
Received: 28 November 2019 Revised: 20 April 2020 Accepted: 21 April 2020 Published on: 20 May 2020

DOI: 10.1002/qj.3810

R E S E A R C H A R T I C L E

The influence of aggregation and statistical post-processing
on the subseasonal predictability of European temperatures

Chiem van Straaten1,2 Kirien Whan1 Dim Coumou2,3 Bart van den Hurk2,4

Maurice Schmeits1

1Department of Weather and Climate
Modelling, Royal Netherlands
Meteorological Institute (KNMI), De Bilt,
The Netherlands
2Department of Water and Climate Risk,
Institute for Environmental Studies
(IVM), Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands
3Potsdam Institute for Climate Impact
Research, Earth System Analysis,
Potsdam, Germany
4Deltares, Delft, The Netherlands

Correspondence
C. van Straaten, Department of Weather
and Climate Modelling, Royal
Netherlands Meteorological Institute
(KNMI), De Bilt, The Netherlands.
Email: chiem.van.straaten@knmi.nl

Funding information
This study is part of the open research
programme Aard- en
Levenswetenschappen, project number
ALWOP.395, which is financed by the
Dutch Research Council (NWO)

Abstract
The succession of European surface weather patterns has limited predictability
because disturbances quickly transfer to the large-scale flow. Some aggregated
statistics, however, such as the average temperature exceeding a threshold, can
have extended predictability when adequate spatial scales, temporal scales and
thresholds are chosen. This study benchmarks how the forecast skill horizon
of probabilistic 2-m temperature forecasts from the subseasonal forecast sys-
tem of the European Centre for Medium-Range Weather Forecasts (ECMWF)
evolves with varying scales and thresholds. We apply temporal aggregation by
rolling-window averaging and spatial aggregation by hierarchical clustering. We
verify 20 years of re-forecasts against the E-OBS dataset and find that European
predictability extends at maximum into the fourth week. Simple aggregation and
standard statistical post-processing extend the forecast skill horizon with two
and three skilful days on average, respectively. The intuitive notion that higher
levels of aggregation capture large-scale and low-frequency variability and can
therefore tap into extended predictability holds in many cases. However, we
show that the effect can be saturated and that there exist regional optimums
beyond which extra aggregation reduces the forecast skill horizon. We expect
such windows of predictability to result from specific physical mechanisms
that only modulate and extend predictability locally. To optimize subseasonal
forecasts for Europe, aggregation should thus be limited in certain cases.
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1 INTRODUCTION

Extending skilful weather predictions beyond two weeks
and into the subseasonal range is of great importance for
humanitarian concerns such as safeguarding crop harvests

and preventing energy shortages (Coughlan de Perez et al.,
2015; Grams et al., 2017; Guimares Nobre et al., 2019).
These efforts are propelled by the intuition that extreme,
large-scale events can potentially be predicted in advance
(Vitart and Robertson, 2018). However, producing skilful
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forecasts of such large-scale events remains notoriously
difficult.

The atmosphere is a dynamical system that varies on
many spatio-temporal scales. Its succession of instanta-
neous states is deterministic but chaotic. Small distur-
bances can evolve to larger scales, growing in such a way
that they overwhelm signals that were originally present.
This means that deterministic atmospheric forecasts draw
on predictability arising from initial conditions but will at
some point become inaccurate (Lorenz, 1969). The forecast
error will then relate to the total variance in the predicted
phenomenon. The saturation of forecast error occurs most
quickly at the finest scales, whereas at larger scales of
motion variations are observed that have the potential for
predictability at longer lead times (Hoskins, 2013; Privé
and Errico, 2015; Ying and Zhang, 2017; Toth and Buizza,
2019).

