

Potsdam-Institut für Klimafolgenforschung

Originally published as:

Raj, S., <u>Shukla, R.</u>, Trigo, R. M., Merz, B., Rathinasamy, M., Ramos, A. M., Agarwal, A. (2021): Ranking and characterization of precipitation extremes for the past 113 years for Indian western Himalayas. - International Journal of Climatology, 41, 15, 6602-6615.

DOI: <u>https://doi.org/10.1002/joc.7215</u>

1	Ranking and Characterization of Precipitation Extremes for the past 113 years for Indian
2	western Himalayas
3	
4	Saurav Raj ¹ , Roopam Shukla ² , Ricardo M. Trigo ³ , Bruno Merz ⁴ , Maheswaran Rathinasamy ⁵ ,
5	Alexandre M. Ramos ³ , Ankit Agarwal ^{46,*}
6	
7	¹ Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667
8	Uttarakhand, India
9	² Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association,
10	Telegrafenberg, 14473 Potsdam, Germany
11	³ Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749016 Lisboa, Portugal
12	⁴ GFZ German Research Centre for Geosciences, Section 4.4: Hydrology, Telegrafenberg,
13	Potsdam, 14473 Germany
14	⁵ Department of Civil Engineering, MVGR College of Engineering, Vizianagaram, 535005 India
15	⁶ Department of Hydrology, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India
16	
17	
18	*Correspondence to: Ankit Agarwal (ankit.agarwal@hy.iitr.ac.in)
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	

36 Abstract

Globally, mountain systems are unevenly exposed to risks of extreme precipitation. Within the Himalayan region, precipitation extremes are a rising concern, but their current understanding is limited. In this study, we use 113 years of precipitation data to rank and characterise precipitation extremes in the Indian Western Himalayas (IWH). Our statistical ranking method integrates precipitation spatial extent and its intensity across different durations for determining the severity of extreme events. The proposed ranking method advances conventional single-day event ranking methods by accounting for multi-day duration to capture persistent precipitation episodes. Results show that the method accurately detects and ranks the most extreme precipitation events that occurred in the IWH and indicate locations of these events. Our results highlight that critical long duration events in the region (e.g. 10 days) are missed at ranks at shorter duration (e.g. 2-3 days), thereby highlighting the importance to multi-day precipitation extremes ranking. In addition, the proposed ranking method provides information with confidence about the event duration that will be associated with the highest impact on society, carrying high significance. Our findings are valuable for flood risk management and disaster risk reduction.

53 Keywords: Precipitation; Extreme; Multi-day ranking; Western Himalayas; Climate Change,
54 Mountains

http://mc.manuscriptcentral.com/joc

67 1 Introduction

Human-induced global warming is changing the frequency and magnitude of weather-related 68 69 extremes (Pachauri et al., 2014). In particular, intense precipitation events and associated risks 70 are expected to occur more frequently over Asian regions, especially over India, Bangladesh, 71 and China (Goswami et al., 2006; Parry et al., 2007). Although a uniform and consistent decrease 72 in moderate precipitation has been reported across India (Ghosh et al., 2012), precipitation 73 extremes have changed in a heterogeneous way over India in the past half-century (Rajeevan 74 et al., 2006; Krishnamurti et al., 2013; Guntu et al., 2020). This variability in the occurrences of 75 precipitation extremes in space and time is a consequence of different interacting drivers and 76 complex geographical features (Nicholls et al., 2012).

77 The Indian Western Himalayan (IWH) region is prone to severe weather conditions due to the 78 joint mechanism of the Indian Summer Monsoon (ISM) and-Western Disturbances (WDs). ISM 79 is usually relevant between June and September (JJAS), and WD is dominant from December to 80 March (DJFM, Krishnan *et al.*, 2019). The climate of the Himalayas is strongly influenced by different types of wind systems, such as mesoscale cyclonic storms, snowstorms, and other 81 82 high-speed winds along with cloudbursts (Das and Meher, 2019). The combination of these highly energetic phenomena and the pronounced orography often results in sudden 83 84 precipitation extremes (Nandargi and Dhar, 2011) that cannot be predicted effectively. While 85 daily and sub-daily precipitation extremes usually result in urban and small stream flash flooding, long-duration precipitation episodes can lead to large-scale river floods, inducing 86 87 major socio-economic impacts (Shukla et al., 2019; Kumari et al., 2019) and other adverse consequences such as deep landslide movements (Ozturk et al., 2018). Precipitation extremes 88 have become a severe concern in recent decades in the IWH region due to higher vulnerability 89 90 of the society to such events (Das and Meher, 2019).

Several studies have attempted to understand the past changes of extreme precipitation events 91 in the IWH; however, two major gaps remain. Firstly, past assessments are restricted to limited 92 spatial extents often based on a case-by-case approach for a few stations only (Nandargi et al., 93 94 2016, Kumari et al., 2019, Priya et al., 2017). Secondly, ranking and characterisation of extreme 95 precipitation events using high-resolution long-term data at high spatial scale are scarce over India, and absent for the IWH region, to the best of our knowledge. To fill these gaps, we analyze 96 the spatio-temporal changes in the precipitation extremes using a high-resolution and long-97 term dataset. This understanding will be extremely useful to inform disaster management and 98 99 to develop risk reduction strategies to mitigate adverse impacts. For instance, a simultaneous

increase in magnitude and spatial extent, as shown for river floods in some regions of Europe
(Kemter et al., 2020), represents important information for emergency response and disaster
recovery. In fact, as the probability of simultaneous events increases it implies that resources
and funds need to be provided at many locations at the same time.

104 Several methods have been proposed in recent years to rank and characterise extremes in 105 different regions of the world. For instance, Müller and Kaspar (2014) developed an 'event-106 adjusted' method based on the optimization of the event area and the time duration. Ren et al. 107 (2012) presented a similar threshold-based objective method for identification of regional 108 extreme events considering their impact area and duration. Ramos et al. (2014, 2017) 109 developed an objective ranking method to evaluate daily precipitation and multi-day precipitation extremes by taking into account both the area and average intensity of the event. 110 They used a season-dependent definition for extreme events emphasising that these must have 111 112 large departures from climatology. Beguería et al. (2009) presented a methodology for continuous seasonal mapping of peak intensity, magnitude and duration of extreme 113 precipitation events based on the extreme value theory for a region in the north-eastern Iberian 114 115 Peninsula. With the aim of quantifying the severity of large-scale flood events, Uhlemann et al. (2010) and Schröter et al. (2015) defined a severity index, which considers both spatial extent 116 117 and magnitude by integrating the flood-affected river network length with the flood magnitude.

