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Abstract
Assessing vulnerability to climate change and extremes is the first step towards guiding climate
change adaptation. It provides the basis to decide ‘what’ adaptation measures are needed ‘where’.
Vulnerability which is defined as a function of exposure, sensitivity, and adaptive capacity, differs
spatially and evolves temporally. Therefore, it is imperative to understand the dynamics of
vulnerability at sub-national scales to be prepared for and respond to current and future climatic
risks. This paper focuses on Ethiopia where a sub-national understanding of vulnerability
dynamics in smallholder agriculture systems is missing to date. The paper assesses the vulnerability
of crop-based smallholder systems in Ethiopia for the past (1996–2005), current (2006–2015), and
two future (2036–2045 and 2066–2075) climate scenarios using an indicator-based approach. The
future scenarios are based on two Representative Concentration Pathways (RCPs) RCP 2.6 and
RCP 6.0 from four general circulation models. Results show the emergence of highly vulnerable
zones that were missing in the past scenario. With Paris agreement pathway, keeping global
warming under 2 ◦C (RCP 2.6), reduction in vulnerability of 10% of the zones is noted in far
future (2066–75) as compared to RCP 6.0 where the exposure increases, making 30% of the zones
highly vulnerable. The projected increase in exposure to climatic hazards will worsen the
vulnerability of smallholder agricultural systems in future unless the current adaptation deficit is
sufficiently addressed. This study maps the temporal dynamics of vulnerability unlike the
prevailing snapshot assessments at subnational-level for Ethiopia. The study seeks to assist the
decision-making process to build resilience to climate change in Ethiopia and other low-income
countries with similar geophysical and socio-economic conditions.

1. Introduction

Studies have illustrated the severe impacts of climate
change and extremes in Sub-Saharan Africa (SSA)
and heightened concerns for food security (Boyd et al
2013, Pironon et al 2019). Among the SSA countries,
Ethiopia is subject to high climate variability and cli-
matological hazards that have negatively influenced
the agricultural sector in the past decades (Sietz et al
2017, Kamali et al 2018, Conway et al 2019). Pro-
jected changes indicate further increase in frequency
and intensity of climate extremes, such as droughts,
floods, and hot days and nights (McSweeney et al

2008, Nikulin et al 2018, Liou and Mulualem 2019).
Ethiopia’s agriculture and economy has been vul-
nerable to observed climate change (Diao and Pratt
2007, Yalew et al 2018), and this susceptibility of
the Ethiopian agricultural system roots in the coun-
try’s dependence on smallholder rain-fed agriculture
(cultivation on landholdings less than 1 ha) with lim-
ited use of modern farm management practices.

Agriculture forms the main source of livelihood
for about 80% of the Ethiopian population, mer-
chandise export earnings (80%–85%), and national
income contribution (35%–40%) (NLFS 2013, NBE
2020). As a low-income country, there are noted
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incidences of entrenched poverty, undernourish-
ment, and recurrent food shortage (Dercon 2006,
Dercon and Christiaensen 2011). Despite increas-
ing trends of crop production at the national level
(Cochrane andBekele 2018), substantial sub-national
discrepancies still exist due to localized climate con-
ditions. It is certain that increasing climate vari-
ability and its impacts coupled with the prevailing
socio-economic pressures, will exacerbate the existing
risks to food insecurity, particularly for cereal food
crops (Evangelista et al 2013). Scientific discourse
on disproportional vulnerability of smallholder farm-
ers provides an urgency to systematically analyze
the range of relevant factors that contribute to vul-
nerability and identify high-risk regions to assist in
adaptation planning. Such a systematic sub-national
vulnerability assessment for crop-based smallholder
agricultural systems, which accounts not only for
the changes in climate (Evangelista et al 2013) but
also the capacity of the population to adapt, is cur-
rently unavailable for Ethiopia (Williams et al 2018).
Moreover, how vulnerability evolves within the range
of climate change projections with different emis-
sion pathways is not known. In Ethiopia, as the risks
driven by climate change increase, information about
vulnerability of a region at different global warming
levels can help policy makers.

