrinsic) filtering facilitates oscillatory
(aging) state [see figures 1(a) and (b)].

3.2. Dynamical transitions using one-parameter bifurcation diagram
To analyse the dynamical transitions using one-parameter bifurcation diagrams and to find the stable
boundaries of the observed dynamical states as a function of the system parameters, equation (1) can be
reduced in terms of active (zj = zA) and inactive (zj = zI) oscillators as

żA = (2 + iω − |zA|2)zA + ε(Qu − vA),

v̇A = α(−vA + Re(zA)),

żI = (−1 + iω − |zI|2)zI + ε(Qu − vI),

v̇I = α(−vI + Re(zI)),

u̇ = β(−u + p Re(zI) + (1 − p)Re(zA)),

(2)

where zA = xA + iyA and zI = xI + iyI.
One parameter bifurcation diagrams, obtained using XPPAUT, of the above reduced equation are shown

in figure 2 for p = 0.8 as a function of the coupling strength displaying the effect of the intrinsic and
extrinsic cut-off frequencies α and β on the AG region. The COS, comprising a large (indicated by filled
squares) and a small (indicated by filled triangles) amplitude limit-cycle oscillations of active and inactive
oscillators, respectively, is observed in the range of ε ∈ (2, 5.13] [see figure 2(a) plotted for α = 5.0 and
β = 4.0]. Stabilization of the trivial fixed point of all the oscillators in the ensemble occurs through an
inverse HB at ε = 5.14 manifesting the onset of the AG in the range of ε ∈ [5.14, 7.39) (shaded region).
A large strength of the symmetry breaking coupling favors the heterogeneous dynamical states. A COD state
onsets via a PB at ε = 7.39 and prevails in the entire higher values of ε. Similar dynamical transitions are
observed in figures 2(b) and (c) for different sets of α and β but illustrating the effect of the intrinsic and
extrinsic cut-off frequencies on the AG region. Increasing β, from 4.0 in figure 2(a) to 8.0 in figure 2(b), for
the same α = 5.0 increases the COS state in the range ε ∈ (2, 5.9] thereby decreasing the spread of the AG
state in the further narrow range of ε ∈ (5.9, 7.39). This corroborates that the weak extrinsic filtering
destabilizes the stable trivial steady state of all the oscillators thereby facilitating the re-emergence of the
oscillatory state in the same parameter space where the network suffered the AG. Now by fixing the extrinsic
cut-off frequency at β = 8.0 as in figure 2(b) and increasing the intrinsic cut-off frequency from α = 5.0 to
α = 8.0, the spread of the AG state (shaded region) is enhanced to a larger range of ε ∈ (4.34, 7.39)
[see figure 2(c)] corroborating that a weak intrinsic filtering favors the aging state.

To appreciate the dynamical nature of the COS, AG and COD states, their spatio-temporal plots (first
column) and time traces (second column) are depicted in figure 3 for the same parameters as in figure 2(a).
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Figure 2. One parameter bifurcation diagram (using XPPAUT) as a function of the coupling strength (ε) of system (2) for (a)
α = 5.0, β = 4.0, (b) α = 5.0, β = 8.0, and (c) α = 8.0. β = 8.0. HB and PB are the HB and PB points. COS, AG and COD
represent the cluster oscillatory, aging and COD states, respectively. Other parameters: a = 2.0, b = −1.0, ω = 3.0, Q = 0.5, and
p = 0.8. It is depicted to understand the dynamical transitions among different observed dynamical states. The figure elucidates
that weak extrinsic filtering destabilizes the stable trivial steady state thereby facilitating the re-emergene of the oscillatory state in
the same parameter space where the network suffered the AG. It also reveals that a weak intrinsic filtering favors the aging state.

Figure 3. In order to appreciate the dynamical nature of the COS, aging and COD states observed in the one parameter
bifurcation digram, figure 2, spatio-temporal and time evolutions of system (2) for (a) and (d) COS (ε = 3.0), (b) and (e) aging
state (ε = 6.0), and (c) and (f) COD state (ε = 9.0) are depicted. Other parameters are the same as in figure 2(a). The nature of
initial conditions employed can be recognised by the color coding from the early states of the evolution of the depicted dynamical
states. See text for more details.

The time evolution of the representative oscillators from the inactive group (x10) and the active group (x90)
are depicted in the second column. The COS comprising large and small oscillations of the active and
inactive oscillators is shown in figures 3(a) and (d) for ε = 3.0. The AG is displayed in figures 3(b) and (e)
for ε = 6.0, where the trivial steady state of the active and inactive oscillators is stabilized resulting in the
manifestation of the stable homogeneous steady state. The COD state is depicted in figures 3(c) and (f) for
ε = 9.0, where the inactive oscillators populate the stable homogeneous steady state, while the active
oscillators populate one of the branches of the inhomogeneous steady states depending on the distribution
of their initial states. Random initial conditions are chosen for COS and AG states, while cluster initial
conditions are used for the COD state. Random initial conditions for large values of the symmetry breaking
coupling results in the manifestation of the CD state among the active oscillators, which will be discussed
later.

