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Abstract We propose a comprehensive framework able to address both the predictability of the first and
of the second kind for high-dimensional chaotic models. For this purpose, we analyse the properties of
a newly introduced multistable climate toy model constructed by coupling the Lorenz ’96 model with a
zero-dimensional energy balance model. First, the attractors of the system are identified with Monte Carlo
Basin Bifurcation Analysis. Additionally, we are able to detect the Melancholia state separating the two
attractors. Then, Neural Ordinary Differential Equations are applied to predict the future state of the
system in both of the identified attractors.

1 Introduction

Understanding the qualitative behaviour and dynamics
of high-dimensional chaotic models of complex systems
is a challenging task. The Earth’s climate [1–3], but also
power grids [4], the human brain [5,6], and perception
[7] or gene expression networks [8] all exhibit, in cer-
tain range of the system’s parameters, multiple attrac-
tors with different basins of attractions. Energy bal-
ance climate models exhibit the well known hysteresis
behaviour with respect to the solar radiation between
a cold snowball earth state and a warmer state corre-
sponding to the present-day climate, with discontinuous
transitions taking place at the lower and upper bound-
ary of the region of bistability [1,2,9–13]. Recently, it
has become apparent that the climate system might
indeed feature more than two competing states, asso-
ciated with a complex partitioning of the phase space
in competing basins of attraction [14–17]. Indeed, mul-
tistability also almost always gives rise to a potential
abrupt change of the system when a bifurcation point
is—adiabatically—reached and one state loses it sta-
bility. In the context of geosciences, the crossing of
a bifurcation point is usually referred to as tipping
point [18]. Studying them is one of the crucial chal-
lenges of understanding and hopefully mitigating cli-
mate change [19]. The notion of tipping point has been
recently widened to accmomodate transitions that are
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caused specifically by the presence of a non-vanishing
rate of change of the parameter of interest or by noise
[20,21]. Far from the tipping point, when the system is
a regime of multistability, transitions between the com-
peting states is not possible in the case of autonomous
dynamics, as the asymptotic state is determined by the
initial condition, depending on which basin of attrac-
tion it belongs to. Initial conditions located on the basin
boundaries—which have vanishing Lebesgue measure—
are, instead, attracted to the edge states, which are sad-
dles located on such basin boundaries [12,22,23]. Such
saddles determine the global instabilities of the system
and, additionally, if the system is, under fairly general
conditions, forced with Gaussian noise, they are the
gateways for noise-induced transitions between compet-
ing metastable states [3,13,17,24].

To characterise multistable systems, one needs to
recover information on each competing attractor, so
that it is possible to dynamically distinguish them.
Indeed, one should be able to compute dynamical prop-
erties as, e.g., different Lyapunov exponents or the
basin stability [25]. Any approach aimed at perform-
ing predictions in potentially multistable systems thus
needs to first identify the different attractors and their
basins of attractions to be able to make meaningful pre-
dictions on either of them. In this article, we will present
a two-part framework to approach high-dimensional,
spatiotemporally chaotic models, to understand their
complex behaviour and their basins of attraction, and
then predict future states of each of their attractors.

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00175-0&domain=pdf
mailto:gelbrecht@pik-potsdam.de


Eur. Phys. J. Spec. Top.

In Lorenz’ terminology, in this paper we try to bundle
together a methodology to address both the predictabil-
ity of the first kind—the model sensitivity to inaccurate
initial conditions, hindering infinitely long determinis-
tic predictions—and of the second kind, associated with
the uncertainty on the asymptotic state reached by the
system [26].

We proceed as follows. The Monte Carlo Basin Bifur-
cation Analysis (MCBB) [27] is used to identify the
basins of attractions with the largest volumes and how
the volume changes when control parameters of the sys-
tem are changed. MCBB makes use of random sam-
pling and clustering techniques to quantify the volume
of the basins of attraction and track how they change
when control parameters of the system are varies. Based
on the MCBB results, we learn which trajectories are
asymptotically evolving towards which attractor.