Vulnerability to climate change and extremes is
commonly defined as the degree to which a system
is susceptible to and unable to cope with adverse
impacts (Adger 2006, Füssel 2007). The susceptibil-
ity to impacts is determined by a complex interaction
among amultitude of climatic, environmental, socio-
economic, and institutional factors. As vulnerability
is context-specific, its determinants vary across agro-
ecological systems, scales and the studied attributes
(such as livelihoods, crop types) (O’Brien et al 2004,
Eriksen and Kelly 2007). Intergovernmental Panel on
Climate Change (IPCC) provides a practical frame-
work to conceptualize and operationalize vulner-
ability under three components: exposure, sensitiv-
ity, and adaptive capacity (AC) (Krishnamurthy et al
2014). Exposure reflects the magnitude and degree to
which a climatic variation stresses a system. Sensit-
ivity refers to the inherent susceptibility of a system
to be affected by climate-related exposure, and AC
refers to the capacity of a system to adapt to shocks
and stressors (Adger 2006).

As vulnerability is not directly measurable,
indicators are often used to quantify the underly-
ing processes. Consequently, assessments are often
indicator-based approaches (Tate 2012), also within
smallholder agricultural systems (Williams et al
2018). Usually, the practice of characterization of
vulnerability within indicator-based studies is lim-
ited to one-time snapshot (mostly of current) and,
so far, studies insufficiently address the dynamics of
the vulnerability over time (Vincent 2007, Bennett
et al 2015). With the need for anticipatory adaptation

increasingly becomes necessary to address the climate
change impacts, it is therefore, crucial to explore
which region is vulnerable, and at what timescale
(Tschakert and Dietrich 2010, Saddique et al 2020).

In the present study, we aim to understand the
vulnerability dynamics of crop-based smallholder
systems to climate change and extremes at sub-
national (zone) level for Ethiopia. Our study builds
on an indicator-based approach integrating both
biophysical and socio-economic dimensions of vul-
nerability. The analysis on vulnerability dynamics
focuses on relative changes over four time-periods:
1996–2005 (past), 2006–2015 (current), 2036–2045
(near future), 2066–75 (far future), and space (zones
in Ethiopia). Given projected climate risks vary across
warming pathways, we used two contrasting emission
pathways. We selected Representative Concentration
Pathway (RCP) 2.6 (the Paris Agreement scenario
characterized by drastic mitigation policy with steep
decrease in emissions), RCP 6.0 (the likely ‘business-
as-usual’ scenario with emission trends that stabil-
ize by the end of the century). There are three spe-
cific research objectives that help bridge the exist-
ing literature gap: (a) to analyze the spatio-temporal
dynamics of vulnerability and its three components—
exposure, sensitivity, and AC for smallholder crop
(maize, teff, sorghum, and wheat) systems; (b) to
map the differences in vulnerability across RCP 2.6
and RCP 6.0, and (c) to identify regions of high vul-
nerability and understand the contributing factors.
The study is relevant for adaptation planners at cent-
ral (federal or national) and zonal level by identify-
ing highly vulnerable regions and understanding the
transitions of such vulnerability in each of the zones.

2. Data andmethods

2.1. Study area
About 85% of the Ethiopian rely heavily on sub-
sistence farming and account for 95% of Ethiopia’s
agriculture production (Evangelista et al 2013). Spa-
tially, agriculture is distributed across the various
heterogeneous agro-climatic regions (Murken et al
2020). Favourable agro-ecological conditions for
crop production are mainly concentrated in the
highlands, where the population density is also
highest. Topography is an important determinant
of agriculture potential in Ethiopia, with arable land
mainly clustered in the highland of four regional
states, namely Amhara, Oromia, Tigray and Southern
Nations, Nationalities, and Peoples (SNNP hereafter)
(figure 1(a) and also see SI 1(a) which is available
online at stacks.iop.org/ERL/16/044007/mmedia).
However highland topography requires farmers to
diversify crop types and production periods to fit the
highly variable agro-ecological conditions and spread
production risks (Cholo et al 2019). In the other
parts of Ethiopia, pastoralism is the predominant
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livelihood in the peripheral Arid and Semi-Arid Low-
lands (ASAL) regions (Taffesse et al 2014).

Annual mean temperature and precipitation in
Ethiopia show positive anomalies in recent times
compared to the 1980s; for temperature the trend is
more pronounced (figure 1(b)) than that of precipit-
ation (figure 1(c)). Bothmean temperature andmean
precipitation trends are significant (p-value < 0.1).
A detailed analysis of changes in climatic parameters
and extremes provided in Gebrechorkos et al (2019)
shows also similar findings. A slightly increasing trend
for the number of climatological and hydrological
disasters is also noted (figure 1(d)). However, these
aforementioned changes in climatic parameters and
disasters are not evenly distributed across the country
and vulnerability to these impacts differs spatially—
due to the immense diversity in the social, economic
and ecological landscape of Ethiopia (Husmann 2016,
Simane et al 2016, Gebreyes and Theodory 2018).