These potentially predictable variations can be inter-
nal to the atmosphere, or they can form in interaction with
other components of the Earth system. Internally, the mid-
latitude tropospheric variability is often dominated by a
few large-scale patterns that recur and evolve into each
other (Vautard, 1990; Hannachi et al., 2017), which are
associated with predominant weather types on the ground
(Grotjahn et al., 2016). Variability in Europe is also steered
into specific regions of phase space by slow-moving com-
ponents such as Atlantic sea-surface temperatures (Czaja
and Frankignoul, 2002), snow cover (Orsolini et al., 2013;
Henderson et al., 2018), soil moisture (Prodhomme et al.,
2016), the stratosphere (Baldwin and Dunkerton, 2001;
Tripathi et al., 2015) and tropical variability such as the
Madden–Julian Oscillation (MJO) (Cassou, 2008; Vitart,
2017; Yadav and Straus, 2017; Lin and Brunet, 2018).
These components often interact, so in the subseasonal
forecast range they represent not only the slowly evolv-
ing boundary conditions but also the part of the internal
variability that provides predictability by changing the
statistics of the higher-frequency weather. Thus, naturally,
the seamless transition from short to extended range fore-
casts requires aggregations that capture the variability of
the large-scale patterns in our meteorological variable of
interest.

In practice, subseasonal forecasting aims to extend
the time window of the predictand with increasing lead
times (Nicolis, 2016; Wheeler et al., 2017; Ford et al., 2018;
Bürger, 2020). It has been demonstrated that more aggre-
gation indeed leads to a general predictability in upper air
fields at longer lead times (Roads, 1986; Jung and Leut-
becher, 2008; Buizza and Leutbecher, 2015) and in sur-
face variables such as precipitation (Wheeler et al., 2017).
Studies have also tailored the aggregation to a single con-
ditional source of predictability: rainfall events in Europe
that are clustered in time due to large-scale dynamics

(Economou et al., 2015; Pasquier et al., 2019; Yang and
Villarini, 2019), or extreme temperatures occurring simul-
taneously within a spatial region due to large-scale flow
or sea-surface temperatures (Stefanon et al., 2012; McKin-
non et al., 2016; Vijverberg et al., 2020). The forecast skill of
such derived predictands can be high, but it is conditional
on the occurrence of the source mechanism, and might
also lose validity for less or more extreme events (Wulff
and Domeisen, 2019). To improve skill under all physical
circumstances, statistical post-processing is often used to
correct systematic biases and under- or over-dispersion.
This aligns the model error growth with the real uncer-
tainty growth (Wilks, 2018). In this way, studies have been
able to demonstrate predictability of weekly aggregations
into weeks 3 and 4 for the midlatitudes (Ferrone et al.,
2017; Vigaud et al., 2017; Monhart et al., 2018).

In conjunction with increased aggregation leading to
increased predictability, based on a physical understand-
ing one would also expect an optimum to exist. When too
many different situations are aggregated, the conditional
predictability in either one of them is lost, for instance by
spatially aggregating hotspots of soil–atmosphere coupling
with non-hotspots (Ardilouze et al., 2017) or by temporally
aggregating beyond the time window in which flow config-
uration modulates precipitation significantly (Barton et al.,
2016). Predictability is then only regained by aggregating
even further, for example to multi-month values in order to
capture the modulation of Europe's seasonal state by the El
Niño–Southern Oscillation or soil moisture (Bunzel et al.,
2018; Lee et al., 2019).

This study benchmarks how the subseasonal pre-
dictability of surface temperatures in Europe varies over
the continent and changes with the amount of temporal
and spatial aggregation applied. We hypothesize that the
maximal extension of the forecast skill horizon (Buizza
and Leutbecher, 2015) occurs under certain optimum
aggregation levels and by statistical post-processing of the
raw ensemble forecasts. Section 2 introduces the forecast
ensemble, the scores to determine the forecast horizon and
the post-processing method. Section 3 shows the resulting
influences of post-processing and aggregation for events
with varying exceedance thresholds. Section 4 provides a
discussion and Section 5 summarizes and concludes.

2 DATA AND METHODS

2.1 Datasets

The forecast ensemble is the European Centre for
Medium-Range Weather Forecasts' (ECMWF's) extended
range forecasting system cycle 45r1, which extends their
medium range ensemble twice a week to +46 days (Buizza
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(a) (b)

