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 Abstract 34 

Concerns over climate change are motivated in large part because of their impact on 35 
human society. Assessing the effect of that uncertainty on specific potential impacts is 36 
demanding, since it requires a systematic survey over both climate and impacts models. 37 
We provide a comprehensive evaluation of uncertainty in projected crop yields for 38 
maize, spring and winter wheat, rice, and soybean, using a suite of 9 crop models and 39 
up to 45 CMIP5 and 34 CMIP6 climate projections for three different forcing scenarios. 40 
To make this task computationally tractable, we use a new set of statistical crop model 41 
emulators. We find that climate and crop models contribute about equally to overall 42 
uncertainty.  While the ranges of yield uncertainties under CMIP5 and CMIP6 projections 43 
are similar, median impact in aggregate total caloric production is typically more 44 
negative for the CMIP6 projections (+1 to -19%) than for CMIP5 (+5 to -13%). In the first 45 
half of the 21st century and for individual crops is the spread across crop models typically 46 
wider than that across climate models, but we find distinct differences between crops: 47 
globally, wheat and maize uncertainties are dominated by the crop models, but soybean 48 
and rice are more sensitive to the climate projections. Climate models with very similar 49 
global mean warming can lead to very different aggregate impacts so that climate model 50 
uncertainties remain a significant contributor to agricultural impacts uncertainty. These 51 
results show the utility of large-ensemble methods that allow comprehensively 52 
evaluating factors affecting crop yields or other impacts under climate change. The crop 53 
model ensemble used here is unbalanced and pulls the assumption that all projections 54 
are equally plausible into question. Better methods for consistent model testing, also at 55 
the level of individual processes, will have to be developed and applied by the crop 56 
modeling community.  57 

Introduction 58 

Climate change impacts on agriculture are subject to large uncertainties from a variety of 59 
sources. One of the most important sources of uncertainty is associated with the severity 60 
of climate change itself, even for a fixed emission scenario. For example, climate 61 
projections in the CMIP5 archive (Coupled Model Intercomparison Project 5, Taylor et al. 62 
(2012)) under the RCP8.5 scenario show a range of 3.2-4.9 K warming in mean 63 
growing-season temperatures, and the more recent CMIP6 projections (Eyring et al., 64 
2016) show a range from 3.6-5.9 K. Climate models also differ not only in mean 65 
projected changes over large regions but in the spatial patterns of those changes, with 66 
precipitation an especial concern (e.g. Almazroui et al., 2020; Akinsanola et al., 2020). 67 
Recent papers have compared CMIP6 to CMIP5 across a range of impact relevant 68 
climate features such as extreme heat, precipitation, ENSO, and the monsoon (e.g. Fan 69 
et al., 2020; Freund et al., 2020; Jiang et al., 2020; Xin et al., 2020; Zhu and Yang, 70 
2020) to name a few. In many cases, CMIP6 has improved in skill of representing these 71 
climate features, but climate models still show little improvement in some areas. In 72 
general CMIP6 is noticeably more sensitive to CO2 than CMIP5, largely due to the 73 
updated representation of aerosols (e.g. Wyser et al., 2020).Given these wide 74 
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uncertainties in climate projections, it is important to understand how they translate into 75 
uncertainties in potential impacts on crop yields. 76 

Process-based crop models provide a means of understanding the impact of different 77 
climate changes on crop yields (Jones et al., 2017). While these models were first 78 
developed for application to individual sites and crop model ensembles were also used 79 
at the site level to explore model-induced uncertainty (e.g., Asseng et al., 2013; Palosuo 80 
et al., 2011), they have been extended to provide global coverage in the Global Gridded 81 
Crop Model Intercomparison (GGCMI, Elliott et al. (2015)) of the Agricultural Model 82 
Intercomparison and Improvement Project (AgMIP, Rosenzweig et al. (2013)). Global-83 
scale crop model applications are required for understanding future challenges to 84 
agricultural production since production zones may shift under climate change, and 85 
individual farms and regions are connected via agricultural markets and technological 86 
development and innovation. The combination of global and regional scale analyses has 87 
been shown to help in understanding the dynamics of agricultural production systems 88 
(Rosenzweig et al., 2018; Ruane et al., 2018). Global crop simulations do suffer some 89 
uncertainties since many processes cannot be fully calibrated at large scales – suitable 90 
reference data and management information is not available for all regions – but global 91 
crop simulations have been shown to have skill in reproducing observed historical inter-92 
annual variability and spatial patterns (Müller et al., 2017). 93 

Global assessments across ensembles of both crop models and climate projections 94 
require some means of reducing computational demands. A comprehensive set of 95 
climate projections in the CMIP5 or CMIP6 archives would consist of up to 34 and 45 96 
members per radiative forcing scenario, and the GGCMI Phase II experiment alone 97 
involved 12 different global crop models (Franke et al., 2020a). These numbers are 98 
prohibitive for computing a full set of crop yield simulations driven by different climate 99 
projections. In practice, studies of future climate impacts on crop yields are often 100 
performed using small and sometimes arbitrary selections of climate projections, crop 101 
models, or crops. For example, McSweeney and Jones (2016) find that considering only 102 
5 individual climate models in global impact assessments falls short of representing the 103 
underlying uncertainty. A larger sample is required to fully characterize the uncertainty 104 
range of climate models. Yet, a higher number of climate scenarios often proves 105 
unpractical from the perspective of computational resources and climate change impact 106 
assessments on agriculture often rely on climate projections from a small set of climate 107 
models (e.g. Rosenzweig et al., 2014). 108 

