

PAPER • OPEN ACCESS

Neural partial differential equations for chaotic systems
To cite this article: Maximilian Gelbrecht et al 2021 New J. Phys. 23 043005

View the article online for updates and enhancements.

This content was downloaded from IP address 139.17.31.61 on 03/05/2021 at 15:56

https://doi.org/10.1088/1367-2630/abeb90

New J. Phys. 23 (2021) 043005 https://doi.org/10.1088/1367-2630/abeb90

OPEN ACCESS

RECEIVED

20 January 2021

REVISED

24 February 2021

ACCEPTED FOR PUBLICATION

3 March 2021

PUBLISHED

2 April 2021

Original content from
this work may be used
under the terms of the
Creative Commons
Attribution 4.0 licence.

Any further distribution
of this work must
maintain attribution to
the author(s) and the
title of the work, journal
citation and DOI.

PAPER

Neural partial differential equations for chaotic systems

Maximilian Gelbrecht1,2,3,∗ , Niklas Boers1,3,4 and Jürgen Kurths1,2,5

1 Potsdam Institute for Climate Impact Research, Potsdam, Germany
2 Physics Department, Humboldt University zu Berlin, Berlin, Germany
3 Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany
4 Department of Mathematics and Global Systems Institute, University of Exeter, United Kingdom
5 Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
∗ Author to whom any correspondence should be addressed.

E-mail: gelbrecht@pik-potsdam.de

Keywords: complex systems, nonlinear dynamics, prediction, machine learning, hybrid model, partial differential equations

Abstract
When predicting complex systems one typically relies on differential equation which can often be
incomplete, missing unknown influences or higher order effects. By augmenting the equations
with artificial neural networks we can compensate these deficiencies. We show that this can be
used to predict paradigmatic, high-dimensional chaotic partial differential equations even when
only short and incomplete datasets are available. The forecast horizon for these high dimensional
systems is about an order of magnitude larger than the length of the training data.

1. Introduction

For centuries, differential equation models derived from physical principles have been the preferred tool to
forecast the behaviour of complex natural systems. More recently the advance of data-driven methods
enabled many promising approaches for forecasting spatiotemporal system, e.g. with feed-forward neural
networks [1], convolutional neural networks (CNN) [2] or reservoir computing [3]. In particular, chaotic
systems are inherently difficult to forecast, as already the smallest deviations can lead to large errors later.
Key challenges remain predicting complex systems that are high dimensional and chaotic, when only short
time series and spatially incomplete data is available. We tackle these challenges by combining knowledge
that we have about the governing equations of these systems with data-driven methods into a hybrid model.

We explore how hybrid methods help predicting complex, chaotic systems of which we only have
incomplete and sparse knowledge. Every numerical, physical model of a natural system is incomplete in
some sense, for example due to unknown parts of the dynamics, or due to deliberately omitting
higher-order effects. Hybrid approaches try to account for these deficiencies with data-driven methods to
derive more complete hybrid models.

The data-driven part of the hybrid models needs to be trained and when directly augmenting a
differential equations with an ANN, it is no longer possible to use the standard backpropagation algorithm
that is usually applied. Chen et al [4] presented an efficient algorithm to train through an ODE solver based
on the adjoint sensitivity method. Rackauckas et al [5] expanded on this idea and developed the universal
differential equations framework that allows to freely augment most types of differential equations with
universal approximators such as ANNs. These approaches are also related to prior research that show how
parameters of ODEs describing chaotic systems can be estimated, such as by Baake et al [6]. For the fully
data-driven, and thus non-hybrid case, Sun et al [7] showed how the complete right-hand side of
differential equations can be modelled with ANNs based on the neural ODE approach by Chen et al [4].

Another hybrid approach are physics-informed neural networks, which can approximate solutions of
PDEs with ANNs and also set up ANNs whose outputs are solutions of a specific PDE [8]. Combining a
knowledge-based differential equation model with a reservoir computer has also recently shown great
promise for predicting chaotic systems like the Lorenz-63 and the Kuramoto–Sivashinksy (KS) equation
[9, 10].