For achieving predictability of the first kind, we apply
a hybrid approach that complements potentially incom-
plete models with data-driven methods. Most numerical
models describing a real world system and especially
those of Earth system models, can be seen as incom-
plete in some regard. This can be due to, e.g., neglect-
ing higher order terms or by an unknown external influ-
ence. Predicting even only partially known chaotic sys-
tems has been successfully done with hybrid approaches
that combine knowledge of the governing equation with
data-driven methods [28, e.g.]. One particular promis-
ing approach are Neural Differential Equation or Uni-
versal Differential Equations [29,30] that enable us to
train artificial neural networks (ANNs) inside of the
differential equations.

We will test our framework on a new prototypical
bistable model that we introduce below. The model
is constructed by coupling a zero-dimensional clas-
sic energy balance model featuring bistability with
the Lorenz96 (L96) model [31], which has gained
prominence as prototypical system featuring spatially
extended chaos. This model will serve as an ideal
testbed for our approach.

The paper is structured as follows: First, we will
introduce the Bistable Climate Toy Model, recap the
dynamic properties of its key ingredient, the Lorenz96
model, and investigate the basic properties of the full
coupled toy model. Subsequently, we will apply our
two-part approach by first identifying and tracking the
attractors of the model with MCBB, and then demon-
strating the Neural Differential Equation approach on
the model by replacing its energy balance model with
an ANN and making predictions of the model.

2 Bistable climate toy model

The Bistable Climate Toy Model is set up by cou-
pling a Lorenz ‘96 (L96) model [31,32] to a zero-
dimensional energy balance model (EBM). The L96
model describes a highly nontrivial dynamics on a one-
dimensional periodic lattice composed of N grid points,
and is rapidly becoming a reference for studying non-

equilibrium steady states in spatially extended sys-
tems. The L96 model features processes of advection,
forcing, and dissipation. It can be thought of as rep-
resentative of the dynamics of the atmosphere along
one latitudinal circle [31,32], even if such correspon-
dence is more metaphorical than actual, because the
L96 model does not correspond to a truncated version
of any known fluid dynamical system. The L96 model
has rapidly gained relevance in many different research
areas to study bifurcations [33,34], to test parametriza-
tions [35–38], to investigate extreme events [39–41], to
improve data assimilation schemes [42,43] and ensem-
ble forecasting techniques [44,45], to develop new tools
for investigating predictability [46,47], and for address-
ing basic issues in non-equilibrium statistical mechanics
[48–51]. The L96 model is formulated as follows:

Ẋn = (Xn+1 − Xn−2)Xn−1 − γXn + F, n = 1, . . . , N,

(1)

with periodic boundary conditions given by Xj−N =
Xj = Xj+N ∀j = 1, . . . , N . The parameter F describes
the forcing acting on the model, γ controls the intensity
of the dissipation and, thus, of the contraction of phase
space volume, and the nonlinear term on the right hand
side describes a non-standard advection. The energy of
the system E = 1/2

∑N
n=1 X2

n is conserved in the unvis-
cid and unforced limit and acts as generator of the time
translation, even though the system is not Hamiltonian.
For a detailed analysis of the mechanics and energetics
of the L96 model and of a generalisation thereof we refer
to [52].

If γ = 1 (which is the default choice in most studies)
and N � 1, the model’s attractor is the fixed point
Xk = F , k = 1, . . . , N for 0 ≤ F ≤ 8/9. This fixed
point loses stability as F is increased and, after a com-
plex set of bifurcations [33,34,53], the system settles in
a chaotic regime for F ≥ 5.0 [32]. In the regime of strong
forcing and developed turbulence the properties of the
L96 model are extensive with respect to the number
of nodes N [51,52], and one can establish power laws
that accurately describe how some fundamental prop-
erties of the system—such as its energy and Lyapunov
exponents—depend of the parameter F [51].

