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Abstract In the past years, there has been an increasing number of applications of functional climate
networks to studying the spatio-temporal organization of heavy rainfall events or similar types of extreme
behavior in some climate variable of interest. Nearly all existing studies have employed the concept of
event synchronization (ES) to statistically measure similarity in the timing of events at different grid
points. Recently, it has been pointed out that this measure can however lead to biases in the presence of
events that are heavily clustered in time. Here, we present an analysis of the effects of event declustering
on the resulting functional climate network properties describing spatio-temporal patterns of heavy rainfall
events during the South American monsoon season based on ES and a conceptually similar method, event
coincidence analysis (ECA). As examples for widely employed local (per-node) network characteristics of
different type, we study the degree, local clustering coefficient and average link distance patterns, as well
as their mutual interdependency, for three different values of the link density. Our results demonstrate
that the link density can markedly affect the resulting spatial patterns. Specifically, we find the qualitative
inversion of the degree pattern with rising link density in one of the studied settings. To our best knowledge,
such crossover behavior has not been described before in event synchrony based networks. In addition,
declustering relieves differences between ES and ECA based network properties in some measures while
not in others. This underlines the need for a careful choice of the methodological settings in functional
climate network studies of extreme events and associated interpretation of the obtained results, especially
when higher-order network properties are considered.

1 Introduction

For humanity, climate extremes have always been a
challenge [1]. Due to their societal as well as eco-
nomic impact, understanding the drivers and interplays
between extreme events is still a central topic of climate
research [2-4]. With the rise of computational power,
studying the synchrony of extreme events has attracted
increasing attention over the past decade [5-7]. Most
of the corresponding studies have employed event syn-
chronization (ES) [8] (a method that has originally been
introduced to study EEG spike trains to quantify the
synchrony of event time series) to examine the spatio-
temporal characteristics of heavy rainfall [9-11]. Utiliz-
ing ES to construct functional network representations
of the Earth’s climate system [12,13] has led to sub-
stantial improvements in understanding global extreme
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rainfall patterns [14], predicting the Indian summer
monsoon onset [15], and forecasting flood events in the
Central Andes [9], to mention only a few examples.
Despite the success of the method, several recent
studies [9,16-18] have pointed out a methodological
concern related to ES that can arise when working
with events exhibiting marked clustering in time. While
this potential drawback may have considerable conse-
quences for the application of ES in functional climate
networks, it does not render previous analysis results
invalid, yet calls for some careful re-examination. In
a recent publication [18], the dependence of ES based
functional climate networks on event clustering in the
underlying time series has been studied for two illus-
trative case studies on the South American monsoon
system (SAMS), highlighting that a corresponding con-
nectivity bias can be (at least partially) corrected for
by employing a simple event declustering scheme [9].
As an alternative method to quantify the synchrony
of events, event coincidence analysis (ECA) [19,20] has
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been proposed, which is not prone to the aforemen-
tioned connectivity bias in the presence of temporally
clustered events. In our recent work [18], we have com-
pared the results of functional climate network analy-
sis when employing either ES or ECA for characteriz-
ing event synchrony. In particular, we have discussed
the impact of the declustering scheme to avoid paired
extreme events on the results for the associated net-
work representations based on the corrected and uncor-
rected versions of both event synchrony measures. How-
ever, this discussion has focused exclusively on the per-
node degree patterns of the resulting networks as the
probably simplest possible complex network character-
istic, leaving aside the consideration of possibly distinct
effects on higher-order structural as well as spatial net-
work properties [18].

In this work, we expand this previous analysis by
investigating patterns of the local clustering coefficient
as an example for a higher-order network measure as
well as the spatial characteristics of edge lengths in the
geographically embedded climate networks obtained
based on both event synchrony measures without and
with employing a declustering scheme. Moreover, we
also investigate the dependency of the different charac-
teristics on the link density in the networks, which has
been previously shown to potentially modify climate
network properties not only quantitatively [21], but also
qualitatively [22]. Unlike the present work, these earlier
studies have utilized Pearson correlation to infer sta-
tistical association between time series. Here, we show
that a corresponding crossover behavior associated with
a qualitative reversal of the large-scale spatial pattern
of certain local network characteristics like the node
degree can also be observed in event synchrony based
networks.

Accordingly, we structure our manuscript as follows:
We first introduce the conceptual ideas and method-
ological details of functional climate network analysis,
ES and ECA along with considerations on the tem-
poral clustering of events and a simple declustering
scheme. To underline the possible relevance of identi-
fying and accounting for possible biases of event syn-
chrony methods, we briefly summarize recent studies
that have employed either ES or ECA to study spatio-
temporal patterns of extreme events using complex net-
work representations. Subsequently, we introduce the
SAMS as a well-studied regional climate phenomenon
that will be used in the following to illustrate the dis-
tinctive features of the networks based on the two event
synchrony measures, along with a short description of
the employed data set. Comparing and contrasting the
behavior of ES and ECA based functional climate net-
works will be finally performed in three steps. First, we
investigate the spatial patterns of three local (per-node)
network measures for different values of the prescribed
link density. Second, we examine the mutual depen-
dency between the values of each measure obtained
with the different methods along with the correspond-
ing impact of local event clustering as measured by
the so-called pairing coefficient [16]. Third, we illus-
trate how the interdependency between different net-
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work characteristics can contribute to analyzing the
differences among the methods. We close our work by
summarizing the main findings of our analysis.

2 Methods

2.1 Functional climate networks and their
characteristics

Functional networks present a discrete way of encoding
information on statistical associations among a com-
monly large set of time series and have been success-
fully employed in diverse fields of science such as neuro-
physiology [23-25], economics [26-29], seismology [30—
34] and climatology [12,13,35,36], to mention only a
few. In the context of extreme (or just “extraordinary”)
climate events as studied in the present work, such asso-
ciations can be quantified by suitable event synchrony
measures (see below). In the resulting functional cli-
mate networks, we can associate each individual time
series with a node that is characterized by a specific
location (i.e., of the corresponding grid point or mea-
surement site), making the constructed networks being
embedded in geographical space.

