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Changes in mean climatic conditions will affect natural and societal
systems profoundly under continued anthropogenic global warming.
Changes in the high-frequency variability of temperature exert strong
additional pressures, yet the effect of greenhouse forcing thereon
has not been fully assessed or identified in observational data. Here
we show that the intra-monthly variability of daily surface temper-
ature (root-mean-square) changes with distinct global patterns as
greenhouse gas concentrations rise. In both reanalyses of histor-
ical observations and state-of-the-art climate projections daily vari-
ability increases at low-to-mid latitudes and decreases at northern
mid-to-high latitudes when greenhouse forcing is enhanced. These
latitudinally-polarised changes in daily temperature variability are
identified from internal-climate variability with a recently developed
signal-to-noise-maximizing pattern filtering technique. Analysis of a
multi-model ensemble of CMIP-6 climate models shows that these
changes are attributable to enhanced greenhouse forcing. Under
a business-as-usual emissions scenario, daily temperature variabil-
ity would continue to increase (decrease) by up to a further 100%
(40%) at low-latitudes (northern high-latitudes) by the end of the
century. Assessment of alternative scenarios suggests that these
changes would be limited by mitigation of greenhouse gases. More-
over, global changes in daily variability exhibit strong co-variation
with warming across climate models, suggesting that the true equi-
librium climate sensitivity will also play a role in determining the
extent of future changes in variability. This global response of the
high-frequency climate system to enhanced greenhouse forcing is
likely to have strong and unequal effects on societies, economies
and ecosystems around the world if mitigation and protection mea-
sures are not taken.
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The effect of anthropogenic greenhouse gas emissions on1

mean climatic conditions is well understood. Theory,2

observational and modelling work all demonstrate that aver-3

age temperatures increase as a result of elevated greenhouse4

gas concentrations (1). However, it is also of considerable5

importance to natural and human systems whether changes6

in the temporal variability of climatic conditions have accom-7

panied historical global warming, and whether they will do so8

in the future (2–5). A more variable climate implies greater9

uncertainty and greater frequency of extremes, both of which10

constitute more damaging conditions.11

The variability of climate from one year to the next has12

received considerable attention. Large scale climatic oscilla-13

tions such as the El Niño Southern Oscillation and the Indian14

Ocean Dipole are dominant determinants of inter-annual vari-15

ability (6–8) and have been shown to exhibit more frequent16

extremes under enhanced greenhouse forcing within compre-17

hensive climate models (9–11), results which are supported by18

paleoclimatic evidence (12). Identifying a response in inter- 19

annual temperature variability has been less conclusive. Some 20

studies have attributed recent summer temperature extremes 21

to greater inter-annual variability both regionally (13) and 22

globally (14), but there is still debate as to the extent of the 23

role of inter-annual variability (15–17). Some regional trends 24

in inter-annual temperature variability have been identified 25

(17–21), but there is no consensus between observations and 26

climate models (22). 27

Here we focus on variability of temperature at a higher 28

frequency (daily), which a growing body of econometric litera- 29

ture has identified as an important determinant of societal out- 30

comes, including human health (23–27), agriculture (28–30), 31

and economic growth (31). The effect of enhanced greenhouse 32

gas concentrations on the daily variability of temperature is 33

therefore of wide societal importance, and a critical component 34

of the impact of anthropogenic climate change. 35

Decreases in daily temperature variability at northern mid- 36

to-high latitudes have been detected in observations (32–34) 37

and agree well with predictions from comprehensive climate 38

models (34–36) and physical reasoning (34, 35). Previous 39

generations of climate models have also suggested that daily 40

variability may increase during European summer (37) and 41

across the tropics (36, 38), but these predictions have not 42

yet been detected in observations nor confirmed in state-of- 43

the art climate models. This paper unifies these works by 44

presenting a global analysis of changes in sub-seasonal, daily 45
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DRAFTFig. 1. Lowest-frequency patterns of change in daily temperature variability detected with low-frequency component analysis from reanalyses of historical observations.
Patterns of change in annual (a, d), boreal winter (DJF, (b, e)), and boreal summer (JJA, (c, f)) daily temperature variability, which have grown monotonically over the historical
period, are identified. Results form the NOAA 20th Century Reanalysis v.3 are shown in (a-c) and those from the shorter ERA-5 Reanalysis are shown in (d-f). Inter-decadal
changes (between the first and final decade) in daily temperature variability due to the lowest-frequency component are shown as coloured maps, the time-evolution of which is
shown below in grey with a 10-year running mean in black.

