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Abstract
Although the prediction of the Indian Summer Monsoon (ISM) onset is of crucial importance for
water-resource management and agricultural planning on the Indian sub-continent, the long-term
predictability—especially at seasonal time scales—is little explored and remains challenging. We
propose a method based on artificial neural networks that provides skilful long-term forecasts
(beyond 3 months) of the ISM onset, although only trained on short and noisy data. It is shown
that the meridional tropospheric temperature gradient in the boreal winter season already contains
the signals needed for predicting the ISM onset in the subsequent summer season. Our study
demonstrates that machine-learning-based approaches can be simultaneously helpful for both
data-driven prediction and enhancing the process understanding of climate phenomena.

1. Introduction

The Indian Summer Monsoon (ISM) typically sets
in at the Southern tip of India around the begin-
ning of June. India receives 70–90% of annual rainfall
sums during themonsoon season, i.e. during the four
months from June to September [1]. The meridional
gradient of the tropospheric temperature,∆TT, over
the southern Euracian region (figures 1(a) and S1)
is a widely-used thermal index to define the ISM
onset [2–5]. The onset (withdrawal) date is defined
as the day of year at which ∆TT changes its sign
from negative to positive (positive to negative); see
figure 1(a). We refer to the Data and Method section
for further details on the∆TT index and comparisons
to alternative definitions of ISM onset dates. While
the annual monsoon cycle is quasi-regular, the onset
dates exhibit interannual variations (figure 1(b)).
Based on the∆TT index, the mean onset date is June
2nd (153rd day in a year) and the standard devi-
ation (s.d.) is 5.8 days over the time interval 1948–
2020. However, the range of variation reaches 29 days
during this period. An early or delayed onset of the
ISM can have severe impacts on rain-fed agricul-
ture because agricultural practices are traditionally

tied to the mean onset date [6, 7]. Therefore, accur-
ate prediction of the onset date is of crucial import-
ance for effective agricultural planning, but also
more generally for water-resource management on
the Indian sub-continent with more than one billion
inhabitants.

Empirical statistical modelling and numerical,
process-based weather modelling are the two main
approaches for the prediction of the ISM onset dates.
Statistical models are typically derived via linear
regression of onset dates on selected meteorological
variables [8–12] or their principal components [13].
The selection of predictors is a crucial part of the stat-
istical modelling approach. Sahana et al (2018) use
the so-called Least Absolute Shrinkage and Selection
Operator to select the most significant grids of pre-
dictors [14]. Stolbova et al (2016) propose a method
to select key regions for prediction that is based on
complex networks [15]. While it is difficult to sys-
tematically compare the prediction skills of previous
works due to differences in the definition of onset
dates, prediction years, as well as lead times, the most
successful statistical models provide prediction res-
ults with a root mean square error (RMSE) of about
4 days. For example, Terzi et al (2019) predicted the
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Figure 1. (a) The meridional gradient of the tropospheric temperature∆TT as a function of the day of the year: 2019 (Black) and
other years (grey) from the time span from 1948 to 2020. The red and blue dashed lines show the onset and withdrawal dates of
2019, respectively. (b) The onset dates of the ISM based on the∆TT index over 1948–2020. The y-axis is the onset date counted
from January 1st of each year. The mean onset date is June 2nd (153rd day), with a standard deviation of 5.8 days.

monsoon onset over Kerala (MOK) over 2009–2018
with a RMSE of 3.7 days, with an average lead time of
52 days, by using monitored Beryllium-7 time series
[12]. Numerical weather models have been shown
to have high skill for predicting the ISM onset dates
[4, 14, 16, 17]. The UK Met Office Global Seasonal
Forecasting system,GloSea5-GC2, initialized onApril
25th (i.e. with an average lead time of around 38
days) provides an ensemble of predictions with mean
correlation of 0.8 for onset dates defined with the
tropospheric temperature gradient ∆TT [17]. The
ECMWF Seasonal Forecasting System 4, initialized
with ocean, atmosphere and snow conditions on
April 1st, provides an ensemble prediction withmean
correlation of 0.77 for ∆TT [18], at a lead time with
respect to the mean onset date (May 29th in their
study) of 58 days.