3.2.1. Trade-off between the mean-field and symmetry breaking couplings
Now, we will discuss the effect of the competing interaction only between the mean-field intensity Q and
the strength of the symmetry breaking coupling ε on the AG in the absence of both the intrinsic and
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Figure 4. Dynamical transitions elucidating the competing interaction between the mean-field intensity parameter Q, and the
symmetry breaking coupling without any filtering in the extrinsic and intrinsic variables (a) in the (ε, Q) parameter space for
p = 0.8 and (b) in the (p, Q) parameter space for ε ∈ (0, 12). This figure elucidates that the mean-field intensity parameter Q
favors both the homogeneous steady state (AG) and heterogeneous symmetry breaking states (COD) in the appropriate ranges of
the symmetry breaking coupling strength ε and the fraction of inactive oscillators p.

extrinsic filtering in the coupling. The observed dynamical transition is shown in figure 4 as a two phase
diagram in the (ε, Q) parameter space. We identify a transition from the COS (unshaded region) to the
COD (green/light grey region) state via the AG (dark grey region) as a function of ε in the entire range of
Q. Nevertheless, there is a bistability between the CD state and COS, COD, and AG states (in the two
parameter space shaded with diagonal lines) in the R1, R2 and R3 regions, respectively. A COS is observed
near the unit value of the mean-field intensity parameter Q in a large range of ε, whereas AG and COD
states are observed in a rather narrow range of ε. Interestingly, decreasing Q, that is limiting the mean-field
interaction, results in an increase in the spread of AG and COD states as a function of ε [see figure 4(a)]
elucidating that the mean-field intensity parameter favors both the homogeneous steady state (AG) and
heterogeneous symmetry breaking states (COD) in the appropriate ranges of the symmetry breaking
coupling. It is also to be noted that the onset of AG and COD occurs even for low values of ε upon
decreasing the mean-field intensity parameter. Further, a large value of the symmetry breaking coupling
induces symmetry breaking states in the entire range of Q. The homogeneous steady state (AG) is always
found to be preceded by the COS, while the heterogeneous symmetry breaking states (COD) by the
homogeneous steady state (AG region). The transition from COS to AG is mediated by an inverse HB, while
that from AG to COD is by a PB. The parameter space of the CD state is independent of the mean field
intensity Q.

The HB and PB curves can be deduced from equation (2). As there is no filtering in the coupling,
equation (2) can be further reduced as

żA = (2 + iω − |zA|2)zA + ε(Qu − Re(zA)), (3a)

żI = (−1 + iω − |zI|2)zI + ε(Qu − Re(zI), (3b)

where u = pRe(zI) + (1 − p)Re(zA). The corresponding characteristic equation can be written as

λ4 + A3λ
3 + A2λ

2 + A1λ+ A0 = 0. (4)

The coefficients A0, A1, A2, and A3 can be expressed as

A0 = (a2 + ω2)(b2 + ω2 + bε(1 − pQ)) − aε(b2 + ω2)(1 + p̂Q) − bεQ1,

A1 = b2ε(1 + p̂Q) − Q2ω
2ε+ a2

(
2b + ε(1 − pQ) + b(2ω2 − Q1ε

2) + a(Q1ε
2 + 2bQ2ε− 2(b2 + w2)),

A2 = a2 + b2 + 2ω2 + b(3 + (p − 2)Q)ε− ε2Q1 + a((Q(1 + P) − 3)ε− 4b),

A3 = 2(b − a) − Q2ε,
(5)

where p̂ = p − 1, Q1 = Q − 1 and Q2 = Q − 2. The critical curve, the HB curve, separating AG and COD
can be obtained from A0 = 0 as

Qc =
(a2 + ω2 − aε)(b2 + ω2 + bε)

ε(ap̂(b2 + ω2 − bε) + bp(a2 + ω2))
. (6)

The HB curve separating COS to AG can be deduced from the condition,

(A2
1 − A1A2A3 + A0A2

3)

(A1 − A2A3)
> 0. (7)

The corresponding analytical Hopf (dotted line) and pitch-fork (dashed line) bifurcation curves are
depicted in figure 4(a), which agree very well with the numerical boundaries.
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Figure 5. To appreciate the CD state observed in the two parameter phase diagram in figure 4(b) (a) spatio-temporal and (b)
snap-shot of CD state for ε = 9.0, p = 0.3 and Q = 0.5 are depicted here. Representative incoherent (cyan/light grey) and
coherent (orange/dark grey) domains are shaded in figure 5(b).