In this work we avoid these computational bottlenecks and provide a more 109 
comprehensive impacts assessment by using statistical emulators of individual crop 110 
models. We present results of a global-scale assessment of potential crop yield changes 111 
that explores the full range of the CMIP5 and CMIP6 climate projection archive. We use 112 
a set of 9 global gridded crop model emulators (Franke et al., 2020b) that were trained 113 
on a very large systematic input sensitivity analysis with up to 1404 simulation data sets 114 
per crop and crop model, each of 31 years in length and with near-global coverage 115 
(Franke et al., 2020a). The training domain represents an unprecedentedly rich data 116 
base for emulator training, with perturbations in atmospheric carbon dioxide (CO2) 117 
concentrations (4 levels from 360 ppm to 810 ppm), air temperature (7 levels from -1 to 118 
+6K), water supply (8 levels from -50 to +30% precipitation and full irrigation), nitrogen 119 
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(N) fertilization (3 levels from 10 to 200 kgN/ha) and adaptation (2 levels: none and 120 
maintained growing seasons). The emulators themselves are grid-cell specific 121 
regression models with 34 coefficients (Franke et al., 2020b). Emulation allows a 122 
computationally light-weight means of assessing crop yield impacts under arbitrary 123 
climate and CO2 scenarios that can be applied to the full CMIP5 and CMIP6 climate 124 
archive. This exercise therefore allows us to evaluate the uncertainty in climate model 125 
projections through the perspective of its implications for global food production. 126 

In this analysis, we break down the different sources of uncertainty (greenhouse gas 127 
concentration pathways, climate model, crop model) assess the role of the modeled 128 
response to CO2 fertilization and growing season adaptation and identify future 129 
directions for crop model development and improvements.  130 

  131 
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Methods 132 

In order to assess the current uncertainty in projections of future crop productivity on 133 
current cropland, we combine the full GGCMI Phase 2 crop model emulator ensemble 134 
(Franke et al., 2020b) with the full GCM ensemble of the CMIP5 and CMIP6 archives for 135 
three different radiative forcing pathways: the representative concentration pathways 136 
(RCP) 2.6, 4.6 and 8.5 (van Vuuren et al., 2011). 137 
The crop model emulator ensemble consists of 3rd order polynomial regression models 138 
for nine different global gridded crop models (GGCMs) for the major staple crops maize, 139 
spring wheat, winter wheat, rice and soybean. The emulators can reproduce well the 140 
response of the original crop models to changes in carbon dioxide (C), temperatures (T), 141 
water supply (W), nitrogen inputs (N) and growing season adaptation (A) that the models 142 
showed in a large input sensitivity study using systematic parameter sweeps along the 143 
CTWN-A dimensions. All crops are simulated separately for purely rainfed and for fully 144 
irrigated systems, where irrigation is one element on the water availability dimension 145 
(W). The CTNW-A experiment of the GGCMI Phase 2 is described in detail by Franke et 146 
al. (2020a). Emulator design and performance is described in detail by Franke et al. 147 
(2020b). The emulators compute crop yields per crop and geographic location 148 
(geographic grid at 0.5° longitude/latitude resolution) from atmospheric carbon dioxide 149 
concentrations ([CO2]), changes in growing season temperature (ΔT) and growing 150 
season precipitation (ΔP), as well as nitrogen fertilizer inputs. Separate emulators exist 151 
for purely rainfed and irrigated production systems as well as for the non-adapted setting 152 
(same planting dates and variety selection as in the baseline period) and the adapted 153 
setting (same planting dates, but new varieties that allow for maintaining the original 154 
growing season length under warming). In this analysis, we work explicitly with the crop 155 
model emulators, but since these are crop model specific emulators, we refer to the 156 
GGCM-specific emulators with the names of the underlying GGCMs (CARAIB (Dury et 157 
al., 2011), EPIC-TAMU (Izaurralde et al., 2006), GEPIC (Folberth et al., 2012), JULES 158 
(Williams et al., 2017), LPJ-GUESS (Olin et al., 2015), LPJmL (von Bloh et al., 2018), 159 
PEPIC (Liu et al., 2016), PROMET (Hank et al., 2015), pDSSAT (Elliott et al., 2014)). 160 
We obtained the largest possible climate model (GCM) ensemble from the CMIP5 and 161 
CMIP6 archives that provide data for the historical period and at least one of the three 162 
RCPs considered here (RCP2.6, RCP4.5 and RCP85 for CMIP5; SSP126, SSP245 and 163 
SSP585 from the ScenarioMIP in CMIP6 (O'Neill et al., 2016)). As we only consider 164 
GCMs that contribute at least one of the considered RCPs and the historical period, our 165 
GCM ensemble can differ from other ensembles (e.g. Meehl et al. (2020)). In order to 166 
compute future yield projections, we compute average growing season mean 167 
temperatures and average total growing season precipitation for a baseline period 168 
(1980-2010) for each grid cell that is currently used to produce any of the five crops 169 
considered here, following the MIRCA2000 data set (Portmann et al., 2010) and 170 
distinguishing both irrigated and rainfed growing seasons. The 31-year baseline period 171 
corresponds to the reference period of the AgMERRA data set (Ruane et al., 2015) that 172 
was used as the basis for the GGCMI Phase 2 CTWN-A simulations (Franke et al., 173 
2020a) and previous crop model evaluation (Müller et al., 2017).  174 
Against this crop- and grid cell-specific baseline conditions, we compute absolute 175 
differences in average growing season temperature (ΔT in K) and relative differences in 176 
total growing season precipitation (ΔP, unitless) for all future 31-year moving window 177 
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periods in the 21st century (2011-2084). As we are only interested in changes in 31-year 178 
average T and P from the historical simulation of the same GCM, no bias correction is 179 
necessary for the computation of ΔT and ΔP.  180 
Growing season T is computed as the weighted average of monthly T data from each 181 
GCM, using the days per month within the growing season as weights. Growing season 182 
P is computed in a similar way, but using growing season totals, by adding monthly 183 
precipitation sums using days per month within the growing season to compute shares 184 
of precipitation that are considered as part of the growing season. Crop- and grid-cell 185 
specific growing season start and end dates are taken from the dataset used in the 186 
GGCMI simulation phases 1 and 2 (Franke et al., 2020a; Elliott et al., 2015) so that 187 
these are consistent with what is assumed by the emulators. We do not change growing 188 
season length with increasing warming for the computation of average growing season 189 
conditions.  190 
We consider all climate model projections in the CMIP archive that provide historical and 191 
future scenarios in a consistent manner. We used monthly data rather than daily data to 192 
increase sample size, which we consider more important than daily resolution. We 193 
assume errors induced by this are small, especially since growing season conditions are 194 
computed as 31-year moving window averages, which is the time frame on which the 195 
emulators have been trained (Franke et al., 2020b). We accept different 196 
parameterization schemes of the same GCM as separate models where available to 197 
further increase sample size. We always only consider one ensemble simulation set per 198 
GCM, parameterization and RCP, selecting the smallest run number in the archive if 199 
several versions are available. Detailed information on the 45 CMIP5 and 34 CMIP6 200 
models considered, including version and ensemble member numbers, are listed in the 201 
supplementary tables S1 and S2. 202 
 203 
As some GGCMs tend to differ in their simulated baseline crop productivity levels (see 204 
e.g. Müller et al., 2017), we harmonize simulated crop yields (Y*