118 Our study has two main objectives: (i) to understand the seasonal and long-term changes in 119 frequency and magnitude of extreme events over the 113-year period 1901-2013 for IWH; and 120 (ii)-to develop an objective ranking of extreme precipitation episodes for different durations 121 (from 1 to 10 days) for the entire IWH exploiting the long-term, high-resolution precipitation 122 dataset. The study provides important information on the seasonality and long-term trends in the frequency of extreme precipitation events, along with information on the locations of the 123 highest ranked events. Further, the study objectively ranks and characterises the nature of 124 125 extreme precipitation events for the 113-year period using a statistical approach adapted from 126 Ramos et al. (2014, 2017). It incorporates three matrices, i.e. spatial extent, magnitude, and 127 duration, for ranking the extreme event. The rationale behind this approach is to integrate, 128 besides the event intensity, its spatial extent and duration, as these characteristics can be 129 decisive for the event impact on society (e.g. Uhlemann et al., 2010, Dung et al., 2015). Hence, 130 the highest-ranked events have a large spatial spread and, simultaneously, are characterised by 131 large departures from the local climatology for that time of the year. After combining the

information on magnitude and spatial extent, we examine and include the information on theduration of each event.

134 2 Study Area

135 The Himalayan mountain range plays a dominant role in controlling the weather and climate of the Indian subcontinent (Krishnan et al., 2019). As demonstrated by Krishnan et al. (2019) 136 137 through numerical model simulations, the 'southwest monsoon' will cease to exist if the 138 'Himalayas' are removed from their current position. The rugged topography enhances heavy 139 rainfall in the river catchments of the Himalayas resulting in hydrometeorological extremes 140 with cascading adverse impacts on humans, their assets and the environment (Pandit, 2013, 141 Priya et al., 2017). Monsoonal rainfall (JJAS) and Western Disturbances (DJF) are two major atmospheric circulation patterns bringing rainfall in IWH, consisting of the three states Jammu 142 143 & Kashmir (JK), Himachal Pradesh (HP) and Uttarakhand (UK) (Fig. 1a).

- 144
- 145

[Please insert figure here]

Figure 1: (a) Topography of the Indian Western Himalayas (IWH) consisting of the three states Jammu & Kashmir (JK), Himachal Pradesh (HP) and Uttarakhand (UK), (b) annual frequency and (c) seasonal frequency of occurrence of precipitation-related disasters in the IWH region since 1900 as per EM-DAT data (D. Guha-Sapir et al n.d.,) (d) annual number of deaths in the IWH region due to hydro-climatological hazards as per EM-DAT data.

The IWH region showcases a complex topography with elevation ranging from 184 m in the 152 153 valleys to 8500 m at mountain peaks (Fig. 1a). The complex topography strongly affects the spatial distribution of rainfall (Joshi and Kumar, 2007; Kumari et al., 2017). Increasingly, 154 155 extreme weather conditions and natural disasters are becoming common in IWH (Fig. 1b), and in most cases, disasters are triggered by high rainfall events. There is a strong seasonal pattern 156 157 in the frequency of events (Fig. 1c) with disasters occurring mainly during monsoonal rains and WDs. The frequency of disaster occurrence in the IWH region increased significantly in the 20th 158 century. Moreover, trends in annual losses in terms of the number of deaths shows a 159 160 remarkable increase after 1990 (Fig. 1d). The extremes and related disasters over these years 161 caused high socioeconomic impacts in terms of casualties, affected people, and economic losses. The observed trend of precipitation extremes has direct implication not only for the 162

163 communities in the IWH, but also for water-resource managers and decision makers, as
164 growing risks demand preparedness decisions (Singh et al., 2014).

165 3 Data and Method

166 **3.1. Precipitation data**

We use the high-resolution (0.25°×0.25°) gridded daily rainfall data from the Indian Meteorological Department (IMD) developed by Pai et al. (2014). Given the sparse and uneven distribution of rain gauges in the region, a gap-free, continuous and gridded data was generated using daily rainfall measurements. The station data was converted to gridded data through spatial interpolation by employing the Inverse Distance Weighted scheme. The data is freely available at the archive of the National Data Centre, IMD, Pune (see section data sources) for the period 1901 to 2013.

174

175 **3.2. Ranking method**

176 It can be rather difficult to evaluate extreme events that cover areas with significant differences in the average precipitation on a daily scale. This difficulty is further compounded by large 177 differences in the variability of the local precipitation. Therefore, the use of daily normalized 178 179 precipitation anomalies (that take into account the different variability range in each grid point) corresponds to a key step to obtain a meaningful ranking of daily precipitation extremes 180 in the IWH (Ramos et al., 2014). It allows characterizing each day taking into account not only 181 182 the severity of the precipitation but also the associated spatial extension. To rank precipitation 183 extremes over multi-day accumulated periods, a three-step method is used, following the methodology previously developed Ramos et al. (2017). 184

Step 1: We use the daily normalized precipitation anomalies $(A_{C,i,j})$ given by

$$A_{c,i,j} = \frac{P_{c,i,j} - \mu_{c,i,j}}{\sigma_{c,i,j}}$$
(1)

186 where $P_{c,i,j}$ is the precipitation value, $\mu_{c,i,j}$ is the daily Julian mean, and $\sigma_{c,i,j}$ is the daily standard 187 deviation (SD) for a particular year and day (*c*) and for a particular grid point (*i*, *j*). Only days 188 with precipitation above 1 mm (wet days) are taken into account in the computation of the daily 189 climatological series. The daily Julian mean and SD are computed for the entire observational 190 period 1901-2013 (i.e. 113 years). A 7-day running mean is applied afterwards to the climatological series to smooth the noisy time series. Therefore, for each day and each gridpoint, a normalised precipitation departure from climatology is computed.

193 Step 2: We compute the accumulated precipitation anomalies (Eq. 2) for a certain period p over194 multi-day periods (n).

$$AA_{C,i,j} = \sum_{c=1}^{n} A_{C,i,j}$$
⁽²⁾

The 3-day accumulated precipitation anomaly, for example, on 5 September 1995 corresponds
to the sum of the normalized precipitation anomalies relative to 3-5 September 1995.

