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Abstract

We model a stylized economy dependent on agriculture

and fisheries to study optimal environmental policy in the

face of interacting external effects of ocean acidification,

global warming, and eutrophication. This allows us to

capture some of the latest insights from research on ocean

acidification. Using a static two‐sector general equilibrium
model we derive optimal rules for national taxes on CO2

emissions and agricultural run‐off and show how they

depend on both isolated and interacting damage effects. In

addition, we derive a second‐best rule for a tax on agri-

cultural run‐off of fertilizers for the realistic case that ef-

fective internalization of CO2 externalities is lacking. The

results contribute to a better understanding of the social

costs of ocean acidification in coastal economies when

there is interaction with other environmental stressors.

Recommendations for Resource Managers:

• Marginal environmental damages from CO2 emis-

sions should be internalized by a tax on CO2 emis-

sions that is high enough to not only reflect marginal

damages from temperature increases, but also mar-

ginal damages from ocean acidification and the in-

teraction of both with regional sources of

acidification like nutrient run‐off from agriculture.
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• In the absence of serious national policies that fully

internalize externalities, a sufficiently high tax on

regional nutrient run‐off of fertilizers used in agri-

cultural production can limit not only marginal en-

vironmental damages from nutrient run‐off but also
account for unregulated carbon emissions.

• Putting such regional policies in place that consider

multiple important drivers of environmental change

will be of particular importance for developing

coastal economies that are likely to suffer the most

from ocean acidification.

KEYWORD S
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1 | INTRODUCTION

Climate change is a major challenge for humankind and has been termed the “greatest market failure
the world has ever seen” (Stern, 2007, p. viii). Consequently, the economic implications of it have
been studied extensively over the last decades. In contrast, the economics of ocean acidification, a
phenomenon caused by uptake of atmospheric carbon dioxide (CO2) in the oceans, is still a rather
underdeveloped research area. Nevertheless, the socioeconomic consequences of ocean acidification
are expected to be considerable. Under a business as usual emission path, ocean acidification is likely
to affect ecosystem services provided by the oceans, such as ocean carbon uptake, coastal protection,
food security, tourism, human health and biodiversity (Gattuso et al., 2015; Hilmi et al., 2012; Hoegh‐
Guldberg et al., 2007; Rodrigues et al., 2015; Turley & Gattuso, 2012).

While the largest emitters of greenhouse gas emissions are developed economies, developing
economies will likely be hit the hardest by climate change. The same is true for ocean acidification:
The highest risk of possible impacts is projected to occur in developing coastal economies, such as
Senegal andMadagascar (Cooley et al., 2012), as they depend on fishery resources for nutrition and as
a main source of income. To evaluate socioeconomic effects of ocean acidification and design ap-
propriate policy instruments it is constructive to analyze ocean acidification within a broader context
of global environmental and ecosystem change (Riebesell & Gattuso, 2015; Turley & Gattuso, 2012).
Moreover, ocean acidification is often regionally intensified by local sources of acidification, most
importantly through eutrophication caused by nutrient run‐off of acidic fertilizers used in agricultural
production (Kelly et al., 2011).

Based on these stylized facts of ocean acidification research, this paper describes an
economy that is representative of many sea‐bordering developing countries, namely highly
dependent on agriculture and fisheries and suffering from three negative externalities: global
warming, global ocean acidification, and local acidification caused by nutrient run‐off of acidic
fertilizers used in agricultural production. We design a general equilibrium model to study the
interaction of the three negative externalities and appropriate optimal policy responses. For the
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realistic case of an optimal carbon tax that internalizes the negative effects of global warming
and ocean acidification can not be implemented, we also derive a second‐best optimal tax on
nutrient run‐off and compare it to the first‐best case. Specifically we ask, if a national economy
does not sufficiently internalize global warming and ocean acidification, how can other na-
tional policy instruments that in our case focus on local euthrophication help to tackle inter-
acting externalities? Our model tries to grapple with the common challenge that first‐best
policies are often not possible, and suggest what second‐best options might achieve. We find
that, for the analyzed setting of a developing coastal economy, an economically optimal policy
response to ocean acidification should not only take into account the direct marginal damages
from CO2 emissions but also the marginal damages arising from the interaction with regional
nutrient run‐off. Our results show that, besides a carbon tax, the implementation of a separate
tax on nutrient run‐off is advisable.1 In a second‐best setting such a tax would compensate for
those damages not internalized by the national carbon tax. Our aim is to capture some of the
latest insights of research on ocean acidification within a standard and analytically tractable
economic model. We thereby contribute to a better understanding of the social cost of ocean
acidification in developing coastal economies, which has been identified as an important
avenue for research (Brander et al., 2012; Cooley et al., 2012; Narita et al., 2012).

The remainder of this paper is structured as follows. Section 2 describes the overall structure and
feedback loops in the modeled economy‐environment system, while it reviews relevant notions and
insights from other studies. Section 3 presents the general equilibrium model and derives first‐ and
second‐best policy rules. Section 5 summarizes the results and concludes.