t) to match observed 205 
yield patterns from Mueller et al. (2012) as in equation 1, where Yt is the simulated yield 206 
in time step t, Ac is the harvested area in grid cell c, Or,c is the observed yield in the 207 
reference period r and cell c and Yr,c is the simulated yield in the reference period in cell 208 
c. 209 
 𝑌𝑌𝑡𝑡∗ = �𝑌𝑌𝑡𝑡,𝑐𝑐 ∗ 𝐴𝐴𝑐𝑐 ∗ 𝑂𝑂𝑟𝑟,𝑐𝑐 𝑌𝑌𝑟𝑟,𝑐𝑐⁄  Equation 1 

 210 
This is a simple multiplicative bias adjustment compared to more complex approaches 211 
used for the bias adjustment of climate projections. Our analysis is based on 31-year 212 
averages so that the focus is not on inter-annual or seasonal variations. Still the 213 
adjustment of the productivity levels helps to eliminate increased variance in the crop 214 
model ensemble from differences in mean biases as we are interested in projected 215 
changes here. 216 
Crop yield data are aggregated to global production (P) using crop-specific harvested 217 
area data from MIRCA2000 (Portmann et al., 2010). As winter and spring wheat are not 218 
explicitly distinguished in MIRCA2000, we assume that winter wheat is grown in a 219 
specific grid cell if the average temperature of the coldest month of the year is between -220 
10°C and +7°C or if the growing season is longer than 150 days or if the growing season 221 
includes December (Northern Hemisphere) or July (Southern Hemisphere). Otherwise 222 
we assume that spring wheat is grown (see map in supplementary figure S1).  Changes 223 
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in production are equivalent to changes in productivity (yields) here, as the harvested 224 
area data set is static in time (equation 2). 225 
 𝑃𝑃𝑡𝑡 = �𝑌𝑌𝑡𝑡,𝑐𝑐

∗ ∗ 𝐴𝐴𝑐𝑐 Equation 2 
 226 
For the aggregation of different crops, we compute total calories, assuming net water 227 
contents of 12% for maize, spring and winter wheat, 13% for rice and 9% for soybean, 228 
according to Wirsenius (2000) and caloric contents of the “as purchased” biomass (i.e. 229 
including the water content) of 3.56kcal/g for maize, 2.8kcal/g for rice, 3.35kcal/g for 230 
soybean and of 3.34kcal/g for spring and winter wheat, following FAO (2001). 231 
 232 
As the central metric for uncertainty in crop yield projections, we compute total variance 233 
across all GCM×GGCM combinations for all crops separately and for total calorie 234 
production of all 5 crops considered here. We assume that the total variance var(total) is 235 
the sum of the variance across all GCMs var(GCM) after averaging across all GGCMs 236 
and of the variance across all GGCMs var(GGCM) after averaging across all GCMs, 237 
plus a cross term that describes the covariance between GCM and GGCM responses. 238 
This cross term cannot be directly computed but we assume it to be the difference to 239 
unity (equation 3). 240 
 241 
 

1 =
𝑣𝑣𝑣𝑣𝑣𝑣(𝐺𝐺𝐺𝐺𝐺𝐺)
𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑡𝑡)

+
𝑣𝑣𝑣𝑣𝑣𝑣(𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺)
𝑣𝑣𝑣𝑣𝑣𝑣(𝑡𝑡𝑡𝑡𝑡𝑡𝑣𝑣𝑡𝑡)

+ 𝑐𝑐𝑣𝑣𝑡𝑡𝑐𝑐𝑐𝑐. 𝑡𝑡𝑡𝑡𝑣𝑣𝑡𝑡𝑐𝑐 Equation 3 

 242 
With this assumption, which follows a similar uncertainty decomposition in climate 243 
projections by Hawkins and Sutton (2009), shares of total variance can be attributed to 244 
differences in GCMs or differences in GGCMs.  245 
To test the robustness of this attribution to the ensemble composition, we compute the 246 
variances for all sub-sets, leaving out one GGCM each time (i.e. 11%≈1/9), testing if 247 
variance attribution is sensitive to the ensemble composition. 248 
 249 
The GGCMI Phase 2 input sensitivity CTNW-A experiment tested temperature increases 250 
of up to +6K and precipitation changes between -50% and +30% (Franke et al., 2020a). 251 
Under RCP8.5 (SSP585 for CMIP6), some GCMs exceed this temperature range for 252 
some cropland areas. With the non-linear design of the GGCMI crop model emulator 253 
ensemble (Franke et al. 2020b), it is difficult to extrapolate beyond its training domain 254 
range, especially in the temperature dimension, which is, together with the [CO2] 255 
dimension, typically the most powerful feature in the models. To avoid overly spurious 256 
crop model projections, we capped growing season temperature changes (ΔT) at +6K 257 
and changes in precipitation at -50% and +30% at the grid-cell and crop-specific growing 258 
season level. As the emulators rely on the balance of the T and C terms, we 259 
simultaneously kept [CO2] constant at the grid-cell and crop-specific growing season 260 
value at which +6K for ΔT was reached. The majority of GCMs has only small fractions 261 
of current cropland that exceed ΔT of +6K, but for some models, this can be substantial. 262 
For the CMIP5 ensemble, 7% of all cropland exceeds +6K (2% for rice to 12% for spring 263 
wheat) averaged across all GCMs for RCP8.5, while this is more severe for the CMIP6 264 
ensemble (22% of all cropland, ranging from 9% for rice to 29% for spring wheat; see 265 
supplementary Figure S2). As we drive the emulators with 31-year moving window 266 
average, the last year considered here is 2084 (2069-2099). Therefore, we did not have 267 
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to generally cap [CO2] at 810ppm, as this concentration level is only exceeded after 268 
2086 (Riahi et al., 2011).  269 
 270 
Of the CMIP5 archive, CESM1-CAM5-1-FV2 had to be excluded due to missing 271 
precipitation values for Dec 2056 and in the CMIP6 archive, CIESM had to be excluded 272 
due to implausible strong decline of temperatures at the end of the 21st century. 273 

