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Key Points:

e Australia’s unprecedented wildfire season 2019/20@6 part of a complex hazard

cascade of partly extreme and partly moderate svent

¢ We study the complete hazard cascade of drougét réin, flood, and soil erosion in the

Manning River catchment, New South Wales

e We show that hazard cascades can amplify the imp@echoderate events, which

requires renewed consideration in risk management
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Abstract

Following an unprecedented drought, Australia’s®0020 “Black Summer” fire season caused
severe damage, gravely impacting both humans arsystems, and increasing susceptibility to
other hazards. Heavy precipitation in early 2020tteflooding and runoff that entrained ash and
soil in burned areas, increasing sediment condamtran rivers, and reducing water quality. We
exemplify this hazard cascade in a catchment in Beuth Wales by mapping burn severity,
flood, and rainfall recurrence; estimating chanigesoil erosion; and comparing them with river
turbidity data. We show that following the extredreught and wildfires, even moderate rain
and floods led to undue increases in soil erosr@hraductions in water quality. While natural
risk analysis and planning commonly focuses omglsihazard, we emphasize the need to
consider the entire hazard cascade, and highlhghintpacts of ongoing climate change beyond
its direct effect on wildfires.

Plain Language Summary

In 2019/20, a chain of natural hazards impactedralis’s East Coast. Following the severest
drought since weather records began, record-brgatidfires known as the “Black Summer”
ravaged the region for months. In early 2020, #iefall that extinguished the last of these fires
caused further damage, as the burned soils repallet of the rain. Water took the exposed soill
and charred vegetation with it on its way to thers, flooding streets and polluting drinking
water. We show an example of this cascade of hazara single river catchment. We found that
after the wildfires, even moderate rainfall cauledds, increased soil erosion, and reduced
water quality drastically. Natural risk analysesstiypfocus on single types of events in
isolation. However, this hazard cascade shows éispecially in the face of ongoing climate
change, scientists and decision makers need tedawreyents not just by themselves, but
connected with each other.
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1 Introduction

Australia’s 2019/2020 “Black Summer” fire seasorsveaceptional in terms of the number of
fires, burned area, and fire severity (Baldwin &uss, 2020; Deb et al. 2020; Hughes et al.,
2020). The fires followed an unprecedented droug®i9 was the driest year on record (Hughes
et al., 2020; van Oldenborgh et al., 2021). Thraughhe continent, the fires caused direct
damages to humans and ecosystems, including aB@asrectly fire-related deaths, 3100
homes lost, an area of at least 24 million hectavesed — the size of the United Kingdom —,
and never before seen air pollution levels in majoes (Davey and Sarre, 2020; Hughes et al.,
2020; Royal Commission into National Natural Disagtrrangements, 2020; Vardoulakis et al.,
2020). The wildfires led to the formation of a retaumber of pyrocumulonimbus clouds that

reached the lower stratosphere over southeastestiaha (Kablick Il et al., 2020).

Wildfires cause hydrometeorological and geomorghignges that can heighten the
susceptibility of burned areas to other hazardsexample, raised soil water repellency after a
fire can lead to increased runoff (Shakesby and8606). This was the case with the
2019/2020 fires: following an extreme drought, fines were the second step in an entire
cascade of adverse processes (Figure 1). NextaltamFebruary 2020 triggered increased
surface runoff and eroded ash and soil. Entraiséd@ant, and soil deposits enhanced sediment
concentration in rivers, damaging infrastructurd aampromising water quality (Alexandra and
Finlayson, 2020). In some cases, the ash-laderr wat¢aminated water bodies such as the Lake

Burragorang reservoir, Sydney’s main drinking watgpply (Figure S1).
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Figure 1: Australia’s 2019/2020 hazard cascade. Drougheased the likelihood of wildfires,
which burned vegetation and raised the likelihobohcreased surface runoff, soil erosion and
hillslope failures. When heavy rain fell in earl®2D, runoff from burned areas led to flooding
and entrained ash, soil, and organic matter, isangesediment concentrations in rivers and

negatively impacting water quality.