By measuring the strength of statistical interdepen-
dency between all pairs of time series, we identify the
strongest mutual interrelationships among the analyzed
set of series. Here, the concept of a strong interre-
lationship is commonly understood as a value of the
employed pairwise association measure that exceeds a
certain percentile of the corresponding empirical distri-
bution obtained from all pairs, i.e., focusing on the p -
100% largest values. Identifying the presence (absence)
of such a strong interrelationship with the presence
(absence) of a link between the two corresponding
nodes, we obtain an unweighted functional network rep-
resentation of the underlying climate data set with a
prescribed link density p (i.e., the fraction of possible
edges that are actually present in the network). For the
sake of simplicity, we will consider here only symmetric
association measures, implying that the resulting net-
work is also undirected (i.e., any link between a pair of
nodes always describes a bidirectional association). The
topology of such an unweighted and undirected network
with N (i.e., the number of time series) nodes and F
(= pN(N —1)/2) edges is conveniently summarized in
the binary adjacency matrix A. Its matrix elements a;;
equal 1 if node 7 is connected with node j, and 0 other-
wise. Note that other methodological choices (e.g., fully
or partially connected weighted networks [37], directed
networks [37,38], or networks based on a locally defined
instead of a global threshold criterion [39]) are possible,
but shall not be further studied in the context of the
present work.

To quantify the individual connectivity properties of
each node in the network, there exist a plethora of
complementary topological (structural) as well as spa-
tial (geometric) different network measures [40,41], of
which we will employ just a few examples in our present
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study. Before discussing those measures in detail, we
note that in functional climate networks, nodes often
represent differently sized fractions of the Earth’s sur-
face. Accordingly, network measures can exhibit biased
values according to their different represented area if
not accounting for this heterogeneous placement of
nodes on the approximately spherical surface of the
Earth. To correct for such biases, Heitzig et al. [42] have
introduced the concept of node-splitting invariance.
Using the proposed strategy, suitable node weights are
introduced to correct for the bias originating from the
heterogeneous coverage of the available geographical
space. Specifically, for a regular (latitude-longitude)
grid on a spherical surface, the spatial node density
increases with the inverse of the cosine of the latitude,
which is why we will use here node weights correspond-
ing to the cosine of the latitudinal position A; of each
node (i.e., w; = cos \;). With this prerequisite, we can
now proceed with defining the network properties of
interest in this study.

The n.s.i. degree k; of node i indicates the number of
connections of node i to the other nodes in the network
and is, therefore, defined as

N
ki = ijaij; (1)
=1

We further compute the n.s.i. local clustering coeflicient
[42,43].

1
CZ' = ﬁ ijwkaijajkaki (2)
v i#k

and the average link distance

N
21 @ijdi 3)
N b)
Zj:l @ij

which is the per-node arithmetic mean of the spatial
distances covered by all adjacent edges. For conve-
nience, we will measure d; as an angular distance in
dimensionless units (rad). Note that unlike for the two
other measures, the considered version of the average
link distance does not include any n.s.i. node weights.

For the computation of the respective measures, we
utilize the python package pyunicorn [44]. In employ-
ing the current version of this package, we have unfor-
tunately encountered computational problems that did
not allow us to estimate the complete field of n.s.i.
local clustering coefficients for our large functional cli-
mate networks (N = 48,400 nodes, see Sect. 3) when
operating at high link densities (p = 0.05). Accord-
ingly, only for this specific case, we will consider in the
following an unweighted version of the local clustering
coefficient (w; = wy, = 1). As for the average link dis-
tance, this appears justified by the fact that for the real-
world example to be studied, we are operating far from
the poles, where the n.s.i. node weights do not differ

d; =
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too much from 1 (cos A; > 0.75). Since even more, the
majority of connected nodes in functional climate net-
works are commonly located at similar latitudes (close
nodes are far more likely to be connected than distant
ones), we expect the effects of including proper n.s.i.
node weights on the overall patterns of C; to be suf-
ficiently small to be disregarded in this special case,
which will be further supported by our obtained results
(see Sect. 3).

With the aforementioned clarifications, we will omit
the term n.s.i. for brevity in our discussions on node
properties in the functional climate networks studied
in the remainder of this paper.

2.2 Event synchronization

Event synchronization (ES), as established by Quiroga
et al. [8], has originally been introduced to quantify the
synchrony between EEG spike trains. In the last decade,
this parameter-free method has also been utilized to
construct functional climate networks (see Sect. 2.5).
Using ES, two events [ and m at nodes i and j, respec-
tively, which occur at times ¢! and ¢/, are considered
synchronous if and only if their temporal distance is
smaller than the local (dynamical) coincidence inter-
val [17]

Tl'rjn = Emln {tl+1 - tl,tl - tl—latin-‘rl - ti”’tzn - tin_l} '

(4)

For the first and the last event of each time series, we
cannot compute the temporal distance to the preceding
or subsequent event, respectively. Therefore, we exclude
these events in the following calculations [16]. For two
event sequences with s; and s; events, I and m can
therefore take values between | = 2,3,...,s; — 1 and
m:2,3,...,sj—1.

Using these dynamical coincidence intervals, we for-
mulate the synchronization condition

)

Otm =

g 1, o<t —t <7’
0, otherwise,

Here, we note that the dynamical coincidence interval
7] can be further restricted by an upper bound 7yax to
avoid unrealistically large values, thereby introducing
an otherwise omitted parameter to the method.

To obtain the total number of synchronous event

pairs, we next compute

s;—1 ijl

clili) =3 g3 (6)

=2 m=2
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using the indicator function [16]

1, ifo)? —1,0ml 1:0andam+” 0,
g 1if either th =,

Ju =12 y
fm or o)) =1 and (Jfgll:loramﬂl 1),

0, otherwise.

(7)

The above notion of event synchrony relies on the
assumption that an event at node j precedes the corre-
spondent event at node 7. The rather complicated form
of the employed indicator function is chosen precisely
to prevent double counting of event pairs in both, ¢(j|i)
and c¢(j]¢) (with refers to the event synchrony in the
opposite temporal order), and thereby ensure proper
normalization of the resulting symmetric event synchro-
nization strength defined as

e (ils) +elili)
(si —2)(s;—2)

ES _
(Y-

(8)

In the course of this work, we will utilize the symmet-
ric matrix Q5 = (Q1) to construct functional climate
networks. For this purpose, we will threshold the ele-
ments of QES at some suitable value such as to obtain
a certain link density p which we will specify in the
corresponding sections.