  274 
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Results 275 

Changes in T and P projections in CMIP ensembles 276 

Generally, the spread of growing season changes in temperatures and precipitation is 277 
larger in the CMIP6 ensemble with 34 members than in the CMIP5 ensemble with 45 278 
members (Figure 1). Under the high radiative forcing scenario RCP8.5, the CMIP6 279 
ensemble projects a stronger median warming of about 1K and similar changes in 280 
precipitation as the CMIP5 ensemble. Differences in projected growing season warming 281 
are less pronounced in lower radiative forcing cases (RCP2.6 and RCP4.5) and scale 282 
with the radiative forcing (Figure 1, supplementary figures S3 and S4). 283 
 284 

 
Figure 1: harvested-area weighted distribution of projected changes in crop-specific mean growing season 
temperatures (left) and precipitation sum (right) for the CMIP5 and the CMIP6 ensemble under RCP8.5 at the end of 
the 21st century (2069-2099). Colored boxes show the 25th to 75th percentile of the distribution and the thick black 
lines show the median. Whiskers extend to the maximum value within 1.5 times the interquartile range beyond the 25th 
and 75th percentile respectively. Outliers, i.e. values outside this range are not shown. Growing seasons are held 
constant across historical and future time periods. Figures for RCP4.5 and RCP2.6 are shown in the appendix, but 
show a similar pattern: warmer average conditions in CMIP6 and larger spread across the ensemble than in CMIP5. 

  285 
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Projected impacts 286 

At the most aggregated level (across all crops, globally), the GCM×GGCM ensemble 287 
projects a broad range of possible climate change impacts on crop productivity on 288 
current cropland (Figure 2). The ensemble of crop model emulators projects consistently 289 
more negative impacts on average (except for LPJ-GUESS where projections increase 290 
by 1 percent point), so that the uncertainty range (+/-1 standard deviation, colored area 291 
in Figure 2) of only 3 GGCMs overlaps the zero line (CARAIB, LPJ-GUESS, PROMET) 292 
for the CMIP6 ensemble, while this is the case for all but three crop models under 293 
CMIP5. Still the most extreme projections for the CMIP6 scenario span farther into the 294 
positive range than they do under CMIP5 (Figure 2). 295 
We observe distinct differences between individual GCMs, with GEPIC and pDSSAT 296 
being typically the most pessimistic models and CARIB and LPJ-GUESS the most 297 
optimistic ones.  298 
Projected impacts scale with the radiative forcing and with the GCMs’ equilibrium climate 299 
sensitivity (ECS, taken from Meehl et al. (2020)), which constitute an important 300 
determinant of crop yield projections. Projected impacts are generally less variable at 301 
lower radiative forcing (time axes in Figure 2 and different RCPs in supplementary 302 
figures S5 and S6). Under RCP2.6, all but GEPIC project a positive median change for 303 
the CMIP5 ensemble and all but GEPIC and pDSSAT do so for RCP2.6 and CMIP6 304 
(supplementary figure S5) and for RCP4.5 and CMIP5. For RCP4.5 and CMIP6, 5 of 9 305 
GGCMs project negative median impacts by the end of the 21st century (supplementary 306 
figure S6). 307 
The relationship between ECS and median climate change impact on crop yields is 308 
stronger for the CMIP6 ensemble (Figure 3). However, the range of projected changes 309 
in crop productivity can differ substantially at similar ECS values. The ECS relationship 310 
with changes in crop productivity is weaker for the CMIP5-based ensemble as the GCM 311 
with the lowest ECS (IPSL-CM5A-MR) shows the strongest decline in crop productivity 312 
(Figure 3). The low ECS value reported by (Meehl et al., 2020) is also not reflected in 313 
the temperature increase of IPSL-CM5A-MR on current cropland of the 5 crops 314 
considered here, where the mean temperature increase is not exceptionally high in 315 
comparison to other GCMs, but certainly not at the low end (supplementary Figure S7). 316 
This suggests that the IPSL-CM5A-MR model may have a different distribution of 317 
warming over oceans vs. land or a much lower warming on non-cultivated land. 318 
 319 
At the level of individual crops the GGCM ensemble shows distinct differences, even 320 
though GEPIC and pDSSAT generally belong to the more pessimistic models and 321 
CARAIB and LPJ-GUESS generally belong to the more optimistic models. For maize, 322 
pDSSAT is the most pessimistic model, distinctly more so than the other models, with 323 
end-of-the-century median projections of -32% (-41%) in comparison to -15% (-21%) for 324 
GEPIC, the next most pessimistic GGCM for CMIP5 (CMIP6), see supplementary figure 325 
S8), but also the +/-1SD range of GEPIC does not overlap with that of CARIB, LPJ-326 
GUESS and PROMET. LPJ-GUESS projections broaden the projection range of the 327 
GGCM ensemble substantially to the positive side for spring and winter wheat, but it also 328 
covers the very pessimistic projection range for winter wheat. For these crops, LPJ-329 
GUESS is the most sensitive model to different GCMs.  330 
There is no emulator for LPJ-GUESS for rice and soybean, as no simulations were 331 
submitted for these crops to the GGCMI Phase 2 data archive (Franke et al. 2020a). The 332 
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+/-1SD range of all GGCMs overlap for soybean, whereas those of CARAIB and JULES 333 
for rice do not overlap with the +/-1SD ranges of EPIC-TAMU and GEPIC and that of 334 
JULES does not overlap with PEPIC in both CMIP5 and CMIP6 and with that of 335 
pDSSAT only for CMIP5 (supplementary Figures S8-S12).  336 
 337 
 338 