The country’s agro-ecological conditions are
characterized by differences in soil type, climate,
water availability and terrain that influence agricul-
tural production and productivity (Eggen et al 2019)
and food security (Cholo et al 2019). In addition,
there is enormous inequality in the level of socio-
economic development. Husmann (2016) showcased
spatial heterogeneity in marginality hotspots, often
located in areas with low agricultural potential in Afar
and Somali region. Besides, the utilization of modern
agricultural inputs and practices varies across regions.
Sheahan and Barrett (2014) illuminate the tremend-
ous heterogeneity in input use across regions and
report that Tigray, SNNP, Harari are much above the
national averages of fertilizer application, while Afar,
Somali, Benshagul-Gumaz, Gambela, Dire Dawa
are even below 10 kg ha−1. Given such variations
in agriculture potential, modern agriculture input
usage, and development within the country, a spa-
tially disaggregated vulnerability-assessment of the
agricultural system helps capture the complexity and
diversity of factors, and inform adaptation planning
process at appropriate administrative levels (Fekete
et al 2010, Frazier et al 2014, Mekonnen et al 2019).

2.2. Indicators
We focus our analysis on cereal-based (teff, sorghum,
maize, and wheat) farming smallholder in 64 zones
(out of the 75) where agricultural data was avail-
able (CSA 2016). Indicators are selected to cap-
ture characteristics of agricultural systems, farmers,
management practices, and inherent marginality that
potentially determine the vulnerability to climate
change impacts. Literature around the concept of vul-
nerability, marginality and poverty was additionally
reviewed to select robust indicators. Finally, 15 vul-
nerability indicators (refer to SI 2) were selected based
on their relevance to agricultural systems in Ethiopia,
availability of data. Highly correlated indicators were

ignored. For instance, annual mean days with pre-
cipitation above 5 mm was found to be positively
correlated with yearly mean precipitation (r = 0.93).
Further, same boundaries were for 2005 using the
zonal divisions in 2015 as the baseline to maintain
consistency and minimize data loss. In cases where
one administrative zone was split into two in 2015,
data for the ‘new’ zones was duplicated.

As the majority of the crop farmers practice rain-
fed agriculture (CSA 2006, 2016), changes in precip-
itation and temperature directly affect water avail-
ability and thus crop production (Liben et al 2018).
Therefore we include changes in temperature and
precipitation variability, extreme temperature, and
dry spells in this study. We define precipitation vari-
ability by the coefficient of variation (CV) of the
annual precipitation and dry spells as more than 5 d
with less than 1 mm daily precipitation (consecut-
ive dry days—CDD), and their annual number is
averaged over the selected time period. With regard
to temperature, we considered the average annual
number of the days above 35 ◦C (Fischer and Schär
2010, Murken et al 2020) to capture the temperat-
ure extremes, and CV of annual mean temperature to
estimate mean temperature variability.

To estimate the exposure, climate data was
retrieved from reanalysis data to describe past and
current conditions; and from four Coupled Model
Intercomparison Project generation GCMs to pro-
ject future conditions. The past and present climate
indicators are calculated from the gridded WATCH-
ERAinterim (WFDEI) dataset (Weedon et al 2014).
This dataset is available at daily temporal and 0.5◦

spatial resolution (~50 km). WFDEI combines the
comprehensive character of reanalysis data and accur-
acy of observations, as it is ERA-interim reanalysis
bias-adjusted to observations, in particular to CRU
TS3.1/3.21 temperature data (Harris et al 2014) and
GPCCv5 precipitation data (Becker et al 2013). For
future conditions, we chose the climate data from
the ISIMIP2b project (Frieler et al 2017). Simulations
of four GCM models (GFDL-ESM2M, HadGEM2-
ES, IPSL-CM5A-LR, MICROC5) have been bias-
adjusted using EWEMBI climate data (Lange 2018).
As EWEMBI is based on the WFDEI methodology,
the observational and GCM data provide a consist-
ent dataset of past and future. The future emission
scenario RCP 2.6 (van Vuuren et al 2011) and RCP
6.0 (Moss et al 2010) was selected as low and mod-
erate warming scenario, respectively. We choose RCP
6.0 in contrast to RCP 8.5 as it is the more likely
under current policies in contrast to RCP 8.5 (Haus-
father and Peters 2020; Rohat et al 2020). Median
values of the four GCMs were taken as an input
for estimating the exposure indicator for the future
scenario.

