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Emergence of nonlinear crossover under epidemic dynamics in heterogeneous networks
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Potential diffusion processes of real-world systems are relevant to the underlying network structure and dy-
namical mechanisms. The vast majority of the existing work on spreading dynamics, in response to a large-scale
network, is built on the condition of the infinite initial state, i.e., the extremely small seed size. The impact
of an increasing seed size on the persistent diffusion has been less investigated. Based on classical epidemic
models, this paper offers a framework for studying such impact through observing a crossover phenomenon in a
two-diffusion-process dynamical system. The two diffusion processes are triggered by nodes with a high and low
centrality, respectively. Specifically, given a finite initial state in networks with scale-free degree distributions, we
demonstrate analytically and numerically that the diffusion process triggered by low centrality nodes pervades
faster than that triggered by high centrality nodes from a certain point. The presence of the crossover phenomenon
reveals that the dynamical process under the finite initial state is far more than the vertical scaling of the spreading
curve under an infinite initial state. Further discussion emphasizes the persistent infection of individuals in
epidemic dynamics as the essential reason rooted in the crossover, while the finite initial state is the catalyst
directly leading to the emergence of this phenomenon. Our results provide valuable implications for studying the
diversity of hidden dynamics on heterogeneous networks.
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I. INTRODUCTION

Diffusion, running on top of varieties of real-world com-
plex systems, has attracted increasing interest in capturing
the underlying dynamics [1-3]. Many studies on modeling
dynamical process are based on the infinite initial state—a
quite small proportion of seed nodes to trigger a propagation
[4-11]. Yet such a theoretical assumption faces challenges in
realistic diffusion scenarios. For example, at the initial stage
of coronavirus, our lack of knowledge on this dangerous pan-
demic underestimates flulike symptoms, making it difficult to
precisely estimate the potential number of infected individuals
[12]. Despite the importance of tracing undocumented infec-
tion sources, controlling the evolution of spreading curve is
the priority under this noticeable finite initial state [13,14].

The infinite initial state would benefit, in particular, high-
centrality-based diffusion, since the overlap of individual
influence is weak. Under such initial state, practical appli-
cations include the network immunization [15,16], source
identification [17], or influence maximization [18].

While, for the finite initial state, the overlap of individ-
ual influence cannot be omitted, due to the great impact on
the subsequent dynamical spreading process. Specifically, the
high centrality nodes are centralized at the core positions and
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have the tendency to be highly clustered with each other,
leading to the rich-club phenomenon [19]. Therefore, it is
more likely that the overlap of individual influence emerges
from the beginning of the high-centrality-based diffusion
[18,20,21]. For the low-centrality-based diffusion, the overlap
is unlikely to show up at the initial stage, since low centrality
nodes scatter in the boundary of a network. In this backdrop,
we might witness the low-centrality-based diffusion reaching
a larger propagation scale first.

Taking Fig. 1 as an example, we define a crossover as a
critical point—after which the propagation scales, triggered
by nodes with a high and a low centrality, respectively, are
reversed. Figure 1(bs) shows such a crossover case where
the lowest-degree-based diffusion [Fig. 1(b;)] pervades the
whole network first. Despite the extreme nature of this case, it
illustrates the difficulty of using central nodes to infect those
boundary ones, and the strong impact of the finite initial state
on the dynamics underlying. Naturally, it is worth investigat-
ing the following questions, of which, however, a detailed
inspection is still missing: (1) Since when does the finite initial
state start to impose such an impact on a dynamical process?
(2) How does this impact evolve over the finite initial state?