(a) (b)

FIGURE 1 (a) The setting of the model analyzed in this paper. (b) The structure and feedback loops in the
economy‐environment system, while “+” and “−” reflect the sign of the feedback. The agriculture (A) and
fisheries (F) production sectors provide food to consumers (C) and interact with the natural environment; the
latter determines environmental quality (B) and is affected by the mean global temperature increase (T), ocean
acidification (O), nutrient run‐off (N) and their interaction (I)

1
We abstain here from complicating issues like non‐point sources of pollution (Russell & Shogren, 1993; Xepapadeas, 2011), and assume a single tax, for

example, on fertilizers, whose use has a proportional relationship with emissions, is effective. Section 4 discusses some aspects of non‐point source pollution in

relation to our study.
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2 | FRAMEWORK AND RELATED LITERATURE

Figure 1 sketches (a) the setting and (b) the structure and feedback loops in the economy‐
environment system we analyze in this paper.

The model structure reflects the stylized economic setting of a coastal economy with two
producing sectors: Agriculture (A) and fisheries (F). Consumers (C) depend on agricultural and
fishery products for nutrition and can thus be expected to be highly exposed to risks from
shortages in food supply (Cooley et al., 2012). Consumers and both sectors interact with their
natural environment determining regional environmental quality (B) that is assumed to have a
positive influence on the well‐being of consumers in the economy. In line with previous studies
(Baumgärtner et al., 2015; Drupp, 2018; Hoel & Sterner, 2007) we incorporate environmental
quality at a very aggregate level relating to all services provided by the natural environment that
humans value, ranging from clean water to aesthetic beauty. Environmental quality is re-
presented by the biggest rectangle in Figure 1b and is modelled to be negatively affected by
three environmental stressors: The mean global temperature increase (T), ocean acidification
(O), nutrient run‐off (N) from agricultural production and their interaction (I).

On the one hand we assume that agricultural and fishery production is fossil fuel intensive (FAO,
2019)2 and hence, contributes to global warming.3 On the other hand both sectors suffer from
increasing CO2 levels4 that not only lead to global warming,5 but also to “the other” CO2 problem
(Doney et al., 2009) caused by the uptake of CO2 by the world's oceans, namely ocean acidification.6

Global warming has been found to have negative effects on both agriculture7 and fisheries.8 While
scenarios with high precipitation and increased temperatures may be beneficial for agriculture in
certain Nordic regions, such as Canada and Russia, models simulating agricultural impacts suggest
that even moderate global warming could already have negative effects on wheat, maize and rice
production of subsistence farmers operating in many developing coastal economies (Morton, 2007).
Socioeconomic consequences for fisheries are expected in particular for coastal fishing communities
(Cheung et al., 2013), which are a central element of the analysis in this paper. In our model both the
agricultural and the fishery sector positively contribute to ocean acidification, but only the fishery
sector, which depends on ocean resources, is negatively affected by it. The increase in seawater acidity
could lead to important negative effects on the growth of calcifying organisms (Kroeker et al., 2010),
but also for noncalcifying fish species (Frommel et al., 2012; Stiasny et al., 2016) implying negative
ecological and economic impacts (Cooley & Doney, 2009; Gattuso, 2014; Voss et al., 2015, 2019).
Direct impacts on fisheries markets may occur because commercially important global fish popu-
lations could decline (Cooley & Doney, 2009; Hänsel et al., 2020; Talmage & Gobler, 2010; Voss et al.,

2
We assume that fossil fuels are needed to run tractors and fishing boats. In developing coastal economies, like Senegal and Madagascar, greenhouse gas

emissions from agriculture and land use accounted for 63.8% (Senegal) and 89.2% (Madagascar) of total emissions in 2010 (FAO, 2019).
3
Most agricultural greenhouse gas emissions are non‐CO2 emissions, with methane CH4 due to cattle belching and N O2 due to fertilizers representing the

largest sources. A tax on fertilizer use as proposed in this paper could capture both externalities related to run‐off and to air (N O2 ).
4
Mostly as a result of fossil fuel emissions and land use changes global mean atmospheric CO2 levels have increased by 42% from about 280 ppm in

preindustrial levels to 405 ppm in the beginning of 2017 (IPCC, 2013; NOAA, 2017).
5
According to the World Meteorological Organization 2016 was the hottest year on record with 1.1°C above preindustrial levels.
6
Between 1750 and 2011 the world's oceans have absorbed about 30% of atmosphericCO2 (IPCC, 2013). With high confidence this has caused ocean surface pH

to fall by 0.1 below the preindustrial average, which translates into a 26% increase in acidity (IPCC, 2013). Under business as usual (IPCC AR5, RCP 8.5) ocean

surface pH is projected to fall by 0.42 units below preindustrial levels by 2100 (Bopp et al., 2013).
7
The relationship between crop yields in agriculture and climatic variables is well studied in both developed and developing countries (Burke & Emerick, 2016;

Chen et al., 2016; Deschênes & Greenstone, 2007; Mendelsohn et al., 1994; Schlenker et al., 2006; Schlenker & Roberts, 2009; Welch et al., 2010).
8
Studies that estimate the effect of ocean warming on global fisheries predict spatial redistribution effects of fisheries catch potential (Blanchard et al., 2012;

Cheung et al., 2010), higher vulnerability of coastal fisheries to climate change (Allison et al., 2009) and changes in catch composition (Cheung et al., 2013).
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2015, 2019). In addition, nonmarket impacts are possible due to restructuring of ecosystems, biodi-
versity loss and degradation of coral reefs (Gattuso et al., 2015; Hilmi et al., 2012; Hoegh‐Guldberg
et al., 2007; Rodrigues et al., 2015).