 

 

Figure 2: time series of projected impacts aggregated across the major five crops per crop model for RCP8.5. Thick 
lines show the median, dashed lines the minimum and maximum across all CMIP5 GCMs (panel a)) and all CMIP6 
GCMs (panel b)), shaded areas represent +/- one standard deviation around the median. For better visibility, the range 
of +/- 1 SD per GGCM at the end of the 21st century is depicted as colored vertical lines and the median value in the 
last time slice (2069-2099) is given in parenthesis next to each GGCM’s name. 
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Figure 3: GGCM-ensemble projected changes in global crop productivity (%) for the CMIP5 (blue) and CMIP6 (green) 
ensembles for RCP8.5 at the end of the 21st century (2069-2099). Dots indicate the median projections, whiskers 
extend to +/-1 standard deviation from that median. Not all GCMs included in this analysis have reported ECS values 
in Meehl et al. (2020) do not report ECS values for all GCMs included here and we substituted these missing values 
with the CMIP ensemble mean (3.2 for CMIP5, 3.7 for CMIP6) in the figure, but exclude these in the fitting of the 
regression model (solid lines) here. These values are indicated by a grey border around the dot and grey whiskers.  

 339 
 340 
 341 

  342 
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Sources of uncertainty 343 

We find substantial differences in overall variance in projected changes in crop 344 
productivity between the CMIP5 and CMIP6 ensembles. Total variance of the full crop 345 
model emulator and climate projections ensemble, as a measure for uncertainty, is 346 
larger for CMIP6 than for CMIP5 (Figure 4) for RCP2.6 and 8.5, but similar for RCP4.5. 347 
In the CMIP6 ensemble, the variance of both wheats, but especially winter wheat 348 
increases compared to the CMIP5 ensemble under the high radiative forcing pathway 349 
RCP8.5, while that of soybean decreases. The overall variance of crop yield projections 350 
of the ensemble increases with the radiative forcing (RCP, time) in both the CMIP5 and 351 
CMIP6 ensembles (Figure 4). This increase is strongest in the middle of the 21st century 352 
and levels off towards the end of the 21st century. This leveling-off effect can be 353 
observed at all RCPs (Figure 5), but is less strong for simulations where the effect of 354 
CO2 fertilization is ignored or where growing season adaptation is considered (Figure 6). 355 

 
Figure 4: total variance in global productivity on current cropland across all GGCM and GCM combinations per RCP 
(colors) and crop (line type and symbol) for CMIP5 (panel a)) and CMIP6 (panel b)). Thick colored, solid lines 
represent the calorie-weighted aggregation of all crops.  

 356 
Breaking down overall variance in projections into a GGCM and a GCM component, we 357 
find that the GGCM component dominates in the first half of the 21st century and the 358 
GCM component gradually increases after a peak in GGCM component, typically 359 
between 2020 and 2030 (Figure 5). The shares of GGCM and GCM-induced variance 360 
are largely independent and cross-terms typically account for only a small fraction of the 361 
overall variance. The peak in GGCM-induced variance is less pronounced in the CMIP6 362 
ensemble than in CMIP5 ensemble, because the GCM-induced variance increases 363 
strongly only in the second half of the 21st century in the CMIP5 ensemble, but increases 364 
more steeply (relative to the GGCM-induced variance) from 2020 onwards in the CMIP6 365 
ensemble.  366 
 367 
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 368 
 369 
 370 
While overall variance can be substantially decreased if the CO2 fertilization effect is 371 
ignored, the share of GGCM-induced variance tends to increase under this setting, 372 
especially in the CMIP6 ensemble (Figure 6). Ignoring the CO2 fertilization effect does 373 
not provide plausible future crop yield projections, but it helps to analyze where the 374 
GGCM-induced variance originates from. We find that crop models agree more strongly, 375 
if the process of CO2 fertilization is ignored. In other words, the simulated effects of CO2 376 
fertilization on crop yields are an important source of crop model disagreement. 377 
Adaptation of cultivars to regain the growing season length that would otherwise be lost 378 
due to accelerated phenological development (Franke et al., 2020a; Minoli et al., 2019; 379 
Zabel et al., under review) on the other hand increases the GGCM-induced variance 380 
share and overall variance substantially. This is because crop models show very 381 
different responses to this adaptation measure so that overall uncertainty is increased if 382 
cultivar adaptation (as implemented in the GGCMI Phase 2 simulations) is considered 383 
(Minoli et al., 2019). 384 
We also find that the ensemble of crop models is very sensitive to the selection of 385 
ensemble members. If one of the nine crop models is excluded from the ensemble, the 386 

 

 

Figure 5: relative contributions of GGCMs and GCMs to the overall ensemble crop yield projections under CMIP5 (top) 
and CMIP6 (bottom). Red lines indicate absolute variance of the total ensemble (solid), the GGCM share (dashed) and 
the GCM share (dotted). Relative contributions are fairly similar across RPCs, but absolute variance increases 
significantly with the radiative forcing (see right-hand red axis).  Scales for absolute variance are adjusted per panel 
and are thus not directly comparable. The variance shares of GGCMs and GCMs do not always add up to the total 
variance as these two sources of uncertainty are not fully independent. The difference to total variance is shown in 
dark blue and referred to as “cross-terms” (see equation 3). 
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relative contribution to overall variance from crop models can vary strongly (figure 6). 387 
Which GGCM has strong effects on the overall variance attribution is crop specific. If 388 
random sets of climate models that constitute a similar share of the ensemble size (n= 4 389 
of 34 for CMIP6, roughly equivalent of 1 in 9 crop models), we find that results on the 390 
GCM- and GGCM-induced variance shares change less than if individual GGCMs are 391 
excluded in the first half of the 21st century, but can be affected similarly strongly at the 392 
end of the century (supplementary Figure S13), suggesting that the distribution of 393 
changes in the GCM ensemble is more balanced in short-term projections than that 394 
within the GGCM ensemble.  395 
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  396 