temperature variability under enhanced greenhouse forcing in46

both reanalyses of historical observations (NOAA 20th Century47

Reanalysis version 3, ERA-5) and the latest generation of48

comprehensive climate models (CMIP-6). Daily temperature49

variability refers to the intra-monthly standard deviation of50

daily surface temperature from hereon. We consider changes51

in daily variability in boreal winter (‘DJF’), boreal summer52

(‘JJA’) and across the year (‘annual’), to both assess the season53

specific mechanisms identified in previous work, and to provide54

an aggregated overview of variability changes.55

Historical changes in daily temperature variability56

Identifying externally forced signals in climate data is compli-57

cated by the internal multi-decadal variability of the climate58

system. In order to identify possible forced signals in daily tem-59

perature variability, we use a pattern recognition technique60

which has been recently developed to identify spatial pat-61

terns with coherent low-frequency temporal evolution (39, 40).62

Low-frequency component analysis (LFCA), an extension of63

traditional principal component analysis, identifies linearly64

independent modes which account for the greatest ratio of65

low-frequency to total variance (see Methods for further de-66

tails). Since climatic changes due to greenhouse forcing are67

slower to evolve than those due to internal variability, this68

approach can help to discriminate between them. LFCA has69

been shown to successfully separate externally forced climate70

signals from internal multi-decadal variability, such as those of 71

global warming and arctic amplification from El Niño Southern 72

Oscillations and Pacific Decadal Oscillations in observations 73

of monthly mean surface temperature (39, 40). 74

We apply LFCA to historical reanalyses of daily tempera- 75

ture variability (see Methods). In each season and in the an- 76

nual case, the lowest-frequency component identified by LFCA 77

(LFC-1) has grown almost monotonically over the historical 78

period (Fig. 1a-f) separate from higher-frequency modes which 79

have not (Fig. S1). In the NOAA 20th Century Reanalysis 80

the corresponding spatial patterns exhibit strong latitudinal 81

polarisation in both the annual and DJF case: reductions in 82

daily temperature variability at northern mid-to-high-latitudes 83

are opposed by increases across the majority of the continental 84

land mass elsewhere (Fig. 1a-b). For JJA, the pattern consists 85

of reductions across North America, the high arctic and parts 86

of North Africa opposed by strong increases elsewhere (Fig 87

1c). These latitudinally-polarised components are responsible 88

for increases and decreases of up to 40% and 20% over the 89

past 65 years, with particularly strong percentage increases 90

across the tropics (Fig. S2a-c). 91

Similar spatial patterns are detected in the ERA-5 reanal- 92

ysis, Fig. 1d-f. In particular the latitudinal polarisation in 93

the annual and DJF case, and the increases across the trop- 94

ics, Australia, Europe and large parts of South America and 95

Africa in boreal summer are distinct features in both. Re- 96
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Fig. 2. Lowest-frequency patterns of change in daily temperature variability from individual CMIP-6 climate models under greenhouse forcing (1950-2015: historical, 2015-2100:
SSP585), detected with low-frequency component analysis. Results from 5 out of the 10 models are shown for the annual (a-f), the boreal winter (DJF, g-l) and the boreal
summer (JJA, m-r) response, see Fig. S6 for the remaining 5 models. Inter-decadal changes (1950-1960 to 2090-2100) due to the lowest-frequency component (see Methods)
are shown as coloured maps, the time evolution of which are shown in the lowest panel in grey, with a 10-year running mean in black.