F I G U R E 1 Temporal aggregation of extended range forecasts from the European Centre for Medium-Range Weather Forecasts
(ECMWF) and corresponding E-OBS observations, exemplified with daily mean 2-m temperature anomalies during the 2018 European
heatwave. Top panels: Ensemble mean of forecasts initialized each Monday and Thursday, aggregated to (a) daily and (b) 7-day rolling means.
Note that the window size remains 7 days for all lead times indicated on the vertical axis. Bars at bottom: Corresponding E-OBS observations.
Data are taken from the grid cell closest to 52◦ latitude and 7◦ longitude

et al., 2018). A degradation of the resolution takes place
at +16 days. We downloaded forecasts of daily mean 2-m
temperatures on a regular grid of 0.38× 0.38◦ as it equates
the degraded spectral resolution in large parts of the Euro-
pean domain and minimizes the need for MIR interpola-
tion on the ECMWF MARS archive. For forecasting in the
extended range, a lead-time-dependent bias in the model
climatology can be expected (Johnson et al., 2019). All 11
members in the re-forecast period from June 1998 to May
2019 were therefore used to calculate forecast climatologi-
cal means specific to the day of the year (± 5 days) and the
lead time, that were subtracted from the forecast values.
This results in forecast anomalies with respect to the clima-
tology of the model re-forecast that are free from potential
drifts in that climatology.

Observed temperature anomalies were derived from
version 19.0 of the E-OBS ensemble dataset (Cornes et al.,
2018). Its ensemble mean forms the best guess of observed
daily mean 2-m temperatures on a 0.25× 0.25◦ grid. From
the 60+ years of data in the dataset we retained those
20 years that overlapped with the re-forecasts. At each
location we subtracted the observed climatological mean
specific to the day of the year (± 5 days) calculated from
January 1998 to December 2018.

The daily gridded anomalies from E-OBS were then
paired with the 11 forecast anomalies in the nearest-
neighbour forecast ensemble grid cell, representing an
area that is only slightly different. The datasets span
from June 1998 to December 2018 and are built sep-
arately for the winter and summer seasons, that is,
December–January–February (DJF) and June–July–
August (JJA). We allow days of forecasts that were

initialized before the start of the seasonal window to be
included (Coelho et al., 2018).

2.2 Aggregation

The paired daily anomalies at all E-OBS grid cells in
Europe were then averaged to multiple spatial and tempo-
ral levels and all combinations of those levels. The tempo-
ral levels consist of rolling 1- to 11-day window averages.
Each of these windows is applied to all lead times equally,
and assigns the lead time of a given forecast to the window
centre, which is a compromise between the more accurate
first days and the more uncertain last days in the window
(Weigel et al., 2008; Buizza and Leutbecher, 2015). Thus,
for a window of 7 days, the first possible midpoint lead time
is 4 days, which is assigned the average of the anomalies
from forecast days 1–7 (see Figure 1).

The spatial levels are determined by hierarchical clus-
tering (Hastie et al., 2009). This method begins with as
many clusters as there are grid cells and a dissimilarity
defined between each of these, say, time series A and B:

dA,B = 1 − max
𝜏=−20,… ,20

𝜌(At−𝜏 ,Bt). (1)

This maximum in a set of correlations 𝜌with lags 𝜏 ranging
from −20 to +20 days allows cells to be similar while expe-
riencing the same (but temporally displaced) dominant
weather features (Pfleiderer and Coumou, 2018). Each
level of spatial averaging is then determined by grouping
all sets of grid cells below a certain dissimilarity level (e.g.,
the level of 0.025 requires a minimum similarity, namely
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lagged correlation exceeding 0.975, between each of the
cells) into single clusters, until the whole of Europe is
one single cluster. We opt for an average linking rule (see
Hastie et al., 2009). Our progression through the dissimi-
larity levels from 0.025 to 1 avoids the common problem
of assuming a fixed number of clusters at the beginning
of a study (e.g., Yiou et al., 2008). We perform the clus-
ter extraction for winter and summer separately, using the
observed daily temperatures from January 1989 to Decem-
ber 2018. The use of daily time series separates our spatial
aggregation from the temporal aggregation and allows for
a separate investigation into their effects. The supposed
independence was briefly tested, and similarly shaped spa-
tial clusters appeared at other time aggregations.