To fill this gap, we aim to unfold the emergence of
the crossover phenomenon under different epidemic dy-
namics [e.g., susceptible-infected (SI), susceptible-infected-
susceptible (SIS), and susceptible-infected-recovered (SIR)]
[22], centralities [e.g., the degree (DC), betweenness (BC),
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FIG. 1. A schematic illustration of the effect of the finite initial state, i.e., the increasing proportion of the initial seed nodes. Based on the
SI model, a susceptible node becomes infected with a probability A (A < 1 for approximating a continuous-time (CT) infection probability
as a discrete-time (DT) one [23]). (a) Two kinds of initial states with one seed node for each and (b) two kinds of initial states with four seed
nodes for each, both represent a special dynamical system consisting of two independent but simultaneous diffusion processes. For (a;), the
probability that all neighbors of the seed node remain susceptible in the next time step is 1 — A, while it changes into (1 — 1)’ in (a,). This
demonstrates the capability of high-degree nodes in accelerating diffusion. Therefore, (a;) could reach a stable state earlier than (a,), as given
in (a3). However, in (b;), A and B remain susceptible in the next time step with probabilities (1 — A)* and (1 — 1)?, respectively, while in (b,),
both C and D remain susceptible with a probability (1 — A)?, and E is with 1 — A. It is more likely that (b;) reaches the stable state first, leading
to the critical crossover point in (b3) and also revealing the great impact of the finite initial state.

and eigenvector centralities (EC)] [18], and simulation ap-
proaches [i.e., continuous-time (CT) and discrete-time (DT)
Monte Carlo simulations] [23]. We find that disassortative
connections between low-degree and high-degree nodes act as
a bridge in driving a globally large-scale diffusion, and the re-
versibility of dynamical processes can shape the behavior of a
crossover. More importantly, although the increasing propor-
tion of seed nodes triggers the emergence of the crossover, this
phenomenon essentially stems from an individual’s persistent
infection in epidemic models.

II. ANALYTICAL EVIDENCE OF THE EMERGENCE
OF THE CROSSOVER PHENOMENON

First, dynamical processes on a network G = (V, E) with
|V | nodes and |E| edges are considered to follow classical epi-
demic models. In the ST dynamical system, each node has only
two corresponding states, either susceptible or infected. The
only transition, denoted as § — I, is achieved with a proba-
bility A by successful interactions between a susceptible node
and its infected neighbors. For the SIS model, the reversible
transition between the susceptible and infected states contains
S — I with a probability A similar to that in the SI model
and I — S with a probability p realized by the spontaneous
recover from a [ state to a S one while, in the SIR process, the
second transition, i.e., I — R, is implemented with a probabil-
ity B, signaling a permanent immunity or becoming removed.
Then, since CT approach is often combined with the infinites-
imally small initial conditions, we study DT approximation
to characterize two kinds of initial states. It should be noted
that A < 1 is a fundamental assumption for approximating the
exact infection probability of a CT-based Markov process as
a DT-based one [23]. Moreover, to ensure a visible diffusion
for the analysis of the crossover phenomenon, we let u, 8 <
AL

In what follows, a general framework for investigating the
underlying crossover phenomenon (as illustrated in Fig. 1) is
provided. We take the DC as an example to derive the pos-
sibility of a crossover. The analytical results can be extended
to other centralities due to the correlation between them [24].

We start from the proportion of infected nodes in the k-degree
set [denoted as i (7)]. The dynamical evolution of i (¢) can be
written following Ref. [25] as

@) =it -1+ Aik(.)(l‘ — 1), @))

where Aiy)(t — 1) accounts for the proportion of newly gen-
erated infected nodes from ¢ — 1 to z. The basic quantification
is with Aigsn(t — 1) = Ak[1 — i (t — 1)]O(¢t — 1) for the SI
dynamical process. Additionally, in the SIS and SIR models,
the recovery processes need to be taken into account, lead-
ing to Aik(s]s)(f — 1) =Ak[1 — it — D]IOC — 1) — pir(t —
1) and Ajysmy(t — 1) = Ak[1 — it — 1) — (¢ — 1D]O@ —
1) — Bix(t — 1), respectively. Here, r(¢), the proportion of
removed nodes in the k-degree set of the SIR process, is
defined by r;(¢) = ri(t — 1) + Bir(t — 1) with . (0) = 0. The
variable ©(r) represents the probability of targeting an in-
fected node through an arbitrarily chosen link. Such value is
given by ©(t) = (1/(k)) Y, kP(k)ix(t) [4]. Considering the
mean-field (MF) character imposed on the calculation of ®(t)
and the increasing proportion of the initial seed nodes, we
assume O(r) =~ iy (¢) for focusing on the influence of the finite
initial state and derive

ir(t) = i (0) + Aix(,(0 — 1), 2)