For a further insight into the observed dynamical states, the spread of the COS, AG, COD, and CD states
is depicted in figure 4(b) in the (p, Q) parameter space for ε ∈ (0, 15). The spread of the dynamical states as
a function of ε is obtained for a fixed Q and p, which has to be repeated as a function of p. This procedure
results in a set of spread for each COS, AG and COD states as a function of p for a fixed Q for different
values of ε in the range of ε ∈ (0, 15). The superimposed spreads of each dynamical state in the range of
ε ∈ (0, 12) are obtained as a function of p for a fixed Q, which is repeated again as a function Q. Now, we
get a global picture of the spread of the observed dynamical states in the explored range of p, Q and ε in the
two-parameter phase (p, Q) space as depicted in figure 4(b). The COS state is observed in the entire
explored range of p and Q for various ε. Similarly, the AG is observed in the entire parameter space below
the dotted line, while the COD state is observed in the parameter space below the dashed line. The CD state
is observed in the parameter space below the continuous line. For any particular choice of ε, the spread of
the observed dynamical states will lie only within their maximum spread depicted in figure 4(b) as a
function of p and Q.

The CD state observed among the active oscillators for random initial states of the active and inactive
oscillators, comprising the ensemble of Stuart–Landau limit cycle oscillators, is depicted in the
spatio-temporal and snap-shot plots in figure 5 for p = 0.4. Subsequent active oscillators populating the
upper and lower branches alternately constitute the incoherent domain, while the two or more subsequent
active oscillators populating either the upper or lower branches constitute the coherent domain of the CD
states. Representative coherent and incoherent domains are shaded in figure 5(b).

The submanifold equation for the CD state can be expressed as,

ża
1,2 = (a + iω − |za

1,2|2)za
1,2 + ε(u − v1,2),

żi
3 = (−b + iω − |zi

3|2)zi
3 + ε(u − v3),

v̇1,2,3 = α(−v1,2,3 + Re(z1,2,3)),

u̇ = β(−u +Δ),

(8)

where Δ = (1/2)(1 − p)Re(za
1 + za

2) + p Re(zi
3). za

1 and za
2 represent the active group of oscillators, while zi

3

denotes the inactive group of oscillators.
Under the conditions, zin

j = 0,
∑N

j=1 zact
j = 0 and zact

j �= 0, the submanifold equation for the CD state can
be reduced as

żact
j = (a + iω − |zact

j |2)zact
j + εRe zact

j , (9)

whose fixed point solution is

x∗ = ∓ 1√
2ε

√
2ω2 + ε(a − ε) +

√
ε2 − 4ω2(ε− a),

y∗ = ±ε+
√
ε2 − 4ω2

2ω
x∗.

(10)

These fixed points correspond to the upper and lower branches of the inhomogeneous steady states
comprising the coherent and incoherent domains of the CD state depicted in figure 5.

4. Global dynamical transitions

For a global perspective on the effect of all the parameters on the observed dynamical states, and in
particular, to appreciate the effect of the intrinsic and extrinsic cut-off frequencies of the filtering, we have
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Figure 6. Dynamical transitions in coupled Stuart–Landau limit-cycle oscillators in (a)–(c) (ε, p) space for β = 8.0 and
Q = 0.5, (d)–(f) (ε, Q) space for p = 0.8 and β = 8.0, and (g)–(i) (ε,β) space for p = 0.8 and Q = 0.5 and for the intrinsic
cut-off frequency α = 3.0, 5.0 and 8.0. Other parameters: a = 2.0, b = −1.0, ω = 3.0, and N = 100. This figure is depicted to
elucidate the effect of intrinsic filtering on the observed dynamical states and their spread in various system parameter space. It is
evident from the figure that weak intrinsic filtering destabilize both the stable oscillatory state (COS) facilitating the spread of AG
state in a large range of the parameter space. It also favors the the spread of heterogeneous symmetry breaking states
(COD and CD).