2.3 Scoring and forecast skill horizon

Each set of anomalies, averaged to a spatial and temporal
level, is evaluated by comparing the distribution of forecast
anomalies to the observed one. First, we extract the fore-
cast probability that a temperature anomaly will exceed
a certain quantile in the 20-year model re-forecast clima-
tology of averaged anomalies. The Brier score (BS) then
averages the squared difference between this probabilistic
prediction pi and the binary observation oi (whether or not
the observed anomaly exceeded the equivalent quantile in
the observed 20 year climatology of averaged anomalies)
over the n forecast–observation pairs per lead time and per
spatial cluster in each set:

BS = 1
n

n∑
i=1

(pi − oi)2. (2)

Using two equivalent thresholds, this BS extends the
mean de-biasing, performed to create anomalies, with an
implicit calibration of the raw ensemble forecasts to match
the observed climatological spread. Additionally, the BS
of a reference forecast based on only the observed clima-
tology is computed. It has a fixed pi, namely 1 minus the
quantile probability itself.

The full 11-member distribution is scored with the
continuous ranked probability score (CRPS). The implicit
calibration mentioned above has no effect on the CRPS
as that score can be regarded as the BS integrated over
all possible thresholds y, and accounts for reliability and
sharpness (e.g., Wilks, 2011):

CRPS(F, y) = 1
n

n∑
i=1

∫
∞

−∞
(Ffor,i(y) − Fobs,i(y))2 dy. (3)

Ffor is the forecast cumulative distribution function (cdf)
and Fobs is the observed single-step cdf. As the forecast

distribution is a discrete ensemble of 11 members, it
receives worse CRPS scores than a version of the same
underlying distribution with more members. A fair refer-
ence score is thus formed by sampling the same number
of members (M = 11) from the empirical climatological
distribution F of the observed anomalies, at intervals deter-
mined by a Weibull estimator (Wilks, 2011):

F−1
( m

M + 1

)
for m in 1, … ,M. (4)

A persistence reference forecast might be harder to
beat, but since the construction of its probability dis-
tribution is non-trivial (Smith et al., 2015), we use the
climatological reference to transform both scores to a
skill score (SS): BSS = 1 − BS∕BSclim and CRPSS = 1 −
CRPS∕CRPSclim. For each cluster and lead time we deter-
mine a confidence interval around these skill scores by
scoring random samples (with substitution) from the set of
n forecast–observation pairs. Because of auto-correlation,
which will differ between clusters and which will increase
with larger rolling-window sizes at higher temporal aggre-
gation levels, this bootstrapping is done with different
block lengths for each. The block lengths are based on a
measure of the characteristic time-scale T0 (Figure 2; Feng
et al., 2011):

T0 = 1 + 2 ∗
D∑
𝜏=1

(1 − 𝜏∕D) ∗ 𝜌𝜏, (5)

where D is a cutoff lag, which, similarly to the hierarchi-
cal clustering, we set to 20 days. 𝜌𝜏 is the auto-correlation
between the lagged and unlagged time series of a clus-
ter. The block bootstrapping is repeated only 200 times
due to computational limitations. With these skill con-
fidence intervals per cluster and per lead time we then
deduce the local forecast skill horizons, defined as the
lead time at which the lower bound of the interval (the
2.5th percentile) first crosses the zero skill line (Buizza and
Leutbecher, 2015); this means the lead time at which the
forecast ceases to be statistically better than the climato-
logical reference forecast according to a one-tailed test at a
0.025 significance level.

2.4 Statistical post-processing

Besides scoring the aggregated, but otherwise unpro-
cessed, forecast anomalies and scoring the climatologi-
cal reference, we also score a version of the ensemble
that is post-processed with a non-homogeneous Gaussian
regression (NGR), which is a standard post-processing
method for temperatures (Wilks and Vannitsem, 2018).
Its Gaussian distribution is assumed to have a location
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F I G U R E 2 Characteristic time-scale in the daily observed temperature anomalies at the 0.025 spatial aggregation level. (a) Winter,
1,158 clusters. (b) Summer, 977 clusters

parameter 𝜇i and a scale parameter 𝜎i that vary, respec-
tively, with the ensemble mean mi and the ensemble stan-
dard deviation si:

𝜇i = 𝛼1 + 𝛼2 ⋅ mi, (6)

ln(𝜎i) = 𝛽1 + 𝛽2 ⋅ ln(si). (7)

The model is fitted using a three-fold cross-validation by
minimizing the CRPS (Gneiting et al., 2005; Gebetsberger
et al., 2018) on two thirds of the 20-year dataset and val-
idating on the other third. The model is fitted separately
for each season, aggregation level, cluster and lead time.
For scoring the post-processed distribution with CRPS we
extracted 11 members with the estimator in Equation 4 (a
robustness test with 100 members gave similar results).