gional discrepancies are present, and are likely to occur due97

to the different temporal extent of the two reanalyses. We98

continue to use the NOAA 20th Century reanalysis as our99

main specification since we expect the longer time-period to100

improve the separation of an externally forced response from101

internal climate variability.102

The detection of these patterns of global change in daily103

temperature variability is robust to different specifications of104

the LFCA (Fig. S3) and to alternative detection methods (Fig.105

S4, grid-cell linear trends). These findings provide the first106

detection from observational products of historical increases in107

daily temperature variability in European summer, and across108

the tropics and wider Southern hemisphere, confirming the109

predictions of previous generations of climate models (36–38).110

Global climate projections from CMIP-6 111

We test whether the historical and monotonic growth of these 112

global patterns in daily temperature variability is attributable 113

to historically increasing concentrations of greenhouse gases 114

with a multi-model ensemble of 10 bias-corrected Coupled 115

Global Circulation Models (CGCMs) from the Coupled Model 116

Intercomparison Project phase 6 (CMIP-6 (41, 42), see Meth- 117

ods for details). Daily temperature variability is calculated 118

from the ensemble under historical (1950-2015) and future 119

(2015-2100) greenhouse forcing. Future forcing is specified by 120

the Shared-Socioeconomic Pathways -585, a business-as-usual 121

emissions scenario under which greenhouse forcing continues 122

to increase monotonically. Comparing daily temperature vari- 123

ability between the ensemble under historical forcing and the 124

Kotz et al. PNAS | June 8, 2021 | vol. XXX | no. XX | 3



DRAFTFig. 3. Attribution of historical changes in daily temperature variability to greenhouse forcing. (a-c) Historical patterns of change in daily temperature variability estimated with
LFCA from the NOAA 20th Century Reanalsyis of historical observations. (d-f) Simulated patterns of change in daily temperature variability estimated as the multi-model mean
of the lowest-frequency component of each CMIP-6 ensemble member under historical and SSP585 greenhouse forcing. Grey colouring indicates regions in which less than
90% of the models agree on the sign of change (see Fig. S7 for results without this exclusion). (g-i) Centred (R) and un-centred (C) pattern correlation statistics between the
observed and simulated response of daily temperature variability to greenhouse forcing (blue) in comparison to those which could occur due to unforced internal climate
variability (grey). Estimates of the distribution of changes due to unforced internal variability are obtained by applying LFCA to control runs of the CMIP-6 ensemble under
constant pre-industrial forcing (see methods). 99th, 95th and 90th percentiles of the distributions of pattern correlations between forced and unforced simulations are shown in
red.

reanalysis data suggests that daily temperature variability is125

represented by the ensemble very well (Fig. S5).126

Multi-model ensembles, such as CMIP-6, encompass inter-127

model differences in both the representation of internal climate128

variability (due to variations in initial conditions) and in the129

representation of the forced response to greenhouse gases (due130

to structural differences). LFCA provides the opportunity131

to identify a forced response from internal climate variability132

within each individual ensemble member, thus retaining any133

biases in the modelling of the forced response. This allows134

a more nuanced estimate of the forced response to be made135

than would be possible with a simple multi-model average.136

Moreover, LFCA has been shown to identify externally forced137

signals from a single climate model with greater accuracy than138

ensemble averages with even 20-realisations (40). We therefore139

apply LFCA to calculations of daily temperature variability140

from individual ensemble members under historical and future141

forcing, covering the period 1950-2100.142

In each model and in each season, monotonically increasing143

patterns of change are identified from internal, multi-decadal144

climate variability which show a high degree of consistency145

both between models and with those identified from the re-146

analysis of historical observations (Fig. 2, Fig. S6). In both147

the annual and DJF case, strong latitudinal dependence in 148

the response of daily temperature variability is noted. Most 149

discrepancies between models are concentrated at the latitudi- 150

nal boundary between decreasing and increasing variability, or 151

in North Africa (Fig. 2, Fig. S6, Fig. 3 d-e). In JJA, models 152

consistently predict increasing variability across the tropics, 153

Southern Hemisphere and Europe, but show poor agreement 154

on the signs of change at northern mid-to-high latitudes (with 155

the exception of Greenland, Fig. 2, Fig. S6, Fig. 3 f). 156

Attribution to greenhouse forcing 157

To attribute the observed historical changes identified in daily 158

temperature variability to increasing greenhouse forcing re- 159

quires two further steps. First, is a formal assessment of the 160

similarity between the historically observed changes and the 161

expected response to greenhouse forcing identified from the 162

CMIP-6 ensemble. We do so using two pattern correlation 163

statistics, following the work of previous detection attribution 164

studies (43). The un-centred pattern correlation (C) accounts 165

for both the spatial similarity between and the magnitudes 166

of the two patterns, whereas the centred pattern correlation 167

(R) accounts only for their spatial similarity. The historically 168

observed patterns of per-decadal change are taken as those 169
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identified with LFCA from the NOAA 20th Century Reanal-170