As far as numerical evidence goes, in the turbulent
regime the L96 model possesses a unique asymptotic
state characterised by a physical measure supported on
a compact attractor. To introduce multistability in the
L96 model, an efficient strategy is to suitably couple
it with a multistable (say, bistable) model, according
to the strategy described in [54]. Our simple bistable
model of reference is the EBM of the form:

Ṫ = −dV (T )
dT

, (2)

where V (T ) is a confining potential (V (T ) → ∞ suf-
ficiently fast as |T | → ∞) with two local minima sep-
arated by a local maximum. We then come to the fol-
lowing coupled L96-EBM model:
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Ṫ = S
(
1 − a0 +

a1

2

(
tanh

(
T − T̃

)))
− σT 4

− α

( E(X)
0.6 · F

4
3

− 1
)

Ẋn = (Xn+1 − Xn−2) Xn−1 − Xn

+ F

(

1 + β
T − T̃

ΔT

)

, (3)

where the usual periodic boundary conditions apply
(Xj−N = Xj = Xj+N ∀j = 1, . . . , N), and E =
E/N . The value used for the different parameters— all
intended to be non-negative—can be found in Table
1. The L96 model and the EBM are uncoupled if one
sets α = β = 0. The coupling between the two mod-
els can be explained as follows. If the temperature of
the EBM is higher (lower) than the reference tempera-
ture T̃ , the L96 model receives an enhanced (reduced)
forcing, mimicking—in very rough terms—the presence
of higher energy in the atmosphere. A negative feed-
back in the system is introduced as follows. If the
energy per site of the L96 component of the model
exceeds the average value realised in the uncoupled case
Ē ≈ 0.6F 4/3 [51], the temperature of the system is
accordingly reduced. Note that, according to the frame-
work set in [54], the L96 model is the fast component
and the EBM is the slow component of the coupled
model, where the fast component acts as an almost
stochastic forcing on the slow component, and the slow
component modulates the dynamics of the fast com-
ponent. We remark that since the coupling constants
α and β are O(1), one cannot use asymptotic meth-
ods such as averaging or homogenization to obtain a
reduced equation for the temperature T ; the dynamics
of the system is truly high dimensional.

The system possess (at least) two competing attrac-
tors, associated with disjoint basins of attraction.
Hence, the asymptotic state of the system depends
on its initial conditions. We assume that each attrac-
tor possesses one physical measure that is practically
selected when performing the numerical integration of
the model. In absence of stochastic forcing, no transi-
tions can take place between the two competing attrac-
tors.

In Fig. 1, we portray the two competing attractors of
the model corresponding to the Warm (W) state and
Snowball (SB) state state in the reduced phase state
constructed by performing a projection on the variables
M = 1/N

∑N
j=1 Xj , E , and T . One sees clearly that

the W state has higher temperature and larger values
for the mean and for the intensity of the fluctuations
of the dynamic variables with respect to the SB state,
in agreement with the actual features of the compet-
ing W and SB states of the climate system [3,10,55].
We additionally portray the Melancholia (M) state sit-
ting between the two competing attractors. The M
state is a saddle embedded in the boundary between
the two co-existing basins of attraction and attracts
the orbits whose initial conditions are on such basin
boundary [12]. The M state, which is the gateway for

Table 1 Parameters

Reduced solar constant S 5–20
Albedo a0 0.5
Albedo a1 0.4
Reduced Stefan-Boltzmann constant σ 1/1804

Reference forcing F 8
Number of grid points N 40

Reference temperature T̃ 270
Temperature scale ΔT 60
Coupling X → T α 2
Coupling T → X β 1

Fig. 1 Competing attractors and M state between them
in the projection of the phase space given by M =
1/N

∑N
j=1 Xj , E = E/N , and T . Simulations performed

with S = 16 and N = 32. Warm (W): red line. Snowball
(SB) state: blue line. Melancholia (M) State: green line

the noise-induced transitions between the co-existing
attractors regardless of the kind of noise included in
the system [3,13], has been constructed using the edge-
tracking algorithm [56], and features non-trivial dynam-
ics. Indeed, as in [12], it is a chaotic saddle.

3 Methods

In the following, we outline a two-part framework to
analyse and predict spatiotemporally chaotic system
such as the Bistable Climate Toy Model. First we
demonstrate how the attractors of the system can be
can be identified. Based on that knowledge, a method
to make predictions of states on both attractors is then
introduced.