Obviously NGR is a simple method that uses simple
predictors and assumes normality even when it is inap-
propriate. Some studies have demonstrated the usefulness
of more advanced predictors and post-processing methods
in the subseasonal-to-seasonal range (Rodney et al., 2013;
Yoo et al., 2018; Hwang et al., 2019; Kämäräinen et al.,
2019; Strazzo et al., 2019). Such extensions are often spe-
cific to single sources of predictability or to a fixed time
aggregation. In this study we compare the general pre-
dictability at varying aggregations, and aim to do this in a
way that is simple but corrects for systematic errors.

3 RESULTS

3.1 The effect of post-processing

In Figure 3 the lower bound of bootstrapped BSS is plot-
ted for the exceedance of four climatological quantiles:
two for cold anomalies (0.15, 0.33) and two for warm

anomalies (0.66, 0.85). The lowest skill is seen for the
stronger-coloured lines, which are the more extreme quan-
tiles that are harder to predict than the more moderate
terciles. At short lead times and the daily aggregation level
(left panels in Figure 3), post-processing adds skill to the
raw ensemble forecasts, even as the implicit calibration
made the raw forecasts “climatologically reliable” (Van
Schaeybroeck and Vannitsem, 2015). What happens is that
in these first 5 days the spread of the under-dispersed raw
forecasts is increased by NGR, adding ensemble reliabil-
ity to the climatological reliability, leading to increased
overall reliability (confirmed by a CRPS decomposition,
not shown; Hersbach, 2000). After 5 days the added value
becomes smaller as the raw has better dispersion proper-
ties. At the 9-day aggregation level in winter, between lead
times of 5–13 days, the BSS values of the NGR and raw fore-
casts are even comparable (Figure 3b). Afterwards, NGR
forces the ensemble spread to be similar to the observed
climatological spread when uncertainty is greatest at large
lead times. In this unskilful range, the zero BSS line is
contained between the 2.5th and 97.5th percentiles (upper
bound not shown). The upper bounds of the bootstrapped
BSS distribution of the raw ensemble are close to those of
NGR (not shown) while its lower bounds are lower due to
its negatively skewed BSS distribution. The forecast hori-
zon is defined by these lower bounds, meaning that NGR
extends the lead time at which the skill crosses zero by
about 3 days. In the following we therefore only present
results from post-processed forecasts.

3.2 The effect of aggregation

In Figure 4 we see how aggregation affects predictability
in winter, as measured by the forecast skill horizon in the
CRPSS. For each row, increasing time aggregation tends
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(a) (b)

(c) (d)

Lead time (days) Lead time (days)

F I G U R E 3 Area-weighted average of the 2.5th percentile of bootstrapped BSS over all clusters at the 0.025 spatial aggregation level,
plotted for four different climatological quantiles: in winter (top panels) and summer (bottom panels), for daily (left panels) and 9 day (right
panels) aggregation levels. Red lines indicate the warm mean temperature anomalies, while blue lines indicate the cool anomalies.
Post-processed data are shown with a solid grey line and the raw forecasts are shown with a dashed grey line

to increase predictability. The longest forecast skill hori-
zon is obtained for the 11-day rolling average, except for
Iceland. In Iceland the temperature range within a season
is quite narrow and is shifted by multiannual variability.
The climatological distribution obtained by pooling the
years 1998–2018 is thus wider than the range of possi-
bilities at each point in time, leading in comparison to
overly skilful post-processed anomaly forecasts (see also
the discussion of Figure 8). Other regions that have, for
instance, 19-day predictability when a 9-day aggregation is
applied to all lead times (lightest, indicating a day 15–23
mean) and 20-day predictability when an 11-day aggre-
gation is applied to all lead times (lightest, indicating a
day 15–25 mean) imply that the forecast skill horizon can
be extended by using the 11-day window. The longest
forecast horizons are obtained for hardly any spatial aggre-
gation (top row, 1,158 clusters) or full aggregation to the
European scale (bottom row, 1 cluster). At an intermediate
level of spatial aggregation (from 483 to 20 clusters) some
local regions have reducing and later increasing forecast

skill horizons, indicating that space aggregation can work
both as a benefit and as a disadvantage.