In both statistical and numerical modelling
approaches, typical lead times arewithin the extended
to subseasonal range of 10–60 days. Seasonal predic-
tions with a lead time longer than two months are
rare. Exceptionally, Pradhan et al (2017) predicted
the onset dates based on∆TT index over 1982–2008
by using global seasonal forecasting models (CFSv2-
T126 and CFSv2-T382), three months in advance [4].
While the authors succeed in predicting 70% of early
onsets and 60% of delayed onsets, the RMSE of their
prediction is larger than 6.5 days and the correlation
is limited to 0.49 [4]. It is therefore of great interest
to investigate the seasonal predictability of the ISM
onset date further.

Neural networks have recently been shown to
have at least comparable forecast skill compared
to numerical, process-based models for short-term
(up to three days) to medium-range (up to two
weeks) weather forecast [19–21]. A deep learning
architecture has recently been shown to outperform
numerical forecast models for annual-scale predic-
tion of the El Niño Southern Oscillation (ENSO)
[22]. Moreover, a deep learning approach has been
demonstrated to accurately reconstruct spatial fields
of surface temperatures [23]. In this paper, we use
an echo state network (ESN), which is a sparsely
and randomly connected recurrent neural network
with input and output layers [24, 25] (see figure
S2 for a schematic) for seasonal prediction of the
ISM onset. The ESN transforms a set of input sig-
nals, u(t), into high-dimensional temporal patterns
of the nodes r(t) and exploits those patterns to pre-
dict a target signal s(t). Only the weights of output
layer are optimized to approximate the target signal,
for which a regularized linear regression method is
employed. This type of machine learning is referred
to as reservoir computing [24–28] andhas the advant-
age of comparably simple and very efficient training.
Reservoir computers such as ESNs have been shown
to be useful in a wide range of applications, includ-
ing prediction [29–31] and partial inferences [32–34]
of time series from chaotic and complex systems,
speech recognition [35, 36], or control of robotic sys-
tems [28, 37]. In the field of climate science, Huang
et al recently showed that the tropical average surface
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Figure 2. Prediction scheme of the onset dates of the Indian Summer Monsoon with echo state networks (ESNs). (a), (b) The
daily series of the meridional gradient of the tropospheric temperature∆TT for 1951 (a year during the training period) and
2018 (a year during the test period). The red dashed lines show the onset dates, objectively defined as the first days at which∆TT
crosses zero in each year. (c), (d) The dynamics of ESN nodes ri(t) (only 1 ⩽ i ⩽ 25 are shown for illustration) corresponding to
the two time intervals shown in (a) and (b), respectively. (e) The proximity function defined from the∆TT index (black dashed).
The proximity function estimated with the ESN (orange solid) for the training period. (f) The proximity function estimated with
the ESN (orange solid) for the test period. Cross marks show the reference time points t1 taken as 60 days before January 1st of a
prediction year (November 2nd), and t2, taken as the 70th day of the prediction year (March 10th in non-leap years). The dashed
blue lines show the linear extrapolations using the reference points t1 and t2. The arrows indicate the predicted onset dates, where
the extrapolation reaches+1.

air temperature can be reconstructed well from the
average Northern Hemisphere surface air temperat-
ure over 1981–2018 by using an ESN; for this task,
the ESN outperforms a traditional backpropagation-
based neural network or the long short-termmemory
neural network [34].