2.3 Event coincidence analysis

ECA is an alternative method to quantify synchrony
between point processes, which is based on a similar
yet somewhat simplified rationale as compared to ES.
In contrast to ES where the local coincidence window is
adaptively defined according to the timings of the previ-
ous and subsequent events, for ECA the corresponding
coincidence window is a global parameter, the global
(static) coincidence interval AT.

Considering an identical setup as before, we consider
two events at times tf and tJ, as synchronous, if they
appear in a proper order with a mutual temporal dis-
tance smaller than AT, i.e., 0 < tj —tJ < AT. On the
one hand, this choice allows for faster computations, as
the coincidence interval does not have to be computed
individually for each pair of events. On the other hand,
it provides the option of an analytical test for the sig-
nificance of the resulting number of synchronous event
pairs, at least in the limit of rare events [19,20].

To quantify the synchrony of two time series, we esti-
mate the event coincidence rate as the fraction of events
in time series ¢ which are preceded by at least one event
in time series j within AT,

5775

r(i|j; AT) =

(5 menti =)
9)

]ml
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with the indicator function

1, ifxel,

lr (=) = {0,

and the Heaviside step function @(-) employed to avoid
double counting of events. To correctly normalize the
event coincidence rate [16], we have to subtract from
the total number of events in time series j the number
of events occurring between ty — AT and g, i.e.,

1
otherwise, (10)

i =Y 1p—are (t)- (11)
m=1

As we are ultimately interested in obtaining an adja-
cency matrix that is based on the event synchrony
between each pair of time series, we again construct a
symmetric matrix by considering the arithmetic mean
of any pair of event coincidence rates

ECA _ (i j; AT) +r

(4]é; AT)
iJ 2 °

(12)

in full analogy to the case of ES. As a result, we can
obtain a symmetric, binary adjacency matrix of the
functional climate network by thresholding the simi-
larity matrix Q¢ = (QECA) at some value to obtain
the desired link density.

We emphasize that there are two distinct algorithmic
variants of event coincidence rates (referred to as trigger
and precursor rates) that have been employed in recent
works [20]. For the sake of simplicity and consistency
with the definition of ES, we restrict our attention here
to the so-called trigger rates corresponding to the defi-
nitions stated above. Moreover, it may be worth notic-
ing that both, ES and ECA can be easily generalized to
also account for delayed event occurrences by consider-
ing an additional time shift 7 between the two series
of interest. As the latter is not of practical interest in
the context of our present work, we will omit any fur-
ther discussion on the implications of the corresponding
additional parameter.

2.4 Effects of event clustering on synchrony
measures

At it has been early recognized by [9] and others,
events occurring in close temporal succession will lead
to very short dynamical coincidence intervals of the
ES, thereby possibly excluding actually close pairs of
events in two series from being considered synchronous.
Specifically, in the context of homogeneously sampled
time series, events occurring at subsequent time steps
would result in dynamical coincidence windows of %
time step, allowing for counting only exactly simulta-
neous events. Recent work has focused on the practical
implications of this effect, suggesting that a large num-
ber of temporally clustered events commonly lead to a
downward bias of the estimated event synchronization
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strength, thereby missing possible links in a functional
network construction. As a consequence, the degree of
those nodes in functional networks that are character-
ized by strong temporal event clustering is commonly
biased towards lower values [16-18] if not accounting
for the latter effect. Notably, since ECA employs a fixed
instead of adaptive coincidence interval, its values are
not affected by the aforementioned mechanism.

To quantify the magnitude of temporal event cluster-
ing, we assign a simple statistical measure to each time
series (i.e., each node of the functional network), the so-
called pairing coefficient [16]. This property counts the
fraction of events in a series that occur at subsequent
time steps,

Sifl

C 0 -1 (3

=1

1
P =
S; —

and takes values in the interval [0,1] limited by the
extreme cases with no event cluster (P; = 0) and all
events occurring at subsequent time steps (P; = 1).

While having been quantitatively discussed only
recently, some parts (yet not all) of the existing litera-
ture have already acknowledged the resulting effect of
event clustering on ES and addressed this observation
by a simple correction scheme [9,14], which consists of
removing all but the first events of each event cluster
(consisting of two or more events observed at subse-
quent time steps) in all time series. This declustering
approach prevents the described collapse of the dynam-
ical coincidence interval to % time step and thereby
avoids the clustering related bias, but comes on the
cost of reducing the number of events in each affected
series. The corresponding approach hence leads to a
reduced sample size of events (and therefore an ele-
vated variance of the obtained estimates of event syn-
chrony measures, among other statistical characteris-
tics) unless we employ an iterative (but commonly com-
putationally expensive) procedure of successively low-
ering the threshold for defining additional events and
declustering the resulting extended event sequences. In
the context of the present work, the latter option will
not be considered further.

Although the described correction scheme has been
originally introduced to correct for the mentioned algo-
rithmic shortcoming of the ES, it can also physically be
motivated in the context of climate extremes. In time
series including climatic extreme events, the appear-
ance of events at subsequent time steps (e.g., days)
can be caused by two different mechanisms. On the
one hand, such subsequent events can be related to dis-
tinct weather systems or phenomena (which may still
be interrelated physically, but could be counted as indi-
vidual events). However, on the other hand (and poten-
tially more frequently), subsequent extreme events are
associated with one single (temporally and/or spatially
persistent) weather system. Following this rationale, an
application of the correction scheme can also be feasi-
ble along with functional climate networks constructed
utilizing ECA [18]. From the latter reference, it follows
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that the degree patterns of ES based climate networks
can be expected to be more strongly modified by event
declustering than those of ECA based networks, while
the results of both approaches become more similar
to each other after declustering. In the context of the
present work, we will further examine the role of link
density in this process, along with corresponding effects
on the spatial patterns of two additional local network
measures as introduced in Sect. 2.1.