Similar results for summer are shown in Figure 5. Skil-
ful forecasts do not extend as far as they do for winter, indi-
cating the lower general predictability of summer tempera-
ture anomalies. Time aggregation has the largest influence
at the lowest spatial aggregation. At larger spatial aggre-
gations, the forecast skill horizon of regions sometimes
hardly changes, meaning that the averaging works equiv-
alently to a smoother.

Whether aggregation changes the forecast skill hori-
zon merely due to smoothing of the skill of underlying
regions/days or due to the extraction of a signal with
a truly different predictability is illustrated in Figures 6
and 7. In Figure 6 the lower bound of the bootstrapped
CRPSS in each cluster is plotted against the lead time.
At the 0.025 aggregation level the clusters form a spa-
tial distribution, which at the European level is only one
value per lead time bin. Both in winter and in summer
at the daily time aggregation (Figure 6a,c) the European
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F I G U R E 4 Forecast skill horizon (days) for post-processed winter temperature anomalies for different levels of spatial aggregation
from small-scale to Europe-wide averages (rows), and for temporal aggregation from daily to 11-day rolling averages (columns). In the right
column annotations indicate the dissimilarity threshold, the number of clusters and their median size (km2)

CRPSS is clearly higher than the average of the underly-
ing clusters. Particularly at lead times shorter than 11 days,
the European aggregate has more predictability than the
ensemble of regions. Near the forecast horizon (where
most clusters cross the zero line) it tends to the interquar-
tile range, which implies that spatial aggregation acts as a

smoother. Some individual regions have more skill and a
more extended forecast horizon when the degree of spa-
tial aggregation is limited. The dots above the zero line
at very long lead times are locations with variable scores,
not with interminable forecast horizons; their lower bound
will equally have jumped below zero at earlier lead times.
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F I G U R E 5 As Figure 4 but for summer. Note that a different spatial clustering and a different colour scale has been applied than for
the winter season

At longer time aggregations (Figure 6b,d), the mentioned
effects of space aggregation are less pronounced but still
present.

In Figure 7 the spatial CRPSS distributions belonging
to two time aggregations are compared (outliers are not
shown for clarity). The interquartile ranges of the daily and
the 9-day scores only become distinguishable at lead times

exceeding 6 days, indicating that beyond this lead time a
predictable multi-day variability was well initialized and
was captured by the simple 9-day average. This extends
the median forecast horizon by about 2 days. Some of the
differentiation between the time aggregation levels can
also be related to the convex shape of the curve between
lead times of 9 and 15 days. There the temporal window
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(a) (b)

(c) (d)

F I G U R E 6 The influence of spatial aggregation on the 2.5th percentile of bootstrapped CRPSS at 1-day (left) and 9-day (right) time
aggregations. The spatial distribution at the 0.025 aggregation level (1,158 clusters in winter [top] and 977 clusters in summer [bottom]) is
shown with a box for the inter-quartile range, with whiskers extending to 1.5 times that range and with open dots for the outliers. The
European averaged aggregation (1 cluster) is shown with solid connected dots

is a favourable mixture of initial days that are much more
predictable than its centre day (to which its lead time is
assigned) and final days that are only slightly less pre-
dictable. However, higher CRPSS values also appear along
the straight section between lead times of 5 and 9 days,
and Buizza and Leutbecher (2015) demonstrated that the
skill of time-averaged variables is higher than the skill
of time-averaged scores. Therefore, we are confident that
the increased forecast horizon can be attributed to the
temporal aggregation applied.