To estimate sensitivity andAC,we focused on cap-
turing the smallholder producers’ biophysical, social,
and economic factors. For sensitivity, we included
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Figure 1. (a) Administrative boundaries of 11 regions and corresponding zones; two enlarged views of selected areas are presented
in the bottom. Their full names are provided in supplementary information (SI-1). (b) Annual mean temperature anomaly in ◦C
(mean 1981–2019 is zero) from 1981 to 2019 (data source: ERA 5 product of ECMWF, downloaded from Google Earth Engine,
(C3S 2017)); (c) Annual mean precipitation anomaly in mm (mean is zero) from 1981 to 2019 (data source: CHIRPS,
downloaded from Google Earth Engine (Funk et al 2015); (d) number of climatological and hydrological disasters (droughts and
floods) for entire Ethiopia (based on EM-DAT (Guha-Sapir 2020). Map 1(a) was prepared in ArcGIS 10.1 and the basemap used
was provided by Esri, GEBCO, NOAA, National Geographic, DeLorme, HERE, Geonames.org, and other contributors.

indicators related to cropland (percentage of four
main cereals cropped area), dependence on crop
agriculture (percentage of crop holders and hold-
ers with landholding less than 1 ha), and gender
differences (percentage of women crop holders) (see
also SI 2). Call and Sellers (2019) also highlighted
in their recent review that women are more suscept-
ible to climate change impacts highlighting the strong
gender-based asymmetries that exist in SSA. Based
on these indicators, we argue that zones character-
ized by greater dependence on smallholder agricul-
ture, and higher proportion of women crop-holders
will face enhanced sensitivity to climate change risks.
We used the Ethiopian agriculture census in 2005, and
2015 to create these four sensitivity indicators for past
and current periods respectively. With an aim to cap-
ture broader biophysical and socio-economic attrib-
utes of AC, we selected indicators that contribute
to farm management, biophysical (natural) capacity,
resource access, and human capacity. Studies have
demonstrated casual pathways through which greater
access and entitlement to the chosen AC indicators
have shaped smallholders’ capacities to respond and
reduce vulnerability (Wood et al 2014, Williams et al
2018). We used annual mean of vegetation indices
as a proxy for crop health based on Normalized Dif-
ference vegetation Index (NDVI) fromMODIS satel-
lite data, sub-surface soil moisture (annual mean soil
moisture from ESA CCI Microwave Soil data), along

with socio-economic data from agriculture census
on the proportion of irrigated area, fertilized area,
agricultural extension services, farmers’ literacy, and
access to credits (CSA 2006, 2016).

2.3. Calculation andmapping of the vulnerability
index
A comprehensive methodological framework is
presented in figure 2. Normalisation of indicat-
ors across space and time was done using linear
(minimum-maximum) scaling, which scales the data
in the range of 0–1 (Tate 2012). Data for all 64 zones
for the four time-periods and two RCPs were pooled
together, and outliers were removed using winsoriz-
ing method (Barnett and Lewis 1994). Normalised
values of indicators within each vulnerability com-
ponent were averaged with equal weighting to obtain
a composite value of each component. In order to
obtain the final vulnerability index we aggregated
the values of the three vulnerability components as
expressed below:

V= (E+ S)−AC.

The expression implies that the overall vulnerabil-
ity (V) of a given area (zone in our case) is posit-
ively related to the extent of exposure (E) and the
degree of sensitivity (S), but inversely to AC. We,
then, normalized the values to range from 0 (least
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Figure 2. Overview of the methodology of the study. The methodology involves five ((a)–(e)) main steps: (a) selection and
calculation of raw indicators for each vulnerability component; (b) normalization of indicators (0–1); (c) additive aggregation to
compute vulnerability index across four time-periods and two RCPs in future; (d) indicator importance analysis; (e) validation of
results. Refer to SI 2 for the details of indicators.

vulnerable) to 1 (most vulnerable) for being real-
ized practically. Finally, indices for each component
and vulnerability were divided into five (relative) cat-
egories: very low (0–0.2), low (above 0.2–0.4), middle
(above 0.4–0.6), high (above 0.6–0.8), and very high
(above 0.8–1). We examined the importance of all
indicators for vulnerability ranks of zones individu-
ally by consecutively excluding each of the indicat-
ors. Changes in the vulnerability ranks for all zones
under exclusion of each indicator were plotted to
identify the most influencing indicators. Finally, we
validated our vulnerability index using two variables:
(a) share of crop area damaged by extreme events
such as hailstorms, excess rain, and shortage of rain-
fall as an outcome-based approach to validation (Sietz
et al 2012, Vidal Merino et al 2019) and (b) annual
maize production in the year 2005, and 2015. Vul-
nerability and crop damage or maize yields, respect-
ively, were subjected to Spearman’s rank correlation
test.