2.5 Previous work on event synchrony based
functional climate networks

After the first corresponding proposal by Tsonis and
co-workers in 2004 [35], complex networks have been
increasingly demonstrated to provide prospective tools
for studying the Earth’s climate variability. While early
studies like [35,36,45,46] had mostly considered the
association between time series of seasonal anomalies
by employing Pearson correlation or mutual informa-
tion as similarity measures, a variety of subsequent
works have focused on the timing of specific events.
In the last decade, functional network analysis of syn-
chronous heavy rainfall and closely related climate
variables has led to several noticeable discoveries and
advances. Among others, the Indian summer mon-
soon (ISM) and the South American monsoon system
(SAMS) have intensively been studied using functional
climate networks. Almost all of the corresponding stud-
ies have employed the ES concept to quantify the statis-
tical association between the corresponding event time
series.

Early studies focusing on the ISM [5,10,47] have
not only described the spatial rainfall patterns but
also identified different regions of coherent rainfall
extremes and the emergence of characteristic net-
work connectivity patterns around the onset and with-
drawal of the monsoon. The effort of understanding
the associated mechanisms has led to the develop-
ment of a comprehensive onset and withdrawal pre-
diction scheme for the ISM [15], which has performed
impressively well since then. To investigate the inter-
play of the ISM with other large-scale climate vari-
ability modes such as the North Atlantic Oscillation
(NAO) or the Pacific Decadal Oscillation (PDO), a
wavelet-based multi-scale approach [48] has unrav-
eled and characterized the respective spatial interde-
pendency patterns across time-scales [49]. In addi-
tion to the ISM, some authors have also investi-
gated other branches of the Asian monsoon system
such as the East Asian monsoon system (EASM)
[50]. In particular, the Baiu front as a key part of
the EASM system has been characterized by quan-
tifying its spatial pattern [51] and temporal evolu-
tion [52] in terms of complex network characteris-
tics.

A plethora of other works have characterized differ-
ent features of the SAMS. In a first study [53], the
authors demonstrated that the main characteristic pat-
terns can be highlighted using distinct event thresh-
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olds. A sequence of follow-up studies have addressed
the propagation of heavy rainfall from South Eastern
South America (SESA) to the Eastern Central Andes
[9,54], where frequent heavy rainfall events can lead to
substantial flooding with large economic and societal
effects. Southeastward moisture transport across South
America via the South American low-level jet (SALLJ)
towards SESA and South-East Brazil (SEBRA) results
in the so-called South American rainfall dipole as the
main continental pattern of rainfall variability. The
interplay between this dipole and the other compo-
nents of the SAMS has been comprehensively charac-
terized by Boers et al. [55]. Another study [56] fur-
ther quantified the influence of the El Nino—Southern
Oscillation (ENSO) on extreme vertical moisture diver-
gence in South America, demonstrating the relevance of
including remote factors for understanding the SAMS
characteristics by means of functional network analysis.
Finally, a systematic inter-comparison between differ-
ent rainfall data sets by means of complex networks [6]
provided evidence that satellite-based gauged rainfall
estimates allow for capturing rainfall events related to
the SAMS correctly, while model-based data sets often
missed certain functional dependencies between the dif-
ferent drivers of the SAMS.

Several more recent publications have extended the
previous regional perspectives to other monsoon sys-
tems and a global realm. In this regard, a first charac-
terization of the spatial pattern of heavy rainfall related
to the Australian monsoon system (AMS) using func-
tional climate networks has been presented recently
[7]. In addition to the ongoing effort to studying phe-
nomena related to the different regional monsoon sys-
tems, heavy rainfall patterns associated with tropical
cyclones have also attracted considerable interest [11].
Last but not least, Boers et al. [14] achieved a major
advance in investigating the interplay of heavy rain-
fall patterns across the whole globe. The latter work
has highlighted the importance of Rossby waves as a
major trigger and coupling mechanism that connects
extreme rainfall events globally on spatial scales that
by far exceed those of individual large-scale weather
systems.

Next to the application of event synchrony to directly
study the Earth’s complex climate variability, event
synchrony measures have also been employed to under-
stand and quantify the water resource distribution in
hydrological applications. In particular, the role of an
appropriate placement of measurement stations has
been examined at the meso-scale by employing event
synchrony and community detection methods [57,58]
and at the single-node level by proposing a new cen-
trality measure [59].

3 Case study: the South American
monsoon system

The South American monsoon system (SAMS) is con-
trolled by moisture influx from the northern tropical
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Atlantic Ocean to the Amazon basin. While this mois-
ture influx is mainly facilitated by the trade winds con-
verging at the inter-tropical convergence zone (ITCZ)
[60], precipitation is fostered all over the Amazon basin
via moisture recycling mechanisms [61,62]. Driven by
the South American low-level jet (SALLJ) rainfall
is further distributed along two different pathways.
Depending on the Rossby wave phase [63], the SALLJ
either transports moisture along the South Ameri-
can convergence zone (SACZ) to South East Brazil
(SEBRA) [64,65] or along the Eastern Central Andes
to South Eastern South America (SESA) [65-68]. This
dipolar behavior results in the major rainfall variability
pattern in South America: the South American rainfall
dipole. Due to the annual shift of the ITCZ, this regular
precipitation pattern is most prominent in the period
between December and February and leads to regu-
lar heavy precipitation along the described pathways
[63,66,69].

For our analysis of the synchrony of heavy rain-
fall events in the SAMS, we employ daily rainfall
estimates between December and February from the
Tropical Rainfall Measuring Mission (TRMM, version
3B42 V7) [70]. This data set comprises the region
from 85°W to 30°W and 15°N to 40°S at a spa-
tial resolution of 0.25° x 0.25° in latitude and longi-
tude (res ulting in N = 48,400 grid points) and cov-
ers the period between 1998 and 2015. To apply event
synchrony measures, we transform the daily rainfall
time series of each grid point into binary event time
series by thresholding each time series at the empiri-
cal 90th percentile of each individual series. This leads
to heterogeneous thresholds depending on the gen-
eral distribution of rainfall at the different grid points.
Dry spots with too few days of rainfall (most promi-
nently in the continental shadow of the South Ameri-
can mainland west of the Andes mountain range) are
not treated differently, and are, thus, underrepresented
in the network. Due to their minor importance for the
SAMS, we do not consider this as a drawback of our
analysis.