Extreme impacts, like those observed in Australiaarly 2020, are often caused by a
combination of several drivers (Figure 1). Thaikhge can lead to a so-called cascading event
characterized by an initial impact that triggersent partly unexpected, effects of potentially
destructive magnitudes (Pescaroli and Alexandel5pMowever, the underlying drivers are
mostly studied separately and without considerirggr tpotential interactions (AghaKouchak et
al., 2018; Zscheischler et al., 2018). Appraisaltomd risk in Australia, for example, may
underestimate the actual risk, if neglecting thpants of an antecedent fire in the upstream
catchment. When extreme impacts are combined, ¢ffeict can be greater than the sum of their
parts, making a holistic approach crucial to analyzvent sequences (AghaKouchak et al.,
2018; Gill and Malamud, 2016; Hegerl et al., 20Z4¢heischler et al., 2020a). The analysis of
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cascading events remains challenging because ctatypflocumented cascades are scarce,
suitable indices and methods for their quantifmatre limited, and bulk uncertainties are often
much higher than for single events (Kappes eRall2; Schauwecker et al., 2019; Zscheischler
et al., 2020a). Here, we illustrate the stageshazard cascade in a catchment in New South
Wales (NSW), Australia (Figure 2A). We argue thansidering the hazards separately may lead
to serious misestimates of magnitudes, intensisied,durations of the processes involved, all of

which may reverberate on hazard and risk appraisals

During 2019/2020, the Manning River catchment wéscged by drought, fires, heavy rainfall,
and high sediment fluxes. Three of its tributaggperienced different degrees of burn severity
(Figure 2B) and rainfall amounts (Figure 2C), alilogvus to compare the post-fire impacts on
streamflow and soil erosion (Figure 2D). By movthgpugh the sequence of hazards, we
explore how certain events triggered and influereach other, changing their susceptibility as

the event chain developed and its effects propdghteughout the catchment.
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Figure 2: Study area.A) The Manning River catchment is located 250 lartimof Sydney in

one of the steepest regions of New South Walestrélizs B) Fires affected the tributaries of the
Manning River differently, with the highest burrveéties occurring in the Nowendoc
catchment. C) Gridded rainfall data for Februdfy 2020, show increasing rainfall totals
towards the coast. 1-Barnard River (Mackay), 2-Nadee River (Rock’s Crossing), 3-
Gloucester River (Doon Ayre), 4-Manning River (iNarra). D) Turbidity in brown and
discharge in blue for Manning River and its tribiiga between February'and 229,

2 Cascade onset: drought and heat

2019 was the driest year on record in Australia @&enborgh et al., 2021), with the lowest
rainfall on record from July to December in manytpaf southeastern Australia (Nolan et al.,
2020; data accessible from http://www.bom.gov.awale/history/rainfall/). Neutral El Nifio-
Southern Oscillation conditions and a positive &aimdDcean dipole were the main causes for the
drought (King et al., 2020; van Oldenborgh et2021). In summer 2019, this event was
accompanied by the highest mean maximum tempesasimee recording began in 1910, with
the highest anomalies in December 2019 surpadsosg tof the ‘Angry Summer’ of 2012/2013
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(van Oldenborgh et al., 2021). This extraordinangught was a key driver of the wildfires,
whereas the role of fuel accumulation due to finepsession is still disputed (Bradstock et al.,
2020).

Based on gridded rainfall data (Jones et al., 2608 supplements) we find that 2019 was the
driest year in the Manning River catchment sindeadt 1970 with a catchment average of only
440 mm of rainfall, or 42% of the average annuaifadl of 1040 mm from 1970 to 2018. In
December 2019, the river ran completely dry ataithrra (Figure 2D) for the first time on

record (since 1945), where it has a daily averagamflow of 55 m?3/s.