The existing literature on the economic impacts of—and appropriate policy responses to—global
warming and ocean acidification mainly studies either effect in isolation from one another and from
other potential environmental stressors. However, it will be key to understand ocean acidification
within a more comprehensive ecosystem response to environmental change (Riebesell & Gattuso,
2015; Turley & Gattuso, 2012). Oftentimes, the effects of global warming and ocean acidification are
regionally intensified by specific local sources of acidification like sulfur dioxide precipitation or
eutrophication through run‐off of acidic fertilizers (Kelly et al., 2011). As a consequence, a regional
strategy to counteract ocean acidification would have to be designed in a way that integrates impacts
from ocean acidification with other global ocean stressors, such as overfishing, habitat destruction,
temperature change and nonacidifying pollution, and with specific regional stressors like eu-
trophication (Kelly et al., 2011). In this paper we build on this by designing a stylized economic
setting, which integrates ocean acidification with global warming as a key global environmental
stressor as well as with nutrient run‐off (N) of acidic fertilizers used in agricultural production as a
key regional environmental stressor.

Human inputs of nutrients such as nitrogen and phosphorus, which are used in agricultural
fertilization to increase food output, can result in excessive production of algae. This process, known
as eutrophication, changes the structure and functioning of global ecosystems and its services pro-
vided to humans (Compton et al., 2011; Diaz & Rosenberg, 2008; Rockstrom et al., 2009). The
microbial decomposition of the large phytoplancton biomass originating from algae booms not only
results in low oxigen concentrations (hypoxia), which can displace or kill fish and invertebrates
populations. At the same time this process releases CO2, which lowers the pH and increases the
acidity of subsurface waters in coastal regions (Cai et al., 2011). In some regions coastal eu-
trophication contributes more to coastal water acidity than global ocean acidification (Kelly et al.,
2011). In addition euthrophication may reduce the ability of coastal waters to buffer changes in pH,
such that the interaction of global and coastal ocean acidification is more than the sum of both effects
(Cai et al., 2011). In our model, we account for this by including an interaction effect (I) between
temperature, ocean acidification and nutrient run‐off. While the agricultural sector only suffers from
temperature damages, fisheries are negatively affected by all three modelled negative externalities and
their interaction. The interaction effect could both reflect a conceptually different externality or
simply that the overall externality can become larger than the sum of the pure externality effects of
each type as suggested by Cai et al. (2011). In the latter case the interaction effect is more about the
size than the nature of the effect.

We utilize the model structure in Figure 1b to find optimal national policy responses to (i)
the negative effects of carbon in the atmosphere (global warming and ocean acidification) and
(ii) nutrient run‐off in general equilibrium. Although an effective internalization of CO2 ex-
ternalities based on an optimal carbon tax should be the ultimate target to fight both global
warming and ocean acidification, this is far from being realistic. It has been argued that the
missing political willingness to support a global solution can be a reason to focus more on
regional management (Rau et al., 2012). Existing global effort will not be enough to prevent
marine ecosystems from serious changes and hence, regional tailor‐made mitigation strategies
particularly targeting those, which are most affected (e.g., small developing coastal commu-
nities), should receive more attention (Rau et al., 2012; Strong et al., 2014). In this light, we not
only calculate the first‐best optimal taxes on carbon and nutrient run‐off, but also derive the
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second‐best optimal tax on nutrient run‐off for the case that an effective internalization of CO2

externalites is lacking.
Some elements of our modelling approach connect to the literature on second‐best

policies in the trade and environment literature (Krutilla, 1991; Markusen, 1975). While
Markusen (1975) extends the theory of corrective taxation when only one instrument is
available to deal with multiple externalities simultaneously, Krutilla (1991) focuses on
second‐best environmental taxes in the presenence of trade‐effects in an an open econ-
omy. We also build on the literature on regulation of multiple pollutants that interact in
terms of environmental damages and abatement costs (Ambec & Coria, 2013, 2018;
Caplan & Silva, 2005; Endres, 1985; Fullerton & Karney, 2018; Legras, 2011; Moslener &
Requate, 2007; Repetto, 1987) or through markets (Ren et al., 2011). Early studies like
Endres (1985) and Repetto (1987) focus on the control of several pollutants in a static
framework while Moslener & Requate (2007) look at optimal abatement when pollutants
interact dynamically. The latter find that the dynamic properties of the pollutants as well
as whether they concern technological substitutes or complements influence optimal
emission pathways. Caplan and Silva (2005) analyze “correlated externalities” resulting
from multiple pollutants within a multistage game theoretic framework. Ambec and Coria
(2018) address policy‐spillovers when regulating trans‐boundary and local pollutants. In
terms of methodological approach, Fullerton and Karney (2018) and Ren et al. (2011) are
closest to our study. The first employ a two‐sector, two‐pollutant, theoretical general
equilibrium model showing distinct welfare effects of taxes versus permits. Ren et al.
(2011) develop a theoretical general equilibrium model to analyze the interaction of
greenhouse gas emissions and nitrogen leaching as environmental externalities origi-
nating from fossil fuel and biofuel production. Because the two fuel types are substitutes
in the market, taxing one of them influences the level of emissions from the other ex-
ternality. While they find this effect to be ambiguous, the authors also calculate a second‐
best externality tax that may be higher or lower than the first‐best tax, depending on the
elasticity of substitution between the products that generate the two externalities.