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/abeb90
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-0729-6671
https://orcid.org/0000-0002-1239-9034
mailto:gelbrecht@pik-potsdam.de

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

Combining knowledge of systems with data-driven approximations such as polynomials has been done
for low-dimensional ODEs [[11], cf]. The approach that we aim for provides greater flexibility and
capability through the use of ANNs as approximators and the possibility to use PDEs and their
representations as high-dimensional ODEs through discretization.

In this article we focus on a particularly challenging situation: we want to predict the dynamics of
high-dimensional chaotic systems by combining discretized PDEs with ANNs, under the condition of very
short training datasets and with parts of the spatial data missing. The universal differential equations
framework [5] provides the basis for the introduction of the neural partial differential equations (NPDE)
that we will use. Compared to existing works, the results we are going to present in the following advance
the field of hybrid modelling in two key aspects. First, we show that it is possible to train models based on
very short training data, and second, we do that for chaotic systems even when the data is subjected to noise
and incomplete.

We will first introduce the method of NPDEs and will then apply them to two prototypical,
spatiotemporally chaotic systems: the complex Ginsburg Landau equation and the KS equation. We will
show that our NPDE-based hybrid approach proposed here is capable of predicting the dynamics of these
example systems in high spatial dimension and with only very short training data, compared to the forecast
horizon.

2. Methods

The framework of universal differential equations [5] enables us to use universal approximators such as
ANNs within partial differential equations (PDEs). The resulting NPDEs are hybrid models that are able to
compensate missing parts of the PDE by learning them from data, thereby attenuating structural model
errors. NPDEs are thus discretized PDEs with an ANN as part of the equation:

∂tu = f (u) +N (u;Θ) . (1)

The ANN N will mostly be comprised of densely connected layers of nodes Dense(x;Nin, Nout, fNL) = fNL

(Wx + b), where the (Nout × Nin)-matrix W and the Nout-dimensional vector b are the trainable
parameters Θi = {W, b} and fNL is a nonlinear function, here the swish function fNL(x) = x/(1 + exp(−x))
[12].

In order to train models like NPDEs, one needs to be able to compute gradients of the solution of
differential equations with respect to the parameters of the equation, thus also of the ANN. Appropriate
algorithms such as the adjoint sensitivity method were originally used, e.g., for sensitivity analysis of
meteorological models [13]. Recent advances showed that these can also be used within the context of
artificial neural networks [4]. In particular the universal differential equations framework made these
methods much more accessible and easier to use [5]. The NPDE training and computations are all
optimized to run on GPUs which enables us to investigate even very high dimensional systems efficiently.

The loss function that is minimized during the training process by a gradient descent algorithm is the
sum of the least square errors of the predictions made by the NPDE and an additional parameter
regularization of the ANN:

L(Θ) =
∑

it ,x

(u(x, it) − û(x, it))2 + γ

NΘ∑

i

‖θi‖1. (2)

The sum is taken over all discretized spatial coordinates x and time steps it of the predicted trajectory.
Throughout the article ‖ · ‖1 denotes the L1 norm and γ = 10−5.

In [5] non-chaotic applications of universal differential equations are discussed and these are usually
trained by minimizing the mean square error of a relatively long trajectory predicted by the universal or
neural differential equations. We found that it is to be difficult to train models for chaotic processes on long
trajectories as inherently small deviations at the start of the trajectory can lead to massive deviations later.
We thus integrate the NPDE only from t0 to t0 + iτΔt for a small iτ and repeat this from every initial
condition in the training dataset. For iτ = 1 we therefore train on the one-step-ahead forecast error.
Increasing the length of the integration interval also increases the computational complexity massively. We
thus first integrate with iτ = 1 until the forecast error on a validation set converges and then slowly increase
iτ to its final value τ . The final length of the integration interval τ is a hyperparameter of the training
procedure. When integrating the NPDE, we save the trajectories at constant sampling time steps Δt for
better comparability, even though the solvers will typically feature adaptive step size control. Depending on
the model in question, Δt might need to be quite small to ensure a successful training, as we will address
later.