depicted two-parameter phase diagrams in the various parameter spaces in figure 6. It is evident that COS
occupies the entire unshaded region. The solid curve encloses the CD state (region shaded with diagonal
lines), whereas the dashed curve encloses the COD state (green/light grey region). The dark grey shaded
region corresponds to the AG region. Bistability between the COS and CD state is observed in the region
R1, that between CD and COD in the region R2, and that between CD and AG in the region R3. The first
row (figures 6(a)–(c)) is depicted in the (ε, p) parameter space for three different values of the intrinsic
cut-off frequency α for β = 8.0 and Q = 0.5. The coupled Stuart–Landau limit-cycle oscillators do not
exhibit the AG for α = 3.0 [see figure 6(a)], but the COS state in most of the parameter space. Nevertheless
the bistable regions R1 and R2 emerge in a small region of the (ε, p) parameter space. Upon increasing the
intrinsic cut-off frequency to α = 5.0, the AG region appears in a finite region of the parameter space, while
the spread of the bistable regions R1 and R2 increases to a large extent. Because of the emergence of the AG
region, there exists bistability between AG and CD in R3. Further increase in α to α = 8.0, facilitates the
spread of the AG to a large extent with an increase in the bistable region R3 at the cost of R1 decreasing the
spread of the COS state. Similar dynamical transitions are shown in figures 6(d)–(f)(middle row) but in the
(ε, Q) parameter space for β = 8.0 and p = 0.8 for the same three values of α as in figures 6(a)–(c). It is
also evident from these figures that increasing the values of the intrinsic cut-off frequency facilitate the
onset and the spread of the AG region to a large parameter space. Further, a similar effect of α is also
evident in the (ε,β) parameter space in figures 6(g) and (h) for Q = 0.5 and p = 0.8. Thus increasingly
weak filtering of the intrinsic variable, in general, facilitates the onset of the AG even at lower values of the
coupling strength and the spread of the same to a large region of the available parameter space.
Furthermore, it also facilitates the spread of the heterogeneous symmetry breaking states (COD and CD
states) in the entire range of the parameters p, Q and β for a large symmetry breaking coupling strength as
evident from figure 6.

As in figure 4(a), the dynamical transition from COS to AG occurs through an inverse HB, while the
transition from the AG to COD state occurs via a PB. One can also deduce the HB and PB curves, in
principle, in the presence of the intrinsic and extrinsic filtering. However, one has to solve a seventh order
polynomial equation in λ with a large expression for their coefficients resulting from the Jacobain of a seven
by seven matrix corresponding to equation (2), which results in more than two page expressions for the
inverse HB curve. Hence, the expression for the latter was not included here. However, one can deduce a
simple expression corresponding to the PB curve facilitating the transition from the AG to the COD state,
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Figure 7. Dynamical transitions in coupled Stuart–Landau limit-cycle oscillators in (a)–(c) (ε, p) space for α = 5.0 and
Q = 0.5, (d)–(f) (ε, Q) space for p = 0.8 and α = 5.0, and (g)–(i) (ε,α) space for p = 0.8 and Q = 0.5 for increasing values of
the extrinsic cut-off frequency β = 4.0, 8.0 and 12.0. Other parameters: a = 2.0, b = −1.0, ω = 3.0, and N = 100. This figure is
depicted to elucidate the effect of extrinsic filtering on the observed dynamical states and their spread in various system
parameter space. It is evident from the figure that weak extrinsic filtering destabilize both the stable homogeneous steady state
(AG) and heterogeneous stable symmetry breaking states (COD) state to retain sustained oscillations in a large range of the
parameter space.

which can be expressed as

pc =
(b2 + ω2 + bε)(a2 + ω2 + a(Q − 1)ε)

(a + b)Q(ab + ω2)ε
. (11)

We have also confirmed that the analytical boundaries match very well with the simulation results in
figures 6 and 7.

Now, we will investigate the effect of the filtering in the extrinsic mean-field variable in all the possible
parameter spaces as in figure 6 but for three different (increasing) values of β and in the presence of the
intrinsic filtering α = 5.0, which actually favors both the homogeneous and heterogeneous steady states.

The dynamical states and their transitions along with the bistable regions in the two-parameter phase
diagrams in figure 7 are similar to those observed in figure 6. The first, second and third column in figure 7
are plotted for increasing weak extrinsic filtering assigning β = 4.0, 8.0 and 12.0, respectively. The
dynamical transitions are shown in the (ε, p) parameter space for Q = 0.5 in figures 7(a)–(c). It elucidates
that there is a change in the stablility of the stable trivial steady state (comprising the AG) upon increasing
the cut-off frequency of the extrinsic filtering resulting in an increase in the spread of the COS.
Consequently, there is reviving of oscillations in the same parameter space where the oscillators suffered the
AG without any oscillatory behavior. The weak extrinsic filtering does not only destabilize the stable
homogeneous steady state but also destabilizes the stability of the heterogeneous symmetry breaking states
in a large range of the parameter space, which corroborates that the extrinsic filtering can be a powerful tool
to retain sustained oscillations among the coupled oscillators against the deterioration that renders the
oscillators to inactive states loosing macroscopic oscillations. The observed dynamical states shown in
figures 7(d)–(f) in the (ε, Q) parameter space for p = 0.8 elucidate that large values of Q favors the
oscillatory state in the entire explored range of ε. Further, it is also evident that large values of β destabilize
stable homogeneous and heterogeneous steady states facilitating the manifestation of the oscillatory state in
a large range of the parameters. It also evident from figures 7(g)–(i) depicted for p = 0.8 and Q = 0.5 in
the (ε,α) parameter space that higher values of α (weak intrinsic filtering) favor stable homogeneous and
heterogeneous steady states, whereas higher values of β (weak extrinsic filtering) favor the oscillatory state
by destabilizing the stable steady states thereby corroborating the counterintuitive roles of the intrinsic and
extrinsic filtering on the robustness of the dynamical states.