To study the differences between the functional net-
work characteristics for the SAMS obtained with the
two event synchrony measures ES and ECA without
and with temporal declustering, along with the influ-
ence of varying the link density p, we consider an
upper limit for the dynamic coincidence interval of
the ES (Tmax = 3 days) and also choose a corre-
sponding value of the ECA parameter as AT = 3
days accordingly. These choices are not only in line
with previous studies [18,55], but also ensure that
we analyze comparable time scales and characteris-
tics with the two event synchrony measures. In what
follows, we will present our main findings along with
selected figures highlighting the most relevant points,
while additional figures providing further details (e.g.,
patterns for different link densities) can be found
in the Supplementary Material accompanying this
manuscript.
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Table 1 Overview on previous studies employing event synchrony measures to study functional connectivity in the Earth’s
climate system based on rainfall data (as an exception, Boers et al. [56] employed vertically integrated moisture flux which
can be considered as a quantity balancing between precipitation and evapotranspiration processes)

Authors Year Region Time covered P Measures
Malik et al. [47] 2010 ISM 1961 — 2004 - -

Malik et al. [5] 2012 ISM 1951 — 2007 5% k,C,c,b, Ak,v
Boers et al. [53] 2013 SAMS 1998 — 2012 - k,C,d,c,b,l
Boers et al. [9] 2014 SAMS 1998 — 2012 - As

Boers et al. [55] 2014 SAMS 1998 — 2012 2% k,C,d,b,l
Boers et al. [56] 2014 SAMS 1979 — 2010 5% C

Stolbova et al. [10] 2014 ISM 1951 — 2012 5% k,b,d
Su-Hong et al. [50] 2014 EASM 1951 — 2007 5% d,v

Boers et al. [54] 2015 SAMS 1998 — 2012 - R

Boers et al. [6] 2015 SAMS 1979 — 2013 2% k,C,b, R
Agarwal et al. [48] 2017 Germany 1901 — 2010 - M
Agarwal et al. [57] 2018 ISM 1901 — 2013 - k, P
Ozturk et al. [11] 2018 East Asia 1998 — 2015 5% Ak
Agarwal et al. [58] 2019 Germany 1901 — 2010 - k,C

Boers et al. [14] 2019 global 1998 — 2016 - k

Kurths et al. [49] 2019 ISM 1951 — 2013 5% P,Q
Ozturk et al. [51] 2019 EASM 1998 — 2015 5-10% k,d,c,C
Agarwal et al. [59] 2020 Germany 1901 — 2010 - k, b, Bri, BIL
Cheung et al. [7] 2020 AMS 1998 — 2015 5% k,C

Wolf et al. [18] 2020 SASM 1998 — 2015 2% k

Wolf et al. [52] 2020 EASM 1998 — 2018 5% k,d

We have used the following notations for the network measures: k degree, C local clustering coefficient, ¢ closeness, b
betweenness, Ak network divergence, v vulnerability, [ long distance directedness, d average link distance, As node strength
divergence, R regional connectivity, M multi-scale ES strength, P participation coefficient, Bri bridgeness, BIL degree and
influence of line, @ modularity. For a definition of the different characteristics, we refer to the corresponding publications

3.1 Spatial patterns of local network measures
3.1.1 Node degree

By first examining the node degree pattern, we tie in
with a recent publication [18] where the authors have
conducted two case studies highlighting the similarities
and differences between node degree patterns for the
SAMS obtained using ES and ECA. Here, we show the
corresponding pattern for two different values of the
link density of p = 0.005 and p = 0.05 in Figs. 1 and
2, respectively, while the aforementioned earlier study
[18] had utilized a link density of p = 0.02 (reproduced
in the Supplementary Fig. S1). The two cases shown
here therefore illustrate two scenarios with decreased
and increased link density, respectively.

Figure 1 features the node degree pattern for ES
(top) and ECA (bottom) without (left) and with (right)
utilizing the correction scheme. In line with the find-
ings presented earlier [18], the corrected versions of ES
and ECA exhibit generally similar patterns, while the
uncorrected versions differ regarding their respective
placement of regions of elevated degree. In particular,
we recover the previously found band of high degree
north of the ITCZ over the Atlantic Ocean and only
slightly elevated degree in SESA in the uncorrected
ECA based network. In the uncorrected ES based net-
work, the ITCZ is less highlighted but the South Amer-

ican rainfall dipole is well expressed. In the corrected
ES based and ECA based networks, both the rain-
fall dipole as well as the ITCZ are characterized by
elevated degree values, underlining that both features
present large-scale precipitation systems which are how-
ever rather distinct. In addition, we observe two regions
with an elevated degree in the northern Amazon basin.
The moisture pathway along the Eastern Central Andes
is however hardly visible in the degree pattern.

As compared to Figs. 1 and 2 shows the degree pat-
tern for a link density of p = 0.05 which is by a fac-
tor of 10 larger. Comparing the results for the uncor-
rected versions of ES and ECA (left panels), we find
that the large-scale structures in the degree field appear
like opposites of each other.

On the one hand, the ES based network now displays
elevated degree in much of continental South America,
especially in the southern part of the Amazon basin,
along the Andes mountain range, and over SESA (along
with those regions of the southwestern Atlantic ocean
associated with the southern part of the rainfall dipole),
while the ITCZ region and SEBRA do not exhibit
prominently high degree values. Hence, the pattern has
nearly switched as compared with the lower link den-
sity. To our best knowledge, a similar crossover behavior
has not been described in ES based climate networks
before, but was reported for the (scalar valued) global
clustering coefficients of global surface air temperature
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Fig. 1 Node degree patterns of the functional climate network representations of heavy rainfall events based on (a, b) ES
and (c, d) ECA without (a, ¢) and with (b, d) incorporating the declustering scheme. All networks exhibit a link density

of 0.005

networks established based on classical Pearson cor-
relation [22]. Future work should further address this
kind of transition behavior in network properties when
increasing the density of connections, which has also
been reported in other types of spatial networks [71-
74] and could be related to a change in the structural
complexity of the investigated network structures [21].