2

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

Figure 1. Overview of learning setups. (a) ANN setup for the CGLE system. R and I are the real and imaginary part of the value
of u(x, t)u(x, t). (b) The ANN setup for the KS system comprises four Nabla layers and a ResNet. (c) Nabla layers used in (b), the
parameter w is trainable. ∇FD is the finite difference derivative matrix. (d) Sketch outlining the setup to learn the NPDE from
spatially incomplete data.

In order to model possible derivatives in the unknown parts of the PDE, we introduce a novel trainable
layer, the Nabla layer ∇. It is defined by

∇(x; Θ = {w}) = (1 − |w|)x + w∇FDx, (3)

where ∇FD is the finite difference derivative matrix and w is a trainable parameter. The second term of the
right-hand side is thus a scaled, numerical first derivative of the input, and the layer learns whether or not
to take a derivative of the input (or a linear combination of both input and its derivative). The parameter w
is approximately bound to the interval [−1; 1] by an additional penalty in the overall loss function. For this
function we chose p(w) = max(x6 − 1,−x4 + x2) because it has large values outside of [−1; 1] and local
minima at 0 and ±1. When stacking k of these layers and a multi-layer perceptron (MLP) together, we are
able to model functions of derivatives up to order k. To increase the numerical precision of the Nabla layer,
we use alternating forward and backward finite difference schemes when stacking Nabla layers as we noticed
an impact of the accuracy of the finite difference schemes on the results, especially when higher order
derivatives are modelled. While we investigate only a finite difference scheme here, using other
discretization approaches are likely to work as well and could be investigated in future research. Additional
skip connections can help training these models if they are comprised of many layers, resulting in a residual
network (ResNet) [14].

Since we directly augment the differential equation, the NPDE approach is very flexible. It does not have
a fixed input or output dimension. We could integrate the trained model in higher or lower resolutions, or
as we deal with systems where local interaction are dominant, the NPDE approach enables us to deal with
spatially incomplete data as well. We can learn the missing part of the equations from the incomplete data
and predict the complete systems by defining a ‘learn domain’ that is situated well within the known data
(see figure 1). The initial conditions for each integration are 0 where we have no data and the loss function
is computed only from points within this learn domain. In these cases we only integrate for one sampling
time step and are thus using a one-step-ahead error, as longer integration intervals would allow the
propagation of features outside of the known domain to the inside of the learn domain.

3. Results

In the following we will assume that we know only a part of the equation we are investigating and ‘forget’
about another part of the equation, which is instead modelled by an artificial neural network N . The latter

3

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

part will be trained with data. For this theoretical setup, we generate this data from the true, known system
and then compare it with the prediction of the trained NPDE.

We assess how well the NPDEs perform by first integrating them from the first initial conditions that
were not part of the training part for a suitably long time. Importantly, when integrating we save the
trajectory at the same regular sampling time steps Δt as when generating the initial true data. We then
define the following measures of forecast accuracy: the non-normalized error

E(x, t) = u(x, t) − û(x, t), (4)

and the normalized error [9]

e(t) =
‖u (x, t) − û (x, t) ‖2

〈‖u (x, t) ‖2
2〉1/2

, (5)

where ‖ · ‖2 is the L2 norm. As defined in [9], we also compute a valid time tv as the first time when
e(tv) > 0.4. The time will be either expressed in the number of forecasted sampling time steps Nf , or by
scaling it with the maximum Lyapunov exponent as a natural time scale of the system.

The results of our NPDE approach will be compared to other methods. The first benchmark is a CNN
with a bottleneck, similar to [15]. Another comparison is a hybrid reservoir computer [9] that also
combines a knowledge-based model with a data-driven model, i.e., the incomplete PDE with a reservoir
computer. For high-dimensional systems, the size of the reservoir network needs to be increased
accordingly. For the systems investigated here, the necessary reservoir size becomes potentially prohibitory
large. For our comparative purposes, we thus compute the hybrid reservoir with a lower-dimensional
system with the same inter-grid spacing. Additionally, we also show how the incomplete model on its own
performs as a predictor. Further details on these comparisons can be found in the appendices C and D.