where Aiy)(0 — t) embodies the proportion of generated
infected nodes during a diffusion process. In the SI
process, Aigsn(0 — 1) ~ Akt[1 + %(t — D)Ak]i (0) —
Akt[1 + %(t — 1)Ak]iZ(0) is obtained by neglecting higher
order terms with respect to A and #(0). Similarly, with
higher order terms concerning A, w, B, and i (0) being
neglected, we have Aigsis)(0 — 1) & (Ak — p)i[1 + 3(r —
DMk — w)]ig(0) — Akt[1 + %(r — Dk — )iz (0) and
Aigsiry(0 = 1) = (Ak — B)t[1 4 3 — 1)(hk — B)1ix(0) —
Akt[1+ (t — 1)(%kk — ,3)]1']%(0) for the SIS and SIR models,
respectively.

Next, to analyze the presence of a crossover needs to con-
sider whether the diffusion triggered by seed nodes with the
lowest centrality, can propagate faster than that triggered by
seed nodes with the highest centrality. For this purpose, an
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auxiliary function is defined
(i (0), 1) = I"™"(t) — I™™(1), 3)

in which the proportion of infected nodes at ¢, i.e., I(¢) =
> ix(t)P(k) represents the propagation scale. The two inde-
pendent but simultaneous diffusion processes are labeled as
min and max, respectively. We let the variable i;(0) quantify
the average effect of the finite initial state. Without loss of
generality, it is given by

2 ik(0)

i(0) = K]

“4)

|K| is defined as the number of different degrees of all nodes
in a network and typically i;(0) € [0, 1]. Note that the i;(0) is
defined for the k-degree node set at t = 0 and is less intuitive
to capture the increasing proportion of the initial seed nodes,
we thereby use the 7(0), in the next section, as the indicator
of the finite initial state. The assumption of O(t) ~ iy (¢) in
Eq. (2) also implies that ix(¢) is independent of ) ", kP(k), we

J

adopt it in the derivation of Eq. (3) (see Supplemental Material
[26]).

Finally, the emergence of a crossover wil be met when
®(i;(0),t) > 0. It should be noted that the SF degree dis-
tribution, i.e., P(k) ~ k77, allows the presence of f}(“i"(O) <
72““(0). We use this condition to derive the solution of
crossover time, i.e., t..., of Egs. (5). Then, t.s1) > 0, txsis) >
0, and Zesr) > 0 hold if and only if 7"™(0) + i"™*(0) > 1

: “min ~max WY =200 (k) > s
in the SI model, §""(0) + zk(SIS)(O) > o ey~ n the

SIS model, and g (0) + ity (0) > 28U i the
SIR model, respectively, as demonstrated in the Supplemental
Material [26].

The use of the MF assumption yields an overestimation
of the propagation scale [2], further resulting in some in-
accuracy of the crossover time. However, the presence of
this phenomenon can still be guaranteed by (1) .., > 0 (see
Supplemental Material [26]) and (2) f.) tends to be lower as
IMn(0) + i"*(0) increases. That is, the tendency of this phe-
nomenon being earlier could be witnessed with the increment
of the proportion of the initial seed nodes. Thus, the focus in
the next section is on the dynamic trend of this phenomenon:

tesp = | 1+

1+

2(k)[1 = GP™(0) + 5(0))]
M2 [3ER(0) + 8(0)) — 1] |

200 (k)1 = @™(0) 4 3™ (0)] — )

tesis) =

3A((K2) — k) GP™(0) 4 77(0)) — (A2 (k) — 22 (k) + uz)—"

2(A k)1 = @G™(0) + ™(0)] - B}

Ie(SIR) =

III. NUMERICAL EVIDENCE OF THE EMERGENCE
OF THE CROSSOVER PHENOMENON

To reveal the emergence of the crossover phenomenon,
we adopt both CT (the Gillespie algorithm [27]) and DT
Monte Carlo simulations. For the DT-based simulations, the
probability that a susceptible node becomes infected within
each time step A(z) = 1 depends on the number of its infected
neighbors. For example, if the probability A is for the case that
there is only one infected neighbor node, then, for n infected
neighbors, the probability is 1 — (1 — A)". However, for the
CT-based simulations, A(¢) is a random variable following an

