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A B S T R A C T   

Livestock is important for livelihoods of millions of people across the world and yet climate change risk and 
impacts assessments are predominantly on cropping systems. Climate change has significant impacts on Net 
Primary Production (NPP) which is a grassland dynamics indicator. This study aimed to analyze the spatio- 
temporal changes of NPP under climate scenario RCP2.6 and RCP8.5 in the grassland of Tanzania by 2050 
and link this to potential for key livestock species. To this end, a regression model to estimate NPP was developed 
based on temperature (T), precipitation (P) and evapotranspiration (ET) during the period 2001–2019. NPP 
fluctuation maps under future scenarios were produced as difference maps of the current (2009–2019) and future 
(2050). The vulnerable areas whose NPP is mostly likely to get affected by climate change in 2050 were iden
tified. The number of livestock units in grasslands was estimated according to NPP in grasslands of Tanzania at 
the Provincial levels. The results indicate the mean temperature and evapotranspiration are projected to increase 
under both emission scenarios while precipitation will decrease. NPP is significantly positively correlated with 
Tmax and ET and projected increases in these variables will be beneficial to NPP under climate change. Increases 
of 17% in 2050 under RCP8.5 scenario are projected, with the southern parts of the country projected to have the 
largest increase in NPP. The southwest areas showed a decreasing trend in mean NPP of 27.95% (RCP2.6) and 
13.43% (RCP8.5). The highest decrease would occur in the RCP2.6 scenario in Ruvuma Province, by contrast, the 
mean NPP value in the western, eastern, and central parts would increase in 2050 under both Scenarios, the 
largest increase would observe in Kilimanjaro, Dar-Es-Salaam and Dodoma Provinces. It was found that the 
number of grazing livestock such as cattle, sheep, and goats will increase in the Tanzania grasslands under both 
climate scenarios. As the grassland ecosystems under intensive exploitation are fragile ecosystems, a combination 
of improving grassland productivity and grassland conservation under environmental pressures such as climate 
change should be considered for sustainable grassland management.   

1. Introduction 

Grassland ecosystems as providers of vegetation resource and live
stock products cover more than 30% of the earth’s surface and about 
60% of Africa (Parton et al., 2010). Grasslands are sensitive to envi
ronmental change (FAO, 2005; Zhang et al., 2018), on the other side, 
fire, drought, overgrazing has also contributed to the degradation of 
grassland (IPCC, 2019). So, it causes difficulties to assess the pure effects 
of climate change on grassland productivity (Mihretab et al., 2020; Su 
et al., 2020). As such, the interplay between climate change and grass
land ecosystems is considered one of the main issues in global research. 
Global warming in the future can affect fluctuation in Net Primary 
Production (Piao et al., 2005). On the other hand, changes in vegetation 

cover and NPP can, in turn, affect global warming through bio
geophysical processes (Wang et al., 2002). Many grasslands ecosystems 
in different aspects such as phenology, productivity, NPP and plant 
growth (Gang et al., 2015) are affected by climate change (Su et al., 
2020). Net Primary Production (NPP) in grasslands is a substantial in
dicator of biomass dynamics (Scurlock et al., 2002), fluctuation based on 
grazing, management, climate change, and human interference such as 
land-use change (Dangal et al., 2016). So estimation of grassland NPP 
under climate change is important for sustainable management strate
gies, available forage for livestock, and the carbon cycle (Schimel et al., 
2001; Dangal et al., 2016). Overall, NPP is an essential variable of the 
ecosystem that simplifies the conception of climate change impacts on 
grassland ecosystem productivity. As well as NPP is a substantial 
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indicator for composition, biodiversity (Schuur, 2003). So, many studies 
have considered the NPP as an indicator to reflect the climate change 
impacts on vegetation cover (Yin et al., 2020; Jiang et al., 2020; Teng 
et al., 2020). Generally, NPP value is estimated in different ways such as 
earth system model, radiation-based NPP estimates, etc. (Del Grosso 
et al., 2008; Castanho et al., 2013; Cleveland et al., 2015), while un
certainties, concepts, and logic associated with each method are 
different. Radiation-based NPP estimates have been extensively used, 
because of adaptability with the high spatiotemporal resolution satellite 
images. Nevertheless, there are substantial challenges to use this 
method, especially in tropical ecosystems. Indeed, these methods rely on 
remote sensing indices to estimate the absorbed solar radiation by 
vegetated (i.e., FPAR) (Zhou et al., 2014). Whereas, earth system model 
estimates of NPP are typically based on climate NPP interactions into the 
future. Given both methods are based on climate data, and meteoro
logical data is available in some areas just at coarse spatial scales, so 
probably limiting the spatial resolution of NPP (Samanta et al., 2011). 
Besides, cloud cover mostly limits ground observation by satellite such 
as MODIS sensor, so may limit the temporal resolution of remote sensing 
indices (Zhao and Running, 2011). 