We propose a predictionmethod of the ISM onset
date based on ESNs, which we outline as follows (see
also figure S2). We first introduce a function of time
that takes 1 at the ISM onset dates and 0 at the with-
drawal dates, and is linear between these points. A
value of the function indicates the temporal prox-
imity to an upcoming onset (withdrawal) when the
function is increasing (decreasing). We call this func-
tion the proximity function, and use it as the teacher
signal for the supervised learning of ESNs. Over a
training period, an ensemble of ESNs are trained to
approximate the proximity function on the basis of
two input signals, the∆TT and a sinusoidal seasonal
forcing. The trained ESNs are then used to predict
the proximity function over the prediction period. If
the proximity function is accurately estimated up to a

date t2 before the actual ISM onset, the onset date ton
can be predicted in advance based on the linear trend
of the estimated proximity function between a refer-
ence time t1 and the later t2 (that is, by linear extrapol-
ation, see figure 2(f)). Finally, an ensemble prediction
of onset dates is performed.

The paper is structured as follows: in section 2 we
describe the employed data and explain the developed
methodology. The results are shown in section 3 and
discussed in section 4, which ends with a brief sum-
mary of the main findings. Some further details are
provided in supplementary information (available
online at stacks.iop.org/ERL/16/074024/mmedia).

2. Data andmethod

2.1. Data
There are various definitions of ISM onset and
withdrawal dates, based on different physical vari-
ables (e.g. precipitation, wind speed, etc) and spatial
scales (from local to continental) [3, 4, 13, 38–43].
Since 2006 the Indian Meteorological Department
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(IMD) has reported the date of the MOK, object-
ively defined with rainfall over 14 stations in Kerala,
wind fields, and outgoing long wave radiation [13].
There are multiple other onset indices defined based
on large-scale circulation patterns or thermodynamic
conditions. The most widely-used indices are the
∆TT-based index [2, 3], the hydrological onset and
withdrawal index [39], and the onset circulation
index [41]. These large-scale indices, which result
from averaging over extensive spatial regions, are less
susceptible to ‘false’ or ‘bogus’ onsets due to synop-
tic disturbances or intraseasonal oscillations. In this
work we focus on the∆TT index, which is the meri-
dional gradient of tropospheric temperature over the
southern Euracian region [3, 44]. Specifically,∆TT is
calculated as the difference between the average tro-
pospheric temperatures over 600–200 hPa in a north-
ern box (30◦E–110◦E; 5◦N–35◦N) and a southern
box (30◦E–110◦E; 15◦S–5◦N) [4]; see figure S1. Tro-
pospheric temperature fields are obtained from the
NCEP/NCAR daily reanalysis fields (1948–2020) [45]
as in previous works [2–4]. While the NCEP/NCAR
reanalysis data is not of the highest resolution, it has
been shown to be more robust against bogus onsets
than ERA-40 [2] and, crucially, it enables us to carry
out a straightforward comparison to the recent work
by Pradhan et al (2017) [4]. The change of sign of
∆TT indicates the shift of the deep tropospheric heat
source that drives the ISM circulation, form south
to north and from north to south, respectively [2,
3]. Thus, an onset (withdrawal) date of the ISM is
defined as the day at which∆TT changes its sign from
negative to positive (positive to negative) as shown
in figure 1(a). The ∆TT-based onset dates are well
correlated with the objectively-defined dates of MOK
[13] over 1971–2020 (r= 0.57, figure S9). The average
over 1971–2020 is June 2nd (∼153rd day of year) for
both definitions. The standard deviation (s.d.) of the
∆TT-based onset dates is 5.8 days, which is slightly
smaller than that of MOK, for which the s.d. is 6.6
days over 1971–2020.

2.2. Echo state networks (ESN)
We outline our specifications of ESNs [24, 25] essen-
tially following Lu et al (2017) [32]. The ESN con-
sists of N randomly connected nodes, and has one
input layer and one output layer (see schematic in
figure S2). Node i has a time-dependent state ri(t),
and the whole state of the ESN is specified by the vec-
tor r(t) = (r1(t), r2(t), .., rN(t))T ∈ RN. At every time
step, the ESN receives a set of M inputs u(t) =
(u1(t),u2(t), ..,uM(t))T ∈ RM, and the state evolves
according to:

r(t+ 1) = tanh(Ar(t)+Winu(t)+ ξ1),

where A ∈ RN×N is the weighted adjacency matrix of
the network, Win ∈ RN×M is the input weight mat-
rix, 1 is a vector of ones, and ξ is a bias parameter.