The extensions and regional optimums that we find
have to be related to sources of predictability. We can
expect such sources to be related to particular types of
events, and for their conditional predictability to emerge
at a certain level of intensity. Becker et al. (2013) found
for instance increased signal-to-noise ratios for extreme
events, despite an equally increasing error in predicting
them. In Figure 8 we show the BSS forecast skill hori-
zon for predicting the exceedance of varying climatological
quantiles. Note that the forecast skill horizon for Iceland
is now strongly reduced compared to Figures 4 and 5. This
difference is not surprising because the CRPS is an inte-
gration of the BS over all possible thresholds per point in
time, while the BSS in Figure 8 is created by first summing

over time.The inflated CRPSS for Iceland followed from
a reference that was too wide for the varying set of possi-
bilities at each point in time. In the case of the BSS, the
varying exceedance probability is over-estimated in some
years and under-estimated in others, but aggregated over
all forecast occasions the reference is by definition exactly
right and the skill is not inflated. The source of these
multiannual changes can be sought in the sea-surface tem-
peratures (Frajka-Williams et al., 2017). These are able to
dominate because E-OBS includes only coastal stations in
Iceland (Cornes et al., 2018).

Particularly for the largest time aggregation (Figure 8,
right column), the forecast horizon for the different quan-
tiles shows an asymmetry. The upper tercile is more pre-
dictable than the lower tercile and this predictability is
primarily located in the east of the domain. In the raw
forecasts this spatial structure is also present but less pro-
nounced (Figure 9), indicating that the asymmetry is par-
tially caused by NGR. Closer investigation reveals that the
climatological distribution in regions with long forecast
skill horizons is negatively skewed. Initially NGR corrects
the under-dispersion of the raw forecast and performs
well, but when uncertainty increases with long lead times
and dispersion approaches climatology the thicker lower
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(a) (b)

(c) (d)

F I G U R E 7 The influence of time aggregation on the 2.5th percentile of bootstrapped CRPSS. The spatial distribution of daily time series
is shown in pink and that of the 9-day rolling averages in light blue box-and-whisker plots. Boxes represent the interquartile range, whiskers
extend to 1.5 times that range and outliers are not shown. Annotations indicate the season, spatial aggregation level and number of clusters

tail is badly represented by the post-processed Gaussian
shape and we see the performance for cold quantiles drop
relative to the warm quantiles.

For summer (Figure 10), time aggregation does not
clearly reveal an asymmetry in the forecast skill horizons.
At quantiles 0.1 and 0.9 some regions show consistently
short forecast horizons, despite time aggregation. Gener-
ally the moderate events in the bulk can be better predicted
than events in the tails. This ordering is in contrast with
the study of Wulff and Domeisen (2019), who found that
European warm extremes in summer, exceeding the 90th
percentile and at a 5 day temporal aggregation, are more
predictable than moderate events between the 25th and
75th percentiles. They found this for the warm tail only,
so they hypothesized that the emergent source of condi-
tional predictability related to land–atmosphere feedbacks
and large-scale circulation. Here we find no indication of
an emergent source.

4 DISCUSSION

The forecast skill horizons presented above are in agree-
ment with other estimates of European unconditional pre-
dictability in bias-corrected forecasts (Ferrone et al., 2017;

Monhart et al., 2018). We find the forecast skill horizon
for the full forecast distribution to be highest in win-
ter, where midpoint lead times extend to slightly above
21 days, meaning that the windows of predictability can be
extended up to weeks 3 and 4. In this study we have varied
the level of aggregation to test its impact on the predictabil-
ity horizon. Our findings show that no distinct aggregation
captures the one and only predictable subseasonal signal
in Europe. Results suggest that the predictable mode of
variability varies over the domain and that aggregation can
increase predictability (but does not always do so).

For areas where subseasonal predictability exists, time
aggregation increases skill, predominantly beyond a given
lead time (Figure 7). This confirms that it is optimal to
apply aggregation only when uncertainty has increased
with lead time and when the predictable low-frequency
signal remains (Ford et al., 2018; Bürger, 2020). In other
areas, however, especially for more extreme quantiles,
time aggregation had almost no effect on forecast skill
horizon. It just smoothed the skill (or the absence thereof)
over time and no predictable signal captured by simple
averaging appeared.