3.1. Complex Ginsburg–Landau equation
The complex Ginsburg–Landau equation [16, 17] is defined by

∂tu = (1 + iα)Δu − (1 + iβ)|u|2u, (6)

where u(x, t) is a complex valued field on two spatial dimensions. The CGLE is a prototypical equation that
models every reaction-diffusion system close to the onset of oscillation [17]. For various parameter
configuration, like α = 2, β = −1 as chosen here, this system exhibits chaotic behaviour. The physical size
of the domain is set to 192 × 192 in arbitrary physical units and periodic boundary conditions are applied.
The domain is then discretized with a finite difference scheme to a grid with 128 × 128 nodes, thus
transforming the PDE into a 16 384-dimensional ODE. Here, we focus on modelling the reaction term with
an ANN. The NPDE we investigate here is given by

∂tu = (1 + iα)Δu +NCGLE(u;Θ). (7)

As part of the NPDE NCGLE is defined in a way that it only has as a single input: the value of the
spatiotemporal field u at one specific position. Since u is complex valued, the real and imaginary part are
split as separate inputs. NCGLE is a multilayer perceptron with two hidden layers, each with 10 densely
connected nodes (see figure 1).

A single long trajectory of the CGLE is integrated with a Tsitouras solver [18]. The initial conditions are
uniformly random within the interval [−0.005; 0.005] for both the real and imaginary part. Although the
solver has an adaptive step size, the trajectory is saved every Δt = 0.1. The first 2000 steps are not saved to
avoid any transient dynamics. Only the next 25 steps after the transient are the training set and the
remainder of the trajectory is saved for validation and test set. The NPDE is trained minimizing the loss
function equation (2) using a stochastic gradient descent with weight decay [19].

Figure 2 shows the prediction of the trained NPDE for different time steps Nf and how the normalized
error evolves. We found that the NPDE makes accurate predictions that exceed the length of the training set
by far. The normalized error increases exponentially with increasing t until it levels off at around 0.4, which
coincides with the threshold of the valid time tv for the CGLE NPDE. Therefore, we additionally measure
when e(t) = 0.3 is reached for the first time.

The valid time increases slightly when the final length of the integration interval τ is increased (see
figure 2), however increasing τ needs considerably more computation time. Ultimately, this increase is so
small that it does not seem to justify the much higher computation time in the case of the CGLE. The valid
time is Nf = 388 sampling time steps, for τ = 1 and Nf = 479 for τ = 20, whereas e(t) = 0.3 is reached for

4

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

Figure 2. NPDE forecast for the CLGE. (a) Shows the prediction made by the NPDE for four different time steps Nf and the
difference of this prediction to the true value. We show the absolute value of these fields here. (b) Is the evolution of the
normalized error e(t) for two different integration lengths and compared to a hybrid reservoir, a CNN and the forecast made by
integrating the Laplacian only. The upper x axis is given in units of integration time steps with Δt = 0.1 and the lower axis is in
units of the Lyapunov time. (c) Shows the CGLE forecast with incomplete input data from only the shaded area at the bottom of
the spatial field.

Nf = 286 for τ = 1 and Nf = 292 for τ = 20. Given a maximum Lyapunov exponent of λmax ≈ 0.167 and
Δt = 0.1, this is equivalent to 4.88λmaxt to reach e(t) = 0.3 and a valid time of 8.01λmaxt for τ = 20. In
comparison, the valid time of the hybrid reservoir is Nf = 25 or 0.44λmaxt. For the CNN it is Nf = 8 or
0.13λmaxt.

Additionally, we investigated the sensitivity of the NPDE approach to noise in the underlying data by
adding a small, normally distributed noise vector to the part of the trajectory x(t) that was used for training.
We use only one constant noise vector

xη(t) = x(t) + η(t), (8)

where each element of η(t) is independently drawn from a normal distribution N (0,σ). In this way we
simulate observational noise. For a given standard deviation of the noise, we train the model in the same
manner as before, with 25 time steps of training data xη . The forecast error e(t) can be evaluated by
comparing the NPDE forecast against the original time series x, or against the series with noise xη. In our
trials the forecast length did not differ significant from each other in either case. In figure 3 we report the
results for noise with a standard deviation between 0.01 and 0.2. One can see a relatively smooth response

5

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

Figure 3. Normalized forecast error according to equation (5). The coloured numbers indicate the standard deviation of the
noise used for the trial with the normalized error in the same colour. The CGLE has a mean standard deviation (in time) of
σ ≈ 1.3.