Our study differs from this literature in various ways. First our paper is about the economics
of ocean acidification rather than a general, methodological contribution on the optimal reg-
ulation of multiple pollutants. We take the latest research on ocean acidification as a starting
point and design a model that captures relevant stylized facts. This involves conceptualizing the
economics of ocean acidification in interaction with other global and regional environmental
stressors—in particular global warming and euthrophication—to develop an integrated policy
response as well as focusing on economies that are most affected by this combination of
stressors. We make use of a general equilibrium structure to analyze the case when the mar-
ginal social damages of ocean acidification and global warming are not fully covered by a
carbon tax and derive a second‐best tax on euthrophication for this case. In contrast to Ren
et al. (2011), we are able to analytically show that the second‐best nutrient tax will always be
higher than the first‐best optimal tax that covers the marginal social damage from eu-
throphication. Our paper's contribution to the literature on the economics of ocean acidifica-
tion is therefore twofold. First we provide a clear analytic model that captures the essentials of a
setting that is most relevant regarding damages from ocean acidification. Second, we highlight
that regional environmental policy aimed at preventing regional acidification resulting from
euthrophication could help in tackling the severity of the global acidification problem, thus
underlining the need for regional management as pointed out in Rau et al. (2012).
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3 | MODEL AND POLICY RULES

3.1 | The general equilibrium model

We introduce a static general equilibrium model of a closed coastal economy with agriculture
(A) and fisheries (F ) as production sectors, which generate three externalities. CO2 emissions
contribute to global warming, captured in the model by an increase of atmospheric temperature
(T) relative to the preindustrial level. CO2 emissions further cause ocean acidification (O). A
third externality is due to agriculture run‐off of fertilizers which cause eutrophication (N for
nutrient run‐off) of the ocean. We assume that agricultural output is only affected by global
warming. On the other hand the fisheries sector suffers from all three externalities, due to
global warming, ocean acidification and eutrophication. Moreover, we include an interaction
term (I) to reflect that the three effects may be synergetic in terms of the overall damage.

The two sectors produce outputQi (with i A F= , ) by means of emissions and labor.9 We assume
that variable inputs like fertilizers or fuels are perfectly correlated with capital use, such as tractors or
fishing boats. Thus, while capital utilization is carbon (M) emission intensive, with eM

A and eM
F

denoting carbon emissions in the agriculture and fishery sector, emissions from eutrophication eN
A

can be thought of to be a byproduct of capital utilization in the agriculture sector.
Net output in the agricultural sectorQA increases in labor lA, agricultural carbon emissions

eM
A and emissions from nutrient run‐off eNA. QA decreases in the global mean atmospheric
temperature increase T , which determines temperature damages.

( )Q f l e e T= , , ,A A A
M
A

N
A (1)

Additionally we assume that f A is strictly concave in carbon emissions, that is, that
∂

∂ ∂
< 0

f

e e

A

M
A

M
A

2

and that the second cross derivative is positive, that is, ∂

∂ ∂
> 0

f

e e

A

M
A

N
A

2

. The former means
that carbon emissions become less productive the more carbon emissions are needed for
production. The latter captures that carbon emissions and nutrient run‐off are modeled as
complements, reflecting that carbon‐intensive fuels as well as acidic fertilizers are jointly used
in agricultural production.10

Net output in the fishery sector QF increases in labor lF and carbon emissions eM
F and

decreases in the global mean temperature anomalyT , ocean acidificationO, nutrient run‐off N
and in an interaction effect I determined by all three environmental stressors. Specifically, the
interaction term captures synergetic environmental damage in line with the literature (Cai
et al., 2011; Kelly et al., 2011) discussed in Section 2.

To make the model as simple and tractable as possible, we abstract from the traditional
representation of bio‐economic fisheries productions functions with fishing effort and fish
biomass as input factors, but instead focus on labor and capital as the limiting economic factors
in production. Specifically, fishing effort can be viewed as being produced by labor and capital,
while the latter is correlated with fuel usage.11

9
In line with the literature on optimal pollution regulation (e.g Muller and Mendelsohn 2009) we treat emissions directly as a factor of production.
10
The cross derivative is negative when the production factors are substitutes. See Hoel (2012) for an example of energy production from fossil fuels and

renewables.
11
Labor and capital (i.e., fishing boats size correlated with fuel use) are substitutes in the production of fishing effort. For example the same level of fishing

effort could be achieved by a large number of fisherman (high labor) and handline fishing from a small boat (low capital, low fuel usage) or by a small number

of fisherman (low labor) working on a big trawler (high capital and fuel usage).
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( )Q f l e T O N I= , , , , ,F F F
M
F (2)

In terms of factors of production, we assume an inelastic factor supply (Goldberg,
2016). Total carbon emissions EM are the sum of carbon emissions from both sectors of the
economy and carbon emissions from the rest of the world eM

R . Total emissions from nu-
trient run‐off EN are the sum of nutrient emissions from agricultural production and
nutrient run‐off from the rest of the world eM

R .