Climate change will have widespread consequences for local bene
ficiaries in Africa, the majority of whom depend on livestock pro
ductions and grassland for their livelihood. NPP-fluctuation 
determination can help to inform the improvement of livestock pro
ductivity and adaptation of vegetation cover under the future climate. 
As such, livestock has directly impacts to food security and livelihoods of 
more than one billion people (FAO, 2011). Specifically, climate change 
is predicted to have negative impacts on livestock systems in sub- 
Saharan Africa (SSA), which has a substantial role in the rural liveli
hoods (Thornton et al., 2009). The negative impacts of climate change 
are more severe for people most dependent on livestock and crop pro
duction (Battisti and Naylor, 2009). Moreover, the world’s population is 
expected to 9.7 billion by 2050 (UN, 2015). So, the demand for crop and 
livestock products consequently will be increased (Thornton et al., 
2007). 

Despite the essential role of livestock to food security of people and 
interaction of climate change, vegetation, and livestock, consideration 
to this research field in developing countries such as Tanzania as one of 
the least developed countries is overlooked. Most of the current research 
on climate change impacts on ecosystems are based on ecosystem 
monitoring on a regional or local scale and projected change in vege
tation in the future are only modeled minimally (Hickler et al., 2011), 
while this issue promotes powerful motivation for future studies. So, 
attention to the likely fluctuation in vegetation and NPP induced by 
climate change under emission scenarios in the future is essential to fill 
the gaps and the comparison of present and future NPP fluctuation under 
climate scenarios to identify vulnerable areas. Considering increasing 
concerns about negative environmental consequences of the increase in 
greenhouse gas emission, including extreme events (Easterling et al., 
2007), addressing climate change impacts have become necessary in 
terms of mitigation and adaptation perspective (Vermeulen et al., 2013). 
This study assesses NPP fluctuation and subsequently the number of 
livestock, affected by climate change by 2050. Overall, the aims of this 
study are, i) to develop a relationship between the climate variables such 
as precipitation, temperature, and evapotranspiration as independent 
variables and NPP as a dependent variable ii) to assess the Spatio- 
temporal dynamics of grassland NPP under two climate scenarios 
(RCP2.6 as a best-case scenario and RCP8.5 as a worst-case scenario) iii) 
to analyze, the number of livestock based on NPP fluctuation in 2050 iv) 
to identify the vulnerable areas in Tanzania in terms of NPP and the 
number of livestock in the future. This study holds considerable poten
tial in providing insights into NPP fluctuation in the grassland of 
Tanzania under climate change in the next decades. 

2. Materials and methods 

2.1. Study area 

The study was conducted in the grassland of Tanzania (1◦ to 11◦ S 
and 29◦ to 40◦ E) covering an area of 191,346 km2. Tanzania is an East 
African country with the third-largest livestock population on the Afri
can continent (TLMI, 2015). Besides, unique biodiversity and natural 
resources in Tanzania in terms of ecosystem types and richness of 
ecological communities lead this country to be considered as one of the 
fourteen-biodiversity hotspots in the world (United Republic of 
Tanzania (URT), 2009). Also, Mount Kilimanjaro (5895 m) is located in 
the northeast of Tanzania is the highest point in Africa. The climate is 
presented in various types: tropical on the coast, semi-temperate in the 
mountains, and dry in the plateau areas. The average annual rainfall 
ranges from 200 to 2000 mm, while most parts of the country receive 
less than 1000 mm. Due to the migration of the Intertropical Conver
gence Zone, the regions of Tanzania have different rainfall regimes. 
While the northern and coastal regions experience two rainy seasons 
(November-January and March-May), most of Tanzania experiences one 
long rainy season from October to April. 

The most serious environmental difficulties are drought, desertifi
cation, soil degradation, land-use change, and deforestation (United 
Republic of Tanzania (URT), 2009). Around 60% of rural households in 
Tanzania earn income from livestock activities, earning an average of 
22% of total household income from livestock rearing (Covarrubias 
et al., 2012). The number of different livestock types is shown in Table 1 
(Fig. 1). 