  

  

  
Figure 6: as figure 5, but for the standard setting (top row; panels are equivalent to right hand panels in figure 5), the 
projections ignoring the CO2 fertilization effect (middle row) and the projections including the variety adaptation to 
regain the growing season (bottom row) for CMIP5 (left) and CMIP6 (right). Thin lines show how GCM- (blue) and 
GGCM-induced shares (green) in overall variance would change if one GGCM were excluded from the ensemble. The 
exclusion of individual GCMs can also affect the contribution of cross-terms, i.e. higher or lower co-variance between 
the GCM- and GGCM-shares (e.g. thin blue lines above 1.0). Red lines indicate absolute variance of the total 
ensemble (solid), the GGCM share (dashed) and the GCM share (dotted). Relative contributions are fairly similar 
across RPCs, but absolute variance increases significantly with the radiative forcing. 
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Crop specific differences 397 

For individual crops, we observe substantial differences in the share of variance that can 398 
be attributed to crop models. For maize and spring wheat, the GGCM-induced variance 399 
shares clearly dominate the overall variance. GCM-induced variance is clearly the most 400 
important contribution to overall variance in soybean yield projections and to lesser 401 
extent in rice projections. Winter wheat shows a strong contribution of cross terms to the 402 
overall variance, which is also true to some extent for spring wheat. This cross-term 403 
contribution can be substantially reduced by excluding LPJ-GUESS from the winter 404 
wheat GGCM ensemble. Excluding JULES from the spring wheat GGCMI ensemble 405 
would increase the GGCM-induced variance share in the first half of the 21st century and 406 
would introduce negative cross-terms. Excluding LPJ-GUESS from the spring-wheat 407 
ensemble on the other hand would do the opposite and reduce the GGCM-induced 408 
variance share throughout most of the 21st century and would introduce larger positive 409 
cross-term shares (Figure 7).  410 
For most crops, there is a clear outlier model that, if excluded, strongly changes the 411 
contribution of GCMs, GGCMs or cross-terms to overall variance. For maize, this is 412 
pDSSAT, which projects the most pessimistic yield declines in the GGCMI Phase 2 413 
emulator ensemble (see Appendix Figure A1). An exclusion of pDSSAT from the 414 
ensemble would reduce overall variance by more than half and substantially reduce the 415 
GGCM-induced contribution. If PROMET, LPJmL or pDSSAT were excluded from the 416 
rice model ensemble, the GGCM induced variance would increase, whereas it would 417 
substantially decrease if JULES were excluded. The exclusion of JULES would also 418 
substantially reduce overall variance of the full GCM×GGCM ensemble. Even though 419 
there is generally much less GGCM-induced variance in soybean yield projections, the 420 
exclusion of CARAIB would lead to a further reduction of overall variance and of the 421 
GGCMI-induced share.  422 
  423 

Page 17 of 29 AUTHOR SUBMITTED MANUSCRIPT - ERL-110122.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Page 18 of 29 
 

  

  

  

  

  

Page 18 of 29AUTHOR SUBMITTED MANUSCRIPT - ERL-110122.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



Page 19 of 29 
 

Figure 7: crop-specific variance attribution for CMIP6 and RCP8.5 only. Right column (panels b, d, f, h, j) shows 
changes in GCM and GGCM induced variance shares (colored areas) as well as the sensitivity of these shares to 
exclusion of individual GGCMs from the ensemble (thin lines), the most sensitive ensemble members are labeled. Red 
lines indicate absolute variance of the total ensemble (solid), the GGCM share (dashed) and the GCM share (dotted). 
Scales for variance are adjusted per crop and are thus not directly comparable. Maps in the left column (panels a, c, e, 
g, i) show the GGCM-induced variance share at the grid cell level in the last time step (2084).  