197 Step 3: The final step computes the magnitude of the precipitation extreme for each 198 accumulated precipitation anomaly period. We have adopted the procedure proposed by 199 Ramos et al. (2014). The magnitude of extreme events is given on a daily basis by an index that 200 is obtained after multiplying two values:

- the area (A, in percentage of IWH) that has precipitation anomalies (at each time scale)
 above 2 standard deviations SD, and
- the mean value of these anomalies (M) for all the grid points that are characterized by
 precipitation anomalies above 2SD.

So, for single-day ranking, the magnitude (\mathbf{R}_d) is calculated using a single-day anomaly $(A_{c,i,j})$ and for multi-day rankings, the magnitude (\mathbf{R}_m) is computed using the accumulated anomaly $(AA_{c,i,j})$ for that day over all grid points. The 2SD threshold corresponds roughly to the 95% percentile of the daily precipitation distribution at each grid point. However, the methodology can be easily adapted, for instance, by increasing the SD threshold when particularly extreme events are of interest.

211 3.3 Selection of critical duration of extreme event ranking

Theoretically, the ranking method can be applied to any event duration. To obtain sensible values for the duration of extreme precipitation events in the IWH, we compute the critical event duration. We define this value as the duration beyond which the mean ranking magnitude of extremes (R) remains constant with increasing duration. The mean magnitude of the top 5, 20, and 100 events increases with event duration and levels off between 5 and 10 days (Fig. 2). This agrees with the observation that, for the IWH region, an event lasting longer than 10 days

- is practically not possible. Thus, we compute 1-day and multi-day rankings up to 10 days. For
 brevity, we report the results for 1-, 3-, 5-, 7- and 10-day precipitation rankings.
- 220

[Please insert figure here]

Figure 2: Magnitude (R_m) for the first 5, 20 and 100 highest ranked events at various multi-day duration of accumulated precipitation. X-axis denotes duration (i.e. time period) of an event in days. Y-axis denotes the mean magnitude of the event in mm.

224 4 Results and Discussion

Section 4.1 reports the seasonal and long-term (113 years) evolution of the magnitude and frequency of extremes at different duration. Section 4.2 presents the results of the ranking for IWH and discusses specific events. The ranking of extreme events is based on the magnitude R that incorporates both percentage area (A, spatial extension) and mean value (intensity of extreme precipitation) for different durations. Finally, we shed light on the major limitation of our approach by discussing specific missed cases in the ranking (Section 4.3).

231 4.1 Seasonal and long-term evolution of precipitation extremes

232 Fig. 3 (a&b) shows the decadal progression of frequency and mean magnitude (R) of the 233 extremes in IWH for different durations. There is a sharp increase in both frequency and magnitude of extreme precipitation in the last three decades. This pattern is in congruence with 234 235 EM-DAT data (Figure 1b) confirming an increase in disasters in the Indian Western Himalayan and also validating our findings. There is also a pronounced seasonal pattern, similar for all 236 durations, in the occurrence (Fig. 3c) and magnitude (Fig. 3d) of the top 1% events. In both 237 238 cases, the maxima occurs around August/September and a less pronounced secondary 239 maximum is visible in February. This pattern is explained by the two major atmospheric 240 patterns that are responsible for precipitation over IWH, i.e. ISM from June to September, and WD dominating from December to March. Interestingly, the frequency of extremes increases 241 242 strongly with duration during ISM (Fig. 3c). These results highlight that, similar to other parts of the world (Marelle et al., 2018), precipitation extremes in IWH have a clear seasonal pattern, 243 which might be changed due to climate warming. Although outside the scope of this study, an 244 assessment of seasonal changes in the occurrence of extremes in IWH is worth considering in 245 future studies. 246

- 247
- 248

249	[Please insert figure here]			
250	Figure 3: Distribution of precipitation extremes over IWH. Decadal distribution of (a)			
251	frequency, and (b) mean magnitude of top 1% extreme events for different durations.			
252	Monthly distribution of (c) frequency (d) and magnitude of top 1% extreme events for			
253	different durations.			
254	4.2 Ranking of extreme events			
255	In this section, we present results for 1-day, 3-days, 5-days, 7-days and 10-days extreme			
256	precipitation events ranking in the IWH. Results obtained for the top 10 events are sown in SI			
257	Table 1 and Fig. 4. Interestingly, many events are not independent and they overlap at different			
258	durations, as we can observe there are only 15 (out of 50) unique events. Furthermore, it is			
259	clear from Fig. 4 that the different top 10 ranks are dominated by four events that occurred			
260	respectively in September 1995 (green bars), March 1990 (red bars), September 1988 (white			
261	bars), July 1995 (light blue bars).			
262				
263				
264	[Please insert figure here]			
265	Figure 4: Magnitude (R _m) and rank for the top 10 events at different durations (1, 3, 5, 7,			
266	and 10 days) of accumulated precipitation. Arrowhead indicates the direction of			
267	increasing values.			
268				
269	In particular, the September 1995 and March 1990 events dominate the top 10 ranks with 15			
270	and 13 top ranks, respectively. This dominance exerted by just a few extreme precipitation			
271	episodes is expected to occur at longer durations, since we analyse successive accumulated			
272	precipitation days over relatively long periods. Therefore, 2 or 3 intense precipitation			
273	anomalous days will be sufficient to influence successive periods. In the next subsection, we			
274	present specific cases demonstrating the potential of a single day and multi-day duration			

extreme event ranking over IWH. 275

4.2.1 Single-day extreme ranking 276

277 The 1-day first rank event on 02-08-1997 (Fig. 5a) was widespread, with 49% of IWH showing precipitation anomalies larger than 2 SD. It reached a magnitude of ~10 SD (Fig. 5b). The event 278 hit the north-eastern section of IWH, with maximum precipitation of 235mm and with 279 precipitation above 200mm observed at several grid points. 280

281	
282	[Please insert figure here]
283	Figure 5: (a) Spatial distribution of accumulated precipitation (mm) and corresponding
284	standard deviation anomalies (black contour) of a 1-day precipitation event occurring
285	on 02-08-1997. (b) Spatial coverage and magnitude of the extreme event occurring
286	between 31-07-1997 and 05-08-1997. Area means percentage of IWH with precipitation
287	anomalies above 2 SD, magnitude is the mean of anomalies above 2 SD.
288	
280	The same event is also present in the 3-days ranking (rank 2 & 10) underlining that it was

The same event is also present in the 3-days ranking (rank 2 & 10) underlining that it was 289 290 dominant at the daily scale, but precipitation on the day before and the day after were also 291 relevant (Fig. 5b). In this regard, any ranking methodology focussing on single-day duration 292 (often used in the literature) would be limited in capturing its evolution. The absence of this 293 event from further multi-days ranking (5-, 7-, and 10-days ranking) shows that the extreme 294 event occurred only for 3-4 continuous days (i.e. 1-4 August). This event occurred prior to a highly localised cloud bursting event over Chiragaon village in Shimla district of Himachal 295 296 Pradesh between 8-14 August 1997 resulting in 135 fatalities along with 20 injuries (Source EM-DAT data; Yogendra, 1999; Pathania, 1997). Interestingly, the precipitation between 8-14 297 August 1997 was not extreme and hence did not show up in the top 10 ranking. Thus, it is likely 298 299 that the extreme precipitation on 1-4 August increased the river flow and decreased the 300 capacity of the soil to absorb further rainfall in the following days. This might have strongly 301 increased the vulnerability to landslides during the subsequent cloud bursting event.