The adjacencymatrix A is built from a sparse random
Erdös-Rényi matrix in which the fraction of nonzero
matrix elements isD/N, so that the average degree of a
node isD. The values of non-zero elements are drawn
independently from the uniform distribution over
[−1, 1]. We then uniformly rescale all the elements
of A (i.e. multiply A by a positive scalar) such that
the largest value of the magnitudes of its eigenvalues
equals a predefined scalar ρ, which we refer to as the
spectral radius of A. For the input layer, the ith of the
M input signals is connected to all nodeswith connec-
tion weights in the ith column of Win. The elements
ofWin are randomly chosen from the uniform distri-
bution over [−σ,σ] for another scalar parameter σ.
The bias parameter ξmayhelp to overcomeundesired
consequences of the symmetry of the tanh function
with respect to 0 and is commonly used.

In this studywe consider ESNswith a single, scalar
output:

ŝ(t) =Woutr(t)+ c,

where Wout ∈ R1×N is the output weight matrix and
c is a constant. For a teacher signal {s(t)|t= 1, ..., T},
the optimal output weights W∗

out and constant c∗ are
given so that a quadratic form:{

T∑
t=1

|Woutr(t)+ c− s(t)|2
}
+β[Tr(WoutW

T
out)],

is minimized. The second term β[Tr(WoutWT
out)] is

a regularization term to avoid over-fitting, and β is
typically chosen to be small positive number called
the ridge regression parameter. This is also sometimes
referred to as Tikhonov regularization. The solution
of this minimization problem is known to be:

W∗
out = δSδRT(δRδRT +βI)−1,

c∗ = −[W∗
outr− s],

where r= 1
T

∑T
t=1 r(t), s=

1
T

∑T
t=1 s(t), I is the iden-

tity matrix, and δR (respectively δS) is the matrix
whose kth column is r(t)− r (respectively s(t)− s)
[32].

For best performance, ESNs should have the so-
called echo-state property [25] (or in other words
consistency [31]), which essentially states that the
effect of a previous state r(t) and a previous input
u(t) vanishes gradually in the future state r(t+ k) as
time passes (i.e. k→∞). This property is achieved
by suitably setting the spectral radius of the matrix
A. For most practical purposes, the echo state prop-
erty is assured if the spectral radius ρ of the network
matrix A is less than unity [25]. On the other hand,
larger ρ also has the effect of driving signals r(t) into
more nonlinear regions of tanh units. As a rule of
thumb, ρ should be close to 1 for tasks that require
longmemory and accordingly smaller for tasks where
a too long memory might in fact be harmful. Thus in
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Figure 3. Prediction results of the onset dates of the Indian Summer Monsoon over 1981–2020. The actual onset date is calculated
based on the sign of the meridional gradient of tropospheric temperature∆TT (see section 2). The predicted onset date is the
ensemble mean of predictions of the top 100 ESNs (see text). The shade shows the range of±7 days with respect to the actual
onset date from∆TT data. Statistical summaries are given in table S1.

this work, we choose ρ= 1 and the other parameters
as N = 100, D= 5, σ= 0.04, ξ= 0.01 and β= 10−10.
The results are robust against small changes in these
parameters.

3. Results

While other definitions exist, we focus on the object-
ive definition of the ISM onset and withdrawal dates
via the meridional tropospheric temperature gradi-
ent ∆TT [3, 4, 44] for the time interval 1948–2020
(figure 1). The daily series of ∆TT is calculated
from NCEP/NCAR reanalysis temperature [45] (see
section 2). As mentioned above, Pradhan et al (2017)
predicted the ∆TT-based onset dates for the period
1982–2008 by using global seasonal forecasting mod-
els three months in advance [4]. We predict the onset
dates over the 40 years from 1981 to 2020 and com-
pare the skill over 1982–2008 with that of Pradhan
et al (2017).