On the other hand, the general pattern for ECA
based climate network still closely resembles those
obtained with smaller link densities, presenting the
highest degree values along the ITCZ, the northern
Amazon basin, and SEBRA. While there are almost
no regions highlighted along the Andes, the southern
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part of the South American rainfall dipole in SESA is
marked by an intermediate degree.

For the corrected versions of ES and ECA, the degree
patterns become more similar again. Hence, the tem-
poral declustering of events affects the resulting net-
work patterns even more strongly than for lower link
densities. Despite the more similar appearance of the
networks obtained with both event synchrony mea-
sures, there however remain certain quantitative differ-
ences between the respective degree patterns, especially
regarding the separation of the two parts of the rain-
fall dipole, the low degree band along the ITCZ (i.e., a
more clearly highlighted ITCZ in the ECA based net-



Eur. Phys. J. Spec. Top. (2021) 230:3045-3063

1000 2000 3000 4000 5000 6000
degree

1000 2000 3000 4000 5000 6000
degree

Fig. 2 Same as in Fig. 1 but with a link density of 0.05

work), and along the Andes (higher degree in the ES
based network).

3.1.2 Average link distance

To complement the topological information on local
network connectivity (in the sense of the number of con-
nected neighbors) by spatial information, we now turn
to the analysis for the average link distance. Notably, in
combination with the node degree this measure allows
distinguishing whether or not regions with elevated
degree originate from particularly strong regional con-
nectivity (e.g., locally increased spatial autocorrelation
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of the climate variable of interest) or the emergence of
large-scale teleconnectivity [22,75].

The link distance patterns obtained for the two event
synchrony measures when employing a link density of
p = 0.005 (shown in Fig. 3) closely resemble the cor-
responding degree patterns for the same link density.
This statement does not only hold for the uncorrected
versions of ECA and ES, but also for the link distance
patterns based on the ES and ECA incorporating the
declustering scheme. For larger link densities, we how-
ever also observe that degree and link distance appear
qualitatively more and more similar between the uncor-
rected versions of ES and ECA as well (Supplementary
Figs. S2 and S3). In general, we find that unlike for the
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Fig. 3 Average link distance patterns of the functional climate network representations of heavy rainfall events based on
(a, b) ES and (c, d) ECA without (a, c) and with (b, d) incorporating the declustering scheme. All networks exhibit a

link density of 0.005

node degree, an application of the declustering scheme
is not as essential for obtaining spatial patterns which
highlight the key features of the SAMS, while the gen-
eral patterns of ECA and ES based networks again look
almost identical after event declustering. We, therefore,
conclude, that regardless of the specific link density, a
larger degree indicates the presence of a higher number
of long-distance connections and is thus accompanied
by elevated values in the average link distance.

As a general result of the joint analysis of the node
degree and link density patterns, we emphasize the
great impact of the application of the correction scheme
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and the choice of the link density. While the differences
between the respective local network measure patterns
based on the uncorrected versions and the corrected
versions have been slightly greater for ECA in the case
of low link densities, ES experiences stronger effects of
the correction scheme at higher link densities. Hence,
based on the results obtained so far, we tentatively con-
clude that employing the correction scheme for tempo-
rally clustered events should be considered as a manda-
tory step for functional network applications of ES,
while it calls for a somewhat different motivation in
the context of ECA.
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Fig. 4 Spatial patterns of local clustering coefficients for the functional climate network representations of heavy rainfall
events based on (a, b) ES and (c, d) ECA without (a, c) and with (b, d) incorporating the declustering scheme. All

networks exhibit a link density of 0.02
3.1.3 Local clustering coefficient

We finally discuss the spatial patterns of local clustering
coefficients in the different functional climate network
representations based on uncorrected and corrected ES
and ECA. Other than node degree and average link
distance, the local clustering coefficient does not exclu-
sively assemble local information (in the sense of direct
network connections) but considers connectivity infor-
mation among the entire neighborhood of each node. In
this spirit, it can be considered as a higher-order net-
work characteristic as compared with degree and aver-
age link distance.

Figure 4 shows the local clustering coefficient pat-
terns for a link density of p = 0.02, revealing again
notable differences between the ECA and ES based net-
works. While the clustering coefficient clearly exhibits
lower values in the southern part of the Amazon basin
in the ES based network, this effect is considerably more
weakly developed in the ECA based network. In addi-
tion, we do not observe clearly expressed structures of
elevated clustering coefficients along the eastern flank of
the Andes in the ECA based network, especially when
not employing the declustering scheme. In comparison
to the degree, the application of the correction scheme
seems to have fewer impact on the local clustering coef-
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ficient and does not lead to great similarity between the
spatial patterns based on the two different event syn-
chrony measures.

The reduced effect of prior declustering as compared
to the other “first-order” network properties might be
attributed to the role of the local clustering coefficient
as a higher-order network measure. To better under-
stand this, let us assume a relatively densely connected
subgraph in a network. For nodes in this subgraph, we
expect to obtain elevated values for the local cluster-
ing coefficient. The application of a correction scheme
that affects the identification of edges in such a net-
work can be expected to coherently influence the net-
work’s degree distribution but, on average, retain sim-
ilar characteristics for the neighborhood of each node.
Since our results have shown such a behavior in the
studied networks (i.e., a great impact of the correc-
tion scheme and high degree of similarity between cor-
rected ES and ECA based networks for first-order net-
work measures and less affected patterns for the higher-
order network measure local clustering coefficient), we
hypothesize that similar effects might also play a role
in the networks studied in this work.