3 Initial impact: extreme wildfire

Wildfires are a frequent natural hazard in Ausé&ralind have caused substantial economic and
environmental impacts in the past. Yet the 20190202s were exceptional in scale, and likely
linked to anomalous weather conditions driven laypate change (Bowman et al., 2020; Deb et
al., 2020; van Oldenborgh et al., 2021). They bdtie largest continental fraction of any forest
biome in at least two decades (Boer et al., 2028urance claims from these fires totaled $2.34
billion AUD, making up 44% of all natural disast#aims for the entire fire season (Whelan,
2020). In comparison, wildfires accounted for 12eA@rmalized insurance losses from natural
hazards between 1966 and 2017 (McAneney et al9)2The total loss also far exceeds that
incurred by the 2009 “Black Saturday” fires, whasurance claims totaled $1.2 billion AUD
(Parliament of Victoria 2009 Victorian Bushfires y&b Commission, 2010). In NSW the fires
caused the largest area burned and highest prdpsstgver recorded (Hughes et al. 2020).

The 2019/2020 fires also had detrimental healtaot$t Most prominently, smoke-related air
pollution had an unprecedented burden on publittihesith 417 total pollution-related excess
deaths in eastern Australia (Queensland, NSW, Aliestr Capital Territory, Victoria) of which
219 were recorded in NSW (Borchers Arriagada eR8R0). Smoke-related hospital admissions
for cardiovascular and respiratory conditions tdeB151, with 1627 cases in NSW (Borchers
Arriagada et al., 2020).

To assess the overall scope of burning in the ManRiiver catchment, we classified burn
severity by calculating the differential NormalizBdrned Ratio (ANBR) from pre- and post-fire

satellite imagery from February 2019 and Janua@p2@spectively (Figure 2B) (Key and
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Benson, 2002, 2006); methods are described inujpglements (Alleaume et al., 2005; Barrett,
2006; French et al., 2008; Kinnell, 2010; Lentileak, 2006; Soverel et al., 2010; Walz et al.,
2007). While dNBR-derived burn severity levels $pttefine burn-induced magnitude of
radiometric change, Chafer (2008) conducted fialdies in NSW to provide a calibration to
fire effects on vegetation community strata obsewe the ground. They reported that low
severities signify burned grass and herbs; modsmterities imply consumed shrubs; high
severities indicate scorching of the lower can@md very high severities denote the
consumption of stems with diameters <10 mm (Ch&@08). We found that wildfires in the
Manning River catchment, which occurred from midvlimber to mid-December 2019
(Data.NWS NPWS, https://data.nsw.gov.au/data/dtfmsenistory-wildfires-and-prescribed-
burns-1e8b6), burned (dNBR > 0.1) a total area76b64km? or some 72% of the catchment
(Figure 2B). Moderate to high burn severities (ANBB.27) mostly occurred in the Nowendoc
tributary, where 57% (463 km?) of the catchmentdrerned with this intensity at least (Table
S1).

4 Subsequent effects: floods, soil erosion, and veatquality

Heavy rainfall eventually extinguished fires thrbogt NSW in February 2020. The rain
replenished depleted water reservoirs, but alstdelde next hazard in the cascade. The
resulting runoff flooded parts of Sydney and ottiges in NSW, caused mass movements which
disrupted infrastructure, and washed soil, ash,detulis into water bodies (Figure S1).
Insurance claims of $896 million AUD were lodged@sponse to the rainstorms and associated

floods (Insurance Council of Australia, 2020).

According to gridded rainfall data between 1970 (8ee supplements), the Manning river
catchment averaged 78 mm of rainfall on Februfirgl®ne (Figure 2C), which is about 58% of

an average February rainfall total in one day. @ndgcale of the entire catchment, such rainfall
totals occur once in Si_éz% years on average (Table S2-S3). Rainfall was mtstse in the
southern part of the catchment (Figures S2), wiveograin gauges measured their second

highest values in records of at least 43 yearsgspplements).