ysis (3 a-c). The expected response to greenhouse forcing is171

estimated as the multi-model-ensemble average of the patterns172

of per-decadal change obtained from the lowest-frequency com-173

ponent of each individual model, detected with LFCA (3 d-f).174

Second, the significance of the historically observed changes175

must be assessed with respect to those that could occur due176

to the natural internal variability of the climate system. We177

apply LFCA to control runs of the CMIP-6 ensemble under178

constant pre-industrial greenhouse forcing to provide estimates179

of the distribution of inter-decadal changes which can result180

from internal climate variability (see Methods).181

A high degree of spatial similarity between the historically182

observed and the forced response of daily temperature variabil-183

ity is noted in the case of the annual and DJF response (Fig.184

3g-i, S7g-i; centred pattern correlation R). A lesser degree185

of similarity is noted in JJA, likely due to the lesser degree186

of polarisation in the response and the greater inter-model187

disagreement at northern mid-to-high latitudes. These as-188

sessments of spatial similarity are improved when regions in189

which less than 90% of climate models disagree on the sign of190

change are excluded, as is shown in Fig. 3. The un-centred191

pattern correlation (C), which assesses both spatial similarity192

and magnitude, is generally lower (with the exception of JJA).193

This is to be expected given the weaker forcing in the historical194

period than in the SSP585 scenario.195

Most importantly, these assessments of similarity are sig-196

nificant with respect to those expected due to natural internal197

climate variability (Fig. 3 g-i, Fig. S7 g-i). When considering198

only spatial similarity with the centred pattern correlation199

statistic (R), the similarity of the historically observed re-200

sponse to the forced response is significant at least at the 1%201

level in the annual and DJF case, and at the 10% level in the202

JJA case. Moreover, when considering both spatial similarity203

and magnitude via the un-centred pattern correlation statistic204

(C), the similarity is un-matched in the CMIP-6 control runs205

in all seasons, and therefore significant at least at the 0.24%206

level.207

We therefore conclude that the historically observed global208

patterns of change in daily temperature variability are ex-209

tremely unlikely to occur due to natural internal variability210

and are consistent with the expected response to anthropogenic211

greenhouse forcing in the annual, DJF and JJA cases.212

Scaling between variability changes and warming213

Mechanisms by which daily temperature variability may214

change have been linked to mean surface temperature changes215

(34, 35, 37), suggesting that daily variability changes may scale216

with warming. Such scaling has recently been identified in217

CMIP-5 models for inter-annual variability in European sum-218

mer temperatures (21) but has not been considered for daily219

variability nor at a global scale. We address this by assess-220

ing whether daily variability and mean temperature changes221

co-vary across CMIP-6 models and forcing scenarios.222

Changes in both variables are estimated for each ensemble223

member from the lowest-frequency component identified with224

LFCA. Patterns of change are land-area averaged, after which225

strong linear co-variation is noted across climate models and226

forcing scenarios (Fig. 4, SSP126 shown in blue, SSP585 shown227

in red). This scaling is also robustly identified for changes oc-228

curring over different 25-year periods within individual climate229

Fig. 4. Scaling between average continental warming and absolute variability changes
estimated from CMIP-6 climate models and the NOAA 20th Century reanalysis of
historical observations. Strong co-variation is noted across climate models and forcing
scenarios (SSP126 shown in blue, SSP585 in red). See Fig S8 for scaling between
changes occurring over different 25 year periods within individual climate models.

models (Fig. S8). Furthermore, we find that the historically 230

observed variability changes are considerably larger than those 231

of the CMIP-6 ensemble, given the historical level of warming 232

(Fig. 4, NOAA 20th Century reanalysis shown in black). 233

These findings have two important implications. First, that 234

future changes in daily temperature variability will depend 235

not only on the extent of greenhouse gas forcing but also on 236

the true climate sensitivity, re-emphasising the importance 237

of providing constraints on its value. Second, that global 238

climate models under-predict the extent to which daily vari- 239

ability changes in response to green-house forcing and surface 240

warming, suggesting that CMIP-6 projections provide only 241

a lower-bound on how variability may change under future 242

forcing scenarios. 243

Discussion and conclusions 244

The present study has identified global patterns of change in 245

daily temperature variability which have grown montonically 246

over the past 65 years in reanalyses of historical observations. 247

This provides the first detection of increasing temperature 248

variability across the tropics, Southern hemisphere and Eu- 249
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ropean summer in observational products, and confirms the250