302

The rank 2 event (Fig. S1) of 1-day ranking on 05-09-1995 covered a wider area when 303 304 compared to the top event, affecting an area of 66% of IWH (>2SD), but with a lower overall 305 intensity with a mean anomaly value ~ 6 SD. The precipitation over some localised grid cells 306 surpassed 300mm, with a maximum value of 425mm (Fig. S1). Most of IWH received rainfall 307 above 150mm. This event is also present at 3-, 5-, 7-and 10-days ranking. This clearly indicates that it is a continuous extreme event expanding over multi-days (at least up to 10 days) and 308 309 affecting major easterly portions of JK, HP and northwestern portions of UK. The rank 3 event 310 (Fig. S2) of 1-day ranking took place on 09-02-2010 affecting 85% of IWH area (> 2 SD), albeit with comparatively lower intensity ~ 5 SD. This event is absent at 3-, 5-, 7-, and 10-days 311 312 rankings revealing that it was a single day extreme event. The precipitation on this day attained 313 a maximum value of 127mm. Nevertheless, this event was clearly linked with a landslide causing 17 deaths in Hatia Bala town of JK (Source EM-DAT data; Konagai and Sattar, 2012). 314

Based on these results, we can re-iterate that the ranking method is highly dependent on combined indices values that take into account simultaneously the magnitude of the event as well as the total area affected. This method is certainly more effective than a single metric of spatial spread or intensity at a single day duration.

319 4.2.2 Multi-day extreme ranking

Several events, which are not significant on a daily ranking, become significant, based on 320 intensity and spatial extension at longer time durations. For instance, four events appear in the 321 322 3-day ranking category (rank 3, 6, 7 & 9) that are absent in the 1-day ranking. The changes in 323 the ranking of different duration highlight the importance of multi-day ranking of extremes, as it is crucial to capture events of varying spatiotemporal characteristics. The extreme event of 324 325 05-09-1995 accounts for 15 occurrences (green bars in Figure 4). Below, we provide a more 326 detailed description of the spatio-temporal progression of the event at short (3-day) and long 327 (10-day) duration.

328 Event of 05-09-1995 in short and long duration

Figure 6 (Panel I) shows the cumulative rainfall for the short duration time scales of this event,
for which it is ranked first. The short duration event affected an area of 69% of IWH (>2SD)
with a mean anomaly value of ~12.4 SD.

- 332
- 333

[Please insert figure here]

Figure 6: Panel I- Spatial distribution of accumulated precipitation (mm) and corresponding standard deviation anomalies (black contour) of the 3-days precipitation event on 05-09-1995 i.e. from 03-09-1995 to 05-09-1995. Panel II (a-j)- Spatial distribution of daily precipitation (mm) and corresponding standard deviation anomalies (black contour) of the 10-days period spanning between 28-08-1995 and 06-09-1995. (k) Spatial coverage and magnitude of the extreme event.

340

The event was not a short-lived one and lasted for a considerable longer duration of 10-days from 28 Aug – 6 Sept 1995 (Fig. 6 (Panel II)). Daily precipitation anomalies higher than 2 SD are present on all the days except 28-08-1995 (Fig. 6k (Panel II))). Precipitation was localised and less intense in the first four days (Fig. 6 part II (a-d)). Afterwards it intensified and became widespread, attaining its peak on 5 September. As reported by Vellore et al. (2016), two storms hit IWH during these 10 days. The first storm was active on the first four days, while the second

storm struck during the last six days (Vellore et al., 2016), as can be concluded from Fig. 6 (PanelII).

- 349
- For the first four days, the highest values of precipitation can be observed over an NW SE band of IWH affecting mainly HP and the UK. Precipitation during these four days
 was relatively scattered and less intense (Fig.6 Panel II (a-d)).
- On the first day, i.e., 28-08-1995, no area got affected above anomaly of 2 SD, and max
 precipitation was only up to 41mm. Whereas, on the second and third day affected 2%
 and 6% of the IWH area above anomaly of 2 SD and M value on these two days were
 equal to 2.9 SD with max precipitation of 67mm and 79mm. Anomalies up to 4 SD were
 seen on these two days in regions of the UK.
- On the fourth day, i.e. 31-08-1995 (Fig. 6, Panel II d), this particular pattern of
 precipitation receded affecting 2% of area above anomaly benchmark and with a mean
 intensity of 3 SD, with precipitation being mainly localised over the lower southernmost
 part of the UK with anomalies value over grids up to 4 SD and max precipitation up to
 87mm.
- Onward, the fifth day we see precipitation in an entirely NE-SW orientation, i.e. almost orthogonal to the previous one, affecting mainly the eastern portion of JK. This storm affected on its first day (1 September) an area of 13% of IWH (>2 SD) with mean anomaly value of 3 SD and reaching 4 SD locally. This NE-SW precipitation band increased in both magnitude and area affected until 5 September (Fig. 6, Panel II i).
- This prolonged event was related to the disastrous floods that took place in HP, JK and almost the entire northern India (Haryana, Delhi, Punjab, Bihar, Uttar Pradesh) between Sept 1 – Sept 20 causing the death of 1479 people and affecting 32.704.000 people in total (<u>https://public.emdat.be/data</u>;Blaskovic, 2018; Sen, 1995).
- 372

373 **4.3 Strengths and limitations of the ranking approach**

To demonstrate the strengths and limitations of our approach, we present two particular events that are only included at multi-day ranking. Additionally, we discuss why this approach fails to assign a top rank to the event on 17 June 2013 that triggered the deadliest disaster in Uttarakhand.