2.2. Datasets 

For setting up the regression model, we used gridded observational 
and reanalysis climate data. We chose the Climate Hazards Group 
InfraRed Precipitation with Station data rainfall data (CHIRPS) precip
itation dataset at spatially high resolution of 0.05◦ (~5km) in order to 
capture the spatial variability of Tanzanian rainfall (Funk et al., 2014). 
CHIRPS precipitation data is based on a variety of data sources including 
satellite products and in-situ observations and has been shown to 
perform well shown to perform well over eastern Africa (Dinku et al., 
2018; Muthoni et al., 2019). Temperature data was taken from the latest 
reanalysis dataset, ERA5, which provides hourly data at 0.25◦ (~25 km) 
spatial resolution, by combining a numerical weather model with sat
ellite and in-situ observations (Hersbach et al., 2019). ERA5 tempera
ture data has been shown to have good agreement with station-based 
temperature data in Tanzania (Gleixner et al., 2020). In consideration of 
the growing season in Tanzania, the monthly sums for precipitation and 
monthly means for temperature for the month June have been used for 
the period 2009 to 2019. This period corresponded to the available NPP 
data and datasets on animal populations (Fig. 2). 

ET0 is defined as an indicator of surface atmospheric evaporation 
demand over a reference surface and plays a substantial role in the water 
cycle. It includes soil water evaporation and plant transpiration, while 
counts about 90% of the total precipitation in semi-arid and arid lands 
(Wang et al., 2011). Furthermore, the spatial–temporal of ET0 
completely sensitive to global warming and climate change (Mojid et al., 
2015). There are various methods to calculate the ET0, while the 
Penman-Monteith (FAO-P-M) method is considered the most appro
priate model, in a different range of climate conditions (Croitoru et al., 
2013; Yu et al., 2016; Chen et al., 2020). The FAO P-M method could 
solve the availability problems of climatic variables (Jabloun and Sahli, 

Table 1 
Number of different livestock types in Tanzania (Covarrubias et al., 2012).  

livestock Cattle Sheep Goat Pig Chicken  

21,125,254 5,714,978 15,085,149 1,581,400 42,666,548  
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2008), that calculated based on weather data including (mean daily 
temperature, wind speed at 2 m above ground, humidity), daily 
incoming solar radiation at the crop surface. ET0 maps (unit: 1 mm = 10 
m3/ha) which have been prepared according to the FAO P-M method 
(WaPOR) for the Africa continent are used in this study for the period 
2009–2019. 

Furthermore, the NPP dataset was used to examine the empirical 
relationships between NPP as a dependent variable and driving climate 
variables (precipitation, temperature (max, min and mean), evapo
transpiration in June) as independent variables in the grassland of 
Tanzania. The Food and Agriculture Organization of the United Nations 
(FAO) provides the NPP maps (unit: gc/m2) based on satellite imagery 
and meteorological data such as incoming solar radiation and temper
ature data (Tmax, Tmin) and soil moisture stress (Fig. 3) with a spatial 
resolution 250 m for Africa and near East countries from January 2009 
to the present that were used in this study. The FAO NPP at dekadal time 
scale is derived from averaged daily input from weather data, solar 

radiation and dekadal input from fAPAR and soil moisture stress to ac
count for important factors influencing production. 

Primary method to calculate NPP was based on Monteith (1972), 
which explains NPP in response to solar radiation: 

NPP = Sc.Rs.εp.f APAR. SM.εLUE.εT.εco2.εAR[εRES]

where, Sc: scaling factor from dry matter production to NPP; Rs: total 
short wave incoming radiation (GJT/ha/day); εp: fraction of PAR in total 
short wave (JP/JT); fAPAR: PAR-fraction absorbed by green vegetation 
(JPA/JP); SM: soil moisture stress reduction factor; εLUE: light use effi
ciency (kgDM/GJPA); εT: normalized temperature effect; εco2: normal
ized CO2 fertilization effect; εAR: fraction kept after autotrophic 
respiration; εRES: fraction kept after residual effects. Then, methodolo
gies for estimating NPP were improved within the Copernicus Global 
Land Component framework which described in detailed by Verous
traete et al., 2002; Eerens et al., 2004. The FAO NPP is downloadable 
from open-access FAO Wapor database (https://wapor.apps.fao. 
org/home/WAPOR_2/1). Furthermore, in this study the land cover 
map was retrieved from http://www.esa-landcover-cci.org with spatial 
resolution of 300 m. 

