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Findings 

More than 30 years ago, Diffusion-Limited Aggregation (DLA) has been studied 
as mechanism to generate structures sharing similarities with real-world cities. 
Recently, a stochastic gravitation model (SGM) has been proposed for the same 
purpose but representing a completely different mechanism. Both approaches 
have advantages and disadvantages, while e.g. the dendrites emerging via DLA are 
visually very different from real-world cities, the SGM does not preserve 
undeveloped locations close to the city center. Here we propose a unification of 
both mechanisms, i.e. a particle moves randomly and turns into an urban site 
with a probability that depends on the proximity to already developed sites. We 
study the cluster size distributions of the structures generated by both models 
and find that SGM generates more balanced distributions. We also propose a way 
to assess to which extent the largest cluster is a primate city and find that in both 
models, beyond certain parameter value, the size of the largest cluster becomes 
inconsistent with being drawn from the same distribution of remaining clusters. 

Various models have been proposed to generate structures that share 
similarities with real-world cities. The correlated percolation model combines 
an exponential radial gradient with correlated random numbers (Makse, 
Havlin, and Stanley 1995). However, the largest city is too big and 
consequently omitted when Zipf’s law for cities, i.e. a power-law size 
distribution with specific exponent, is validated. The model by Schweitzer & 
Steinbrink (1998) is based on two processes, the emergence of new clusters 
and cluster growth. In this model a similar problem is encountered – due 
to coagulation the largest cluster dominates the growth process. The authors 
avoid this by excluding the largest cluster from growth. 

We consider the Stochastic Gravitation Model (SGM) (Rybski, García Cantú 
Ros, and Kropp 2013; Li, Rybski, and Kropp 2021; Rybski and Li 2021). 
In this approach, the probability that a site  is converted from non-urban 

 to urban  is given by 
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where  is the main parameter and  is the Euclidean distance between sites 
and . The structures generated by the SGM also exhibit a largest cluster that is 
too large compared to the smaller ones. 

The exponent  characterizes what is also known as “friction of distance” or 
“friction of space” (Cliff, Martin, and Ord 1974). Couclelis (1996) describes 
a “[…] ‘glue’ holding cities together […] to overcome the friction of distance 
for the purpose of efficient communication […]”. In economic terms, distance 
translates into costs which are to be minimized (Friedmann 1956). Small 
allows new urban areas to be seeded further away and they do not have to be 
adjacent to old ones. 

Here we propose a new model representing a combination of the SGM with 
Diffusion Limited Aggregation (DLA) (Witten Jr. and Sander 1981) which 
has previously been studied in the urban context (Fotheringham, Batty, and 
Longley 1989; Batty, Longley, and Fotheringham 1989)1. The new model, 
which we call Diffusion Limited Gravitation (DLG), generates structures 
which visually seem less scattered than those from the SGM. Accordingly, we 
investigate to which extent the largest cluster outgrows the size distribution. 

DLA starts with a seed “particle” at the center of the grid. A new particle 
performs a random walk starting far from the center. The particle stops once it 
reaches a cell adjacent to an occupied one. Then the procedure is repeated with 
a new particle. 

We propose to combine the SGM with DLA. The SGM takes place on a square 
grid. As initial condition we use one occupied cell at the center of the system. 
The modeling is done according to the following iterative steps. 

Analogous to the original SGM, also DLG involves the  parameter which 
determines how strongly the probability of urbanization drops with the 
distance. Accordingly, we run the models with different parameter values, i.e. 
10 realizations for each. For DLG we use 13 -values within 

1. Calculate  according to Eq. (1) and normalize so that . 

2. A random walker starts from an arbitrary cell (can be close to the 
origin; it can cross urban cells). 

3. The random walker stops with probability  from Eq. (1). I.e. it 
stops at site  if a random number  is smaller than . The cell is 
converted to urban, . 

4. Repeat from step 1. 

For completness, we would like to mention the Dielectric Breakdown Model (Niemeyer, Pietronero, and Wiesmann 1984) that was also used 
for generating urban forms (Batty and Longley 1988; Batty 1991). 
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Figure 1. Examples of structures generated with (a)-(c) the SGM and (d)-(f) DLG for different values of the model 
parameteras indicated on top of the panels 

In all cases 2,000 urban pixels (5 %) are shown. Green color indicates the central clusters while blue color indicates other occupied pixels. 

. As in each iteration one pixel is added, the 
number of pixels corresponds to the number of iterations. For SGM the 
-values are . Additionally, for the SGM a 
normalization factor  was used to ensure , which implies that the 
number of pixels approximately increases by 10 during each iteration. We store 
the model output after every 10th (DLG) or every iteration (SGM). We use a 
system size of  pixels. 