3.1 Monte Carlo Basin Bifurcation Analysis

Multistability is a universal phenomenon of complex
systems and is most likely present in several sub-
systems of Earth’s climate [57–59, e.g.], as well as in
the energy balance of the Earth [1–3]. When analysing
and working with high-dimensional models, knowledge
of the largest basins of attractions is instrumental to
understanding the model itself. The recently introduced
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Monte Carlo Basin Bifurcation Analysis (MCBB) [27]
is a numerical method tailored for analysing basins
of attraction of high-dimensional systems and how
they vary when control parameters of the system are
changed. The aim of MCBB is to find classes of simi-
lar attractors of a high-dimensional system that collec-
tively have the largest basin of attraction with respect
to a measure of initial conditions ρ0 and how these
classes of attractors and their basin volumes change
when a control parameter p is changed in a range Ip.
Conceptually, it is situated in between a thorough bifur-
cation analysis and a macroscopic order parameter. By
utilizing random sampling and clustering techniques,
MCBB learns classes of similar attractors C and their
basins. To regard two attractors A as part of the same
class, MCBB requires a notion of continuity of an invari-
ant measure ρA on the attractor: if for a control param-
eter p the difference between ρA(p) and ρA(p + Δp)
vanishes smoothly for Δp → 0, we classify them as
similar. Figure 2 illustrates this continuity requirement.
Note that if the change in the measure scales linearly
with Δp in the limit of small values of Δp, one can
say that linear response theory applies for the measure
ρA [60]. By sampling trajectories these classes can be
built with a suitable pseudometric on the space of these
measures. Directly comparing the high-dimensional tra-
jectories with each other would put us close to a bifur-
cation analysis, but is potentially prohibitively expen-
sive. We might also not be interested in an in-depth
bifurcation analysis, but rather in a coarser definition
of similarity. For the case of a climate model, similar
climate regimes may for example be of interest.

Therefore, to identify the different classes of attrac-
tors, suitable statistics Si are measured on every sys-
tem dimension k for every trajectory, here, the mean
Ek, the variance Vark and the Kullback-Leibler diver-
gence to a normal distribution KLk. Using these statis-
tics on each of the system dimension separately, MCBB
achieves better scalability with the system dimension
N . The N -dimensional trajectory of the i-th of in total
NT trials is x(i)(t), then all statistics are measured sepa-
rately on each dimension of x(i)(t). This results in three
(N × NT ) matrices, one for each statistic Si, so that
Sk,ij = Sk(x

(i)
j (t)).

A distance matrix of each trajectory to each other is
then computed from these statistics with

Dij =
3∑

k

wk

N∑

l

|Sk,il − Sk,jl| + w4|p(i) − p(j)|,

(4)

where p(i) is the control parameter used to generate
the i-th trajectory and wi are free parameters of the
method.

If one wishes not to distinguish between symmetric
configurations, as we also do in the application to the
Bistable Climate Toy Model, the weighted difference
can also be replaced with a Wasserstein distance of his-
tograms over the statistics. Especially in these cases

Fig. 2 Sketch of the notion of continuity of invariant mea-
sures ρA that MCBB requires for attractors to belong to the
same class of attractors. Solid red lines indicate stable states
and dashed lines unstable states. If the difference between
ρA(p) and ρA(p ± Δp) vanishes smoothly for Δ → 0 they
are considered to be within the same class. In the algorithm
this is realised through a chain of connection via εDB neigh-
bourhoods

two different points (x, y) may have D(x, y) = 0, this is
why we are referring to D as a pseudometric and not a
metric.