Fig. 1. Map of Tanzania land cover and location in East Africa.  

Fig. 2. Flow chart of the research process.  

Fig. 3. Net Primary Production in relation to other data components 
(FAO, 2018). 
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Eventually, to achieve a consistent spatial resolution for the analysis, 
the datasets were resampled based on the bilinear interpolation method 
and interpolation data were unified to 250 m (Chao et al., 2018; Chen 
et al., 2019; Guan et al., 2020). 

2.3. Statistical analysis 

The assumption of Fang et al. (2001) and Mohamed et al. (2004) has 
been adopted in this study, that if the correlation between the co
efficients of variation of NPP and climate variables such as T, P, and ET0 
were found significant, the variation in NPP can be attributed to the 
temporal variability of climate parameters. Correlation coefficient and 
coefficient form regression are often used to disclose the relationship 
between NPP and climate variables due to the simplicity of the method 
(Fensholt et al., 2009). Because of limitations and unreliable results of 
the linear assumption, methods based on the nonlinear and complicated 
relations between NPP and climate variables are desired (Zhang et al., 
2018). So, the shape (linear or non-linear) of the relationship between 
the dependent and independent variables was determined based on an 
analysis of variance by ANOVA test (Cramer and Howitt, 2004). As such, 
the autocorrelation and amount of multicollinearity was checked by 
Durbin-Watson and variance-inflating factor (VIF) test respectively. For 
the next step, the NPP regression equation was developed based on the 
extracted pixel values of T, P, ET0, and NPP maps in Tanzania for the 
period 2009–2019. Then, the accuracy of the model was assessed based 
on the cross-validation method, such that training (80%) and test (20%) 
sets were generated from data set by randomly assigned. The following 
statistical criteria were used to evaluate the accuracy and validation of 
the prediction the NPP model (Table 2). The equations are as follows: 

R2 shows how close simulated values are to the fitted regression line. 
RMSE, NRMSE evaluate different aspects of model efficiency (He et al., 
2019; Li et al., 2015). RMSE measures the error of predicted values and 
observed values, while the performance of models with different scales 
can be compared by NRMSE. Moreover, MSE and MAD were used for 
error analysis of the model. All statistical analyses were performed using 
SPSS software. 

2.4. Climate projection under climate scenarios 

Climate projection from GCMs included monthly average minimum 
and maximum temperature (℃) and total precipitation (mm) in this 
study. The projected climate data using the Global Climate Model (GCM) 
based on HadGEM2-Es (HE) at a spatial resolution of 30-seconds 
(~1km) in time periods 2050 (average for 2041–2060) were used for 
two climate scenarios RCP2.6 and RCP8.5 in Tanzania. Indeed, the 
future projections data was obtained from CMIP5 processed data 
available on WorldClime data (v.1.7). Notably, HadGEM2 is one of the 
recommended models used in many projections studies of long- 
timescale change in climate change variables, ecosystems, etc (Dike 
et al., 2015; Arsiso et al., 2018; Tindall and Haywood, 2020; Toste et al., 

2019; Ahmed et al., 2020; Aziz et al., 2020). 
For the estimation of evapotranspiration in the future, the required 

meteorological dataset for the Penman-Monteith model is not available. 
Therefore, simple calibrated models of evapotranspiration such as 
Hargreaves, Thornthwaite method are used instead (Sentelhas et al., 
2010; Xystrakis and Matzarakis, 2011). Different forms of the Har
greaves equation, which are a temperature-based estimation, are rec
ommended for calculating reference evapotranspiration and widely 
used in different studies (Valiantzas, 2018; Shi et al., 2020; Mendes Reis 
et al., 2019). In this study, the optimization of Hargreaves model was 
performed by using the generalized reduced gradient method using 
solver function for Tanzania. Then, the reliability of Hargreaves-adj 
method was assessed by comparing the simulated Hargreaves-adj with 
the reference FAO-PM evapotranspiration during 2009–2019. 