The onset dates over 1981–2020 are predicted by
training ESNs using the onset and withdrawal dates
observed over 1948–1980. We can a priori define
the proximity function between the onset date in
1948 and the withdrawal date in 1980. The prox-
imity function is shown by the dashed black line
in figure 2(e). We generate 105 ESNs with differ-
ent, randomly chosen weights and connections for
the purpose of an ensemble forecast (see section 2).
A node of each ESN receives two input signals:
one is ∆TT(t) and the other is a seasonal forcing
cos(2π(t− 152.25)/365.25), where t is a day coun-
ted from January 1st 1948, and 152.25 is the aver-
age day of the year corresponding to June 1st (tak-
ing into account leap years). These input signals are
transformed into temporal patterns of ESN nodes
(figures 2(c) and (d)). The output layer of each ESN is
optimized to fit the proximity function over a training

period between the onset date in 1950 and the onset
date in 1980 (the years 1948–1949 are excluded from
the training period because the ESN states can be
affected by the initial conditions). The estimated
proximity function is shown for 1951 in figure 2(e)
in solid orange. In the following prediction period
after the onset date in 1980, the proximity function
is estimated with the trained ESNs. An onset date is
then predicted by linear extrapolation using the val-
ues of the estimated proximity function on two refer-
ence dates t1 and t2, as shown in figure 2(f). Unless
otherwise mentioned, t1 is the date 60 days before
January 1st of a prediction year (i.e. November 2nd)
and t2 is the 70th day of the prediction year (March
10th in non-leap years). The lead time for the mean
onset date is therefore 83(= 153− t2) days. We con-
duct an ensemble forecast since the predicted onset
dates depend on the random realizations of ESNs, and
in order to provide forecast uncertainties. The pre-
diction of the onset dates by each ESN is statistically
more accurate if the ESN has a lower RMSE between
the estimated and actual proximity function over the
training period (figure S3). Therefore, we select the
top 100 ESNs, i.e. the 100 ESN realizations with the
lowest RMSEs on the training period, and then take
the ensemble mean of the predicted onset dates of
these 100 ESNs as the final prediction.

Figure 3 compares the predicted onset dates with
the actual ones over the time span 1981–2020, where
the RMSE is 4.9 days and the correlation between
the predicted and actual yearly onset date time series
is 0.58 (table S1). The normalized RMSE (nRMSE),
namely the RMSE divided by the standard devi-
ation of the observed onset dates, is 0.82. For the
shorter time span 1982–2008, the skill scores are 4.8
days (RMSE), 0.76 (nRMSE) and 0.67 (correlation)
(table S1). It should be noted that the standard devi-
ation of the predicted onset dates is 30% smaller than

5



Environ. Res. Lett. 16 (2021) 074024 T Mitsui and N Boers

Figure 4.Dependence of prediction skills on the average lead time (left) and the length of training period (right). The average lead
time is the number of days between the issuing of the forecast at t2 and June 2nd (the average onset date of data). The dashed
horizontal lines show the standard deviations (s.d.) of the onset dates of data in each prediction period (table S1). The black
diamonds show the results reported by Pradhan et al [4]. In the experiments in the right panels, the training interval is set to end
in 1980. For the left panels, the training length is 31 years from 1950 to 1980. For the right panels, the average lead time is 83 days.

that of the actual onset dates. The distributions of the
ensemble predictions of the 100 ESNs are shown in
figure S4.