L l l= +A F (3)

E e e e= + +M M
A

M
F

M
R (4)

E e e= +N N
A

N
R (5)

We focus on a representative consumer, who derives utility from the consumption of
agricultural and fish products CA and CF as well as from a public good B representing
environmental quality. This is in line with previous studies that incorporate an aggregate
environmental good in the utility function (Baumgärtner et al., 2015; Drupp, 2018; Hoel &
Sterner, 2007). The inclusion of environmental quality in the utility function reflects that
there are not only direct use values of land and ocean based ecosystems but also nonuse
values. Utility increases in B while we model B to be negatively affected by the three
environmental stressors and their interaction. The resulting utility function can be re-
presented as

U c c B T O N I( , , ( , , , )).A F (6)

Finally, the output in both sectors of the economy is consumed entirely.12

Q c i A F= with = ,i i (7)

Both the global mean atmospheric temperature increase T and ocean acidification O in-
crease in the total amount of carbon emissions EM .

T T E T= ( ) with ′ > 0M (8)

O O E O= ( ) with ′ > 0M (9)

Eutrophication is caused by the total amount of nutrient run‐off N , which increases in the
total amount of nutrient run‐off due to fertilizer use in the agricultural and fishery sector EN .

N N E N= ( ) with ′ > 0N (10)

The interaction effect I increases in both total carbon emissions and total emissions from
nutrient run‐off.

∂

∂

∂

∂

∂

∂ ∂
I I E E

I

E

I

E

I

E E
= ( , ) with > 0, > 0 and > 0M N

M N N M

(11)

In the following we will first derive the model's market solution capturing the utility‐ and
profit‐maximizing behavior of consumers and firms while disregarding externalities. In a
second step we take the perspective of a representative benevolent government in a developing

12
This condition also implies that a household can become both a consumer and a producer, which is often the case in developing countries.
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coastal economy that maximizes well‐being while taking into account external effects through
environmental damage. Comparing the resulting socially optimal allocation to the market
solution allows us to derive specific policy rules that internalize externalities to achieve max-
imum social welfare. The following table summarizes the notation in our model.

Summary of model notation

Qi, i A F= , Production output in agriculture (A) and fisheries (F)

eM
i , i A F R= , , Carbon emissions in agriculture (A), fisheries (F) and rest of the world (R)

EM Total carbon emissions

eN
i , i A R= , Emissions from nutrient run‐off acidic fertilizers used in national agriculture (A)

and in the rest of the world (R)

EN Total emissions from nutrient run‐off

li, i A F= , Labor in agriculture (A) and fisheries (F)

L Total amount of labor

T E( )M Global mean temperature increase

O E( )M Ocean acidification

N E( )N Nutrient run‐off

I E E( , )M N Interaction effect between T, O, and N

B T O N I( , , , ) Environmental quality

( )f l e e T, , ,A A
M
A

N
A Agricultural production function

( )f l e T O N I, , , , ,F F
M
F Fisheries production function

ci, i A F= , Consumption of agricultural (A) and fishery products (F)

U c c B( , , )A F Utility function of the representative consumer

3.2 | Market solution

The representative consumer maximizes utility subject to a budget constraint, where w is the
wage, pF is the price of the final food produced in the fishery sector, while we set the price of
the agricultural good to unity, that is, p = 1A (numeraire).

≥U c c B wL c p cmax ( , , ) subject to +
c c

A F A F F

{ , }A F
(12)

In the optimum the marginal rate of substitution between consumption of agricultural
products cA and fish consumption cF is equal to the price ratio of the two products, that is:

∂ ∕∂

∂ ∕∂

U c

U c p
=

1A

F F
(13)
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In each sector the representative firms maximizes profits subject to the production technology.
Production costs include the payment of taxes τM on carbon emissions and τN on nutrient run‐off.

{ }( )
{ }

f l e e T wl τ e τ emax , , , − − −
l e e

A A
M
A

N
A A

M M
A

N N
A

, ,A
M
A

N
A

(14)

{ }( )
{ }

p f l e T O N I wl τ emax , , , , , − −
l e

F F F
M
F F

M M
F

,F M
F

(15)

The first‐order conditions for both sectors are then:

∂

∂

f

l
w=

A

A
(16)

∂

∂

f

e
τ=

A

M
A M (17)

∂

∂

f

e
τ=

A

N
A N (18)

∂

∂

p f

l
w=

F F

F
(19)

∂

∂

p f

e
τ=

F F

M
F M (20)

We can equate (16) with (19) and (17) with (20) to arrive at the following two
conditions:

∂

∂

∂

∂

f

l

p f

l
=

A

A

F F

F
(21)

∂

∂

∂

∂

f

e

p f

e
=

A

M
A

F F

M
F

(22)

Equations (21) and (22) require that in equilibrium both the value of the marginal
product of labor and the value of the marginal product of carbon emissions must
be the same in the two sectors. The value of the marginal product of carbon emissions can
also be interpreted as the cost the representative firm has to bear when abating one
unit of carbon emissions. Hence, (22) can be interpreted as one of the cfundamental
insights of environmental economics: In the equilibrium with pollution taxation
marginal abatement cost must be equal across sectors. This result is due here to a
uniform carbon tax, regardless of its specific value. From the first order conditions (17)
and (20) we know that the optimal carbon tax must be exactly equal to the marginal
abatement cost of carbon emissions. Similarly, (18) requires that the optimal tax on nu-
trient run‐off from agricultural production equates to the marginal abatement cost of
nutrient emissions.