detection of decreasing variability at northern mid-to-high-251

latitudes shown in previous work (32–35). The physical mech-252

anisms behind these changes are well understood at northern253

mid-to-high latitudes, where arctic amplification has reduced254

meridional temperature gradients leading to reduced thermal255

advection (34, 35). The mechanisms behind the increases at256

lower latitudes found here are less clear, although modelling257

work on daily variability changes in Europe (37) and inter-258

annual variability changes across the tropics (22) suggests259

that soil drying and the resulting balance between sensible260

and latent heat fluxes may be a key driving process. The261

present demonstration of a robust scaling between surface262

warming and variability changes further suggests that the263

driving mechanisms will be closely related to surface warming264

processes.265

Of further interest is the latitudinal boundary between in-266

creasing and decreasing temperature variability, which varies267

considerably between models (Fig. S9) and with longitude268

(Fig. S10). This is most clearly noted by the opposed increases269

across Europe and decreases across North America as seen270

in the reanalyses (Fig. 1a&d, Fig. S10d-f). This longitudi-271

nal dependence of the North to South transition persists in272

CMIP-6 (Fig. S10a-c) despite globally coherent shifts in the273

latitudinal boundary between models (e.g. compare CanESM5274

and CNRM-CM6-1 in Fig. S6b-c). This effect may result275

from a longitudinally heterogeneous balance between the two276

mechanisms discussed above, which may be modulated by277

regionally dependent phenomena such as geography, ocean278

currents (i.e. the Atlantic Meridional Overturning Current),279

aerosol loading or greenhouse gas emissions. Distinguishing280

between these factors is beyond the scope of this work but281

offers a promising avenue for future research.282

The assessment of a multi-model ensemble of CMIP-6 cli-283

mate models has shown that the historically observed global284

changes in daily temperature variability are very unlikely to285

have occurred due to natural internal climate variability and286

are highly consistent with the expected response to anthro-287

pogenic greenhouse forcing. Our assessment of the significance288

of these changes rests on the assumption that climate models289

accurately represent the internal variability of the real-world290

climate system, a common assumption of detection attribution291

frameworks (44). In future work, this assumption could be292

complemented by adapting recent methods which estimate293

trend uncertainty due to internal variability directly from ob-294

servations (45, 46). Furthermore, the CMIP-6 historical and295

SSP scenarios include additional forcing components (volcanic,296

solar, aerosol) to greenhouse gases, which might undermine297

confidence that the detected response of daily temperature298

variability can be exclusively attributed to greenhouse gases.299

Nevertheless, a closer analysis of these forcings shows that only300

greenhouse gases can both explain the growth of the response301

across time and the two forcing scenarios (see SI text and Fig.302

S11), and are physically consistent with the demonstrated303

scaling between variability changes and surface warming (SI304

text).305

This global response of the high-frequency climate system306

has already caused changes in daily temperature variability307

of up to 40%, which are projected to change by a further308

100% by the end of the century under a business-as-usual309

emission scenario. Analysis under an alternative future forcing310

scenario (SSP126) (Figs. S12, 13) suggests that these changes 311

would be limited considerably by mitigation of greenhouse 312

gases. Furthermore, the observed scaling between warming 313

and variability changes suggests that the earth’s true climate 314

sensitivity will also determine the future development of daily 315

temperature variability and that future changes are likely to 316

be larger than those projected by the CMIP-6 ensemble. These 317

changes are likely to have strong impacts on human (23–31) 318

and ecological (4, 5) systems across the globe, the full extent 319

of which must be quantified in future multi-disciplinary re- 320

search efforts. Since the biggest increases in daily temperature 321