3. Results

3.1. Temporal changes in vulnerability indicators
and components
Figure 3 presents the temporal changes in the normal-
ized indicator values and vulnerability components
(exposure, sensitivity, and AC). For the two future
scenarios (near-term and far-term), only values for
the exposure index, derived from the climate pro-
jections, were used with values of sensitivity and AC

index constant as of current time-period. The res-
ults show strong changes in the distribution of the
exposure index for RCP 2.6, and RCP 6.0 across the
four time periods (figure 3(a)). Overall, as we move
frompast to future, the narrowunimodal distribution
of exposure changes to broad bi-modal distribution
with higher frequency of large exposure values. How-
ever the magnitude varies across future time-periods.
In the near-term future an increase in CV of mean
temperature (+3.8 in RCP 2.6, +2.7 in RCP 6.0)
and precipitation (+0.4 in RCP 2.6, +1.5 in RCP
6.0) is observed, whereas CDD remains nearly stable
between periods. In the far-future, a higher warm-
ing magnitude is correlated with a strong increase
in temperature above 35◦ (+1.3 in RCP 6.0), and
greater variability in precipitation is observed (+1.2
in RCP 6.0). A decrease in exposure for RCP 2.6 in
far-future is due to offset in variability in mean tem-
perature (CV_meanTemp), which could be a result of
low stabilized radiative forcing after 2050. We present
the spatial distribution of each exposure indicator
in SI-3.

The distribution of the overall sensitivity index
(figure 3(a)) depicts a shift from a positively
skewed distribution in the past to near-normal
distribution in the current period. Some indic-
ators of sensitivity show an increasing trend in
mean values from past to current. An increase in
the proportion of women crop farmers (+0.36),
greater reliance on cereal crop farming (crop-holder
+0.09), and marginal landholding (crop-holder
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Figure 3. (a) Distribution of exposure (under RCP 2.6 and 6.0), sensitivity, and AC components of vulnerability. (b) Temporal
variation and distribution of the 15 selected indicators under each vulnerability component for past (1996–2005), current
(2006–2015), near-term future (2036–2045), and far-term future (2066–2075). (Refer to figure 2 or SI 2 for the variable codes,
and SI-5 for statistical significance of differences for AC and sensitivity indicators).

with 1 ha land +0.06) is observed in 10 years,
making the agriculture less economic viable and
more risk-prone. In sum, a greater proportion of
zones in Ethiopia are more susceptible to climate
impacts in current as compared to past times
(figure 3(b)).

The density curve of the AC index shown in
figure 3(a) illustrates its near-normal distribution in
the past across the zones of Ethiopia. This indicates
the presence of some zones with better biophysical
and socio-economic conditions to adapt to changes
in climate. In contrast, other zones show a relatively
inadequate AC.Amarginal increase in theAC is noted
from the past to current that can be attributed to
increase in literacy of crop holders, area under agri-
culture extension services, and fertilized area. In con-
trast, biophysical indicators namely, NDVI (−0.02)
and soil moisture (−0.06) show a marginal declin-
ing trend, while the percentage of irrigated area and
farmers with access to credits remained nearly con-
stant (figure 3(b)).

3.2. Spatial changes of the vulnerability
components
Figure 4 presents the spatial distribution of
components of vulnerability across four time-
periods. Highest increase in exposure values is
observed in the peripheral areas of North-East
regions. A decrease in a few South-west regions
from past to current conditions is observed. Both the
exposure scenarios (RCP 2.6, 6.0) indicated higher
values in all the peripheral areas, particularly in
southern and eastern parts, but not in the western
parts in both near and long-term. These include the
Afar zone-1 (Afar region), Afar zone-3 (Afar region)
Siti zone (Somali region), and South Omo (SNNP).
We performed a spatial correlation of exposure val-
ues across the two time-steps across RCPs and found
high correlation values (refer to SI-4), indicating that
a zone experiences similar exposure across the two
RCPs. A noticeable increase in sensitivity index val-
ues was observed in the extreme East,West andNorth
with a slight increase is seen in all other areas. Highest
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Figure 4. The zone level distribution of vulnerability (exposure, sensitivity, AC) components for four time periods, i.e. past
(1996–2005), current (2006–2015) and near-future (2036–2045), and far-future (2066–2075) scenario. For the future scenarios
across two RCPs, values of sensitivity and AC index are equated to values of 2015. Classification into five colors is done using
equal intervals (0—less than 0.2, 0.2—less than 0.4, 0.4—less than 0.6, 0.6—less than 0.8, above 0.8).