In contrast, space aggregation changed the signal con-
siderably at short lead times (Figure 6). For the first
11 days, the European average was easier to predict than
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F I G U R E 8 Forecast skill horizon (days) of post-processed forecasts in winter for different climatological quantiles (rows) for varying
levels of time aggregation (columns) and at the 0.025 spatial aggregation level (1,158 clusters). Bottom: Cold tail. Top: Warm tail

the ensemble of regions. At this largest spatial aggregation,
winter results (Figure 4) showed that it is best to also aggre-
gate in time. This confirms that the dominant features are
best captured by changing both the space and time filters
as both scales are related (the North Atlantic Oscillation

varies slowly and influences temperatures over the entire
European continent) (World Meteorological Organization,
2015). However, this study also found conflicting evidence,
namely that for certain regions the forecast horizon is not
maximized by increasing spatial aggregation. We think
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F I G U R E 9 As Figure 8 but for raw DJF forecasts. Note the different colour scale

that predictability in either of the underlying regions is
then lost by mixing the physical mechanisms that modu-
late locally.

We hypothesized that specific sources of predictabil-
ity could be identified from anomalies exceeding specific
climatological quantiles. One school of thought is that

extreme events are related to predictable large-scale
drivers and can therefore be better predicted themselves
(Sillmann et al., 2017). The other is that extreme events are
actually harder to predict because they require a rare syn-
chronization of processes at all relevant scales. We did not
investigate extremes beyond the 10th and 90th percentiles,
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F I G U R E 10 As Figure 8 but for summer. Note the different colour scale

but our results support both schools of thought. The BSS
curves (Figure 3) showed that tail events are harder to
predict, and we also found no indication of increased pre-
dictability of summer warm extremes (Figure 10; Wulff
and Domeisen, 2019). On the other hand, the winter
BSS (Figure 8) displayed a regional signal in the upper

quantiles (visible only at larger time aggregations) which
we might relate to an emergent predictable phenomenon.

A candidate mechanism associated with above-normal
temperatures in winter for a ±10-day time aggregation
could be the early disappearance of the snow pack, as this
increases the absorption of short-wave radiation and takes
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some time to rebuild itself again. Certainly, the regionally
extended forecast skill horizons are at least also partly due
to the persistence of weather. The region around the Baltic
Sea and Denmark is persistent in winter (Figure 2) and
strongly imprinted by the first principal component of the
large-scale Euro-Atlantic atmospheric variability (Ferranti
et al., 2018). This results in a relatively skilful region in our
analysis (as in Monhart et al. (2018)).

Clusters that displayed weak predictability can be
interpreted as being devoid of sources of real extended pre-
dictability, but might also just indicate biases in the model.
With NGR we attempted to remove biases and under- and
over-dispersion for each lead time, season and cluster. This
led to noticeable increases of skill, but also to a bias for
winter cold anomalies at long lead times in regions with a
skewed climatological distribution (Figure 8). A correction
approach that can better handle such distributions and,
for example, the multiannual variability change in Iceland,
might be realized with other simple (Ferrone et al., 2017;
Vigaud et al., 2017) or more advanced (Yoo et al., 2018;
Hwang et al., 2019; Kämäräinen et al., 2019; Strazzo et al.,
2019) post-processing methods.

5 CONCLUSION

This study has demonstrated that the forecast skill horizon
for average temperatures varies over the European domain
and can be extended to weeks 3 and 4 without precon-
ditioning. A standard non-homogeneous Gaussian regres-
sion post-processing step added three skilful forecast days
on average. The influence of space and time aggregation
was explored by a protocol that allowed a clean compar-
ison of different aggregation levels. We found that sim-
ple averaging captures predictable large-scale patterns in
high-frequency weather and that this aggregation becomes
especially effective beyond lead times of a few days, adding
two skilful days on average. For some regions, however,
time aggregation simply smoothed skill over time, show-
ing that it is not everywhere that a signal is extracted
by aggregation. Also, space aggregation, when applied at
an intermediate level, was found to lead to smoothing,
therefore discarding the local extended forecast horizons
present in some regions. To optimize subseasonal pre-
dictability in Europe, aggregation should thus be limited
in certain cases, especially when it is important to trace
back the signals to the associated sources of predictability.
This tracing is further eased when, in addition to partic-
ular spatio-temporal scales, the types and intensity levels
of the events are also known. We have demonstrated that
quantiles can be used for such a stratification, but that a
source of extended predictability does not always emerge
for the more extreme cases. A recommended extension of

this study is to explore other statistics than the average
(e.g., DelSole and Tippett, 2009). The predictable modes
of variability might be better detected with meteorologi-
cal index variables, such as the clustering of warm days or
rainfall events, than with temperature or rainfall averages.
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