1+ — = . 5
(B2 (k?) = 22 B{k)(E™(0) + 77*(0)) — (A2 (k?) — 24 B (k) + 52)—‘ ®

(

exponential distribution of which the parameter is given by the
sum of transition rates of all nodes. These transition rates are
quantified based on the number of infected neighbors accord-
ingly. For example, in the SIS dynamics, if a susceptible node
has n infected neighbors, the infection and recovery rates of
this node are ni and fi, respectively. A and ji are instantaneous
transition rates by taking the limit of Az — 0 [23].
According to the assumption of i, 8 < A < 1 in the pre-
vious section, we let A = 0.01 and u = B8 = 0.005, which are
also applicable to x, it, and B To ensure stable states in differ-
ent dynamical systems, the total time step ¢ is specified with

TABLE I. Structural properties of used networks, including the number of nodes |V | and edges |E|, the average degree (k), the exponent

o of degree distribution, the average clustering coefficient ¢, and the degree assortativity coefficent .

Network LFR, [28] LFR, [28] LFR;[28] BA; [29] BA, [29] BA;[29] PB [30]

WV [31] BY [32] EF[33] HEP-PH [34] AS [35]

V] 1000 5000 5000 10000 10000 10000 793 1300 2224 4039 11 204 22 963
|E| 24 818 47 958 126 027 39984 69951 99900 13484 36529 6609 88234 117 619 48 436
(k) 49.636 19.183 50.411 7.997 13990 19980 34.008 56.198 5.943 43.691 20.996 4219
o 3.50 2.73 3.01 2.81 2.86 2.90 3.50 3.09 3.26 2.51 2.09 2.09
c 0.733 0.19 0.314 0.006 0.009 0.011 0.396  0.297 0.201  0.617 0.69 0.35
r 0.260 —0.096 -0.101 -0.031 -0.021 -0.018 —-0.217 —-0.117 —-0.105 0.064 0.630 —0.198
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FIG. 2. The emergence of crossover phenomenon in WV network based on the SI model. (a) presents the propagation scale I(¢), as a
function of . When /(0) = 0.35, t.cr) and t,pr) are obtained by using continuous-time (CT) (left) and discrete-time (DT) (right) Monte Carlo
simulations, respectively, while #.(sp is the analytical point based on Eq. (5). The solid and dash lines represent diffusion processes triggered
by seed nodes with the lowest and highest degree centrality (DC), respectively. (b)—(d) show the normalized crossover time f..), as a function
of the initial proportion of seed nodes /(0), under three centralities. The lower analytical and numerical #..., indicates the earlier presence of a

crossover as 1(0) increases.

1000 in our paper. Each stochastic diffusion is obtained by av-
eraging 100 realizations. For each realization, we choose two
groups of seed nodes based on the DC (neighborhood-based),
BC (path-based), and EC (iterative-refinement-based) [18] to
trigger two independent but simultaneous diffusion processes.
Let us consider the descending order of DC as an example.
One group is selected from the first (100 x 7(0))% nodes,
1(0) € [0.01, 0.45], to initiate the highest-degree-based diffu-

0 DT_DC
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% Eq. (5)_DC

0~ CT_BC
e Eq. (5)_BC

1.0 |--0--CT_EC
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1,05} P
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0.5
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sion; the other is chosen from the last (100 x 7(0))% nodes to
initiate the lowest-degree-based diffusion. Numerical simula-
tions are performed in both synthetic and real-world networks
whose details are given in Table I. The numerical crossover
time is also obtained, when the propagation scale of the
lowest-centrality-based diffusion is larger than that of the
highest-centrality-based one. We normalize both the analyt-
ical and the numerical .., for the trend analysis.
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i
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FIG. 3. The crossover time ..., as a function of the proportion of the initial seed nodes /(0) in WV network in the (a) SIS and (b) SIR
models. CT and DT represent continuous-time and discrete-time Monte Carlo simulations, respectively. DC, BC, and EC are the abbreviations
of the degree, betweenness, and eigenvector centralities, respectively. Similar to Fig. 2, it also indicates the emergence of crossover which

tends to be intensified when 7(0) increases.
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FIG. 4. The numerical crossover time f.., as a function of
the proportion of the initial seed nodes /(0), in five networks
with different degree assortativity coefficients r. (a)—(c) report
discrete-time-based Monte Carlo simulation results under the degree
centrality (DC) in the SI, SIS, and SIR models, respectively. A lower
value of 7., represents the earlier emergence of a crossover. Apart
from 7(0), the recovery process and the degree assortativity could
make a crossover earlier.