variability are observed in and projected for low-latitude re- 322

gions with typically low-income and low-historical emissions of 323

greenhouse gases, regional inequalities and climate injustices 324

are likely to be exacerbated. 325

Materials and Methods 326

327

Daily temperature variability. Daily temperature variability is mea- 328

sured as the standard deviation of daily surface temperature within 329

a given month of a given year. Monthly values of daily temperature 330

variability and of mean temperature are calculated from the daily 331

2m surface temperature at each grid-cell, and these values are mean 332

averaged over months of a given season (for DJF and JJA) or year 333

(for annual). 334

Reanalysis data. Daily 2m surface temperature from the NOAA 335

20th Century reanalysis version 3 (1950-2015) (47) and from the 336

ERA-5 reanalysis (1979-2019) are used. These reanalyses are chosen 337

for their high temporal resolution (as is necessary to assess daily 338

variability), global coverage, and long prior periods of reanalysis 339

development. Data is obtained on regular grids at daily temporal 340

resolution, 1-by-1-degree for NOAA 20th Century reanalysis and 341

0.5-by-0.5-degree for ERA-5. 342

Comprehensive climate model data. Daily 2m surface temperature 343

from an ensemble of 10 bias-adjusted Coupled Global Circulation 344

Models (CGCMs) from the Coupled Model Intercomparison Project 345

phase 6 (CMIP-6) (41) are used. Bias-adjustment is done by the 346

Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) and 347

is explicitly designed to preserve trends across different quantiles 348

of daily climate variables (42); this feature makes it appropriate 349

to assess trends in the variability of daily temperature. We use 350

the models under pre-industrial, historical, and future greenhouse 351

forcing specified by Shared-Socioeconomic-Pathways (SSPs) -126 352

and -585 (48). These represent a strong mitigation and business- 353

as-usual emissions scenario respectively. All data are obtained on 354

a 0.5-by-0.5-degree grid at daily temporal resolution. A list of the 355

CGCMS and their source institutions is given in Table S1. Daily 356

temperature variability is calculated on the original grid before linear 357

interpolation to the grid of the NOAA 20th Century reanalysis for 358

further analysis. 359

Low-frequency component analysis. Low-frequency component anal- 360

ysis (LFCA) is a form of linear discriminant analysis that has been 361

recently developed by the authors of refs. (39, 40) to identify linearly 362

independent modes which vary with the lowest frequency. It has 363

been shown to be a powerful tool to isolate greenhouse-forced spa- 364

tiotemporal signals from un-forced multi-decadal internal variability 365

when only a single realisation of the climate system is available. 366

For a detailed description of the motivation for and development of 367

the technique, see refs (39, 40). Here we outline the method and 368

our application of it to daily temperature variability. Anomalies 369

of seasonal or annual daily temperature variability are calculated 370

with respect to their mean values across the time period in question. 371

The following procedures of LFCA are then applied. Empirical 372

Orthogonal Functions (EOFs) are calculated with a traditional Prin- 373

cipal Component Analysis (PCA). EOFs are the eigenvectors, ek, 374

with eigenvalues, σ2
k, of the co-variance matrix, C, of the n-by-p 375

dimensional de-meaned daily temperature variability data, X,: 376
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Cek = σ2
kek, C = 1

n− 1X
TX. [1]

Linear combinations of the first, N , EOFs, uk, are then found377

which maximise the ratio, rk, of low-frequency to total variance378

that their corresponding time series, tk = Xuk, can explain:379

rk = t̃T
k t̃k

tT
k tk

. [2]

Low-frequency variance is estimated by filtering departures from380

linear trends with a linear Lancoz low-pass filter, L(T−1), with381

cut-off frequency, T−1, and reflecting boundary conditions:382

t̃k = L(T−1)tk. [3]

This procedure identifies low-frequency components (LFCs), tk,383

based on the frequency of their evolution. The corresponding low-384

frequency patterns (LFPs), vk, are obtained by projecting the385

unfiltered data onto these components:386

ṽk = XT tk. [4]