Finally we can combine Equation (13) with Equations (21) and (22):

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

= =

U

c

U

c

f

l

f

l

f

e

f

e

A

F

F

F

A

A

F

M
F

A

M
A

(23)
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This means that the marginal rate of substitution between agricultural product consump-
tion and fish consumption must equal the marginal rate of technical substitution between labor
in the two sectors, which must again be equal to the marginal rate of technical substitution
between carbon emissions used in production in each of the sectors.

3.3 | Socially optimal allocation

We now assume a benevolent government that maximizes social welfare in the developing
coastal economy. Specifically, this central planner maximizes the utility of a representative
agent, while taking into consideration the entire feedback structure in the economy. The
resulting optimization program reads:

{ }
max (6) subject to (1), (2), (3), (4), (5), (7), (8), (9), (10), (11)

c c l l e e e, , , , , ,A F A F
M
A

M
F

N
A

(24)

By substituting all the constraints into the objective function, the following maximization
problem results:13
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(25)

The first‐order conditions14 describing the socially optimal allocation are:
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13
Note that an equivalent approach to solving the maximization problem of the central planner would be to first characterize utility‐maximizing consumption

choices and then let the central planner maximize the resulting indirect utility function of the representative consumer.
14
Note that
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From (26d) we obtain the well known condition for the socially optimal allocation in the
private good markets, which is identical to (23).
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The marginal rate of substitution between agricultural product consumption and fish
consumption must equal the marginal rate of technical substitution between labor in the
two markets.

We rearrange (26a) and use (17) to obtain the optimal tax on carbon emissions τ*M ,
which is equal to the Pigouvian carbon taxτ *M capturing the marginal social damage from
carbon emissions.15
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Equation (28) shows two decompositions, allowing two interpretations of the
optimal tax. According to the first decomposition (first and second line in Equation 28)
the optimal carbon tax is the sum of marginal damages (MD) from temperature increase,
ocean acidification, nutrient run‐off and the interaction term measured in terms of
consumption of the agricultural sector. The second decomposition (third and forth line in
Equation 28) illustrates that the optimal tax includes marginal damages on environmental
quality as well as marginal damages on production in the agricultural sector and the
fishery sector.

To calculate the optimal tax on nutrient run‐off τ*N , we use (18) and rearrange (26c).

15
Note that the Pigouvian tax must not always be equal to the optimal tax, see for example Cremer et al. (1998).

12 of 22 | Natural Resource Modeling HÄNSEL AND VAN DEN BERGH



⎡

⎣

⎢⎢⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦

⎥⎥⎥⎥
⎡

⎣

⎢⎢⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦

⎥⎥⎥⎥

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂

∂



     

     

τ τ
U

B

B

N
N

B

I

I

e

U

c

f

N
N

f

I

I

e

U

B

B

N

U

c

f

N
N

U

B

B

I

U

c

f

I

I

e

* = * = − ′ + − ′ +
1

= − − ′ + − −
1

N N
N
A F

F F

N
A U

c

F

F

F

F

N
A U

c

MD Environmental quality MD Fisheries

MD Nutrient‐Runoff MD Interaction

A

A

(29)

The optimal tax on nutrient run‐off τ*N (29) is equal to its Pigouvian levelτ *N that internalizes the
marginal social damage from nutrient run‐off in agricultural production. It is the sum of marginal
damages from nutrient run‐off and marginal damages from the interaction of nutrient run‐off with
temperature and ocean acidification. The tax reflects marginal damages from nutrient run‐off on
environmental quality and on production in the fishery sector.

3.4 | Second best optimal allocation

We assume now that the social planner cannot implement the carbon tax at the Pigouvian level and
hence, there is no effective internalization of CO2 damages. This could, for example, be due to the
difficult task of estimating marginal economic damages from carbon emissions in the developing
coastal economy, missing political willingness to support an optimal policy rule or due to a lacking
effective international agreement to harmonize policies, which allows countries to implement serious
national climate policies. Given a carbon tax that falls short of internalizing the full marginal damages
from carbon emissions, this section elaborates if regional environmental policy in form of a tax on
nutrient could compensate for unregulated carbon emissions. Based on the literature analyzed in
Section 2, we seek to provide a formal economic argument for the importance of regional man-
agement of ocean acidification, that is often intensified by regional nutrient‐runoff from agricultural
production.

Formally the carbon tax is exogenous in this case such that the second‐best optimal

level of emissions from nutrient run‐off is the value of eN
A that satisfies (25), while

( )e e l e T τ= , , ,M
A

M
A A

N
A

M and e e L l T O N I τ= ( − , , , , , )M
F

M
F A

M are implicitly16 defined by (17)

and (20). The intuition is that in each sector the representative firm will choose its level of
carbon emission once the government defines the carbon tax. Hence, the optimization
program determining this second‐best allocation reads:
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(30)