 424 

  425 
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Discussion 426 

This unprecedentedly large ensemble of climate projections, crop model (emulators) and 427 
crops allows to explore the importance of ensemble composition for climate change 428 
impact analyses on crop yields and examine the uncertainty in climate model ensembles 429 
through the lense of climate impacts. We find that climate projections can have a 430 
substantial influence on crop yield projections, especially in marginal and dry regions, 431 
but spatial patterns differ by crop (Figure 7).  432 
The use of computationally efficient crop model emulators in place of the process-based 433 
crop models is the only option to conduct this large ensemble analysis. While the 434 
emulators have very good skill in reproducing the underlying crop models (Franke et al., 435 
2020b), they are no perfect reproduction of the crop models’ dynamics. Our results are 436 
thus only indicative of the actual contributions of crop models to overall uncertainty in 437 
crop yield projections. 438 
Across the full CMIP5 and CMIP6 archives, there is substantial spread in crop yield 439 
projections, independent of the radiative forcing (RCP2.6, 4.5, or 8.5). At the end of the 440 
21st century, climate model-induced variance is often dominant over crop model-induced 441 
variance, i.e. the uncertainties in climate projections are more important for projections 442 
of changes in crop yields than the uncertainties in crop models – at least at the most 443 
aggregate level (combined global productivity of all crops considered here). For 444 
individual crops, crop-model induced variance is larger than the climate model-induced 445 
variance for maize, spring wheat and winter wheat, which jointly contribute the majority 446 
of calories from the 5 crops considered here. As such, it is surprising to see that climate 447 
model-induced variance is dominant over crop model-induced variance when the five 448 
crops are aggregated to overall production. This suggests that there is some cancelation 449 
of signals when different crops are aggregated. One example of such mutual 450 
compensation of variance is the combination of predominantly negative projections for 451 
maize productivity (supplementary Figure S8) and the predominantly positive projections 452 
for spring and especially winter wheat (supplementary Figure S12). This may illustrate 453 
compensatory responses between crops within the crop models and/or changing 454 
patterns of warming within the climate models. Similarly, variances in space can cancel 455 
out in the aggregation to global productivity if some regions are projected to see positive 456 
effects and others to see negative impacts of climate change (e.g. winter wheat in Figure 457 
7). Looking at the distribution of projected changes in global crop productivity as done 458 
here via the variability metric does thus not represent the full scope of disagreement 459 
among simulations. The aggregation of data across space or crops can lead to 460 
cancelation of variance at the underlying level of detail that is not visible at the level of 461 
analysis here. Still, the analysis provides a unique overview of the breadth of projections 462 
of global crop productivity under climate change.  463 
Differences across crops do not necessarily only represent differences in the simulated 464 
dynamics and processes of these crops, but can also reflect the differences in the crop 465 
model ensemble. LPJ-GUESS for example, which is at the most positive side of the 466 
projected yield changes for spring and winter wheat did not supply data for soybean and 467 
rice in the CTWN-A experiment (Franke et al., 2020a) and is thus not included in the 468 
emulator ensemble for these crops (Franke et al., 2020b). However, the exclusion of 469 
LPJ-GUESS from the wheat ensembles does not make the uncertainty attribution for 470 
spring and winter wheat more similar to that of the other crops.  471 
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More crops need to be explicitly considered in climate change impact assessments, as 472 
individual crops show distinctly different spatial patterns, uncertainties in crop yield 473 
projections and the relative contribution of GCM- vs. GGCM-induced variance. As we 474 
find that impact projections (supplementary Figures S8-S12) as well as drivers of 475 
uncertainty (Figure 7) differ between different cereal crops, other crops like legumes, 476 
tree or other perennial crops must be explicitly analyzed. Therefore, the behavior of 477 
crops other than the major five considered here can likely not be well represented by 478 
these. Considering the comparative high amount of research attention these 5 crops have 479 
received, uncertainty must be very high for other crops. It is thus of fundamental 480 
importance to broaden the range of simulated crops, also because there is the need to 481 
represent a much broader set of crops in economic analyses of agricultural markets and 482 
land-use dynamics under climate change. The current practice to derive climate change 483 
impacts of crops that are not modeled by crop models from a small set of crops that is 484 
modeled (Nelson et al., 2014; Müller and Robertson, 2014) thus needs to be challenged, 485 
even though there may be little alternative under current constraints on data availability. 486 
The next round of AgMIP/ISIMIP future projections (Jägermeyr et al. in prep.) also aims 487 
at broadening the scope of simulated crops, but many models are not available for less 488 
ubiquitously grown crops. 489 
For short- and mid-term projections, GGCM-induced variance dominates the overall 490 
variance across all scenarios and crops, except for soybean, where crop models 491 
generally contribute only a small share to overall variance and where also overall 492 
variance is relatively low (2nd after maize). This dominance of the GGCM signal in the 493 
first half of the 21st century is likely because of the relatively small differences in radiative 494 
forcing in this period, which is also largely independent of the RCP trajectory (van 495 
Vuuren et al., 2011).  496 
Future crop yields are determined by counteracting drivers. Climate change impacts 497 
(warming, changes in precipitation) lead to overall negative impacts on crop yields that 498 
amplify unequivocally with the radiative forcing at the global aggregation level. However, 499 
the main cause of climate change, increasing atmospheric CO2 concentrations from 500 
anthropogenic emissions, also lead to increased crop productivity. There is substantial 501 
uncertainty connected to the effects of CO2 fertilization in models, especially at high 502 
concentrations as projected for the end of the 21st century under RCP8.5, where also 503 
little experimental evidence can guide model parameterization and development (Toreti 504 
et al., 2020). Nonetheless, the modeled response to elevated atmospheric CO2 505 
concentrations requires more attention from the modeling community.  506 
In this analysis, we focused on changes in the CTW dimensions of the emulated CTNW-507 
A experiment (Franke et al., 2020a; Franke et al., 2020b), ignoring the N dimension, 508 
which can also contribute to overall uncertainty. We kept N inputs at historical patterns 509 
across regions and crops (Elliott et al., 2015) throughout the simulations. It is plausible 510 
to assume that N fertilization would change under changing crop yield potentials, market 511 
access and dynamics, or environmental regulation. To our knowledge, there are no such 512 
projections available, especially not any that would account for the changes in potential 513 
yields under the multitude of climate projections used here. Long-term crop projections 514 
here do not account for other technical and management changes in addition to 515 
nitrogen, which additionally artificially suppresses the crop model-induced component of 516 
uncertainty. This is somewhat analogous to the ‘pathway’ uncertainty in the SSP-RCP 517 
framework. 518 
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Still, we find that the GGCM ensemble contributes relatively little to overall variance in 519 
regions with intensive agriculture (supplementary figure S14) as well as for soybean (a 520 
nitrogen fixing plant) more generally, suggesting that the response to N inputs is also an 521 
important driver of uncertainty in crop yield projections. The relationship between 522 
nutrient limitations and susceptibility to climate change impacts as well as how nutrient 523 
limitation is modeled at different levels of nutrient supply need further scrutiny.  524 
Our results for the end of the 21st century need to be interpreted with some caveats, as 525 
we had to cap CTW drivers to the training domain of the CTNW-A experiment (Franke et 526 
al., 2020a), because of the non-linear functional form of the emulators (Franke et al., 527 
2020b), which makes extrapolation beyond the training domain volatile and error-prone. 528 
For the majority of GCMs and harvested areas, this is not a major caveat as most areas 529 
do not exceed +6K. However, for some GCMs, especially under CMIP6, large fractions 530 
of the crops’ harvested areas exceed the +6K warming level (supplementary figure S2). 531 
This leads to an artificial reduction of the GCM-induced variance in results. The 532 
plausibility of the very high ECS in climate projections has been challenged (Tokarska et 533 
al., 2020) and the ensemble could be pruned on this basis to avoid very warm climate 534 
projections. However, the selection of climate scenarios provided to climate impact 535 
modeling community in e.g. ISIMIP does not necessarily follow such pre-selection 536 
approaches and we thus kept the full CMIP6 archive here. The saturating overall 537 
variance that can be observed towards the end of the 21st century could suggest that the 538 
capping of the warming at +6K leads to an artificial reduction of the end-of-the-century 539 
variance, however we observe the same general feature (steepest increase in variance 540 
in mid-century) also in the other RCPs that are not subject to the capping of temperature 541 
signals as warming levels are generally lower (Figure 5). The observed saturation of 542 
variance towards the end of the 21st century cannot be attributed to a saturation in 543 
drivers of climate change as global mean cropland temperatures under RCP8.5 show no 544 
sign of levelling off (supplementary Figure S7) and also [CO2] and radiative forcing do no 545 
level off under RCP8.5 (van Vuuren et al., 2011). 546 