LFCs describe the temporal evolution of their accompanying387

spatial pattern (LFP). The resultant LFCs are orthogonal to one an-388

other and are ordered by increasing frequency. The justification for389

this choice of variance-maximisation (maximising the low-frequency390

to total variance ratio, rather than maximising the total variance) is391

that spatiotemporal changes due to greenhouse forcing occur with392

a lower frequency than those due to most internal variability of the393

climate system.394

The cut-off frequency used here is T−1 = 10−1years−1, and the395

number of leading EOFs retained in the linear combinations, N, is396

selected to maintain roughly 70% of the raw variance of X. These397

choices follow previous work on the development of this method in398

the context of detecting anthropologically forced climate changes399

(39, 40). For the NOAA 20th Century reanalysis, this corresponds400

to N=15 for the annual and DJF case, and N=20 for the JJA case.401

For the ERA-5 reanalysis data, this corresponds to N=15, 12 and402

16 for the annual, DJF and JJA cases respectively. For the CMIP-6403

climate models, we use N=15 for the annual and DJF case and404

N=30 for the JJA case. Tests of the robustness of the results to405

these choices are shown in Fig. S3.406

LFCA is applied to daily temperature variability as calculated407

from the NOAA 20th Century and ERA-5 reanalyses and from408

individual climate models under historical and future forcing. The409

inter-decadal changes due to a given component are calculated by410

multiplying the LFP by the difference between decadal averages of411

the corresponding LFC. LFCs, are plotted both as raw data and412

after filtering with a 10-year running mean.413

Attribution to greenhouse forcing. We use pattern correlation statis-414

tics as described in (43) to estimate the similarity between the415

global patterns of change in daily temperature variability identified416

from the reanalyses and the CMIP-6 ensemble under greenhouse417

forcing. We use both the un-centred (C) and centred (R) pattern418

correlations to assess the spatial similarity with and without ac-419

counting for the magnitude of the patterns respectively. Given two420

spatial patterns, x and y, of dimension n, the un-centred pattern421

correlation statistic (C) is given by:422

C = x.y
y.y , [5]

and the centred pattern correlation statistic (R) by: 423

R = (x − x̂).(y − ŷ)
nsxsy

, [6]

where the hat denotes the spatial average over a pattern, the dot 424

signifies a dot product, and s2
x = (x−x̂).(x−x̂)

n−1 , with sy defined 425

equivalently. 426

The centred pattern correlation (R) ranges between -1 and 1, with 427

much the same interpretation as a Pearson correlation coefficient; its 428

value represents only the spatial similarity between the two patterns. 429

The un-centred pattern correlation (C) is un-bounded, and its value 430

represents both the spatial similarity of x to y, and the magnitude 431

of x as a proportion of that of y. 432

These statistics are calculated between the responses identified 433

from the reanalyses and the CMIP-6 ensemble under greenhouse 434

forcing. To assess the significance of these correlations with respect 435

to changes which could occur due to natural internal climate vari- 436

ability, we use CMIP-6 control runs under constant pre-industrial 437

greenhouse forcing. 500 years of post-spin-up control runs are avail- 438

able for each model, other than CNRM-ESM2-1 for which 300 years 439

are available. Daily temperature variability is calculated, and the 440

data interpolated to the reanalysis grid as described above. The 441

same detection method as applied to the reanalysis data (LFCA, 442

with the same number of EOFs retained, N) is applied to calculate 443

inter-decadal differences between pairs of non-overlapping decades. 444

Decadal pairs are separated by 55 years to match the temporal pe- 445

riod of the NOAA 20th Century reanalysis over which the observed 446

changes in daily temperature variability are detected. Pooling these 447

differences across models yields 420 inter-decadal changes in daily 448

temperature variability. Correlations between these changes and 449

the expected forced response of the CMIP-6 ensemble under green- 450

house forcing are calculated to provide a distribution of possible 451

correlations which could occur solely due to natural internal climate 452

variability. 453

This approach differs from optimal fingerprinting, a commonly 454

used detection attribution framework, in two important ways. 455

Firstly, LFCA uses spatiotemporal co-variance information to opti- 456

mally separate low-frequency signals from internal climate variability. 457

As such, these estimations of low-frequency changes are less ob- 458

scured by internal variability than those based on linear trends and 459

spatial or temporal averages (39, 40) which are commonly used in 460

detection attribution frameworks. Second, low-frequency patterns 461

of change are here detected from observations and simulations sepa- 462

rately before their similarity is assessed. This avoids assumptions 463

regarding the accuracy with which climate models simulate the 464

true response to greenhouse forcing, assumptions which are used to 465

help detect a response in observations when projecting an optimal 466

fingerprint, obtained from simulations, into the observational data. 467

Scaling between variability changes and warming. Continental, area- 468

weighted averages of changes in mean temperature and daily tem- 469

perature variability are calculated from the inter-decadal patterns 470

of change identified with LFCA from the reanalysis and CMIP-6 471

data. In Fig. 4 the inter-decadal changes are calculated between the 472

first and final decades (1950-1960 to 2090-2100). In Fig. S8, these 473

changes are calculated between pairs of non-overlapping decades 474

separated by 25 years, yielding 12 changes per model per forcing sce- 475

nario to assess the scaling within individual climate models. Least- 476

squares, linear regression models are used to assess the co-variance 477

of the simulated per-decadal warming and variability changes across 478

CMIP-6 models and forcing scenarios. 479
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