The above results are robust against moderate
changes of lead time by ±10 days (figures 4(a) and
(b)). For the case with the average lead time of three
months (93 days) used by Pradhan et al (2017), we
obtain the skill 5.35 days (RMSE), 0.84 (nRMSE)
and 0.60 (correlation) over the period 1982–2008,
compared to 6.55 days (RMSE), 0.88 (nRMSE) and
0.49 (correlation) obtained by the seasonal forecast-
ing model by Pradhan et al (2017) [4] (figures 4(a)
and (b) and table S2). Maybe surprisingly, the skill
moderately decreases as the lead time gets shorter
than 83 days. The reason is that it is more difficult
for ESNs to approximate the proximity function near
onset dates, where the function bends sharply. We
also compare our predicted onset dates with the dates
of the MOK reported by the IMD [13] (see section 2
and figure S6). As shown in table S3, the skill scores
with respect to theMOK are slightly worse than those
with respect to the large-scale∆TT-based onset dates.
This is expected because our ESNs are optimized on
the ∆TT-based onset dates rather on than the dates
of MOK, and can hence by construction not capture
differences between the large-scale onset dates and

the local MOK dates. Nevertheless, our predictions
are significantly correlated withMOK, and the RMSE
is below the standard deviation of the dates of MOK
(table S3).

We have performed sensitivity experiments on the
choice of the training interval and found that the
skill scores remain similar over 1981–2020 as well as
1982–2008 (figure 4). The result shows that a train-
ing period of length 15 years is sufficient to obtain
skilful predictions. We have also examined a differ-
entway of setting training and prediction years, where
the onset date of each year is predicted by using
the onset and withdrawal dates of previous 31 years
(for example, the onset date in 2020 is predicted
with the onset andwithdrawal dates over 1988–2019).
This scheme provides the prediction skill of 5.19
days (RMSE) and 0.53 (correlation) over 1981–2020,
which are only slightly worse than those for the setup
described above (table S1).We conclude that our pre-
diction scheme is robust against the choice of the
training interval. We note that the sinusoidal input is
necessary to obtain a skilful forecast, likely because it
reduces estimation errors of the proximity function
by preventing ESNs from overweighting local fluc-
tuations in the ∆TT signal (compare figure S7 with
figure 2).
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Figure 5. (a) The meridioal tropospheric temperature gradient∆TT as functions of the day of the year. The∆TT signals with
above-average winter∆TT are shown in pink and those with below-average winter∆TT are shown in skyblue, respectively,
where the winter∆TT refers to the mean value of∆TT over the first 70 days of the year. The thick red (blue) lines show the mean
of the∆TTs with higher (lower) winter∆TT. When mean winter∆TTs are high, onset dates are earlier on average, and vice
versa. (b) The scatter plot of the slope of the proximity function and its value at November 2nd for a typical ESN. When the∆TT
is higher in winter, the slope of the proximity function between two reference dates (November 2nd and March 10th) tends to be
steeper. The red and blue dashed lines show respective means. (c) A steeper slope of the proximity function leads to a prediction
an earlier onset on average.

By scrutinizing variations of∆TT and ISM onset
dates (figure 5(a)), we find that a higher (lower)
boreal winter ∆TT typically results in an earlier
(later) onset date (the∆TT averaged over the first 70
days of the year is correlated with the ISM onset date
with a correlation of −0.52 over 1981–2020). Hence
the boundary conditions determining the ISM onset
in terms of the large-scale tropospheric temperature
gradient are already developed during the preceding
winter season. In our approach, a higher winter∆TT
is translated into a proximity function with a higher
slope, leading to the prediction of an earlier onset, and
vice versa (figures 5(b) and (c)). We note here that
our nonlinear ESN approach provides a more accur-
ate prediction of the ISM onset dates than a linear
regression using the winter ∆TT as the explanatory
variable (figure S8).