Figure 1 shows illustrative examples of both models. It can be seen that small 
 lead to more scattered and a larger number of small clusters. Vice versa, with 

increasing  the largest cluster becomes dominant. Moreover, for the DLG 
some of the dendrite structure, similar to the original DLA, can be seen, e.g. 
Figure 1(e). 

As detailed above, previously it was found that the largest cluster outgrows 
the other ones in various models. Figure 1(d) suggests a more balanced result, 
i.e. the largest cluster is relatively small compared to abundant smaller clusters. 
Accordingly, in the following we want to analyze if DLG generates Zipf-
distributed clusters and to what extent the largest cluster outgrows. 

Zipf’s law for cities (Auerbach 1913; Zipf [1949] 2012; Berry and Okulicz-
Kozaryn 2012; Rybski 2013; Nitsch 2005; Soo 2005; Cottineau 2017; 
Rozenfeld et al. 2011; Ribeiro et al. 2021) can be written as 
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Figure 2. Examples of probability density distributions and Zipf exponent vs. number of urban cells for both models 

Panels (a) and (b) show p(A) of the cluster sizes A with (circles) and without (crosses) largest clusters for two -values when the number 
of occupied cells is approximately 7,000. Panels (c) and (d) show how the Zipf exponent  depends on the number of urban cells when it 
is estimated without the largest clusters. 

where  is the probability density function (pdf) and  represents the 
cluster areas (given by their number of urban cells). We use the method 
proposed by Clauset et al. (2009) to estimate the Zipf exponent  (R package 
“poweRlaw” [Gillespie 2015]). Moreover, we fix the lower bound for the 
estimation of the exponent to 1. In order to have better statistics we combine 
the output of 10 realizations with the same or similar number of urban pixels. 
Please note that  differs by 1 from the Zipf exponent when it is obtained from 
a rank-size plot . 

For comparison, we also analyze the distribution of a set where the largest 
cluster of each realization has been removed. We reason that if the estimated 
Zipf exponents for the sets with and without largest cluster are similar, then the 
largest cluster is consistent with being drawn from the same distribution. If the 
exponents differ, then it is not consistent. 

Examples of empirically estimated pdfs are shown in Figure 2 (a) and (b). 
Each panel displays the estimated pdfs for 2 -values and with/without largest 
clusters. Two observations can be made. First, in both cases the largest cluster 
seems to be dominant for larger . Second, DLG leads to a rather small 
and for the SGM the exponent seems to depend on . 
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Figure 3. Dependence of the Zipf exponent on the model parameter and influence of in- or excluding the largest clusters 

The -exponent is plotted as a function of , where is the former was estimated with- and without largest clusters. Panels (a)and (b): DLG, 
panels (c) and (d): SGM. Panels (a) and (c): 2,000 urban cells, panels (b) and (d) 7,000 urban cells. One cansee that beyond certain value of 
the model parameter gamma the size of the largest cluster becomes inconsistent with being drawnfrom the same distribution. 

In Figure 2 (c) and (d) the resulting -exponents are plotted as a function 
of the number of urban cells for DLG and the SGM, respectively. We can 
see that in case of the SGM there can be a strong dependence (as previously 
reported [Rybski, García Cantú Ros, and Kropp 2013]), which in case of DLG 
is much less pronounced. Moreover, for the SGM  is found around 2 which is 
consistent with real-world data but for DLG,  is close to 1.5 – a more balanced 
distribution which is rarely found for real cities. 

Finally, we study the resulting distributions with and without largest cluster as 
a function of the model parameter . Figure 3 shows the results for 5 % and 
17.5 % urban cells. We find that the estimated exponents – in- or excluding the 
largest cluster – are similar for small  but diverge for large . In all cases, for 
small  the largest cluster is consistent with Eq. (2) but for larger  it generally 
outgrows. It is important to note that the  estimates for very large  are less 
reliable because they are based on critically small sample sizes. 

In summary: (i) We propose a new model (DLG) that represents a 
combination of the well-known DLA with the more recent SGM. DLG is 
only one possibility and there are other ways of combining DLA and the 
SGM that can be investigated in future research. Perspectively, SGM could 
represent a new approach to spatial modeling of human settlements (Strano 
et al. 2020). (ii) We propose an approach to assess to what extent the largest 
cluster is consistent with being drawn from the same distribution. From a 
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methodological point of view, more rigorous statistical testing will be necessary, 
when e.g. the existence of primate cities in real-world data is to be assessed 
(Linsky 1965). (iii) We find that for both models the largest cluster is 
compatible with the rest of the distribution if  is small. For large values it 
outgrows. 
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