2.5. Grassland dynamics under climate change 

A correction was applied to the ET0 maps before the pixel data were 
used as input to develop the regression equation for predictions of NPP 
values. Based on the implementation of multiple regression models on 
projected climate variables including P, T, ET0 as predictors, NPP values 
were estimated under RCP scenarios (RCP2.6 and RCP8.5) in the future. 
Therefore grassland dynamic based on NPP was developed as the 
determined relationship between climate variables and NPP from the 
previous step. Furthermore, in order to determine the vulnerable 
grassland regions in terms of NPP to climate change, the NPP maps at 
present (2009–2019 average) and future (2050 ~ 2041–2060 average) 
were generated under stringent mitigation scenario (RCP2.6) and very 
high emission (RCP8.5), then possible NPP variations and vulnerable 
areas in 2050 was produced based on the difference maps of the current 
(2019) and future (2050). 

In addition, to study the number of livestock units under different 
climate scenarios, the carrying capacity of grassland was calculated 
based on the following equation (Arzani 2009) and livestock unit co
efficients (LUC) (Table 3). The LUC is a reference unite that simplify the 
aggregation of livestock from different species/age via the use of special 
coefficient established on the animal feed requirements (FAO, 2020). 
Indeed, carrying capacity is the number of livestock units in grassland 
without depleting resources of vegetation and soil. 

CC =
ForageSupply × area

Foragedemand × duration  

where CC is carrying capacity (AUM) in hectare per month, forage 

Table 2 
the statistical indices for model validation.   

Index Formulate Model Performance 

MAD Mean Absolute Deviation MAD =
1
n
∑n

i=1
|xi − m(x)| the lower values show a better model 

MSE Mean Square Error 
MSE =

∑n
t=1(At − Ft)

2

n  
RMSE Root Mean Square Error 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

t=1(At − Ft)
2

n

√

NRMSE Normalized Root Mean Square Error NRMSE =
RMSE

At
× 100  Criteria 

≤ 10% 
10–20% 
20–30% 
≥ 30% 

performance 
Excellent 
Good 
Fair 
Poor 

R2 Coefficient of Determination 
r2 =

n(
∑

xy) − (
∑

x)(
∑

y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

[n
∑

x2 − (
∑

x)2][n
∑

y2 − (
∑

y)2
]

√
≤0.75 (ASHRAE, 2014)  

Table 3 
FAO livestock unit coefficients (Sub-Saharan Africa).   

Cattle Sheep Goat Pig Chicken 

Unit  0.8  0.1  0.1  0.2  0.01  

A. Zarei et al.                                                                                                                                                                                                                                    
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supply is the total available forage per unit area (g/m2); area is grassland 
acres (ha), the duration is grazed period (day), and forage demand refers 
to forage requirement of an animal unit (AU) per month. 

3. Results 

3.1. Monitoring of grasslands dynamics 

The average grassland NPP in Tanzania was showed from 2009 to 
2019 (Fig. 4). The grasslands of Tanzania experienced high productivity 
in 2018 (7.38 gc/m2), 2015 (6.76 gc/m2) and reduction through 2014 
(5.57 gc/m2), from 2009 (5.49 gc/m2) to 2011 (5.255 gc/m2). 
Furthermore, spatio-temporal distribution of NPP is strongly correlated 
with the spatial distribution of main climate variables including Tmax 
(0.934**), P (0.75**) and ET0 (0.885**). This offers that the combined 
effects of the main climatic variables are responsible for NPP fluctuation 
over time (Yili et al., 2014; Wang et al., 2017; Ma et al., 2020). The 
central regions of Tanzania have less precipitation that causes a lack of 
water for plant growth. Meanwhile, along with the increase in temper
ature, evapotranspiration in the central parts of Tanzania intensifies 
droughts (Slegers 2008). Therefore, Tmax and P are two important 
limiting climatic parameters for NPP in areas with low precipitation and 
high temperature. At the same time, analysis of elevation and NPP 
patterns show that heights extend in a northeast-southwest direction in 
Tanzania while in these areas the NPP value is less than other parts. It 
related to the elevation which reflects the property of vertical zone has 
the negative impacts on NPP value. 

For the next step, to present the relationship between NPP and 
different predictors, curve fitting regression analysis was proposed 
specifically for predicting NPP (gr/m2) as vegetation dynamics indicator 
in response to climate variables. So the following regression equation 
was obtained: 

NPP = − 0.833+(0.123 × Tmax) − −
(
0.024 × ET2

0

)
+
(
0.006 × P2) (1)  

where, ET0, Tmax, and P represent evapotranspiration (mm), maximum 
temperature (℃) and precipitation (mm), respectively. Next, cross 
validation was performed to evaluate the performance of the statistical 
model based on the comparison test and train dataset to estimate NPP. 
The statistical evaluation indicated that the regression model performed 
well (R = 0.95, R2 = 0.9, MAD = 0.4, MSE = 0.3, NRMSE = 18, and 

RMSE = 0.5 (gr/m2)). According to the results, the model efficiency 
demonstrated that fluctuations of climatic variables have relatively high 
explanatory power to justify the NPP changes. 