The spread of the observed dynamical states in the (α,β) parameter space in the range of
ε ∈ (0, 15), p ∈ (0, 1) and Q ∈ (0, 1) are depicted in figures 8(a)–(c), respectively. As in figure 4(b), the
spread of each dynamical state as a function of a third parameter are observed for fixed α and β, which is
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Figure 8. Global dynamical behaviors in coupled Stuart–Landau limit-cycle oscillators in (α,β) space, for (a) p = 0.8, Q = 0.5,
ε ∈ (0, 15), (b) ε = 7.0, Q = 0.5, p ∈ (0, 1), and (c) ε = 7.0, p = 0.5, Q ∈ (0, 1). This figure is illustrated to unravel the complete
region of the observed dynamical states as the p, Q and ε are varied in the explored range as a function of both intrinsic and
extrinsic filtering in the (α,β) parameter space. It displays the maximum possible spread of the observed dynamical states in the
appropriate parameter space.

then repeated for different α to yield a set of spreads corresponding to each dynamical state. Superimposing
all the set will provide a unified spread of the observed dynamical states as a function of α for the entire
range of the third parameter. This procedure has to be repeated again as a function of β to obtain a global
spread of the observed dynamical states in the (α,β) parameter space. Now, for any value of the third
parameter, the spread of the observed dynamical states will lie only within the global spread of the COS,
AG, COD, and CD regions shown in figure 8. The spread of the COS state is observed in the entire explored
range of α and β in figures 8(a)–(c). CD (COD/AG) is observed as a function of α after the continuous
(dashed/dotted) line in the entire range of β in figures 8(a) and (b). The COS, COD and CD states are
observed in the entire explored range of α and β in figure 8(c). AG is emerges as a function of α after the
dotted line in the entire range of β. It is evident from figures 8(a)–(c) that large values of β favor COS and a
large α favor AG including the heterogeneous COD and CD states.

5. Summary and conclusions

We have investigated effects of the mean-field intensity, symmetry breaking coupling, as well as intrinsic
and extrinsic filtering on the AG along with other observed dynamical states and their transition in an
ensemble of paradigmatic Stuart–Landau limit-cycle oscillators, comprising active and inactive oscillators.
For a fixed fraction of inactive oscillators, the symmetry breaking coupling facilitates the transition from the
COS to the COD state via the AG. There is a finite range of spread of these dynamical states as a function of
the coupling strength Q = 1. The spread of the AG, COD and CD states increases upon limiting the
mean-field interaction by decreasing the mean-field intensity parameter Q. Further, Q is found to facilitate
the onset of the homogeneous and heterogeneous states even for low values of ε. Large values of ε favors the
heterogeneous states in the entire range of Q. In addition, even a weak intrinsic filtering favors the onset of
the AG, while a feeble extrinsic filtering favors the oscillatory state revealing the counterintuitive roles of the
intrinsic and extrinsic filtering. Similar effects are observed even when varying the proportion of the
inactive oscillators p as a function of Q, ε,α and β.

In general, large values of the intrinsic cut-off frequency α favors the onset of the AG, COD and CD
states even in the presence of a large proportion of inactive oscillators. In contrast, large values of the
extrinsic cut-off frequency β and the mean-field intensity parameter Q favors the oscillatory state even in
the presence of a large proportion of inactive oscillators and intrinsic filtering, which actually favors the
stable homogeneous and heterogeneous steady states. It is to be noted that the CD state is observed for the
first time in the AG literature, which manifests due to the symmetry breaking coupling. Further, the
transition from the COS to the AG state occurs via an inverse HB, while the transition from AG to COD
state onsets via a supercritical PB. The analytical bifurcation curves have also been deduced and found to
agree very well with the numerical boundaries. These results corroborate that extrinsic filtering and the
mean-field intensity parameter can be used as a powerful tool to retain self-sustained oscillations among the
coupled oscillators against the deterioration that renders the oscillators to inactive states loosing
macroscopic dynamical states. Our study also revealed that such collective dynamics can be engineered as
desired by using the filtering in the extrinsic and intrinsic variable thereby generalizing the studies on the
AG and means to control the AG to preserve macroscopic activity.