increasewas observed in the Siti zone (Somali region),
Central zone (Tigray region) andAgnuak zone (Gam-
bella region). Increase in sensitivity index is mainly
due to an increased share of crop holders, holders
with less than 1 ha of farm land, and higher number
of women crop holders. Although the higher share
of women crop holders could indicate greater par-
ticipation of women, however, literature affirms the
contrary that gender productivity gap is still very high
in Ethiopia. Women face greater challenges with lim-
ited access to farm resources and benefit less from
agricultural policies, leading to enhanced susceptib-
ility to climatic risks (Solomon et al 2015). AC has
only increased in a few areas in western and cent-
ral regions, while it has decreased in Agnuak zone
(Gambella region) while an increase in the zones
of Oromia region was observed due to increase in
zone-specific factors such as literacy, agriculture area
under extension services. For instance in Gedeo zone
(SNPP) an increase in soil moisture and literacy
rate of farmers was noted in 2015 as compared to
2005.

3.3. Spatio-temporal dynamics of vulnerability
Figure 5 shows the spatial and temporal variance
of vulnerability across Ethiopia categorized in five

classes, based on relative vulnerability index val-
ues for RCP 6.0. We present the same vulnerab-
ility transitions under RCP 2.6 in supplementary
information (SI-6). None of the zones is categor-
ized in high or very high vulnerability class in the
past scenario as compared to current and future,
highlighting a trend towards increasing vulnerabil-
ity. The proportion of zones categorized as highly
(including both high and very high class) vulner-
able shows an increase from past to current scen-
ario (0%–10%) and another three-fold (two-fold)
increase from current to far-future in RCP 6.0 (RCP
2.6). In near-term the observed transitions in vul-
nerability are comparable across RCP 2.6 and 6.0,
with similar proportion of zones classified in very
high category (3% of total zones) with a slightly
higher percentage of zones classified as high vul-
nerable in RCP 2.6 (23%) as compared to RCP 6.0
(19%). This difference in near-term between the two
RCPs is due to high variation in mean temperature in
RCP 2.6 as can be seen from figure 3(b). However,
for the far future (2066–2075), vulnerability across
the RCPs shows disparity and we find that vulner-
ability is much higher for RCP 6.0 owing to high
values of temperature extremes (figure 3(b)). Zones
with very high vulnerability include Afar region, Siti
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Figure 5. Vulnerability class transition visualization as a Sankey diagram for RCP 6.0. The vulnerability index was categorized into
five equal classes: very low (0–0.2), low (0.2–0.4), middle (0.4–0.6), high (0.6–0.8), and very high (0.8–1). (a)–(d) Show the maps
of past, current and near-term future, and far-term future vulnerability, respectively. Refer to figure 1 and SI-1 for the names of
regions and zones.

and Liben (Somali region), and South Omo (SNNP
region). In contrast, very low and low vulnerability
zones aremainly located towards the center. Although
the zones with very low vulnerability have reduced
from the past to near future scenario, an increase
in their number is noted in far-future under RCP
2.6. We also notice a few positive shifts (grey lines
of transitions in figure 5 and SI 5 from a higher to
lower vulnerable class) from past (1996–2005) to the
current (2006–2015) partly due to the compensat-
ing effects of the AC. Such an effect of AC is not
noted as we move from current to near or far future,
as the values of AC remain constant with dynamic
exposure only. Compared to RCP 6.0 (figure 5) by
achieving RCP 2.6 (figure SI-6) leads to a reduc-
tion in exposure in far-term future with a system-
atic shift to lower vulnerability classes, whereas under
RCP 6.0 exposure in far-future scenario is intens-
ified. Details on values of each of the 15 indic-
ators for each of the five vulnerability classes and
mean values for each of the ten regions are provided
in the supplementary information SI-7 and SI-8,
respectively.