3.2. Projection of climate variables in the future 

Given the available dataset, the regression adj-equation in order to 
estimate ET0 for Tanzania in the future has the following form: 

ETadj = 0.0065 × Ra(Tmean + 17.8) (Tmax − Tmin)
0.015 (2)  

where Ra is extraterrestrial radiation, Tmean, Tmax, Tmin are mean, 
maximum and minimum air temperature (℃), respectively. Based on 
multiple regression between (Tmax-Tmin- Tmean) as predictors and pre
dictand ET0, reference evapotranspiration of period 2009–2019, were 
used to validate the regression model. According to statistical analysis, 
validation indicators values for the adj-model had an acceptable range 
(MAD = 0.45, MSE = 0.3, NRMSE = 12.46, and RMSE = 0.55 mm). 
Eventually, the spatial distribution of climatic variables such as pre
cipitation, maximum temperature and evapotranspiration under RCP2.6 
as an optimistic scenario and RCP8.5 as a pessimistic scenario in 2050 
are evident in Fig. 5. 

From Fig. 5 it can be seen that mean ET0 and Tmax under both sce
narios decrease from the northeast to the southwest parts in comparison 
to the other parts. Indeed, the model results of HadGEM2-Es demon
strate that climate variables patterns Tmax and ET0 under emission sce
narios have the largest increase from the northwest to the west (Rukuwa, 
Tabora and Kigoma province) and southeast parts (Pwani, Mtwara, 
Lindi, and Morogo) of Tanzania. While, the precipitation pattern in the 
future shows the decreasing trend from the east to the west parts. So 
that, the precipitation value will decrease by 5–6% under the RCP2.6 
scenario and 7–8% under the RCP8.5 scenario in 2050. 

3.3. Projection of grasslands dynamics in the future 

The general pattern of NPP shows a decreasing trend in the 
northeast-southwest, while the largest decrease in NPP mainly occurred 
in the northeast (Arusha, Manyara). This spatial pattern under both 
scenarios will be maintained in the future (Fig. 6). Furthermore, based 
on the NPP fluctuation maps in the future, the total amount of NPP in 
grasslands of Tanzania is estimated to increase until 2050. The NPP 
value under two emission scenarios show an increasing trend, and in
crease in RCP8.5 was greater than RCP2.6. Compared with the mean 
NPP value during 2009–2019 (2.25 gr/m2/day), the mean NPP of 
RCP2.6 and RCP8.5 increased by 2.5 and 2.65 gr/m2/day, respectively. 

Overall, the spatial pattern of NPP is mainly consistent with changes 
in the pattern of Tmax. As mentioned earlier, under both scenarios, NPP 
and Tmax are predicted to decline in mainly the northeast-southwest 
parts, which can be due to the heights in these areas. While the mean 
value of the precipitation gradually increases from the western half (<1 
mm) to the eastern (>10 mm). The analysis of the temperature and NPP 
trend showed that an increase in Tmax probably stimulates NPP. 
Consequently, the projected NPP showed an increasing trend in response 
to rising temperatures. 

To identify the vulnerable areas in terms of NPP value under RCP 
scenarios in the future, the difference maps of grassland NPP were 
prepared in Tanzania at the provincial level (Fig. 7). 

The regions showing a relative decreasing trend in the mean NPP 
value accounted for 27.95% (RCP2.6) such as Ruvuma, Kagera, Mara, 
Morogoro and Iringa and 13.43% (RCP8.5) in Ruvuma and Iringa 
Provinces were predominately located in the southwest, whereas the 
areas showing constant trends accounted for 12.1% (RCP2.6) in Lindi 
and Kigoma and 14.53% (RCP8.5) in Morogoro, Mara and Kagera 
Provinces were mostly observed in the northeast. Moreover, the highest 
decrease would occur in the RCP2.6 scenario in Ruvuma Province, by 
contrast, the mean NPP value in the western, eastern, and central parts Fig. 4. Spatial distribution of NPP in Tanzania grasslands (2009–2019).  