Taking the WV network (see Table I) as an example (more
results in [26]), the emergence of crossover phenomenon
shown in Figs. 2 and 3 is in agreement with the analytical re-
sults of Eq. (5). The dynamic trend of this phenomenon starts
from a relatively sharp decrease, then to a smooth one gradu-
ally, implying the presence of an earlier crossover. Moreover,
this phenomenon is independent of selected epidemic models,
centralities, and simulation approaches.

A. The epidemic-model-free crossover

We observe a slower decrease trend of the numerical 7.
from Fig. 3(b) compared with Fig. 3(a). To explain this, let
us first borrow the unnormalized results of r = —0.018, i.e.,
the BA3 network, from Fig. 4. It shows the emergence order:
SI > SIS > SIR (earliest). Such an order could be explained
by the spontaneously irreversible transition of / — R in the
SIR dynamical process. This transition largely restrains the
highest-centrality-based diffusion by disabling part of high
centrality nodes permanently while, for the SIS process, the
reversible transitions between S and / slightly relieve the sup-
pression of I — R imposed on the highest-centrality-based
diffusion. It is therefore why we have this emergence order
in Fig. 4 and also the slower decrease trend in Fig. 3(b).

B. The centrality-free crossover

Numerical results indicate the consistency of the dynamic
trend of the crossover time under different centralities, even
when the DC~BC in LFR, EF, and HEP-PH networks (see
Table IT) has a relatively low value. This implies the centrality-
free feature of this phenomenon and the extensibility of the
analytical results of Eq. (5) to other centralities.

C. The simulation-approach-free crossover

Under the assumption of u, 8 < A < 1, both CT and DT
Monte Carlo simulations show consistent results regarding the
emergence of a crossover and its trend. This further demon-
strates the conclusion in Ref. [23], that to ensure the accurate
application of the DT infection probability to the CT process,
the time step A(¢) or parameters (e.g., A, i, and 8) should be
controlled to be as small as possible.

Considering the overestimation of Eq. (5), i.e., f(sp) <
tecty and t.pr) as illustrated in Fig. 2(a), it is still worth
mentioning the reliability of the analytical and the numeri-
cal solutions. For one thing, our assumption of ®(t) ~ i(t)
neglects the degree correlations of networks and gives the
only consideration to the average degree (k). The propagation
speed during a diffusion process is then overestimated. Con-
sequently, for example, compared to the numerical results, the
analytical f.(.y has a sharp decline when /(0) is close to O [see
Figs. 2 and 3]. However, the emergence of this phenomenon is
still guaranteed by analytical solutions to the dynamic trend.
For another, the numerical solutions are obtained by using
Monte Carlo simulations, which can be seen as a relatively
empirical demonstration for a crossover. Therefore, both the
analytical and the numerical solutions provide valid evidence
for the presence of this phenomenon.

IV. DISCUSSION

In this section, we further analyze the effect of assor-
tativity and epidemiological parameters on the crossover
phenomenon. More importantly, we concentrate on the per-
sistent infection characteristic in epidemics dynamics to figure
out the reason rooted in this phenomenon. As we mentioned
in the previous sections, our analytical framework neglects
the degree correlation. We here therefore mainly consider the
numerical solutions since they provide a relatively accurate
characterization for this phenomenon.

A. The effect of degree assortativity

In our analytical framework, the crossover time is relevant
to the average degree (k) [see Eq. (5)]. However, (k) is not
sufficient to characterize the degree correlation of a network,
because any two networks sharing the same number of nodes
and edges, would generate the same (k). Considering that the
rich-club coefficient ¢ [19] is defined as a function of the
degree k, we here choose the degree assortativity coefficient
r [36] as a global indicator for our analysis. Specifically, this
indicator captures the connection patterns between nodes with
different degrees. For example, r > 0 indicates the assortative
mixing pattern, e.g., high-degree nodes preferentially attach-
ing to high-degree nodes, while r < 0 shows the disassortative

TABLE II. The Pearson correlation coefficient (PCC) between the degree centrality (DC) and betweenness centrality (BC), the DC and
eigenvector centrality (EC), respectively, in SF networks of Table I. This table shows that in most cases, the DC is highly correlated to the BC
and EC.