3.4. Indicator importance and validation analysis
Indicator importance ranking was done using local
sensitivity analysis, as detailed by (Tate 2012). Local
sensitivity analysis estimates how the final rank of
vulnerability changes, if the choice of vulnerability
contributing factor is changed. The results of indic-
ator exclusion (figure 6) depict that the elimination
of single sensitivity or exposure indicators leads to
higher deviations in vulnerability ranks as compared
to indicators from the AC group. This observation is
consistent across the three time periods. The exclu-
sion of crop holders with less than 1 ha of arable
land (Holder_1 ha) leads to the highest mean shift of
10% in vulnerability classes, followed by the percent-
age of the four main cereal cropped areas (crop_area)
with a 6% shift in ranks (figure 6). Out of the four
exposure indicators, the highest shifts in vulnerabil-
ity ranks were induced by an exclusion of consecutive
dry days (CDD_Annual) and extreme temperatures
(Temp_35). In the case of the exposure indices, we
can deduct that the spatial variability of the indicators
with higher impact is larger. Yet, as apparent in
figure 3(b), the proportion of irrigated area or crop

8



Environ. Res. Lett. 16 (2021) 044007 R Shukla et al

holders with access to agricultural credits ismissing in
about 50%of the zones in Ethiopia, whichmay induce
a relatively low importance. The indicator import-
ance of the sensitivity and AC groups changes slightly
between current and future times, despite equal input
values, due to an implicitly increased relative weight
of the exposure component—which is the only com-
ponent with different data in the future.

For validating the final vulnerability index, we
first spatially correlated its values for past and cur-
rent times with the percentage of crop area damaged
due to extreme weather events. Our final vulnerabil-
ity index correlates with crop damage areamoderately
(r = 0.47) for the past, and more robustly (r = 0.63)
for the current time (refer to SI-9). Second, we correl-
ated the ranks of vulnerability with the ranks of actual
maize yields and found a negative Spearman’s cor-
relation coefficient for past (r = −0.47) and current
(r=−0.62). The relatively weaker correlations for the
past conditions may be attributed to missing values
for this time period. Overall, this validation demon-
strates the ability of our vulnerability index to explain
observed vulnerability-related outcomes sufficiently
well.

4. Discussion

4.1. Dynamics in vulnerability in two contrasting
emission scenarios
Our results illustrate the spatial dynamics of vulner-
ability in a stabilizing climate scenario (RCP 2.6) with
strong abatement in greenhouse gas emissions scen-
ario, is compared with a near business-as-usual scen-
ario (RCP 6.0) indicating feeble abatement actions.
Major differences between the two RCP trajector-
ies emerge in the far future (2066–2075), revealing
an enhanced exposure in RCP 6.0, and thereby
aggravating the vulnerability of rainfall-dependent
subsistence agricultural activities. In contrast, relat-
ively small differences in vulnerability between two
RCPs in near-term (2036–2045) could be due to
large differences in RCPs becoming evident only
after 2050 (Nikulin et al 2018, Osima et al 2018).
Afar and Somali regions of Ethiopia are at greater
risks in the near future and even in far-future
(figure 5). These regions in Ethiopia have faced con-
sistently higher vulnerability across all time peri-
ods (current, near and far future). Combination of
increasing exposure in an already fragile environment
with increasing sensitivity and low AC entails high
vulnerability of these regions (figure SI 7). This is
consistent with critical vulnerability conditions in the
extremely dry, resource-constrained and weakly gov-
erned northern Afar region where crippling liveli-
hood and food insecurity prevails (Sietz et al 2017,
Choularton and Krishnamurthy 2019). Adaptation
planning in Ethiopia should address these historic-
ally rooted and currently intensifying social and bio-
physical disparity. For instance one as can be noted

form figure 3(b) that there is an increase in women
crop holders, therefore one approach could be to
strengthen the inclusion and involvement of women
in decisionmaking and adaptation planning. Figure 5
presents themap of the future vulnerability, and likely
transitions in vulnerability in RCP 6.0, if decisions
with opportunity space to adapt to the ongoing cli-
mate crisis are missed. The opportunity space is dis-
tinct from adaptation (IPCC AR5), and represents
the window in which decision makers can plan and
implement actions to facilitate adaptive responses
(refer to Lipper et al 2014 for deeper understanding
on the concept of opportunity space). Unless adapta-
tionmeasures are prioritized across the identified vul-
nerable zones to lower risks to food and livelihood
security, the opportunity space may be missed.