Table 1. Results for observational noise with the CGLE setup: integration
time step at which the normalized error e(t) first passes 0.3 and 0.2 for
various values of observational noise σ.

σ 0.01 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t0.3 259 209 147 125 106 97 95 92 90 88 89
t0.2 207 161 106 83 69 59 54 46 40 35 30

to the increased observational noise. The forecast length decreases, but even at σ = 0.2 meaningful forecasts
can still be made. In the appendix table 1, forecast times are reported for the various noise levels.

Accurate forecasts can even be made with incomplete data as results presented in figure 2 show when
only one half of the spatial field was used to train the NPDE. The valid time is Nf = 333 sampling time
steps or 5.57λmaxt. The slightly lower threshold e(t) = 0.3 is reached at Nf = 254 sampling time steps or
4.24λmaxt. There is no significant difference between the accuracy inside and outside of the known domain
as the almost identical evolution of the normalized error shows.

3.2. Kuramoto–Sivashinsky equation
Another paradigmatic example of a spatiotemporally chaotic PDE is the KS equation

∂tu = −∂xxxxu − ∂xxu − u∂xu. (9)

This equation is solved again with a finite difference scheme and periodic boundary conditions and length
L = 1160. We discretize it to 4096 spatial grid points and solve for a long trajectory of which we use a
Nt = 25 long training dataset at Δt = 0.02 sampling time steps. For the NPDE approach we ‘forget’ the
term with the second derivative and replace it with an ANN consisting of four Nabla layers and an MLP
with a residual connection (see figure 1), so that the NPDE reads

∂tu = −∂xxxxu − u∂xu −NKS(u). (10)

During the training procedure the parameters of the Nabla layers that we introduced in equation (3) quickly
converge to two being very close to 0 and two very close to 1, thus correctly identifying the order of the
derivative that is missing in the incomplete model. Figure 4 shows the results of the predictions of the
NPDE. The valid time tv is 2891 time steps which, given a maximum Lyapunov exponents λmax = 0.07, is
equivalent to 4.05λmaxt. The normalized error increases exponentially with increasing t. The hybrid
reservoir can predict accurately up to a valid time of Nf = 52 or 0.08λmaxt.

We found that especially for the KS system, the forecast profits from smaller values for the sampling
time step Δt. This became most apparent when tasking the NPDE model with replacing the forth derivative
term, as is shown in the appendix A. In this case a larger sampling time step Δt, e.g. Δt = 0.1 fails to result
in meaningful forecasts. This can be understood in view of the fact that the KS system is very sensitive to
even the smallest changes to this term. Using Δt = 0.02 leads to similar forecasts horizons, as reported here
for the second derivative term, which are shown in the appendix A.

6

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

Figure 4. NPDE forecasts for the Kuramoto–Sivashinsky equation. Predictions of the NPDE in the top row and difference to the
true values in the bottom row. The right-hand-side panels show a detailed view of the area marked in pink in the large plots on
the left. The valid time tv is marked in the difference plots.

4. Discussion

Using NPDE one is able to make forecasts of only partially known high-dimensional chaotic systems, even
when datasets available for training are extremely short and spatially incomplete. Importantly, we showed
that our NPDE approach works best for chaotic systems with short integration intervals and small sampling
time steps. Due to the chaotic nature of the investigated systems, training has to start by integrating only a
single sample time step ahead, before slowly increasing the integration interval. However, for the
prototypical systems that we investigated here, longer integration intervals do not significantly improve
forecasts made by the NPDE. This should change when non-Markovian systems are investigated.
Additionally, we introduced a novel finite-difference layer that enables the NPDE approach to work well
with systems such as the KS system, as well when e.g. diffusive effects are modelled.