After computing the distance matrix D of all tri-
als to each other, the classes of attractors can then
be identified by applying a clustering algorithm to
the matrix. Density-based clustering algorithms such
as DBSCAN [61] are ideally suited for this purpose,
since DBSCAN relies on a similar notion of continu-
ity as required by MCBB. One sample is connected to
another sample if it is within εDB-neighbourhood of
the sample. A cluster is then formed by all the samples
that have a chain of connections to each other. The
results of applying DBSCAN to sample trajectories is
C = DBSCAN({D}), where each sample trajectory is
assigned to one of the NC clusters Ci with i ∈ [1;NC ].
Note that DBSCAN can also identify samples as out-
liers. We regard all outliers, if there are any, as the
zeroth cluster. The approximate relative basin size of
a class of asymptotic states can then be computed by
applying a sliding parameter window and normalizing
the results with

b̂Ci
(p) = ||CL

(p)
i ||/

NC∑

j

||CL
(p)
j ||. (5)

CL
(p)
i =

{
j|(Cj = i) ∩

(
p(j) ∈ [pmin; pmax]

)}
. (6)

Here, CL
(p)
i is the number of trials in cluster i at (slid-

ing) parameter window p. This is the most important
result from MCBB. bCi

(p) shows the size of the largest
basins of the system and how they react to changes
of the control parameter p. In the results we will also
see other possibilities to further evaluate the collected
results from MCBB. By identifying the attractors, we
also know which initial conditions are part of which
basin. After achieving information about the attractors
of the systems and their basins, we can investigate these
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individual attractor and apply further methods to pre-
dict trajectories on them.

The MCBB method was designed with high dimen-
sional systems in mind. This is why per-dimension
statistics are used as inputs for the clustering algo-
rithm instead of the potentially high-dimensional tra-
jectories directly. Nevertheless, the computational com-
plexity of MCBB very much depends on the system in
question. The most expensive parts are N times inte-
grating the system and the computation of the distance
matrix. For high-dimensional systems, the integration
far outweighs the computation of the distance matrix.
For more details of MCBB, the reader is referred to [27].

3.2 Neural ordinary differential equations

Most—if not all—numerical models of real-world pro-
cesses are incomplete in some sense. Be it due to
unknown effects that are not modelled, or by omit-
ting higher-order terms of known effects on purpose. A
classical example are subgrid-scale processes that are
not explicitly resolved in general circulation models of
the Earth’s atmosphere and oceans, and hence need
to be parametrized [62,63]. Hybrid modelling methods
can remedy deficiencies of incomplete models by com-
bining an incomplete process-based model with data-
driven methods that learn to compensate these defi-
ciencies. This approach seems especially promising with
climate models as we have easy access to observa-
tional data and the climate system is so immensely
complex that every model of it is always incom-
plete in some sense. We will demonstrate the Neu-
ral Ordinary Differential Equation (NODE) approach
[29,30], which provides an elegant way to construct
and parametrize such hybrid models, on the Bistable
Climate Toy model. NODEs integrate universal func-
tions approximators such as artifical neural networks
(ANN) directly into differential equation, so that the
universal functions approximators become a part of the
equation:

ẋ = f(x, t,N (x, t;Θ)), (7)

where N (x, t;Θ) is a data-driven function approxima-
tor such as an Artificial Neural Network (ANN) with
parameters Θ. Integrating the NODE, just as integrat-
ing a regular ODE, yields a predicted trajectory x̂(t;Θ)
at discretized time steps it. The integration time can
be freely set, but our previous results show that for
chaotic systems very short integration times are nec-
essary to ensure that the learning process succeeds
[64]. Similar to regular ANNs, NODEs are a super-
vised learning method and their parameters, in our
case only the parameters of the ANN, are found by
minimizing a loss function, most commonly the least-
squares error between observed and model-predicted
trajectories:

L(Θ) =
∑

it

(x(it) − x̂(it;Θ))2 , (8)

using a stochastic, adaptive gradient descent with
weight decay [65]. Additional regularization of the
parameters of the ANN may be added to avoid over-
fitting. In order to train the model one needs to be able
to compute gradients of the loss function with respect
to all the parameters of the NODE.

While a regular ANN relies on backpropagation—
which is essentially the chain rule—to compute gra-
dients of numerical solutions of differential equations
is not as straight forward. However, with methods
from adjoint sensitivity analysis and response theory in
conjunction with automatic differentiation techniques,
such gradients can be computed as well. For a detailed
overview of the algorithms used for this purpose, please
see [29,30].