Acknowledgments

KS thank the DST-SERB, Government of India, for providing National Post Doctoral fellowship under the
Grant No. PDF/2019/001589. DVS is supported by the CSIR EMR Grant No. 03(1400)/17/EMR-II. The

10



New J. Phys. 22 (2020) 093024 U Singh et al

work of VKC forms part of a research project sponsored by CSIR Project under Grant No. 03(1444)/18/
EMR-II. WZ acknowledges support from Research Starting grants from South China Normal University
(8S0340) and a project supported by Guangdong Province Universitties and Colleges Pearl River Scholar
Funded Scheme (2018). JK was supported by the project RF Goverment Grant 075-15-2019-1885.

ORCID iDs

D V Senthilkumar https://orcid.org/0000-0003-1902-972X

References

[1] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge
University Press)

[2] Boccaletti S, Kurths J, Osipov G, Valladares D L and Zhou C S 2002 Phys. Rep. 366 1
[3] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[4] Arenas A, D́iaz-Guilera A, Kurths J, Moreno Y and Zhou C S 2008 Phys. Rep. 469 93
[5] Lakshmanan M and Senthilkumar D V 2011 Dynamics of Nonlinear Time-Delay Systems (Berlin: Springer)
[6] Saxena G, Prasad A and Ramaswamy R 2012 Phys. Rep. 521 205
[7] Koseska A, Volkov E and Kurths J 2013 Phys. Rep. 531 173
[8] Koseska A, Volkov E and Kurths J 2013 Phys. Rev. Lett. 111 024103
[9] Zakharova A, Kapeller M and Schöll E 2014 Phys. Rev. Lett. 112 154101

[10] Koseska A, Ullner E, Volkov E I, Kurths J and Ojalvo J G 2010 J. Theor. Biol. 263 189202
[11] Yao N and Zheng Z 2016 Int. J. Mod. Phys. B 30 1630002
[12] Schöll E 2016 Eur. Phys. J. Spec. Top. 225 891
[13] Panaggio M J and Abrams D M 2015 Nonlinearity 28 R67–87
[14] Winfree A T 2001 The Geometry of Biological Time (New York: Springer)
[15] Pfurtscheller G and Neuper C 1994 Neurosci. Lett. Suppl. 174 93
[16] Krause C M, Lang A H, Laine M, Kuusisto M and Pörn B 1996 Electroencephalogr. Clin. Neurophysiol. 98 319
[17] Leocani L, Toro C, Manganotti P, Zhuang P and Hallet M 1997 Electroencephalogr. Clin. Neurophysiol. 104 199
[18] Pfurtscheller G and Lopes da Silva F H 1999 Clin. Neurophysiol. 110 1842
[19] Daido H and Nakanishi K 2004 Phys. Rev. Lett. 93 104101
[20] Pahwa S, Scoglio C and Scala A 2015 Sci. Rep. 4 3694
[21] Daido H and Nakanishi K 2007 Phys. Rev. E 75 056206
[22] Daido H 2009 Europhys. Lett. 87 40001