Essentially, the NPDE approach makes use of the ergodicity of such systems and is thus able to train and
make accurate forecast not despite but because these systems are high dimensional. In the setups we used
the ANNs are an efficient tool due the uniformity of the domain and their capability to fit any right-hand
side of the equation as long as enough training data is available. Despite the short time series, the large
amount of spatial information give us enough data to train the artificial neural networks, even when the
training data is subject to observational noise. The forecast horizon of the NPDE is much longer than the
dataset used for training itself and as the differential equation is modelled directly, one can also make
predictions from arbitrary initial conditions. In many fields such as climate science often datasets are rather
short, so that the capability to be trained on such short datasets could prove extremely valuable. The CGLE
system we investigated is 16 384-dimensional, whereas the KS system is 4096 dimensional. The NPDEs are
optimized on GPUs and thus the approach is scalable and increasing the dimension further is certainly
possible. The key challenges that we identified: high-dimensionality, chaotic behaviour, short time series
and incomplete data are all successfully tackled by using NPDEs. As we showed, NPDEs are also useful in
cases where only incomplete data is available. While this approach seems to be limited to systems without
significant long-range interactions, it is still a powerful tool that enables predictions even when not the
complete spatial domain is available as training data.

7

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

Based on these results we conclude that NPDEs are a promising approach with a wide range of possible
applications, especially because they solve one of the crucial limitations of machine learning: the need for
long training datasets. In the future we hope to apply this method to experimental data from nonlinear
optics on the one hand, and from atmospheric dynamics, on the other hand. General circulation models of
the atmosphere seem to be an ideal application for our NPDE framework. Although very sophisticated
models exist, they cannot resolve every possible influence and scale, which traditionally leads to
parameterizations of the unresolved scales and processes such as cloud formation. In addition, the length of
available observational training data is relatively short compared to the time scales of many phenomena in
climate dynamics or in physiology, economy and ecology.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgments

This paper was developed within the scope of the IRTG 1740/TRP 2015/50122-0, funded by the
DFG/FAPESP. The authors thank the German Federal Ministry of Education and Research and the Land
Brandenburg for supporting this project by providing resources on the high performance computer system
at the Potsdam Institute for Climate Impact Research. NB acknowledges funding by the Volkswagen
foundation and the European Union’s Horizon 2020 research and innovation programme under Grant
agreement Nos. 820970. JK acknowledges funding by the Russian Ministry of Science and Education
Agreement No. 13.1902.21.0026. We wish to acknowledge the authors of the Julia libraries DiffEqFlux.jl [5],
DifferentialEquations.jl [20] and Flux.jl [21] that were used for this study. Especially, we like to thank
Christopher Rackauckas for his work on DiffEqFlux.jl and DifferentialEquations.jl and any help when
problems with the libraries arised.

Appendix A. Kuramoto–Sivashinsky model—4th-order derivative term

In the main text of this article, when investigating the KS equation, we replaced the second order term with
an ANN. Here we show additional results to demonstrate the robustness of this approach. For this purpose
we replace the term with the forth-order derivative with an ANN:

∂tu = NKS(u) − u∂xu − ∂xxu. (A1)

When investigating this setup, it became even more apparent that small values for the integration time step
Δt are needed. Whereas the training fails for Δt = 0.1, the results shown in figure 5 for Δt = 0.02 are
similar to those reported in the main text for the second derivative term. The valid time tv is 2953 time steps
which, given a maximum Lyapunov exponent λmax = 0.08, is equivalent to 4.72λmaxt.

Appendix B. Hyperparameter choice

In our article we made several hyperparameter choices that we are going to explain in the following. First of
all, we experimented with the numbers of ANN nodes, between 10 and 30, and noticed little difference in
the results, so that we chose the smaller amount of nodes. The regularization has little to no influence on
the results for the CGLE and was only used there for consistency with the approach that we used for the KS
model. For the KS model, introducing a regularization did improve the results. However, the regularization
is still quite small compared to the initial least-squared error of the spatiotemporal field, as we are working
with such a high-dimensional field. In terms of the activation function we tested ReLu, SeLu and Swish and
found Swish to be working best.