16
We make use of the implicit function theorem here.
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The second‐best tax on nutrient run‐off is optimally determined by the following first‐order
condition:17
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Using (18) we obtain the second‐best optimal tax on nutrient run‐off τN :
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The second‐best optimal tax on nutrient run‐off is the sum of marginal damages on environ-
mental quality from nutrient run‐off and its interaction with global warming and ocean acidification
as well as from marginal damages on fisheries and agriculture. In the following we compare the
second‐best optimal tax on nutrient run‐off to its Pigouvian level τ *N , which captures the external
effects of nutrient run‐off and of its interaction with global warming and ocean acidification as given
in Equation (29). This allows us to decompose τ *N according to the next Equation (33).
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We find two opposing effects that either increase or decrease τN relative to its Pigouvian
level τ *N . First, as the carbon tax is set below the optimal level, both marginal damages on
environmental quality and on production in the agricultural and the fishery sector from
temperature increases and ocean acidification are higher compared to when the carbon tax is
Pigouvian. The second‐best nutrient tax covers these marginal damages in addition to the direct
marginal damages from nutrient run‐off, which tends to increase the second‐best optimal tax
on nutrient run‐off relative to Pigouvian nutrient taxation. Hence, in the second‐best situation
also marginal damages from temperature increase on the agricultural sector are considered,
which is not the case when the nutrient tax is set at its Pigouvian level. Second, at the same
time a carbon tax below its Pigouvian level makes carbon a relatively cheap factor of production
thereby decreasing marginal abatement cost of carbon used in agricultural production.

We obtain the following relation between τN and τ *N :
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The second‐best optimal tax on nutrient run‐offτN is higher (lower) than the Pigouvian tax
on nutrient run‐off τ*N iff the additional marginal social damage from carbon emissions on
environmental quality and on the production in both sectors are higher (lower) than the carbon
tax that must be equal to the marginal abatement cost of carbon according to Equation (18). We
find that the sum of these additional marginal damages is exactly equal to the social cost of the
negative externalities that are covered by the Pigouvian carbon tax (see Equation 28). Thus,
Equation (34) simplifies to:

≷ ≷  τ τ τ τ* iff *N N M M (35)

A carbon tax below the Pigouvian level does not fully internalize the social cost of the
negative externalities generated by global warming and ocean acidification. As a consequence,
Equation (35) implies that the second‐best optimal nutrient tax will always be higher than its
Pigouvian level. Figure 2 illustrates how the second‐best optimal tax on nutrient run‐off de-
pends on the carbon tax τM that determines the marginal abatement cost of carbon.

The further the carbon tax is from its Pigouvian levelτ *M , the higher the second‐best tax on
nutrient run‐off, while the latter will reach a maximum value max τN for τ = 0M . Accepting
carbon emissions in agricultural production to fuel machinery like tractors is very cheap
without the additional tax expenses and thus, the second‐best tax on nutrient run‐off, which is
a byproduct of agricultural production, needs to account for all additional environmental
damages caused by the increased use of carbon emissions in production. The higher τM , the
lowerτN as using carbon emissions in agricultural production becomes more expensive, which
lowers the associated environmental damages. When τ τ= *M M the social costs of negative
externalities are internalized by the Pigouivian carbon tax and the second‐best tax on nutrient
run‐off does not need to cover unregulatedCO2 emissions and hence, will be set at its Pigouvian
level τ *N .
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4 | DISCUSSION

This section discusses three main limitations of the theoretical analysis presented in this paper.
First, it does not describe eutrophication as a nonpoint source pollution problem, as this would
require an explicit spatial approach and hence a very different type of model (Russell &
Shogren, 1993; Xepapadeas, 2011), which would make it unsuitable to address the other issues
we tackle. To not over‐complicate our model, we abstracted from difficulties associated with
nonpoint source pollution and include a tax on the use of fertilizers, whose use has a pro-
portional relationship with emissions. This would control the non‐point source externality well
if it was levied per unit of toxicity‐weighted ingredient, which might require the im-
plementation of mineral accounts for each farm in the country so as to record the application of
nitrogen to crops (Pearce & Koundouri, 2003). Nitrogen fertilizer taxation has been found to be
an effective policy in Austria, Finland, and Sweden (Rougoor et al., 2001). Finger (2012) shows
that a nitrogen fertilizer tax would be the more effective the higher farmers' risk aversion.
Although fertilizer use in developing countries is rather low compared to developed countries
in absolute terms, it grows at a significantly faster rate: The average yearly growth rate of
nitrogen use between 2000 and 2018 has been seven times higher in Least Developed Countries
compared to the European Union and two to three times higher compared to the United States
(FAO, 2021).18 This is no surprise since developing countries have a high incentive to increase
agricultural yields being a major source of their income and nutrition. Thus, on the one hand a
tax on fertilizer use has a clear potential to incentivize the application of environmentally
friendlier technologies and mitigate eutrophication and its interaction with global warming and
ocean acidification at low societal costs. It also creates tax revenues that can be redistributed to
farmers to buffer distributional concerns and reduce resistance among farmers. On the other
hand, fertilizer taxation can increase food prices and hence alter choices throughout the

FIGURE 2 Second‐best optimal tax on nutrient run‐off τN as a function of the carbon tax τM

18
In the EU nitrogen use has grown from 84.15 to 90.37 kg/ha of cropland between 2000 and 2018, while it grew from 60.11 to 72.58 kg/ha in the United States.

In the same period nitrogen use increased from 10.73 to 17.61 kg/ha in least developed countries.
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production‐consumption chain, thus allowing for a socially optimal trade‐off between miti-
gating environmental stressors and food security. Implementing such a tax reform would be
subject to a number of problems, notably related to political feasibility and imperfect markets.
Addressing these barriers through clear communication and interaction with local stakeholders
could be key to ensure a just transition to more sustainable agricultural practices.