Daido H 2011 Phys. Rev. E 83 026209
[23] Huang W, Zhang X, Hu X, Zou Y, Liu Z and Guan S 2014 Chaos 24 023122
[24] Tanaka G, Morino K, Daido H and Aihara K 2014 Phys. Rev. E 89 052906
[25] Daido H 2008 Europhys. Lett. 84 10002
[26] Morino K, Tanaka G and Aihara K 2011 Phys. Rev. E 83 056208
[27] Thakur B, Sharma D and Sen A 2014 Phys. Rev. E 90 042904
[28] Kundu S, Majhi S, Karmakar P, Ghosh D and Rakshit B 2018 Europhys. Lett. 123 30001
[29] Kundu S, Majhi S and Ghosh D 2018 Phys. Rev. E 97 052313
[30] Sun S, Ma N and Xu W 2017 Sci. Rep. 7 42715
[31] Liu Y, Zou W, Zhan M, Duan J and Kurths J 2016 Europhys. Lett. 114 40004
[32] Gowthaman I, Sathiyadevi K, Chandrasekar V K and Senthilkumar D V 2020 Nonlinear Dyn. 100 xxxxx
[33] Sathiyadevi K, Gowthaman I, Senthilkumar D V and Chandrasekar V K 2019 Chaos 29 123117
[34] Ponrasu K, Gowthaman I, Chandrasekar V K and Senthilkumar D V 2019 Europhys. Lett. 128 58033
[35] Ray A, Kundu S and Ghosh D 2019 Europhys. Lett. 128 40002
[36] Kundu S, Majhi S, Sasmal S K, Ghosh D and Rakshit B 2017 Phys. Rev. E 96 062212
[37] Banerjee T and Ghosh D 2014 Phys. Rev. E 89 052912
[38] Ghosh D, Banerjee T and Kurths J 2015 Phys. Rev. E 92 052908
[39] Banerjee T, Biswas D, Ghosh D, Schöll E and Zakharova A 2018 Chaos 28 113124
[40] Zou W, Ocampo-Espindola J L, Senthilkumar D V, Kiss I Z, Zhan M and Kurths J 2019 Phys. Rev. E 99 032214
[41] Kumar K, Biswas D, Banerjee T, Zou W, Kurths J and Senthilkumar D V 2019 Phys. Rev. E 100 052212
[42] Pyragas K, Pyragas V, Kiss I Z and Hudson J L 2002 Phys. Rev. Lett. 89 244103
[43] Schmidt L and Krischer K 2015 Phys. Rev. Lett. 114 034101
[44] Chandrasekar V K, Gopal R, Senthilkumar D V and Lakshmanan M 2016 Phys. Rev. E 94 012208
[45] Abrams D M and Strogatz S H 2004 Phys. Rev. Lett. 93 174102
[46] Premalatha K, Chandrasekar V K, Senthilvelan M and Lakshmanan M 2015 Phys. Rev. E 1 052915
[47] Premalatha K, Chandrasekar V K, Senthilvelan M and Lakshmanan M 2016 Phys. Rev. E 93 052213
[48] Sathiyadevi K, Chandrasekar V K, Senthilkumar D V and Lakshmanan M 2018 Phys. Rev. E 97 032207
[49] Schneider I, Kapeller M, Loos S, Zakharova A, Fiedler B and Schöll E 2015 Phys. Rev. E 92 052915
[50] Sathiyadevi K, Chandrasekar V K and Senthilkumar D V 2018 Phys. Rev. E 98 032301
[51] Aoyagi T 1995 Phys. Rev. Lett. 74 4075
[52] Tukhlina N and Rosenblum M 2008 J. Biol. Phys. 34 301
[53] Izhikevich E M 2007 Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Cambridge, MA: MIT Press)
[54] Banerjee T, Dutta P S and Gupta A 2015 Phys. Rev. E 91 052919
[55] Garcia-Ojalvo J, Elowitz M B and Strogatz S H 2004 Proc. Natl Acad. Sci. USA 101 10955
[56] Ullner E, Zaikin A, Volkov E I and Garcia-Ojalvo J 2007 Phys. Rev. Lett. 99 148103
[57] Ullner E, Koseska A, Kurths J, Volkov E, Kantz H and Garcia-Ojalvo J 2008 Phys. Rev. E 78 031904