As compared to the other two local network charac-
teristics, it is noticeable that at the considered inter-
mediate link density of p = 0.02, the local clustering
coefficient exhibits much smaller-scale spatial patterns,
which is well in line with findings from previous stud-
ies [6,53,56]. When further reducing the link density
(e.g., p = 0.005, see Supplementary Fig. S4), the result-
ing patterns become very fine-scaled and appear not to
allow for any meaningful interpretation. The reason for
this is that especially in regions with low node degree,
small random fluctuations in connectivity can cause
large variation in the local clustering coefficient. As a
result, the emergence of large-scale spatially coherent
structures becomes increasingly unlikely with decreas-
ing link density. Accordingly, we suggest that a mean-
ingful estimation of higher-order network measures in
functional climate networks calls for larger link densi-
ties, which is supported by our results obtained for the
classical (non n.s.i. weighted) local clustering coefficient
for p = 0.05 shown in Supplementary Fig. S5. Note that
in our specific study region, the impact of n.s.i. weights
on the spatial patterns of local clustering coefficients
is indeed rather limited, which can be seen when com-
paring the corresponding results for p = 0.02 (Fig. 4
versus Supplementary Fig. S6) and p = 0.005 (Supple-
mentary Figs. S4 versus S7) between n.s.i. and normal
local clustering coefficients.

3.2 Node properties in different networks: role of
the pairing coefficient

In the following, we further address the interrelation-
ships between the values of the same local network
property in ES versus ECA based climate networks
along with the corresponding effect of event clustering
as quantified by the pairing coefficient. We are particu-
larly interested in the associated impact of the link den-
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sity and the dependency on the declustering scheme. In
Figs. 5 and 6, we show respective scatter plots of node
degree, local clustering coefficient and average link dis-
tance for the same grid points in ES and ECA based
networks for link densities of p = 0.005 and p = 0.02,
respectively. Corresponding information for p = 0.05
can be found in Supplementary Fig. S8. To explicitly
highlight the effect of the declustering scheme, we color
each point in the scatter plot to encode the value of the
pairing coefficient of the underlying event series.

As already stated above, the qualitative differences
in the network properties based on ECA and ES are
relatively minor for low link density (see Fig. 5). In line
with the already discussed spatial pattern, we especially
observe a better quantitative agreement (i.e., an align-
ment around the line of identity in the scatter plot)
after the application of the correction scheme for both,
node degree and average link distance. Without correc-
tion, we observe a clear misalignment with two rela-
tively distinct groups of nodes. On the one hand, nodes
with high pairing coefficient (strong event clustering)
cover the whole range of degree values in the ECA based
network while exhibiting only low to moderate values
in the ES based network (i.e., they are located above
the line of identity in the scatter plot). On the other
hand, this negative connectivity bias for nodes with
strong event clustering has to be compensated (due
to the same, overall fixed link density) by other nodes
with low pairing coefficient, which tend to have higher
degrees in the ES based network than in that based on
ECA. A similar behavior is observed for the average
link distances. Here, nodes with very long average link
distances are practically absent in the uncorrected ES
based network, which is due to the fact that those nodes
with the highest average link distances in the ECA
based network almost all exhibit a high pairing coef-
ficient. Thus, temporal clustering of events results in
ES based networks missing especially the more distant
(and, hence, probably often somewhat weaker) connec-
tions.

After applying the correction scheme, the node
degrees and average link distances exhibit a much bet-
ter agreement between ES and ECA based networks,
while some residual differences remain. However, those
differences necessarily emerge due to the fact that by
their definitions, ECA counts all pairs of events as
synchronous that appear within a temporal distance
of 3 days or less, while ES most likely only counts
some of them (depending on the respective local coin-
cidence interval). In general, in good agreement with
our observations for the corresponding spatial patterns,
we conclude that ES and ECA based networks provide
essentially the same information on the spatiotempo-
ral patterns of heavy precipitation and their underlying
dynamical mechanisms.

When increasing the link density, the separation
between nodes with low and high pairing coefficient in
terms of node agree and average link distance becomes
even more distinct for networks obtained without event
declustering (Fig. 6a, e). For both measures, the ES
based network exhibits elevated values for nodes with
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Fig. 5 Values of (a, b) node degree k;, (c, d) local clus-
tering coefficient C; and (e, f) average link distance d; for
functional networks based on the two employed event syn-
chrony measures. All results are shown for a link density
of p = 0.005. Panels a, c, e (b, d, f) show the properties
of the networks obtained without (with) incorporating the
declustering scheme. Each individual value is color-coded by

low pairing coefficient, while the ECA leads to high
degrees and large average link distances for nodes with
high pairing coefficient. After application of our declus-
tering scheme, the values for the degree are again much
better aligned along the line of identity. For the average
link density, this however does not apply.

As already seen for the spatial patterns of network
properties, the distinction between ES and ECA based
networks in terms of local clustering coefficients is much
less obvious than for the other two considered network

the pairing coefficient of the event series associated with the
corresponding node. The lines of identity are indicated as
black dashed lines. Note that unlike node degree and aver-
age link distance, the local clustering coefficient is restricted
to the interval [0, 1], which leads to saturation effects in the
plot

properties and does not change markedly when the cor-
rection scheme is applied or the link density is var-
ied. As a general tendency, we however note that for
larger link densities, nodes with higher pairing coeffi-
cient tend to display higher clustering coefficients than
those with lower pairing coefficient in case of the ES
based networks, while the corresponding effect is less
pronounced for the ECA based networks. This obser-
vation might help further disentangling the mecha-
nisms that are mapped by local clustering coefficients in
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Fig. 6 Same as Fig. 5 but for a link density of p = 0.02

functional climate networks in future more systematic
research.

3.3 Statistical associations between different node
properties

As a final step of our analysis, we take a look at the
interrelationships between different local network char-
acteristics. Figure 7 shows the scatter plots between
node degree and local clustering coefficient for a link
density of p = 0.02 without (left) and with (right)
incorporating the declustering scheme. Corresponding
results for p = 0.005 and 0.05 can be found in the
Supplementary Figs. S9 and S10, respectively. As it
can be seen, there is a general tendency of both prop-
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erties to exhibit a negative correlation in all four
networks, which is in line with previous findings for
functional climate networks [22,76] as well as other
types of networks [77-81]. Besides this tendency, how-
ever, the overall scatter is fairly diffuse and appears
to consist of different groups of nodes sharing a cer-
tain common behavior. To this end, we do not have
a clear interpretation of this finding, but hypothe-
size that different combinations of atmospheric circu-
lation regimes, orographic properties, or other key geo-
graphical features may contribute to the correspond-
ing fragmentation of the scatter plots. Further disen-
tangling these factors and thereby testing this general
hypothesis is outlined as a possible subject of future
work.
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Fig. 7 Relationship between node degree (n.s.i.) and local
clustering coefficient (n.s.i.) for a link density of p = 0.02.
Panels a, ¢ (b, d) show the network measures without (with)