Network LFR; [28] LFR, [28] LFRj; [28] BA, [29] BA, [29] BA; [29] PB [30] WYV [31] BY [32] EF [33] HEP-PH [34] AS [35]

DC ~ BC 0.47 0.92 0.97 0.90 0.90 0.90 0.76 0.76 0.88 0.45 0.48 0.96
DC ~ EC 0.92 0.93 0.96 0.91 0.95 0.97 0.94 0.96 0.85 0.78 0.91 0.85
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TABLE III. Structural properties of generated networks based on
BA;, including the number of nodes |V| and edges |E|, the average
degree (k), the exponent « of degree distribution, and the average
clustering coefficient c.

r —0.100 —0.018 (BA3) 0.100 0.200 0.300
V] 10 000 10 000 10 000 10 000 10 000
|E| 99 900 99 900 99900 99900 99900
(k) 19.980 19.980 19.980 19.980 19.980
o 2.90 2.90 2.90 2.90 2.90

c 0.0076 0.0113 0.0104  0.0106  0.0194

mixing connection tendency, i.e., high-degree nodes attach to
low-degree ones [36]. To obtain networks with different r,
we first consider BAj as the basic network. By applying a
series of rewiring process to any pair of randomly selected
edges, r is tuned to a desirable value [37]. Note that this
process preserves the number of nodes and edges, and also
the degree of each node. That is, the average degree (k) and
degree distribution of generated networks (see Table III) are
the same as those of the BAj3.

Similarly, we use A =0.01 and u = 8 = 0.005 as pa-
rameter settings in the SI, SIS, and SIR models. It is also
worth noting that (1) the limitation of Eq. (5)—with a fixed
average degree, stems from our assumption of neglecting the
degree correlation; (2) The BC and EC, and CT Monte Carlo
simulations are additional demonstrations for the crossover
phenomenon. Thus, we only analyze DT Monte Carlo sim-
ulations under the DC in this part. Meanwhile, we also let
1(0) € [0.01, 0.45] as the indicator characterizing the initial
proportion of seed nodes. Instead of normalization for a dy-
namic trend analysis, numerical results are simply rescaled by
t(.y/ 1000 to see how different r affect 7).

Figure 4 shows that the increasing values of r make
t(.y lower until the absence of disassortative mixing pattern.
Specifically, when the rewiring process increases r to be
positive, e.g., from r = —0.100 or —0.018 to » = 0.100 or
0.200, we have an increasing number of edges with assortative
mixing pattern, and also higher values of ¢ (k) [see Fig. 5(a)].
As indicated in Figs. 4 and 5, the conditions for an earlier
emergence of crossover are provided by (1) the existence of
connections between low-degree nodes and high-degree nodes
[see Figs. 5(b) and 5(c)] and (2) the presence of a higher
¢ (k) [see Fig. 5(a)]. Condition 1 ensures that even the lowest-
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FIG. 5. Interpretations to Fig. 4(a) show the rich-club spectrum
¢ (k) as a function of k. For nodes with the lowest degree (k = 10),
(b) and (c) report the highest and lowest degrees of their one-hop
(except themselves) and two-hop (except themselves and one-hop
neighbors) neighbors, respectively.
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FIG. 6. The numerical crossover time f..), as a function of the
proportion of the initial seed nodes /(0), epidemiological parameters
A, u, and B, in WV network in the (a) SI, (b) SIS, and (c) SIR
models. Based on discrete-time Monte Carlo simulations under the
degree centrality (DC), (a)—(c) also report the absence of a crossover
in white. For each model, we use ®(7,(0), t) > 0.01 x |V| to exclude
the potential fluctuations from numerical simulations. It is clear that
the behaviors of a crossover depend on whether the recovery process
has the reversibility.