4 Results

4.1 Attractors of the model

We apply MCBB to the Bistable Climate Toy Model
by sampling NT = 15, 000 trajectories with initial con-
ditions drawn from U(−7; 7) for the L96 state variables
X and U(240, 300) for the temperature T . The solar
constant is varied within S ∈ [5; 20]. The trajectories
are integrated for 400 time units and the first 80% of
the trajectory are not included in the analysis to avoid
transient effects. Only the statistics Ek, Vark, KLk of
the L96 model are used for the identification of the
attractors. In the distance matrix computation accord-
ing to Eq. (4), the defaults weights of [1, 0.5, 0.25] are
chosen. The results are not sensitive to small variations
of those weights. Figure 3 shows the approximate rel-
ative basin volume estimated by MCBB. Two classes,
i.e., clusters, are found. The system is multistable in
the interval of around S ∈ [7; 15] with each of the basins
being approximately equal-sized with respect to the dis-
tributions of initial conditions chosen. For εDB = 0.05
the clustering algorithm detects several outliers. These
are mostly the trajectories that spend long time near
the Melancholia state (M), because they are initialised
near the basin boundary [66]. As shown in Fig. 5, they
exhibit a saddle-like behaviour for the EBM variable.
When εDB is increased to 0.1 or larger these states are
not resolved separately anymore and the algorithm only
finds the cold and warm state, as shown in Fig. 3. Fur-
ther insights can be gained with a sliding-histogram
approach. For each sliding parameter window a his-
togram is fitted to all collected values of the EBM mean
for each of the two attractors. Figure 4 clearly shows
the two stable branches of the EBM and its respective
values of the forcing F . As one can expect the “blue”
cluster in Fig. 3 exhibits the much larger values of the
forcing (see Fig. 4b) and is thus the warm state of the
model and the “red” cluster in Fig. 3 is the cold state of
the model. Again, the hysteresis behaviour of the model
is evidently shown. For S < 7 only the the cold state is
stable and for S > 15 only the warm state is stable.
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Fig. 3 Approximate
relative basin size of the
Bistable Climate Toy
Model when changing the
solar constant S estimated
with MCBB. The model
exhibits a cold and a warm
state. Trajectories from the
shaded area are used as
training data for the
NODE approach to predict
each of these states

Fig. 4 Sliding histogram plot of the mean of the EBM
variable of the Bistable Climate Toy Model computed with
MCBB. The two histogram plots of each of the identified
states are joined together to better illustrate the two stable
branches of the EBM and their hysteresis behaviour. On the

y-axis the value of complete effective forcing term of the L96,

so F∗ = F
(
1 + β T−T̃

ΔT

)
, is shown. The relative magnitude

of each of these values appearing in the individual sliding
histograms is shown in shades of blue and red, however, in
this case are mostly all zero or one

4.2 Predicting the model

MCBB is thus able to identify the two attractors of the
system. These two attractors will, in general, exhibit
different properties, like, e.g., different maximum Lya-
punov exponent. The maximum Lyapunov exponents
computed with the method of [67] (implementation of
DynamicalSystems.jl [68]) are λ

(cold
max ≈ 1.04 for the

cold and λ
(warm
max ≈ 2.60 for the warm state. The larger

Lyapunov exponent of the warm state shows that, as
expected, the L96 model is more chaotic for larger val-

ues of the forcing. When we want to predict the model’s
behavior, we have to be aware of that and evaluate
predictions on both attractors separately. MCBB also
classifies all initial conditions that were used by the
algorithms to either of the attractors. In that way, we
have many possible initial conditions for prediction on
these attractors. We demonstrate the capabilities of the
NODE approach by “forgetting” the equation of the
EBM and replacing it with an ANN. In this case this
is an artificial example, but in many observational sce-
narios and model, one has incomplete models whose
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Fig. 5 Example of the trajectory of the energy balance
model for one of the Melancholia states found by MCBB as
an outlier. Visible is a trajectory typical for a saddle. The
trajectory remains close to the Melancholia state for some
finite time until it collapses into the snowball/cold state

deficiencies can be corrected with the NODE approach.
In our case replacing the EBM with an ANN is sup-
posed to mirror setups of more realistic models in which
one probably has much better knowledge of the govern-
ing equations of the atmosphere than the energy bal-
ance. In principal it would also be possible to replace
the L96 or part of it with an ANN. Setups similar to
this, studying the application of NODEs to spatiotem-
porally chaotic systems have been explored in [64].