11

https://orcid.org/0000-0003-1902-972X
https://orcid.org/0000-0003-1902-972X
https://doi.org/10.1016/s0370-1573(02)00137-0
https://doi.org/10.1016/s0370-1573(02)00137-0
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2005.10.009
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2008.09.002
https://doi.org/10.1016/j.physrep.2012.09.003
https://doi.org/10.1016/j.physrep.2012.09.003
https://doi.org/10.1016/j.physrep.2013.06.001
https://doi.org/10.1016/j.physrep.2013.06.001
https://doi.org/10.1103/physrevlett.111.024103
https://doi.org/10.1103/physrevlett.111.024103
https://doi.org/10.1103/physrevlett.112.154101
https://doi.org/10.1103/physrevlett.112.154101
https://doi.org/10.1016/j.jtbi.2009.11.007
https://doi.org/10.1016/j.jtbi.2009.11.007
https://doi.org/10.1142/s0217979216300024
https://doi.org/10.1142/s0217979216300024
https://doi.org/10.1140/epjst/e2016-02646-3
https://doi.org/10.1140/epjst/e2016-02646-3
https://doi.org/10.1088/0951-7715/28/3/r67
https://doi.org/10.1088/0951-7715/28/3/r67
https://doi.org/10.1088/0951-7715/28/3/r67
https://doi.org/10.1088/0951-7715/28/3/r67
https://doi.org/10.1016/0304-3940(94)90127-9
https://doi.org/10.1016/0304-3940(94)90127-9
https://doi.org/10.1016/0013-4694(96)00283-0
https://doi.org/10.1016/0013-4694(96)00283-0
https://doi.org/10.1016/s0168-5597(96)96051-7
https://doi.org/10.1016/s0168-5597(96)96051-7
https://doi.org/10.1016/s1388-2457(99)00141-8
https://doi.org/10.1016/s1388-2457(99)00141-8
https://doi.org/10.1103/physrevlett.93.104101
https://doi.org/10.1103/physrevlett.93.104101
https://doi.org/10.1038/srep03694
https://doi.org/10.1038/srep03694
https://doi.org/10.1103/physreve.75.056206
https://doi.org/10.1103/physreve.75.056206
https://doi.org/10.1209/0295-5075/87/40001
https://doi.org/10.1209/0295-5075/87/40001
https://doi.org/10.1209/0295-5075/87/40001
https://doi.org/10.1209/0295-5075/87/40001
https://doi.org/10.1063/1.4881215
https://doi.org/10.1063/1.4881215
https://doi.org/10.1103/physreve.89.052906
https://doi.org/10.1103/physreve.89.052906
https://doi.org/10.1209/0295-5075/84/10002
https://doi.org/10.1209/0295-5075/84/10002
https://doi.org/10.1103/physreve.83.056208
https://doi.org/10.1103/physreve.83.056208
https://doi.org/10.1103/physreve.90.042904
https://doi.org/10.1103/physreve.90.042904
https://doi.org/10.1209/0295-5075/123/30001
https://doi.org/10.1209/0295-5075/123/30001
https://doi.org/10.1103/physreve.97.022201
https://doi.org/10.1103/physreve.97.022201
https://doi.org/10.1038/srep42715
https://doi.org/10.1038/srep42715
https://doi.org/10.1209/0295-5075/114/40004
https://doi.org/10.1209/0295-5075/114/40004
https://doi.org/10.1007/s11071-020-05766-5
https://doi.org/10.1007/s11071-020-05766-5
https://doi.org/10.1063/1.5121565
https://doi.org/10.1063/1.5121565
https://doi.org/10.1209/0295-5075/128/58003
https://doi.org/10.1209/0295-5075/128/58003
https://doi.org/10.1209/0295-5075/128/40002
https://doi.org/10.1209/0295-5075/128/40002
https://doi.org/10.1103/physreve.96.062212
https://doi.org/10.1103/physreve.96.062212
https://doi.org/10.1103/physreve.89.052912
https://doi.org/10.1103/physreve.89.052912
https://doi.org/10.1103/physreve.92.052908
https://doi.org/10.1103/physreve.92.052908
https://doi.org/10.1063/1.5054181
https://doi.org/10.1063/1.5054181
https://doi.org/10.1103/physreve.99.032214
https://doi.org/10.1103/physreve.99.032214
https://doi.org/10.1103/physreve.100.052212
https://doi.org/10.1103/physreve.100.052212
https://doi.org/10.1103/physrevlett.89.244103
https://doi.org/10.1103/physrevlett.89.244103
https://doi.org/10.1103/physrevlett.114.034101
https://doi.org/10.1103/physrevlett.114.034101
https://doi.org/10.1103/physreve.94.012208
https://doi.org/10.1103/physreve.94.012208
https://doi.org/10.1103/physrevlett.93.174102
https://doi.org/10.1103/physrevlett.93.174102
https://doi.org/10.1103/physreve.91.052915
https://doi.org/10.1103/physreve.91.052915
https://doi.org/10.1103/physreve.93.052213
https://doi.org/10.1103/physreve.93.052213
https://doi.org/10.1103/physreve.97.032207
https://doi.org/10.1103/physreve.97.032207
https://doi.org/10.1103/physreve.92.052915
https://doi.org/10.1103/physreve.92.052915
https://doi.org/10.1103/physreve.98.032301
https://doi.org/10.1103/physreve.98.032301
https://doi.org/10.1103/physrevlett.74.4075
https://doi.org/10.1103/physrevlett.74.4075
https://doi.org/10.1007/s10867-008-9081-4
https://doi.org/10.1007/s10867-008-9081-4
https://doi.org/10.1103/physreve.91.052919
https://doi.org/10.1103/physreve.91.052919
https://doi.org/10.1073/pnas.0307095101
https://doi.org/10.1073/pnas.0307095101
https://doi.org/10.1103/physrevlett.99.148103
https://doi.org/10.1103/physrevlett.99.148103
https://doi.org/10.1103/physreve.78.031904
https://doi.org/10.1103/physreve.78.031904

	Trade-off between filtering and symmetry breaking mean-field coupling in inducing macroscopic dynamical states
	1.  Introduction
	2.  Model
	3.  Dynamical transitions
	3.1.  Dynamical transitions using order parameter
	3.2.  Dynamical transitions using one-parameter bifurcation diagram
	3.2.1.  Trade-off between the mean-field and symmetry breaking couplings


	4.  Global dynamical transitions
	5.  Summary and conclusions
	Acknowledgments
	ORCID iDs
	References