378

4.3.1 Strengths: Capturing disastrous events at multi-day time scales

380 Case I: 12th July 1993 event

The extreme event on 12-07-1993 (orange bar in Fig. 4) had tremendous socioeconomic 381 impacts as it heavily flooded the HP and JK states as well as other northwestern states (Punjab, 382 383 Haryana, Gujarat, Rajasthan, Chandigarh) of India causing a death toll of 827 and affecting 128 384 million people (Source: EM-DAT data). The event appears only in the 5-days ranking at the 6th rank, with indices A and M as 82% and 10.5 SD, respectively. Not all five accumulating days of 385 386 this event were severe enough to be included in top 10 of the daily ranking (Fig. 7a). An assessment of the atmospheric circulation at the synoptic scale by Kulkarni et al. (1995) 387 showed the combined effect of meteorological configurations responsible for the event. It was 388 caused mainly due to (i) a well-marked low-pressure system over the region, (ii) a cyclonic 389 circulation that extended up to mid-tropospheric levels and prevailed over the regions between 390 391 9 and 10 July, (iii) an off-shore trough running from the north Maharashtra coast to the Kerala 392 coast, persisting during the four days between 9-12 July, and (iv) a western disturbance that 393 lay over north Pakistan and its neighbourhood on 9 July, and moved away from north-eastward 394 across Jammu and Kashmir on 14 July (Kulkarni et al., 1995).

- 395
- 396

[Please insert figure here]

Figure 7: Daily evolution of the spatial coverage and magnitude of the extreme events on
12-07-1993 (a) and 22-03-1990 (b).

399

400 Case II: 22nd March 1990 event

401 The event on 22-03-1990 is linked with massive flooding of JK (Kaluchak, Kargil) over the two 402 days 21-22 March 1990, causing 69 fatalities. This event is at rank 7 in 3-days ranking (red bar 403 in Fig. 4) but not in the top 10 of the daily ranking (Table 1). However, unlike the previous case 404 (which was captured only once at 5-day duration), this event is among the top 10 ranks for all 405 other durations and occupies 13 out of 50 ranks (Table 1). This is an interesting finding for an 406 event that remains unnoticed at 1-day scale. Its precipitation is relatively less intense and 407 localised on the first three days compared to other days where it intensified and became more 408 widespread (Fig. 7b).

409

410 **4.3.2. Limitation: Why is the deadliest 17th June 2013 Uttarakhand disaster not present**

411 in the top 10 extreme events?

412 In June 2013, Uttarakhand state experienced an extreme 4-day rainfall event leading to 413 devastating floods and landslides. During the event, 370 mm/day of rain was recorded at 414 Dehradun corresponding to 27% of the annual rainfall (Gosain et al., 2015). Heavy rainfall caused 415 a breach in a moraine dammed lake, leading to severe flooding that resulted in the loss of 416 thousands of lives, and massive infrastructure damage that affected 4200 villages, 1636 roads, 144 bridges, and 19 hydropower plants (Das, 2013, Rautela, 2013, Dube et al., 2014, Kala, 2014, 417 418 Gosain et al., 2016). This event is considered as India's worst natural disaster since the December 419 2004 Indian Ocean tsunami (Dubey et al., 2013;Kumari et al., 2019). Reconstruction cost after the 420 disaster is estimated to be almost 480 million pounds (Jogesh et al 2016; Kumari et al., 2019). We 421 analysed the data from 14 to 17th June 2013 to understand why the deadliest disaster in 422 Uttarakhand is missing from the top 10 ranks for the 1-day and multi-day extremes. 17th June 423 was the most extreme day of this event (mean magnitude M = 225 mm; rank 38), followed by 16 424 June (M = 156 mm; rank 96). We compared these events with the 1-day top 1 event of 02-08-1997 425 and the top 3 event of 09-02-2010 (Table 2, Fig. 8). Although day 17-06-2013 holds a mean magnitude of 8.3 SD, it is a localised event affecting only 27% of the IWH area. Day 16-06-2013 is 426 427 more widespread, affecting 40%, but considerably less intense with a mean magnitude of 3.4 SD. In comparison, the rank 1 event on 02-08-1997 (Fig. 8d) affected almost half the area of IWH 428 with a high intensity (M = 9.9 SD). Likewise, the rank 3 event on 09-02-2010 (fig. 8c) had an even 429 430 larger spatial spread (A = 85%), albeit a lower intensity of 4.4 SD. Besides, the intensity of 431 Uttarakhand disaster accumulating days was localised with some specific regions receiving 432 extremely high rainfall in comparison to others. Hence, the mean value of intensity did not reach 433 high value because of the small spatial extent of the event. The high intensity, but low affected 434 area represent important characteristics of this event and are compatible with the disaster-435 affected communities, as most of them were concentrated in the Mandakini catchment 436 (Kedarnath valley in Uttarakhand state of IWH) and surrounding regions (India Disaster Report 2013). Our results agree with Mishra and Srinivasan (2013) who highlighted that rainfall during 437 438 the Uttarakhand floods was not the most intense rainfall this region has ever faced, however, it 439 was considered one of India's worst disasters due to the subsequent impact on society.

We would also like to reiterate that not all extreme precipitation events are associated with geomorphological disasters with significant human and socioeconomic impacts. Some disasters, such as the Uttarakhand 2013 event, result from a number of contributing factors and the relation between precipitation and impact is typically nonlinear (e.g. Kreibich *et al.*, 2017). Natural hazards are transformed into disasters due to socioeconomic factors, such as rising population, poorly regulated tourism industry, and poor infrastructure development including road network

expansion in environmentally sensitive zones (Ziegler et al., 2014; Bhambri et al., 2016). Extreme 446 447 events have occurred in Uttarakhand previously (Dimri, 2013). But the large number of human 448 casualties and the massive damage observed in the June 2013 extreme event can be broadly 449 attributed to two additional reasons: (1) coincidence of the annual pilgrimage with the event 450 exposing a large number of people to the hazard, and (2) heavy rainfall on the preceding days of June 10 and 11, 2013 that saturated the soil and made the ground vulnerable to landsliding. 451 452 Furthermore various other anthropogenic factors, such as unchecked and rapid land-use changes 453 and urban infrastructure development, enhanced the intensity and scale of the impact (Kala, 2014). Finally, the Indian monsoon system reached the region two weeks earlier than normal in 454 455 June 2013 (Joseph et al., 2015) and hence, the region was not prepared for that. Therefore, the 456 compounding effect of various factors in combination with the relatively high precipitation values caused disastrous impacts (Sharma et al., 2013). 457

- 458
- 459

[Please insert figure here]

Figure 8: Spatial distribution of accumulated precipitation (mm) and corresponding
standard deviation anomalies (black contour) during the Uttarakhand 2013 disaster and
the top-ranked event at 1-day. (a-b) represent days during Uttarakhand floods, (c) and
(d) are the rank 3 and rank 1 event, respectively.