For the ANN we combine two different kind of lay-
ers: (i) dense layers that apply a nonlinear function,
called activation function, to a weighted sum of all its
inputs and (ii) convolutional layers that perform a dis-
crete convolution with the convolution filters as learn-
able parameters. For details on these layers, the reader
is referred to standard textbooks such as [69,70].

The ANN N is set up to have the same input vari-
ables as the EBM in Eq. (3) has arguments: all vari-
ables of the L96 model and the EBM itself. Figure 6
shows the ANN used. Due to the spatial input, convo-
lutional layers are best suited for those variables and,
therefore, have only the L96 variables as inputs. The
forcing, the result of the EBM itself, skips these lay-
ers and inputs directly into the dense layers. The swish
activation function [71] swish(x) = x/(1 + exp (−x)) is
used as an activation function and MaxPooling layers
reduce the dimension by downsampling it.

By replacing the EBM the full NODE reads

Ḟ = N (X, F ;Θ)

Ẋn = (Xn+1 − Xn−2) Xn−1 − Xn + F, (9)

where Θ are the parameters of all ANN layers. An
adaptive stochastic gradient descent with weight decay
(AdamW) [65] is used to minimize the loss function:

Fig. 6 ANN setup used to replace the EBM in the NODE.
Convolutional layers with two filters, i.e., channels, a (3×1)
kernel and a swish activation function are used on the L96
variables, the output of these layers and the old forcing value
F are used as inputs of two dense layers. Nin is chosen to
have the correct input dimension which depends on the size
of the L96 model

L(Θ) =
∑

n

(
Xn − X̂n(Θ)

)2

+
∑

it,n

(
F − F̂n(Θ)

)2

+ γ

NΘ∑

i

||θi||. (10)

Similar to earlier results for applying NODE techniques
to spatiotemporally chaotic systems [64], we found that
integrating the NODE for long time spans does not sig-
nificantly decrease the loss on neither the training nor
the validation set, but increases the computational com-
plexity massively. Therefore, the NODE is only inte-
grated for Δt = 0.05 with only one time step saved.
Hence, we minimize the one-step-ahead loss of the pre-
dicted states (X̂, F̂ ) against the training data (X, F ).
As training data two separated trajectories, each 100
time steps long (at Δt = 0.05), are used. These tra-
jectories are integrated from initial conditions drawn
randomly, one from each state within the basins iden-
tified by MCBB, i.e., the two shaded area, as shown in
Fig. 3. The initial 2000 time steps are discarded to avoid
transient dynamics and the following 100 time steps of
each of the two trajectories are used as the training set.
Subsequent time steps of each of the trajectories are
saved as validation set. Thus, the NODE is trained to
model the full system with both attractors.

To evaluate the predictions made by the NODE, we
compute a non-normalized error:

En(it) = Xn(it) − X̂n(it), (11)
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and normalized error

e(it) =
||X(it) − X̂(it)||
< ||X(it)||2 >

1/2
t

, (12)

on the L96 variables, where < . >t indicates an aver-
age over all discrete timesteps it. The forecast length
or valid time of the NODE is then the first time step
tv, where e(it) > 0.4, in accordance with [28]. The
valid time might be expressed in terms of the Lya-
punov time λmaxt = λmaxΔt · it. Similar to how the
NODE was trained with data from both attractors,
we also predict and evaluate trajectories from both
attractors. Figure 7 shows the trajectories of the NODE
that were integrated from initial conditions of the first
time step outside of the training dataset for both
attractors.

As expected the valid time in terms of discrete time
steps is much smaller for the warm state than for the
cold state as it is less chaotic, i.e., exhibits a smaller
λmax. In terms of the the rescaled valid time in Lya-
punov times it is comparable, yet still a little smaller
for the warm state. For the cold state the valid time
169 time steps or 8.52λmaxt and for the warm state it
is 39 time steps or 5.02λmaxt.