A much clearer picture is provided by Fig. 8 which
shows the corresponding scatter plots between node
degree and average link distance for p = 0.02 (cor-
responding results for p = 0.005 and 0.05 can be
found in Supplementary Figs. S11 and S12, respec-
tively). As expected from our previous findings, we
observe a clear positive correlation (yet manifested
as a not completely linear relationship) between both
characteristics for both, ES and ECA based networks
without and with event declustering. It is notable
that this relationship is more distinct for the ECA
based networks independent of whether or not declus-
tering is applied, while the ES based networks show
more nodes with higher than expected average link
distance at a given node degree, pointing to a less
homogeneous organization of network connectivity as
compared to the ECA based networks. However, we
find that the relationship becomes also more clearly
expressed for the ES based networks in case of lower
link densities (Supplementary Fig. S11) while get-
ting blurred for both ES and ECA based networks
when employing higher link densities (Supplementary
Fig. S12).

For the sake of completeness, Supplementary Figs.
S13-S15 also show the corresponding scatter plots
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incorporating the declustering scheme. The values are color
coded according to the pairing coefficient of each node

between average link distance and local clustering coef-
ficient for all three considered link densities, while
essentially reflecting the already noted observations in
terms of a generally negative yet nonlinear and rather
diffuse relationship between both properties.

4 Conclusions

In this work, we have studied the characteristics of
functional climate networks which have been obtained
by quantifying event synchrony in terms of two differ-
ent similarity measures, event synchronization (ES) and
event coincidence analysis (ECA). Thereby, we have
drawn upon the conclusions from a recent study [18]
and expanded those previous results by comprehen-
sively investigating three different local network prop-
erties encoding distinct features of the spatio-temporal
organization of heavy rainfall during the South Ameri-
can monsoon season.

Beyond the setting of the aforementioned earlier
work, we have first compared the spatial patterns of
node degree in networks with different link densities.
As a result, we have observed that the differences in the

@ Springer



3060

0.40 4
0.35
0.30 A
0.25

0.20 4

a ES

0.15 A

d corrected ES

0101 « &

0.054 |

0.00 A

2000 3000

ki ES

0 1000

d corrected eca

0.0 4

2000 3000 4000

k ECA

0 1000
Fig. 8

degree patterns in networks obtained based on ES and
ECA become amplified when using denser networks.
However, this effect can be suppressed if the underlying
event sequences are declustered before the analysis, in
which case we find very similar patterns under the con-
sidered comparable parameter setting of both methods.

In addition to the node degree, we have studied the
spatial link distance patterns in networks derived uti-
lizing the corrected and uncorrected versions of ES and
ECA, respectively. We have found, that elevated link
distances are intimately linked to larger node degrees
in all studied network configurations. Although the link
distance patterns are heavily affected when increasing
the link density, the declustering scheme leads to simi-
lar patterns using ES and ECA.

To further examine the impact of declustering on
higher-order network measures, we have also com-
puted the local clustering coefficients. Our correspond-
ing analysis has shown that the systematic difference
between ES and ECA leads to distinct structures in
the resulting climate networks. Notably, the structures
that determine the local clustering coefficient are not as
sensitive to the application of the declustering scheme
as the first-order information captured by node degree
and average link distance. As a consequence, the spa-
tial patterns of the local clustering coefficient substan-
tially differ between ES and ECA based networks even
when incorporating the declustering scheme. This result
is especially important since computing higher-order
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Same as Fig. 7 but for the relationship between node degree and average link distance

network measures typically requires larger link densi-
ties, which appear to amplify (as mentioned before) the
structural differences between ES and ECA.

Finally, we have investigated the correlations between
the values of each individual local network property
in different networks, as well as those between dif-
ferent variables in the same network. First, the sin-
gle variable correlations confirm the amplification of
differences between the distributions of ES and ECA
based network measures, especially for higher link den-
sities. Additionally, our analysis has demonstrated the
marked impact of the declustering scheme on the net-
work degree and average link distance of ES based net-
works. By contrast, we have observed that the local
clustering coefficients are less markedly affected by the
correction scheme. Second, the inter-variable correla-
tions have not only highlighted the distinct properties
of ECA and ES but have also allowed analyzing further
the characteristic features of the functional climate net-
works. This includes the general tendency that larger
average link distances are typically associated with an
elevated node degree. Furthermore, this analysis has
revealed potential further biases of the event synchrony
measures such as the tendency of high pairing coeffi-
cients coinciding with large average link distances in
networks based on the uncorrected ES.

The central goal of this study has been to raise
further awareness for possible methodological limita-
tions of functional network construction based on event
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synchrony measures. In our study, we have illustrated
that the choice of the methodological setup and the
related parameters can have a substantial impact on
the network topology and the conclusions drawn from
the obtained results. In particular, we have shown
that incorporating an event declustering scheme should
be considered a mandatory preprocessing step espe-
cially when utilizing ES, and that the in theory rather
minor methodological differences between the discussed
event synchrony measures become increasingly impor-
tant with rising link density and for higher-order net-
work measures. In addition, a variation of the link
density itself must be evaluated critically as we have
demonstrated the existence of a crossover behavior in
the large-scale spatial patterns of node degrees in one
of the investigated settings.

To this end, we have not fully exploited the whole
toolbox of higher-order complex network characteris-
tics, disregarding, for example, the great variety of per-
node network properties based on the concept of short-
est paths like closeness, harmonic closeness, or between-
ness. We outline further investigations on differences
in those properties obtained for climate networks con-
structed using different event synchrony measures as a
fruitful topic for future research. In a similar spirit, ES
and ECA present two popular measures for event syn-
chrony, but are not exclusive in their property of char-
acterizing statistical associations between sequences of
discrete events. Widening the scope of the present work
also in this aspect might also be further addressed in
upcoming studies.

Supplementary information The online version con-
tains supplementary material available at https://doi.org/
10.1140/epjs/s11734-021-00166-1.
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