Second, uncertainty regarding ecosystem responses to ocean acidification in interaction
with other stressors is relatively high. Although a large number of studies focusing on phy-
siological responses of calcifying organisms have been published over the last years, the
findings are partly contradicting (Meyer & Riebesell, 2015) and uncertainties regarding the
organisms' exact sensitivity to ocean acidification remain. For example Kroeker et al. (2013)
report that some organisms show enhanced responses to projected future ocean acidification
conditions. Moreover, some of the key mechanisms, like calcification, are still not sufficiently
understood (Waldbusser et al., 2016). Moreover, uncertainty extends to how such effects for
particular organisms and species scale up to the level of marine ecosystems and to what extent
these can adapt. Real world policy responses to interacting externalities of ocean acidification,
global warming and eutrophication should ideally take such uncertainties regarding marine
ecosystem responses to changing environmental conditions into account (Browman, 2016).

Third, our study employs a national general equilibrium model that does not consider how
national carbon dioxide emissions affect marginal damages due to temperature increase and
ocean acidification in the rest of the world. A sufficiently high global carbon tax, which should
be the goal of international negotiations, would take these additional marginal damages into
account. Unfortunately, it has been proven extremely difficult to find a global agreement on
appropriately regulating carbon dioxide emissions. The Paris Climate Agreement does not
specify any consistent policies among countries, but includes merely voluntary pledges for
emissions reductions. In such a situation national environmental policy may help those regions
that are likely to be most affected by a combination of global warming, ocean acidification and
local stressors such as eutrophication (Kelly et al., 2011).

5 | CONCLUSIONS

In this paper, we describe a coastal economy highly dependent on agriculture and fisheries, to study
the interacting external effects of ocean acidification, global warming, and eutrophication on socially
optimal environmental policy. The analysis is based on a closed economy and hence, we do not
consider the effect of sector emissions on climate change and ocean acidification on the rest of the
world. Instead we focus on how national environmental policy can optimally respond to interacting
environmental externalities. The structure of the general equilibrium model is consistent with re-
commendations formulated in recent research on socioeconomic consequences of ocean acidification
and appropriate policy responses. Ocean acidification is likely to hit developing coastal economies the
hardest as they particularly depend on fishery resources for nutrition and income. In addition, the
literature suggests to not study ocean acidification in isolation but in combination with other global
and regional environmental stressors. In this paper we combine ocean acidification with global
warming and nutrient run‐off of fertilizers used in agricultural production, which also contribute to
regional acidification. Moreover, we assume that consumers in our economy do not only care about
fish and agricultural product consumption, but also care about the quality of the regional natural
environment. Our model is the first to take into consideration three externalities in a general equi-
librium setting.
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We derive optimal rules for taxes on CO2 emissions and agricultural nutrient run‐off and show
that they depend on both isolated and interacting damage effects. The optimal carbon tax is the sum
of marginal damages from global warming, ocean acidification and their interaction with the effect of
nutrient run‐off on the environmental quality as well as on production in agriculture and fisheries. It
needs to account not only for isolated but also for synergetic damages captured by the interaction
term. Thereby eutrophication increases the optimal carbon tax through its interaction with global
warming and ocean acidification. The optimal tax on nutrient run‐off is the sum of marginal damages
from nutrient run‐off and its interaction with global warming and ocean acidification on environ-
mental quality as well as on production in the fishery sector. Also in this case synergetic damages,
captured by the interaction term, increase the first‐best nutrient tax.

In addition, we derive a second‐best rule for a tax on agricultural run‐off of fertilizers for the
realistic case that the carbon tax is set below its Pigouvian level such that CO2 externalities are
not fully internalized. On the one hand we find that the second‐best tax on nutrient run‐off will
be higher than its Pigouvian level to account for the additional marginal damages from carbon
emissions on environmental quality and production in both sectors that are not covered by the
carbon tax. On the other hand a carbon tax below its Pigouvian level makes carbon intensive
fuels, which are a necessary input for production in both sector, relatively cheap. Consequently
marginal abatement costs for carbon emissions decrease, which lowers the second‐best optimal
tax on nutrient run‐off compared to its Pigouvian level. Overall we obtain that the former
positive effect will be higher than the latter negative effect and thus, the second‐best nutrient
tax will always be above its Pigouvian level.

Our analysis shows the importance of regulating ocean acidification within a framework of
multiple important drivers of environmental change like global warming and eutrophication. Ideally
marginal environmental damages from CO2 emissions should be internalized by a tax on CO2

emissions that is high enough to not only reflect marginal damages from temperature increases, but
also marginal damages from ocean acidification and the interaction of both with regional sources of
acidification like nutrient run‐off from agriculture. Unfortunately, it is more realistic to expect that
CO2 externalities will not be fully internalized. Moreover, estimating marginal economic damages
from ocean acidification is a challenging task that is complicated by the uncertainty about actual and
future ecosystem responses. When—for whatever reasons—the tax on CO2 emissions cannot be
equal to its Pigouvian level, regional environmental policy becomes relevant, as has been demon-
strated in this paper. A sufficiently high tax on nutrient run‐off of fertilizers used in agricultural
production can limit not only marginal environmental damages from nutrient run‐off but also
account for unregulated carbon emissions when the carbon tax is set below the level that internalizes
CO2 externalities. Putting such policies in place will be of particular importance for developing coastal
economies that are likely to suffer the most from ocean acidification.
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