degree-based diffusion could reach high-degree nodes as soon
as possible [see Fig. 1(b;), for example] while condition 2
emphasizes the appearance of overlap of individual influence
from the beginning of the highest-degree-based diffusion, as
illustrated in Fig. 1(b;). Therefore, the crossover emerges ear-
lier in assortative networks. However, in a highly assortative
network, the absence of connections where low-degree nodes
attach to high-degree nodes, breaks the condition 1 for the
lowest-degree-based diffusion [see Figs. 5(b) and 5(c)]. As a
result, a high value of 7.y is observed in Fig. 4. This is also
why the crossover phenomenon in the network with r = 0.300
remains almost the same under different epidemic models.

B. The effect of epidemiological parameters

Our analytical and numerical demonstrations in the previ-
ous section are given under fixed parameters with A = 0.01,
w =B =0.005. We here take a wide range of wu, B, and
A, even when the assumption of u, 8 < A < 1 is violated.
Specifically, in the SI model, we let A € [0.001, 1]. For the
SIS and SIR models, the underlying dynamics concern the ef-
fective spreading probability defined as % and % respectively.
By fixing & = 0.01, we let u, 8 € [0.001, 1], yielding %, 5 €
[0.01, 10]. Based on DT Monte Carlo simulations under the
DC, this part also uses #..,/1000 and 1(0) € [0.01, 0.45] to
see how f.(.y evolves over different effective spreading proba-
bilities. Note that due to the potential fluctuations of numerical
simulations, it is possible for ® (i (0), ) > 0 to be recovered
with ®(5;(0),7) = 1 or 2. Such cases usually appear even
when the spreading process tends to be stable. While on the
other hand, we may also observe ®(i;(0),#) > 0 even when
one of the propagation scales I(¢) starts to decrease (see
Sec. IIT in the Supplemental Material [26]). To avoid these
situations, we further study 7., when the following two con-
ditions are satisfied: (1) ®(ix(0), ) > 0.01 x |V|, where |V|
is the number of nodes in a network; and (2) both propagation
scales (triggered by seed nodes with the highest and lowest
DC, respectively) remain an increasing trend.

In Fig. 6, we observe that the reversibility of the recovery
process shapes the behavior of the crossover phenomenon.

052311-6



EMERGENCE OF NONLINEAR CROSSOVER UNDER ...

PHYSICAL REVIEW E 102, 052311 (2020)

It should be pointed out that considering the assumption of
W, B < A < 1 and the conclusion in Ref. [23], we here mainly
concern the numerical ¢..) when A, u, and 8 € [0.001, 0.01].

In the irreversible transitions, when 71(0) is given, f.(,
presents a decrease behavior as A (in the SI model) increases
or % (in the SIR model) decreases. Specifically, compared
with low-degree nodes in the highest-degree-based diffusion,
high-degree nodes in the lowest-degree-based diffusion have
a relatively higher probability to be infected [see Fig. 1(b)].
This would be amplified with A being increased during the
SI process. While in the SIR dynamical process, the highest-
degree-based diffusion shares relatively more suppression
from the beginning than the lowest-degree-based diffusion,
due to the permanent irreversible transition of / — R cutting
off propagation paths from high-degree nodes to low-degree
nodes. The higher 8 implies the higher probability to have this
irreversible transition. Thus, we also witness a slight decline
with B being increased in the SIR model [see Fig. 6(a)].

In the SIS model, .. has a relatively stable value under
a specified 1(0). This could be explained by the reversible
transitions between S and /. The transition of S — I, recover-
ing the propagation ability of temporarily susceptible nodes,
is quite important for the highest-degree-based diffusion.

Besides, recall that Fig. 1(b) shows that compared with
high-degree nodes, boundary nodes are less likely to be in-
fected. During the lowest-degree-based diffusion, low-degree
nodes take more time to finish the transition of I — S — I,
because they have a quite limited number of infected neighbor
nodes. While in the highest-degree-based diffusion, high-
degree nodes realize this transition process relatively easily,
due to the existence of the rich-club phenomenon. That is, the
higher values of ¢(k) ensure that those resusceptible high-
degree nodes could be surrounded by a higher number of
infected nodes. Therefore, Fig. 6(b) shows a different trend
from Figs. 6(a) and 6(c).