Appendix C. Convolutional neural network

The results of the NPDE forecast are compared to corresponding ones obtained with a CNN. This CNN is
set up with a bottleneck, meaning that the first convolutional and pooling layers reduce the dimension of
the input before subsequent layers extend the dimension back to the full size of the field. It makes forecasts
by using a recursive loop in which the output of the CNN is fed back as input for the next time step. This

8

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

Figure 5. Results for the NPDE for the KS system according to equation (A1). The right-hand panels show a zoomed in view of
the area marked with the magenta rectangles in the left-hand panels.

architecture showed to be successful in approximating complex spatiotemporal fields, like simple global
circulation models [15]. The CNN consists of three convolutional layers with 3 × 3-sized kernel, each with
8 channels and each followed by a 2 × 2 max pooling layer. The dimension is reduced, this is the so-called
‘bottleneck’ of the CNN. Then, three convolutional layers with 3 × 3-sized kernel, each followed by an
upsampling layer, scale the dimension back to the input dimension. The CNN is trained by minimizing the
one-step-ahead least-squared forecast error with a stochastic gradient descent method over 10 000 epochs of
the dataset. The exact setup that we investigate is one where CNNs cannot excel easily. The reason the CNN
approach is leading to worse results than the neural PDE is the very short training data combined with the
high dimensionality of the training data. It would likely perform much better with training datasets of
lengths of a few thousand samples. Nevertheless, the comparison we present highlights the strength of our
hybrid NPDE approach in exploiting the spatial structure to allow to be trained on very short time series.

Appendix D. Hybrid reservoir

Combining knowledge-based but incomplete models with a data-driven numerical model has previously
been achieved successfully using reservoir computers. Pathak et al [9] showed that such a setup is able to
forecast chaotic processes for very long times. However, in these examples very long input datasets were
used. Here, we use the same basic setup as reported in [9] with reservoir size N = 20 000, spectral density
ρ = 0.4, sparsity 〈d〉 = 0.03, input coefficient uniformly drawn from [−0.5; 0.5] and regularization
constant 10−4. The knowledge-based model is the NPDE without the neural network, thus the PDE with
one term missing. It was integrated using the LSODA solver from the Fortran ODEPACK library. While for
longer training datasets a forecast horizon of several Lyapunov times can be achieved, it is much lower for
the short training datasets explored in this article. For the 128 × 128-sized grid that is used for the CGLE
and the 4096-dimensional KS discretization, one would need much larger reservoir sizes. These are
potentially prohibitively large. We therefore computed the hybrid reservoir comparisons on smaller grids,
50 × 50 for the CGLE and 128 for the KS.

9

New J. Phys. 23 (2021) 043005 M Gelbrecht et al

Appendix E. Source code

The source code is available at https://github.com/maximilian-gelbrecht/NPDEChaos/.

ORCID iDs

Maximilian Gelbrecht https://orcid.org/0000-0002-0729-6671
Niklas Boers https://orcid.org/0000-0002-1239-9034

References

[1] Pan S and Duraisamy K 2018 Complexity 2018 4801012
[2] Herzog S, Wörgötter F and Parlitz U 2018 Front. Appl. Math. Stat. 4 60
[3] Pathak J, Hunt B, Girvan M, Lu Z and Ott E 2018 Phys. Rev. Lett. 120 024102
[4] Chen R T Q, Rubanova Y, Bettencourt J and Duvenaud D K 2018 Neural ordinary differential equations Advances in Neural

Information Processing Systems vol 31 ed S Bengio, H Wallach, H Larochelle, K Grauman, N Cesa-Bianchi and R Garnett (Curran
Associates) pp 6571–83

[5] Rackauckas C, Ma Y, Martensen J, Warner C, Zubov K, Supekar R, Skinner D, Ramadhan A and Edelman A 2020 Universal
differential equations for scientific machine learning (arXiv:2001.04385 [cs.LG])

[6] Baake E, Baake M, Bock H G and Briggs K M 1992 Phys. Rev. A 45 5524
[7] Sun Y, Zhang L and Schaeffer H 2020 Proc. of the 1st Mathematical and Scientific Machine Learning Conf. (Proceedings of Machine