464

465 Overall our results highlight that the developed ranking scheme is not biased to extreme events that affect small areas only even when these t can impinge catastrophic impacts at a more local 466 scale. The method was developed to consider both the level of spatial-spread (metric A), as well 467 468 as the intensity of the event (metric M) in the affected area. Both metrics are essential to calculate a representative ranking magnitude, which is the basis of comparison of different precipitation 469 470 events. The case studies in sections 4.3.1 and 4.3.2 highlight that there is a further need to reduce 471 the spatial scale of a domain to state or even basin to obtain a more extensive analysis of extreme 472 precipitation events for that smaller spatial scale, but that are relevant to shape effective disaster 473 and hydrological policies there.

474 **5** Conclusions

We ranked extreme precipitation events in Indian Western Himalayan (IWH) accounting for
precipitation magnitude and spatial extent at different duration. Events are ranked higher due
to particularly high precipitation magnitudes, whereas other events are characterized by

extensive spatial spread or due to persistent rainy conditions for a longer duration. We observe 478 479 that the ranking method apart from identifying such long-duration extremes are also useful in 480 determining the timing of the maximum impact. Our analysis reveals the benefits of using a multi-day ranking scheme to better quantify and track the spatial and temporal propagation of 481 482 the extreme. The different rankings databases obtained considering the various durations are useful for other studies focused on the impacts of extreme precipitation periods covering 483 484 relatively large areas, but also useful for studies assessing the evolution of the atmospheric 485 circulation during those days.

486 Future studies can link the analysis of extremes with associated socio-economic impacts. One 487 way to do this is to add a fourth metric of population exposed to the extremes, thereby giving a higher rank to the events that occur in densely populated areas. As per the results of present 488 489 study, it is true that there is not any direct relation between the positions of events in the table 490 and the socioeconomic impacts as there are a number of other factors responsible. But our approach indeed determines that if we keep all other varying factors constant then the 491 probability of the socioeconomic effects are well correlated with the ranking position. Our 492 classification scheme is also useful, as shown in several case studies, to determine which time 493 494 scale is more likely to bring socioeconomic impacts. In many cases, socioeconomic impacts are not just a result of short and intense events but also accumulated moderate events for a more 495 extended period, which then become significant. 496

497 Acknowledgement

- 498 SR and AA acknowledge the generous funding support by SPARK summer internship program
- 499 at IIT Roorkee. The work was further supported under the COPREPARE project
- 500 (https://ir.iitr.ac.in/COPREPARE/) funded by University Grant Commission (UGC) and DAAD.

501 **Competing interest**

502 The authors declare no conflict of interest.

503 **References**

- 504Beguería, S., Vicente-Serrano, S.M., López-Moreno, J.I., García-Ruiz, J.M., 2009. Annual and seasonal mapping of505peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient,
- 506 northeast Spain. Int. J. Climatol. 29, 1759–1779. https://doi.org/10.1002/joc.1808
- 507 Blaskovic, T., 2018. Worst floods since 1995 hit Himachal Pradesh, India.
- Das, L., Meher, J.K., 2019. Drivers of climate over the Western Himalayan region of India: A review. Earth-Sci. Rev.
 198, 102935. https://doi.org/10.1016/j.earscirev.2019.102935

Page 17 of 33

- 510 D.Guha-Sapir, D. EM-DAT: The Emergency Events Database. Available online: www.emdat.be (accessed on 20 511 August 2020) 512 Dung, N. V., Merz, B., Bárdossy, A., & Apel, H. (2015). Handling uncertainty in bivariate quantile estimation - An 513 application to flood hazard analysis in the Mekong Delta. Journal of Hydrology, 527, 704-717. 514 doi:10.1016/j.jhydrol.2015.05.033 515 Ghosh, S., Das, D., Kao, S.-C., Ganguly, A.R., 2012. Lack of uniform trends but increasing spatial variability in 516 observed Indian rainfall extremes. Nat. Clim. Change 2, 86–91. https://doi.org/10.1038/nclimate1327 517 Guntu, R.K., Maheswaran, R., Agarwal, A., Singh, V.P., 2020. Accounting for temporal variability for improved 518 precipitation regionalization based on self-organizing map coupled with information theory. J. Hydrol. 519 590, 125236. https://doi.org/10.1016/j.jhydrol.2020.125236 520 Kahlon et al, 2014. Landslides in Himalyan Mountains: A study of Himachal Pradesh, India. International Journal 521 of IT, Engineering and Applied Sciences Research (IJIEASR) I 3, 28–34. 522 Konagai, K., Sattar, A., 2012. Partial breaching of Hattian Bala Landslide Dam formed in the 8th October 2005 523 Kashmir Earthquake, Pakistan. Landslides 9, 1–11. https://doi.org/10.1007/s10346-011-0280-x 524 Krishnamurti, T.N., Martin, A., Krishnamurti, R., Simon, A., Thomas, A., Kumar, V., 2013. Impacts of enhanced CCN 525 on the organization of convection and recent reduced counts of monsoon depressions. Clim. Dyn. 41, 526 117-134. https://doi.org/10.1007/s00382-012-1638-z 527 Krishnan, R., Shrestha, Arun B., Ren, G., Rajbhandari, R., Saeed, S., Sanjay, J., Syed, Md.A., Vellore, R., Xu, Y., You, Q., 528 Ren, Y., 2019. Unravelling Climate Change in the Hindu Kush Himalaya: Rapid Warming in the Mountains 529 and Increasing Extremes, in: Wester, P., Mishra, A., Mukherji, A., Shrestha, Arun Bhakta (Eds.), The Hindu 530 Kush Himalaya Assessment. Springer International Publishing, Cham, pp. 57–97. 531 https://doi.org/10.1007/978-3-319-92288-1_3 532 Kulkarni et al, 1995. ANALYSIS OF SEVERE RAINSTORMS OVER GUJARAT AND PUNJAB DURING THE 1993 533 MONSOON. 534 Kumari, S., Haustein, K., Javid, H., Burton, C., Allen, M.R., Paltan, H., Dadson, S., Otto, F.E.L., 2019. Return period of 535 extreme rainfall substantially decreases under 1.5 °C and 2.0 °C warming: a case study for Uttarakhand, 536 India. Environ. Res. Lett. 14, 044033. https://doi.org/10.1088/1748-9326/ab0bce 537 Kreibich, H., Di Baldassarre, G., Vorogushyn, S., Aerts, J. C. J. H., Apel, H., Aronica, G. T., ... Merz, B. (2017). Adaptation
- 538to flood risk: Results of international paired flood event studies. Earth's Future, 5(10), 953-965.539doi:10.1002/2017ef000606
- Krishnan R, Sabin TP, Madhura RK, Vellore RK, Mujumdar M, Sanjay J, Nayak S, Rajeevan M. 2019. Non-monsoonal
 precipitation response over the Western Himalayas to climate change. Climate Dynamics, 52(7–8): 4091–
 4109. https://doi.org/10.1007/s00382-018-4357-2.
- 543 Müller, M., Kaspar, M., 2014. Event-adjusted evaluation of weather and climate extremes. Nat. Hazards Earth
 544 Syst. Sci. 14, 473–483. https://doi.org/10.5194/nhess-14-473-2014
- Marelle L, Myhre G, Hodnebrog Ø, Sillmann J, Samset BH. 2018. The Changing Seasonality of Extreme Daily
 Precipitation. Geophysical Research Letters, 45(20). https://doi.org/10.1029/2018GL079567.
- 547 Nandargi, S., Dhar, O.N., 2011. Extreme rainfall events over the Himalayas between 1871 and 2007. Hydrol. Sci. J.
 548 56, 930–945. https://doi.org/10.1080/02626667.2011.595373
- 549 Nandargi, S., Gaur, A., Mulye, S.S., 2016. Hydrological analysis of extreme rainfall events and severe rainstorms
 550 over Uttarakhand, India. Hydrol. Sci. J. 61, 2145–2163.