C. The persistent infection characteristic in epidemic dynamics

We analyze above how the initial proportion of seed
nodes /(0), degree assortativity r, and epidemiological mech-
anism shape the behavior of a crossover. However, none
of them could be portrayed as the reason rooted in the
crossover phenomenon. Under the epidemic dynamics we dis-
cuss in this paper, there is a basic characteristic—persistent
infection—guaranteeing the continuous propagation of a dif-
fusion. Specifically, this condition ensures the equivalent
propagation scale /(¢) in both the highest-degree-based and
the lowest-degree-based diffusions, as illustrated in Figs. 1
and 2(a). To give validation to this assumption, we compare
(1) the persistent-infection-based dynamics, i.e., the SI, SIS,
and SIR models with (2) the non-persistent-infection-based
dynamics, i.e., the independent cascading (IC) model [38],
under the same parameters [see Fig. 7].

When 7(0) = 0.1, all epidemic dynamical processes can
reach a large-scale propagation due to the persistent infection.
In the IC dynamics, individuals lacking persistent infection
largely restrains the final /(¢) while, on the other hand, the gap
between the red and blue lines in the IC dynamics also indi-
cates the difficulty for low-degree nodes to infect high-degree
nodes under the lack of persistent infection. In Fig. 7(b), the

IC (A=0.01) SI (A=0.01) SIS (A=0.01, #=0.01) SIR (A=0.01, 8=0.01)
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FIG. 7. The propagation scale I(z), as a function of ¢, in the
independent cascading (IC) model and epidemic models. Based on
discrete-time (DT) Monte Carlo simulations, (a) and (b) report the
diffusion details when the initial proportions of seed nodes /(0) =
0.1 and 0.3, respectively. The solid and dash lines represent diffu-
sion processes triggered by seed nodes with the lowest and highest
degree centrality (DC), respectively. The final differences between
the two processes under the IC dynamics show that the emergence
of the crossover phenomenon essentially stems from the persistent
infection characteristics of individuals.

increase of 1(0) narrows this gap to a trivial value, signaling
the direct influence of the increasing /(0) on the presence
of a crossover. Therefore, we can conclude that the emer-
gence of the crossover phenomenon essentially stems from
the persistent infection under epidemic dynamics, and also
directly induced by the increasing initial proportion of seed
nodes.

V. CONCLUSION

In summary, we start from a two-diffusion-process system
and focus on a potential crossover phenomenon to investigate
the great impact of the finite initial state on the underly-
ing dynamical process. We demonstrate the emergence of
this phenomenon under classical epidemic dynamics numeri-
cally and analytically. The propagation scale triggered by low
centrality nodes could be larger than that triggered by high
centrality nodes during the diffusion process, provided that
the initial seed size increases.

Furthermore, the existence of the disassortative mixing
pattern and the irreversibility of the recovery process are
shown to own the capability to control an earlier emergence
of a crossover. Apart from the effects of the topological
structure and the underlying dynamical mechanism, our work
emphasizes the impact of the finite initial condition on the
epidemic spreading. By analyzing the dynamical process in
the IC model, we reach the conclusion that compared with the
finite initial state, the persistent infection characteristic of epi-
demic dynamics is the essential reason for this phenomenon to
arise.

Further investigation relating to this work could be con-
centrated on evolving structure and heterogeneous dynamics.
Human contact scenarios are more complicated than we
often think. Before we treat coronavirus consciously and
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seriously, realistic human-to-human coronavirus transmis-
sions are likely to happen anywhere and anytime. Therefore,
instead of a static network structure, (data-driven) evolv-
ing networks provide a reasonable characterization for the
dynamic changes of human contacts. Regarding the hid-
den dynamics, the classical epidemic models considered in
this paper incorporate simplified homogeneous settings like
the constant parameters, which actually should be allowed
to vary over time [39,40]. Furthermore, since the SI, SIS,
and SIR dynamical processes are probabilistic, the exten-
sion of our conclusion to other probability-based dynamics
which incorporates similar characteristic of persistent infec-

tion would be another question to be investigated in the near
future.
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