A. Zarei et al.                                                                                                                                                                                                                                    
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Fig. 5. Projected precipitation, Tmax, and ET0 under RCP2.6 and RCP8.5 at the provincial level in 2050.  

Fig. 6. The mean NPP value at present, and under RCP2.6, RCP8.5 scenarios in Tanzania by 2050.  
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would increase in 2050 in both Scenarios, the largest increase would 
observe in Kilimanjaro, Dar-Es-Salaam and Dodoma Provinces. 

3.4. The changes in livestock in the future 

The livestock composition in Tanzania is varied including about 
85.7% of the cattle, 2.9% of the sheep, 7.6% of the goats, 1.6%of the pigs 
and 2.2% of the chicken. The number of livestock based on carrying 
capacity was estimated in different Provinces in Tanzania under RCP2.6 
and RCP8.5 by 2050 (Fig. 8). The number of livestock units based on 
NPP value will increase by 12.47% and 16% under RCP2.6 and RCP8.5 
respectively. There are about 22 million cattle in Tanzania now, while 
this carrying capacity will increase to more than 13% (RCP2.6) and 18% 
(RCP8.5) in the future. Furthermore, the number of other grazing ani
mals such as sheep and goats will also increase in the Tanzania grass
lands under both climate scenarios. 

Generally, the population and the other hand, demand for meat have 
positive impacts on NPP, so more worker would be invested into effi
ciency and production of grassland, but in the areas that production and 
livelihoods rely on livestock production, the increase of economic 
growth can put pressure more than capacity on the grassland and 
probably lead to the reduction of the grassland NPP. So, in arid areas, 
management of the number of livestock is a substantial approach for risk 
management in grasslands. 

4. Discussion 

Climatic variables including T, P, and ET0 are the substantial factors 
controlling the NPP dynamics in different scales. Therefore, combina
tion of these interactions is of great importance for grassland ecosystem 
management (Zhao et al., 2019). It is widely acknowledged that Spatio- 
temporal changes of NPP is a function of climate variable, including 
precipitation, temperature, and evapotranspiration, many research have 
been undertaking to analysis the response of NPP to P, T and subse
quently ET0 at different scales (Yang et al., 2017; Zhang et al., 2020; 
Teng et al., 2020). Our results indicated a strong nonlinear relationship 
between NPP and Tmax, ET, and P. Thus, the changes in climatic vari
ables had a significant impact on the NPP. Accordingly, the spatiotem
poral fluctuation analyses of climatic parameters under different 
emission scenarios can help clarify the mechanisms driving NPP fluc
tuation in grassland ecosystems (Piao et al., 2009; Xu et al., 2013). The 

results of this research imply the temperature and evapotranspiration 
will increase and precipitation will decrease compared with current 
climatic conditions, while T and ET increase leads to higher projected 
NPP growth in Tanzania grasslands. Spatial fluctuations in NPP with 
solar radiation and consequently ET indicate the rapid rise in tempera
ture has declined the temperature limit for the plant, therefore pro
moting NPP growth (Piao et al., 2009) on the other side, drought can 
restrict plant growth. In summary, the optimal temperature and pre
cipitation play an essential role in grassland productivity. 

NPP was predicted to increase with increasing Tmax, ET under both 
scenarios by 2050. Until 2050, NPP of grassland is projected to increase, 
at a rate of 0.4 and 0.28 respectively under RCP 8.5 and RCP2.6 sce
narios. NPP increasing was primarily due to the impacts of the increase 
in temperature and consequently elevated CO2 and ET. The elevated 
NPP in 2050 projections was consistent with the results of other re
searchers in different areas (Jin et al., 2015; Gao et al., 2016; Han et al., 
2019). The results suggested that NPP fluctuation in the southeast half 
parts probably primarily controlled by the temperature and precipita
tion increase. Based on the projection of changing of climatic variables 
under emission scenarios, it could be concluded that in most parts of the 
grassland in the south and west, temperature increase leads to the 
accumulation of dry matter and thus increase NPP values. Similarly, the 
largest decrease in NPP mainly occurred in the northeast with high 
precipitation, it is probably due to the fact that increased precipitation in 
the northeastern region could lead to cloud cover, and therefore have 
negative impacts on vegetation photosynthesis (Han et al., 2019). 