4.2. Scale and context asymmetries among AC
indicators
The importance of individual components of vulner-
ability (figure 6) may provide hints for such early
adaptation. Yet local studies in different parts of
Ethiopia have reported a paradoxical role of some
of the AC indicators as compared to the expected
relationship with vulnerability (SI 2) assumed in our
study. For instance, the study by Simane et al (2016)
reports that the increased use of fertilizer in absence
of irrigation can be risky. In most cases, increasing
the fertilizer supply has a positive effect on crop pro-
duction, but, in rainfall dependent regions, enhanced
application has led to drying of crop at flowering
stage, and decrease in soil productivity (Gebreyes and
Theodory 2018). With regards to credit uptake, in
contrast to the general agreement in the scientific
literature that credits have a positive development
effect, few studies report that in regions intersect-
ing with failed rains, marginality, and glaring insti-
tutional failures credit uptake has led farmers in a
perpetual poverty trap (Dercon and Christiaensen
2011, Husmann 2016). Learnings from local-level
studies reveal a complex interconnected nature of AC
indicators, highlighting the fundamental importance
of scale and context in understanding the paradoxes
(Wilbanks and Kates 1999, Vincent and Cull 2014).
Dercon and Christiaensen (2011) identified that syn-
ergistically planned interventions of insurance and
credit are needed to suit Ethiopia’s drought-prone
conditions and address the food security concerns.
Accounting for these local asymmetries and the syn-
ergistic role of adaptive indicators are encouraged in
further research.

4.3. Methodological strengths and limitations
Our study shares the general limitations with
indicator-based assessments owing to the selection,
weighing, and aggregation of indicators (Tonmoy
et al 2014, Williges et al 2016). We tried to overcome
these challenges through indicator importance estim-
ation based on their relative contributions (figure 6),
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Figure 6. Rank-based estimate of indicator importance across four time periods. The boxplots show changes in the vulnerability
rank across all 64 zones when the respective indicator is excluded. Higher values indicate greater importance of an indicator in
determining the vulnerability rank. For codes refer to supplementary information (SI-2).

integration of remote sensing data, and a validation
of the composite vulnerability index with independ-
ent data. We verified the vulnerability index using
an advanced outcome-based approach (Sietz et al
2012, Rød et al 2015). Other studies used household
surveys to validate vulnerability patterns and rank
these according to the severity of vulnerability (Vidal
Merino et al 2019) and to triangulate vulnerability
findings (O’Brien et al 2004). These participatory
approaches are valuable to test the validity of vul-
nerability metrics, although the geographic coverage
of these approaches is restricted to smaller regions
due to high efforts of conducting the surveys. Fur-
ther, we used equal weights for all of the indicat-
ors, thereby avoiding a second level case study data
of subjective bias. In future assessments expert and
stakeholder opinion could provide useful insights to
assign weights through usage of multi-criteria weigh-
ing methods (Eakin and Bojórquez-Tapia 2008).
Our study projects changes in future vulnerability
(figures 4 and 5) based on changes in exposure alone.
We did not extrapolate sensitivity and AC indicators
for future scenarios due to substantial uncertainty
of such forecasts. Future studies could provide more
conclusive estimates by also projecting future socio-
economic indicators to overcome this limitation. The
vulnerability index we calculated is a relative meas-
ure, implying regions with minimum and maximum
vulnerability. In contrast with absolute measures of
vulnerability, this highlights intra-country and tem-
poral differences. Moreover, the identified hot-spots
of vulnerability—in particular for the future—should
not serve as a single basis for allocating adaptation
funds, as this would rather require a thorough follow-
up analysis reflecting idiosyncrasies of the adaptation
measures under scrutiny.

5. Conclusions and policy implications

Identifying locations of high vulnerability within
the agriculture sector has become necessary given
the inherent uncertainty in future climate pro-
jections. Scientific studies that map the spatial
pattern of vulnerability can underpin evidence-based
adaptation planning. Our study concentrates on
mapping dynamics in vulnerability (and its com-
ponents) with focus on smallholder agricultural
systems. We show the dynamics in relative ranks
of vulnerability not only for the current but also
for the past, near and far future climate conditions
across two contrasting RCPs. Three main conclu-
sions can be drawn from the results. First, as a
strong increase in vulnerability is noted over time
in zones located in the eastern and southern parts
of Ethiopia, these zones warrant prioritized planning
for adaptation. For example changing farm struc-
tures or fertilizer use with local controlled experi-
ments. Second, the adaptation deficit is increasing
as enhanced exposure has a multiplicative impact
on an already fragile climate-sensitive region. Thus,
beyond strengthening AC, strategies for reducing
exposure and sensitivity components should be
devised. Third, the influence of vulnerability com-
ponents varies across zones, requiring adaptation
planning to be tailored to geographic needs and
tested in randomized control trials for rigorous
evaluation. Further, the already pronounced vul-
nerability and projected future increase in Afar and
Somali regions demands much greater attention and
integration of these regional concerns in decision-
making at the national level. Our results can feed
into spatially explicit adaptation planning that will
inform decision-making to minimize the negative
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impacts of climate change in smallholder agricultural
systems.
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