We finally discuss a possible factor which affects
the seasonal predictability of the monsoon onset.
Figure S5 shows the time evolution of the∆TT index
for nine years for which our method results in com-
parably weak predictions. For five of these nine years,
the evolution of the ∆TT stagnates or fluctuates in
the vicinity of the threshold∆TT= 0 that defines the

ISM onset (specifically years 1986, 1993, 1996, 2004,
and 2009 in figure S5). In these cases, small fluctu-
ations in the ∆TT near the threshold could yield a
large difference in the onset date. An accurate pre-
diction is difficult in such cases, where the defini-
tion of the target is already uncertain due to the noise
in the ground truth data. We have not found other
clear factors lowering the predictability (see caption
of figure S5 for more discussions, including effects of
ENSO).

4. Summary and discussion

It is known that the ISM onset dates depend on mul-
tiple interannual climate phenomena such as ENSO
[2, 3], the Indian Ocean Dipole [5, 46], the North
Atlantic Oscillation [47], as well as the Himalayan–
Tibetan Plateau snowpack [18, 48]. These factors
aggregately affect the ∆TT anomaly [2, 3, 5, 18, 44]
and hence the ISM onset dates at seasonal time scales.
Our method thus indirectly exploits the large-scale
teleconnections induced by these phenomena via the
∆TT evolution to achieve a skilful prediction of the
ISM onset at comparably long forecast horizons.
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We introduced a neural-network-based method
for predicting real-world nonlinear phenomena such
as abrupt state transitions in the climate system, for
which only short and noisy observational training
data are available. We applied our method to predict
the ISM onset dates, which were objectively defined
by the meridional gradient of the tropospheric tem-
perature ∆TT index. In our proximity inference
method, ESNs are used to infer the temporal proxim-
ity to the ISM onset from the time series of the∆TT
index. Our approach enables us to predict the ISM
onset dates with seasonal-scale lead times, with an
RMSE ranging from 4.5 to 5.4 days and a correlation
coefficient ranging from 0.5 to 0.7, even when only
15 years of training data are used (figures 4(c) and
(d)). Our method hence extends the forecast horizon
of previous studies from subseasonal to seasonal time
scales at comparable skill, and outperforms a state-of-
the-art numericalmodel prediction [4] at comparable
lead times. To our knowledge, there is no statistical
forecasting approach at comparable, seasonal scales.
Our method also outperforms the statistical forecast
introduced by Stolbova et al [15] in terms of their
accuracy test, which considers a forecast to be valid
if the predicted onset date is within ±7 days of the
actual onset date: for the common time span 1981–
2015, we obtain an accuracy of 80% compared to
71%, despite the 1.5 months longer lead time. How-
ever, it should be noted that the definition of onsets
are different in these two studies, as Stolbova et al
focus on the onsets in the Eastern Ghats [15]. In com-
parison to the ensemble forecast that we focused on
here, a single ESN can lead to forecasts with lower
RMSEs. For example, for the test period over 1981–
2020, we obtain an RMSE of about 4.4 days with the
best-performing ESN, as shown in figure S3.

Due to the stable performance for different
choices of training and test periods within the time
span for which data is available, we expect our
approach to exhibit similar skill also for future pre-
dictions. In this work we focused on the prediction
of the onset dates of the large-scale ISM based on the
∆TT index. Nevertheless, our model trained on the
∆TT-based onset dates has a certain skill for predict-
ing the dates of the MOK as well: the correlation is
0.47 and the RMSE is 5.6 days, which is lower than
the standard deviation of MOK (6.2 days, see table S3
and figure S6). This suggests a potential of extend-
ing the present method to the prediction of locally
defined onset dates as well. It is straightforward to
apply our method for other similar threshold-based
indices such as the Onset Circulation Index [41] or
the Hydrologic Onset and Withdrawal Index [39].
The predictability for these indies will be assessed in
future work. We will also address large-scale impacts
on the ISM onset and overall rainfall sums, such as
connections to ENSO [2, 3, 5, 6], the Pacific Decadal
Oscillation [49], the Indian Ocean Dipole [5, 46],
and the North Atlantic Oscillation [47], as well as

extensions of our approach to predict break phases
[50] of the ISM, in future research.
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