- 551 https://doi.org/10.1080/02626667.2015.1085990
- 552 Natural Disaster Management, n.d.
- N. Nicholls, D. Easterling, C.M. Goodess, S. Kanae, J. Kossin, Y. Luo, J. Marengo, K. McInnes, M. Rahimi, M. Reichstein,
 A. Sorteberg, C. Vera, and X. Zhang, 2012: Changes in climate extremes and their impacts on the natural
 physical environment. In: Managing the Risks of Extreme Events and Disasters to Advance Climate Change
 Adaptation [Field, C.B., V. Barros, T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-
- K. Plattner, S.K. Allen, M. Tignor, and P.M. Midgley (eds.)]. A Special Report of Working Groups I and II of
 the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, UK, and
 New York, NY, USA, pp. 109-230.
- Ozturk, U., Marwan, N., Korup, O., Saito, H., Agarwal, A., Grossman, M.J., Zaiki, M., Kurths, J., 2018. Complex
 networks for tracking extreme rainfall during typhoons. Chaos Interdiscip. J. Nonlinear Sci. 28, 075301.
 https://doi.org/10.1063/1.5004480
- 563 Pahauri et al, 2014. Climate Change 2014: Synthesis Report.
- Pai, D.S., Sridhar, L., Rajeevan, M., Sreejith, O., Satbhai, N., Mukhopadhay, N., 2014. Development of a new high
 spatial resolution (0.25° × 0.25°) Long Period (1901-2010) daily gridded rainfall data set over India and
 its comparison with existing data sets over the region.
- 567 Pandit, M.K., 2013. The Himalayas must be protected. Nature 501, 283–283. https://doi.org/10.1038/501283a
- 568 Parry et al, 2007. Climate Change 2007: Impacts, Adaptation and Vulnerability.
- 569 Pathania, K., 1997. At least 140 killed in floods in northern India.
- 570 Priya, P., Krishnan, R., Mujumdar, M., Houze, R.A., 2017. Changing monsoon and midlatitude circulation
 571 interactions over the Western Himalayas and possible links to occurrences of extreme precipitation.
 572 Clim. Dyn. 49, 2351–2364. https://doi.org/10.1007/s00382-016-3458-z
- 573 Rajeevan et al, 2006. A High Resolution Daily Gridded Rainfall Data for the Indian Region: Analysis of break and
 574 active monsoon spells. Curr Sci 91.
- Ramos, A.M., Trigo, R.M., Liberato, M.L.R., 2017. Ranking of multi-day extreme precipitation events over the
 Iberian Peninsula: MULTI-DAY EXTREME PRECIPITATION EVENTS IBERIAN PENINSULA. Int. J. Climatol.
 37, 607–620. https://doi.org/10.1002/joc.4726
- 578 Ramos, A.M., Trigo, R.M., Liberato, M.L.R., 2014. A ranking of high-resolution daily precipitation extreme events
 579 for the Iberian Peninsula: Ranking of the Iberian Peninsula daily precipitation. Atmospheric Sci. Lett.
 580 n/a-n/a. https://doi.org/10.1002/asl2.507
- 581 Ren, F., Cui, D., Gong, Z., Wang, Y., Zou, X., Li, Y., Wang, S., Wang, X., 2012. An Objective Identification Technique
 582 for Regional Extreme Events. J. Clim. 25, 7015–7027. https://doi.org/10.1175/JCLI-D-11-00489.1
- 583 Sen, A., 1995. Poor drainage, inept river management, heavy rains lead to one of north India's worst floods.
- Shukla, R., Agarwal, A., Gornott, C., Sachdeva, K., Joshi, P.K., 2019a. Farmer typology to understand differentiated
 climate change adaptation in Himalaya. Sci. Rep. 9, 20375. https://doi.org/10.1038/s41598-019-569319
- 587 Shukla, R., Agarwal, A., Sachdeva, K., Kurths, J., Joshi, P.K., 2019b. Climate change perception: an analysis of
 588 climate change and risk perceptions among farmer types of Indian Western Himalayas. Clim. Change
- 589 152, 103–119. https://doi.org/10.1007/s10584-018-2314-z
- Satendra, K. J. Anandha Kumar, V. K. Naik, 2014. INDIA DISASTER REPORT 2013. National Institute of Disaster
 Management.