The fluctuations of NPP in grassland ecosystems under warming 
were presumably to be adjusted by water availability (Zhu et al., 2017). 
Temperature increase accelerated the rate of evapotranspiration and 
consequently changed the availability of soil water (Trenberth et al., 
2013; Cook et al., 2014). Simultaneously with decreasing soil water 
availability, NPP might be reduced due to suppressed photosynthesis 
and even decrease root biomass (Liu et al., 2016; De Vries et al., 2016). 
Shen et al (2015) demonstrated that precipitation probably regulates the 
response of soil and vegetation to climate warming in dry areas. Actu
ally, availability of water becomes a substantial factor on NPP as an 
indicator of vegetation dynamics on Tanzania grasslands, especially 
under negative scenario as warmer climate condition (Han et al., 2019). 
These results highlight the essential role of precipitation projection 
under emission scenarios to estimate NPP fluctuations in the future (Han 
et al., 2019). 

Fig. 7. The vulnerable areas based on the difference map of NPP at present and 2050.  

A. Zarei et al.                                                                                                                                                                                                                                    



Ecological Indicators 125 (2021) 107600

8

It should be emphasized that the results of the projected NPP fluc
tuations and the number of livestock by 2050 under the assumption of 
climate variables such as P, Tmax, and ET have impacts on NPP, mean
while combination of these changes with anthropogenic pressure such as 
grassland management, overgrazing will result in worse situations. 
Specifically, climate change has essential impacts on the livestock 
sector, undoubtedly changing climate variables will increase the risk of 
livestock production and decrease the ability of risk management in 
grasslands. Meanwhile, animal food chains are significant impacts on 
greenhouse gas emissions (Steinfeld et al., 2006). Studies agree that 
rising demand for livestock products, due to the growth of population 
urbanization rate will continue in the future. This rising demand will 
give an increase to remarkable land-use competition between food and 
feed, while adaptation to climate change and mitigation greenhouse gas 
emission approach will enhance the cost of food production (Thornton, 
2010). On the other hand, increasing production in the short run by 
overuse of natural resources reduces long term efficiency. Pastoralists 
who live at climatic extremes areas with extreme winters or extended 
droughts causing a high mortality rate of their livestock are vulnerable 
to climate change (FAO, 2018). Totally, hidden hunger is an obstacle to 

economic and social development in sub-Saharan Africa (Shikuku et al., 
2019). While raising the efficiency of the livestock-agri-food systems, is 
a substantial solution to achieving food security and sustainable devel
opment in underdeveloped countries with food-deficit (FAO, 2011). 

Climate change has impacted NPP conditions, while timely action 
based on risk management can decrease the losses and impacts of cli
matic extreme on livestock and food security can be improved in 
vulnerable societies (Matere et al., 2020). Overall, many variables 
determine whether adaptation approaches are effective and reliable in 
different locations. It seems more adaptation than currently, is needed to 
decrease vulnerability to climate change in the future, while adaptation 
has limits, expense (IPCC, 2007). 

5. Conclusion 

This study aimed to evaluate the Spatio-temporal fluctuations in NPP 
and the number of livestock units under climate scenarios in the grass
land of Tanzania in 2050. Also, the vulnerable areas in terms of NPP 
were identified to reduce climate change adverse impacts. According to 
the results of this study, the temperature and evapotranspiration will 

Fig. 8. Projected number of i) cattle ii) sheep iii) goat iv) livestock unit in different provinces in Tanzania by 2050.  
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rise and precipitation will decrease under both climate scenarios in the 
future, while T and ET increase will lead to higher projected NPP growth 
in Tanzania grasslands. On the other side, the number of livestock units 
based on NPP, carrying capacity, rising demand will increase in 2050. 
The results will raise our understanding to study the impacts of changes 
in NPP on grassland productivity, and illuminate the climate change 
impacts on NPP and consequently livestock units. Considering that the 
major impacts of climate change will be observed in livestock systems in 
developing countries that life people depend on grasslands and are very 
vulnerable, evaluation of NPP fluctuation and developing an early 
warning system can decrease the loss of grazing animals, increase 
resilience, and improve the adaptation of grassland. Overall, in the 
future, food security will increasingly be affected by competition for 
natural resources between food and feed, especially land, soil, and 
water, so attention to sustainable development approaches to adaptation 
of climate change is essential for grassland management. What is more, 
the pro-active actions based on monitoring data can decrease the po
tential impacts of climate extreme events and climate change on grass
lands and livestock and decrease the losses and enhance food security. 
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