5 Discussion

We have presented a framework for addressing the pre-
dictability of the first kind and of the second kind in
high-dimensional chaotic systems. First, we understand
the qualitative properties of the system by discover-
ing the attractors with the largest basins of attractors
and evaluate how the volume of these basins changes
when control parameters of the system are varied.
This might be of great relevance especially in the case
several competing asymptotic states, each associated
with different basins of attraction, exist. As we gath-
ered knowledge on the attractors of the systems, the

NODE approach allows one to predict the evolution
of the systems even when the model is only incom-
plete with respect to the data it is trained with. With
the NODE we replaced a sub-module of the model
with a data-driven function approximator in the form
of an ANN. This approach has the potential to be
applied to more complex coupled models in condi-
tions, where only incomplete or no knowledge of a
specific part of the model is available. When predict-
ing observational data with models, this could also
be used to account for unknown or neglected effects
in the model. The Bistable Climate Toy Model intro-
duced here is an ideal testbed for this approach. The
model is built by coupling a bistable EBM to the L96
model and exhibits two competing attractors in a vast
range of the model’s parameters. These attractors cor-
respond to a cold and a warm state, for which we are
able to identify the basins of attractions and define
the bifurcations conducive to tipping points. We are
also able to identify accurately which trajectories lead
to which of the attractors, so that we use these as
training data for the NODE. In the subsequent appli-
cation of the NODE approach, we purposefully for-
got a part of the model, the EBM, and replaced it
with an ANN. The NODE can model these introduced
deficiencies for both attractors at the same time and
make accurate prediction even when only presented
with very short training datasets for the data-driven
part to be trained on. The methods presented are in
principle capable of investigating stochastic systems
as well which is an exiting avenue of future research
with the presented approach. The results on the pre-
sented toy model can also be seen as a first step
towards analysing and predicting more complex cli-
mate models with the presented methods. Especially
applying the NODE approach to, e.g., atmospheric
models and observational data is a highly promising
outlook.

a b

Fig. 7 NODE predictions of the Bistable Climate Toy Model, the non-normalized error En(it) of the L96 variables are
shown. a Shows a prediction on the cold state. b The warm state. The valid time tv is marked with the dashed line
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rithmic bred vectors in spatiotemporal chaos: structure
and growth. Phys. Rev. E Stat. Nonl. Soft Matter Phys.
81, 1–8 (2010)

47. M. Carlu, F. Ginelli, V. Lucarini, A. Politi, Lyapunov
analysis of multiscale dynamics: the slow bundle of the
two-scale lorenz 96 model. Nonl. Processes Geophys.
26, 73–89 (2019). https://npg.copernicus.org/articles/
26/73/2019/

48. R.V. Abramov, A.J. Majda, New approximations and
tests of linear fluctuation-response for chaotic non-
linear forced-dissipative dynamical systems. J. Nonl.
Sci. 18, 303–341 (2008). https://doi.org/10.1007/
s00332-007-9011-9

49. V. Lucarini, S. Sarno, A statistical mechanical approach
for the computation of the climatic response to general
forcings. Nonl. Processes Geophys. 18, 7–28 (2011)

50. V. Lucarini, Stochastic perturbations to dynami-
cal systems: a response theory approach. J. Stat.
Phys. 146, 774–786 (2012). https://doi.org/10.1007/
s10955-012-0422-0

51. G. Gallavotti, V. Lucarini, Equivalence of non-
equilibrium ensembles and representation of friction in
turbulent flows: the Lorenz 96 Model. J. Stat. Phys.
156, 1027–1065 (2014)

52. Gabriele Vissio, Valerio Lucarini, Mechanics and ther-
modynamics of a new minimal model of the atmosphere.
Eur. Phys. J. Plus 135, 807 (2020). https://doi.org/10.
1140/epjp/s13360-020-00814-w

53. D.L. van Kekem, A.E. Sterk, Symmetries in the lorenz-
96 model. Int. J. Bifurcation Chaos 29, 1950008 (2019).
https://doi.org/10.1142/S0218127419500081
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