Generally, climate and crop models should be selected on a fit-for-purpose basis. While 547 
the climate community has established the standard that the same model versions that 548 
provide future projections also provide historical simulations for evaluation purposes, this 549 
procedure has not generally been adopted by the crop modeling community. The ISIMIP 550 
project is promoting a similar structure in the individual simulation rounds (Frieler et al., 551 
2017), but crop models need to more rigorously provide meta information on the model 552 
version and parameterization, which can greatly affect simulated dynamics (Folberth et 553 
al., 2019). The common practice to reduce the uncertainty space by selecting a small 554 
number of climate scenarios by e.g. first availability has already been challenged by 555 
McSweeney and Jones (2016). We show that, at the global scale, the selection of 556 
individual crop models can greatly affect the outcomes and even the exclusion of one 557 
out of an ensemble of nine can have substantial effects on results. This pulls the general 558 
assumption into question if we can consider all GGCM projections as equally plausible, 559 
or if the skewed distribution suggests that some models should indeed be excluded prior 560 
to the interpretation of ensemble results. More and also different global gridded crop 561 
models are expected to contribute to the new round of global crop model simulations of 562 
AgMIP and ISIMIP (Jägermeyr et al., in prep.). However, it may not necessarily be 563 
desirable to increase the ensemble size to a point where the exclusion of sub-samples 564 
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no longer affects the overall ensemble response if the unbalanced ensemble may be 565 
caused by inclusion of non-plausible projections.  566 

Thus, we call for intensified efforts to understand why crop models differ and to build 567 
strategies on how models can be improved – or that lead to a better understanding why 568 
it is plausible to have an as broad distribution as our current full ensemble suggests. 569 
While better model agreement is not an appropriate aim in itself, model disagreement 570 
can be used to identify aspects for coordinated model improvement, as e.g. described 571 
by Maiorano et al. (2017). Also, the assessment of crop models based on their ability to 572 
reproduce spatial and temporal patterns of historical crop yields (Müller et al., 2017) 573 
needs to be expanded by plausibility tests in individual model components and 574 
processes. Given that crop yields are determined by many interacting processes 575 
(Schauberger et al., 2016), which have not been all implemented or sufficiently tested in 576 
crop models (Boote et al., 2013), we need to do everything possible to minimize the 577 
chance of getting the right answer for the wrong reason as shown e.g. by Zhu et al. 578 
(2019) for maize yields in the USA. As such, model performance needs to be also 579 
assessed at the level of individual processes before errors in these can mutually cancel 580 
out and are not traceable in the yield projections.  581 

Toreti et al. (2020) call for a set of standard tests on crop models’ response to elevated 582 
[CO2] that should be made accessible as meta-data for each model. Building on this 583 
idea, we call for a set of standard tests for crop models across all major drivers of crop 584 
yield simulations ([CO2], temperatures, precipitation, nutrients, management aspects) 585 
with respect to single driver effects as well as with respect to their interaction.  The 586 
CTWN-A experiment (Franke et al., 2020a) that also covers more crop growth metrics 587 
than just yields, provides a suitable basis for such tests, even though the computational 588 
requirements are too high to qualify for a standard test.  589 

Protocols for such standard model tests need to be developed in close collaboration with 590 
experimentalists as they need to reflect the evolving understanding of physiological 591 
processes, and need to include more aspects than just end-of-season yields. Even 592 
though global crop model results are difficult to compare to data from experimental sites 593 
(Deryng et al., 2016), global (and field-scale) crop models need to be tested at the site 594 
level for plausible response types (e.g. direction of change) and ranges (e.g. size of 595 
effects). The comparison of global crop model results with site data has been shown to 596 
allow for ex-post corrections of the range of simulated crop yield projections (Wang et 597 
al., 2020).   598 
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Conclusions 599 

We find that future crop yield projections are subject to substantial uncertainties. These 600 
increase with the radiative forcing, i.e. over time and also with the emission pathway 601 
considered. Crop model-induced uncertainty dominates the overall uncertainty in the first 602 
half of the projections for the 21st century and more efforts are needed to improve crop 603 
model skill and testing procedures. In the second half of the 21st century, the overall 604 
uncertainty surges, mainly driven by a steeper increase of uncertainty from climate 605 
models. Long-term projections are thus of mainly academic value that can help to derive 606 
insights from comparing scenarios and assumptions but should not be confused with 607 
predictions of future developments. This is especially true as modifications in 608 
management that can be expected to be implemented by farmers are often ignored due 609 
to a lack of data on management systems and missing tools to project these into the 610 
future. The unbalanced nature of the crop model ensemble, where often individual 611 
models strongly affect the overall ensemble behavior call for intensified research on 612 
climate change impact modeling for agriculture. This has been pleaded for by Rötter et 613 
al. (2011) before and the various activities in AgMIP, MACSUR, ISIMIP and elsewhere 614 
have helped to move in that direction. Still, more efforts are needed, especially with 615 
respect to model evaluation standards and testing of other aspects than crop yields, as 616 
e.g. by Kimball et al. (2019). 617 

  618 
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