592	Uhlemann, S., Thieken, A. H., & Merz, B. (2010). A consistent set of trans-basin floods in Germany between 1952-				
593	2002. Hydrology and Earth System Sciences, 14(7), 1277-1295. doi:10.5194/hess-14-1277-2010				
594	Vellore, R.K., Kaplan, M.L., Krishnan, R., Lewis, J.M., Sabade, S., Deshpande, N., Singh, B.B., Madhura, R.K., Rama				
595	Rao, M.V.S., 2016. Monsoon-extratropical circulation interactions in Himalayan extreme rainfall. Clim.				
596	Dyn. 46, 3517–3546. https://doi.org/10.1007/s00382-015-2784-x				
597	Yogendra, K., 1999. Can flash floods be prevented in HP?				
598	Zolina, O., Simmer, C., Belyaev, K., Gulev, S.K., Koltermann, P., 2013. Changes in the Duration of European Wet and				
599	Dry Spells during the Last 60 Years. J. Clim. 26, 2022–2047. https://doi.org/10.1175/JCLI-D-11-00498.1				
600					
601					
602					
603					
604					
605					
606					
607					
608					
609	Supplementary Information				
610					
611	Fig. S1				
612	[Please insert figure here]				
613	Figure S1: Spatial distribution and precipitation intensity of a particular event occurred				
614	on 05-09-1995.				
615	[Please insert figure here]				
616	Figure S2: Spatial distribution and precipitation intensity of a particular precipitation				
617	ovent accurred on 00 02 2010				
017					

Figure 1: (a) Topography of the Indian Western Himalayas (IWH) consisting of the three states Jammu & Kashmir (JK), Himachal Pradesh (HP) and Uttarakhand (UK), (b) annual frequency and (c) seasonal frequency of occurrence of precipitation-related disasters in the IWH region since 1900 as per EM-DAT data (D. Guha-Sapir et al n.d.,) (d) annual number of deaths in the IWH region due to hydro-climatological hazards as per EM-DAT data.

Figure 2: Magnitude (Rm) for the first 5, 20 and 100 highest ranked events at various multi-day duration of accumulated precipitation. X-axis denotes duration (i.e. time period) of an event in days. Y-axis denotes the mean magnitude of the event in mm.

Figure 3: Distribution of precipitation extremes over IWH. Decadal distribution of (a) frequency, and (b) mean magnitude of top 1% extreme events for different durations. Monthly distribution of (c) frequency (d) and magnitude of top 1% extreme events for different durations.

Figure 4: Magnitude (Rm) and rank for the top 10 events at different durations (1, 3, 5, 7, and 10 days) of accumulated precipitation. Arrowhead indicates the direction of increasing values.

Figure 5: (a) Spatial distribution of accumulated precipitation (mm) and corresponding standard deviation anomalies (black contour) of a 1-day precipitation event occurring on 02-08-1997. (b) Spatial coverage and magnitude of the extreme event occurring between 31-07-1997 and 05-08-1997. Area means percentage of IWH with precipitation anomalies above 2 SD, magnitude is the mean of anomalies above 2 SD.

Fig. 6 Panel I- Spatial distribution of accumulated precipitation (mm) and corresponding standard deviation anomalies (black contour) of the 3-days precipitation event on 05-09-1995 i.e. from 03-09-1995 to 05-09-1995.

Figure 6:Panel II (a-j)- Spatial distribution of daily precipitation (mm) and corresponding standard deviation anomalies (black contour) of the 10-days period spanning between 28-08-1995 and 06-09-1995. (k) Spatial coverage and magnitude of the extreme event.

Figure 7: Daily evolution of the spatial coverage and magnitude of the extreme events on 12-07-1993 (a) and 22-03-1990 (b).

Table 1: Top 10 extreme precipitation events in the Indian Western Himalayan for different durations (1, 3, 5, 7 and 10 days). For multi-day durations, dates correspond to the preceding days of accumulated precipitation. Thus, the 3-day top event on the 05-09-1995 corresponds to precipitation registered on 3, 4 and 5 of September.

Rank	1-Day	3-day	5-day	7-day	10-day
1	02-08-1997	05-09-1995	22-03-1990	23-03-1990	24-03-1990
2	05-09-1995	03-08-1997	23-03-1990	24-03-1990	25-03-1990
3	09-02-2010	24-08-1996	05-09-1995	05-09-1995	06-09-1995
4	27-10-1917	26-09-1988	06-09-1995	22-03-1990	26-03-1990
5	25-04-1986	29-08-1997	27-09-1988	06-09-1995	07-09-1995
6	25-09-1988	30-12-1990	12-07-1993	07-09-1995	08-09-1995
7	28-08-1997	22-03-1990	29-07-1995	08-09-1995	23-03-1990
8	02-05-1989	06-09-1995	07-09-1995	25-03-1990	05-09-1995
9	29-05-2010	28-07-1995	28-07-1995	29-07-1995	09-09-1995
10	10-09-1992	04-08-1997	24-03-1990	28-09-1988	27-03-1990

Table 2: Ranking index of contributing days to the disastrous Uttarakhand 2013disaster as compared to the top-ranked event.

Plot	Date	% Area	Mean Anomaly	Ranking Index	Rank
(a)	17-06-2013	27	8.3	225	38
(b)	16-06-2013	40	3.9	156	96
(c)	09-02-2010	85	4.4	378	3
(d)	02-08-1997	49	9.9	483	1

Ranking and Characterization of Precipitation Extremes for the past 113 years for Indian

western Himalayas

Saurav Raj¹, Roopam Shukla², Ricardo M. Trigo³, Bruno Merz⁴, Maheswaran Rathinasamy⁵, Alexandre M. Ramos³, Ankit Agarwal^{46,*}

¹Department of Civil Engineering, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India

²Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, Telegrafenberg, 14473 Potsdam, Germany

³Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749016 Lisboa, Portugal

⁴GFZ German Research Centre for Geosciences, Section 4.4: Hydrology, Telegrafenberg, Potsdam, 14473 Germany

⁵Department of Civil Engineering, MVGR College of Engineering, Vizianagaram, 535005 India ⁶Department of Hydrology, Indian Institute of Technology Roorkee, 247667 Uttarakhand, India ***Correspondence to: Ankit Agarwal (ankit.agarwal@hy.iitr.ac.in)**

Highlights

- We use 113 years of precipitation data to rank precipitation extreme events in the Indian Western Himalayas, integrating precipitation spatial extent and its intensity across different time-scales
- Results show that the method accurately detects and ranks the most extreme precipitation events that occurred while delineating the spatial contours of these events.
- The proposed ranking method advances conventional single-day event ranking methods by accounting for multi-day duration providing meaningful information on the event duration associated with the highest impact on society.

Figure S1: Spatial distribution and precipitation intensity of a particular event occurred on 05-09-1995.

Figure S2: Spatial distribution and precipitation intensity of a particular precipitation event occurred on 09- 02-2010.