Although parts of the Manning River catchment waised heavy rainfall in February 2020, the
resulting floods, which we define here as the m@reamflow following the February"ainfall
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event, were only minor. The return periods of tebriary 9 floods range from 1;_@;'—2 years

(Nowendoc catchment) to 4}?#; years (Gloucester catchment), and are thus Idveer those of

the preceding rainfall (Tables S3-S4). We hypotteetthat low soil moisture in the catchment
following the drought led to decreased streamfl®harma et al., 2018; Wasko et al., 2019). The
hydrographs (Figure 2D) show no signs of extensiugace runoff, which would form a narrow

sharp spike minutes to a few hours before the rt@ma peak (Shakesby and Doerr, 2006).

Water quality was drastically affected by this fliodn the Manning, Barnard and Nowendoc
Rivers, turbidity data logged in February 2020 shstarp peaks with no precedence in the 5-7
years on record (Figure 2D). In some cases, thdity exceeded the sensor measurement scale.
The uncalibrated turbidity values only allow a tiela comparison of sediment loads in the
tributaries. In the six years of shared recordmoahe 2019 fire season, synchronous turbidity
peaks for the Gloucester and Nowendoc River weedmbst equal magnitude (see
supplements). In the more severely burned Nowendtmthment the magnitude of the turbidity
peak associated with the February 2020 flood wasrees higher than in the less severely

burned Gloucester catchment.

We apply the RUSLE model (Kinnel, 2010; Renard ¢t1®91) to estimate first order the pre-
and post-fire soil erosion rates within the MannRiger catchment based on rainfall erosivity,
soil erodibility, steepness, land cover and managgnusing input parameters from pre-existing
datasets (Yang et al., 2015, 2018) (see supplendims dNBR burn severity is included by
adjusting the post-fire land cover-factor accortir@lake et al., 2020; Larsen and MacDonald,
2007) based on satellite data from February 2082820. The estimated post-fire soil erosion
rates range from 11-27 tly (Table S1), reflecting an increase of over 200%e @bsolute
values and relative changes are consistent wilidh fireasurements from severely burned
catchments in NSW (Atkinson, 2012; Blake et al2@05hakesby and Doerr, 2006). The
increases in estimated soil erosion in the thibataries range from 88% in the Gloucester
catchment to 358% in the Nowendoc catchment (Fi§3rand Table S1). The difference in the
increase of erosion rates between these two tribsts consistent with the respective increase

in turbidity values, and likely linked to commenat# differences in burn severity.
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5 Conclusions and outlook

The 2019/2020 hazard cascade observed in the MaRver catchment in southeast Australia
highlights how the impact of ongoing climate changewildfires affects the likelihood and
magnitude of adverse consequences from other reattaatare in parts physically linked to each
other. We show that following extreme drought anldifives, moderate rainfall and flood events
were sufficient to increase estimated soil erosiod reduce water quality far beyond expected
levels in the absence of fires. These amplifyirfgat$ of individual impacts within hazard
cascades are still insufficiently considered ik agalysis. It is crucial to fill this knowledgema

in hazard and risk appraisals, as moderate prae@ssazard cascades can incur much more

damage than when they occur on their own.

Climate change is projected to increase the freguehicompounding extreme warm and dry
periods in Australia and beyond (Kharin and Zwi@B05; Zscheischler et al., 2017), which
could lead to further event cascades like the nr&919/2020 (Zscheischler et al., 2020Db).
Indeed, in 2020, following Australia’s “Black Sumnighe western United States experienced
its most-extensive fire season in 70 years, whiteresive fires burned across Siberia
(Irannezhad et al., 2020; Pickrell and Pennisi,03o far, however, we can draw on only few
examples of thoroughly studied hazard cascadegydilitg the effects of climate change will
require investigating these complex interactionsluding these events in risk analysis and
planning, establishing consistent monitoring systéonbe better prepared for future hazard
cascades (Bowman et al., 2020; Royal CommissianNiattional Natural Disaster

Arrangements, 2020), and increasing adaptive chpiacaffected regions.
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