Learning Research (PMLR) vol 107) ed J Lu and R Ward (Princeton, NJ: Princeton University Press) pp 352–72
[8] Raissi M, Perdikaris P and Karniadakis G E 2017 Physics informed deep learning (part I): data-driven solutions of nonlinear

partial differential equations (arXiv:1711.10561 [cs.AI])
[9] Pathak J, Wikner A, Fussell R, Chandra S, Hunt B R, Girvan M and Ott E 2018 Chaos 28 041101

[10] Wikner A, Pathak J, Hunt B, Girvan M, Arcomano T, Szunyogh I, Pomerance A and Ott E 2020 Chaos 30 053111
[11] Hegger R, Kantz H, Schmüser F, Diestelhorst M, Kapsch R-P and Beige H 1998 Chaos 8 727
[12] Ramachandran P, Zoph B and Le Q V 2017 Searching for activation functions (arXiv:1710.05941 [cs.NE])
[13] Errico R M 1997 Bull. Am. Meteorol. Soc. 78 2577
[14] He K, Zhang X, Ren S and Sun J 2016 Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)
[15] Scher S 2018 Geophys. Res. Lett. 45 616
[16] Newell A C and Whitehead J A 1969 J. Fluid Mech. 38 279–303
[17] García-Morales V and Krischer K 2012 Contemp. Phys. 53 79
[18] Tsitouras C 2011 Comput. Math. Appl. 62 770
[19] Loshchilov I and Hutter F 2019 Int. Conf. on Learning Representations
[20] Rackauckas C and Nie Q 2017 J. Open Res. Softw. 5 15
[21] Innes M, Saba E, Fischer K, Gandhi D, Rudilosso M C, Joy N M, Karmali T, Pal A and Shah V 2018 (arXiv:1811.01457)

10

https://github.com/maximilian-gelbrecht/NPDEChaos/
https://orcid.org/0000-0002-0729-6671
https://orcid.org/0000-0002-0729-6671
https://orcid.org/0000-0002-1239-9034
https://orcid.org/0000-0002-1239-9034
https://doi.org/10.1155/2018/4801012
https://doi.org/10.1155/2018/4801012
https://doi.org/10.3389/fams.2018.00060
https://doi.org/10.3389/fams.2018.00060
https://doi.org/10.1103/physrevlett.120.024102
https://doi.org/10.1103/physrevlett.120.024102
https://arxiv.org/abs/2001.04385
https://doi.org/10.1103/physreva.45.5524
https://doi.org/10.1103/physreva.45.5524
https://arxiv.org/abs/1711.10561
https://doi.org/10.1063/1.5028373
https://doi.org/10.1063/1.5028373
https://doi.org/10.1063/5.0005541
https://doi.org/10.1063/5.0005541
https://doi.org/10.1063/1.166356
https://doi.org/10.1063/1.166356
https://arxiv.org/abs/1710.05941
https://doi.org/10.1175/1520-0477(1997)078&tnqx3c;2577:wiaam&tnqx3e;2.0.co;2
https://doi.org/10.1175/1520-0477(1997)078&tnqx3c;2577:wiaam&tnqx3e;2.0.co;2
https://doi.org/10.1029/2018GL080704
https://doi.org/10.1029/2018GL080704
https://doi.org/10.1017/s0022112069000176
https://doi.org/10.1017/s0022112069000176
https://doi.org/10.1017/s0022112069000176
https://doi.org/10.1017/s0022112069000176
https://doi.org/10.1080/00107514.2011.642554
https://doi.org/10.1080/00107514.2011.642554
https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.1016/j.camwa.2011.06.002
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://arxiv.org/abs/1811.01457

	Neural partial differential equations for chaotic systems
	1. Introduction
	2. Methods
	3. Results
	3.1. Complex Ginsburg–Landau equation
	3.2. Kuramoto–Sivashinsky equation

	4. Discussion
	Data availability statement
	Acknowledgments
	Appendix A. Kuramoto–Sivashinsky model—4th-order derivative term
	Appendix B. Hyperparameter choice
	Appendix C. Convolutional neural network
	Appendix D. Hybrid reservoir
	Appendix E. Source code
	ORCID iDs
	References

