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Abstract The epidemic threshold of a social system is the ratio of infection and recovery rate above which a
disease spreading in it becomes an epidemic. In the absence of pharmaceutical interventions (i.e. vaccines),
the only way to control a given disease is to move this threshold by non-pharmaceutical interventions like
social distancing, past the epidemic threshold corresponding to the disease, thereby tipping the system from
epidemic into a non-epidemic regime. Modeling the disease as a spreading process on a social graph, social
distancing can be modeled by removing some of the graphs links. It has been conjectured that the largest
eigenvalue of the adjacency matrix of the resulting graph corresponds to the systems epidemic threshold.
Here we use a Markov chain Monte Carlo (MCMC) method to study those link removals that do well
at reducing the largest eigenvalue of the adjacency matrix. The MCMC method generates samples from
the relative canonical network ensemble with a defined expectation value of λmax. We call this the “well-
controlling network ensemble” (WCNE) and compare its structure to randomly thinned networks with the
same link density. We observe that networks in the WCNE tend to be more homogeneous in the degree
distribution and use this insight to define two ad-hoc removal strategies, which also substantially reduce
the largest eigenvalue. A targeted removal of 80% of links can be as effective as a random removal of 90%,
leaving individuals with twice as many contacts. Finally, by simulating epidemic spreading via either an
SIS or an SIR model on network ensembles created with different link removal strategies (random, WCNE,
or degree-homogenizing), we show that tipping from an epidemic to a non-epidemic state happens at a
larger critical ratio between infection rate and recovery rate for WCNE and degree-homogenized networks
than for those obtained by random removals.

Introduction

In the absence of pharmaceutical interventions, the pre-
vention of infection through a reduction of social con-
tacts presents an effective method to slow or even halt
the spread of an epidemic [1,2]. However, limiting social
contacts comes at a significant psychological [3] and
economical [4,5] cost. To reduce those socio-economic
adverse effects, it is, therefore, desirable to use targeted
social distancing measures, to remove fewer links for
achieving the same effect. If the infection patterns for a
particular disease are known, for example, measures can
be taken to remove the most common routes of infec-
tion [6–8]. Similarly, methods have been introduced for
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targeted link removal if the infection status of individ-
ual nodes is known [8–10] as well as systems where the
entire network structure is known in detail [10,11]. This
would be the case for example in more aggregated set-
tings, like the transport network, which has been shown
to directly affect disease spreading [12]. Moreover, in
[13] the authors have introduced a test-kit-based con-
trol strategy to avoid a strict lock down or social dis-
tancing and, consequently, maintain economic stability
by partial opening of business centers.

Often, however, diseases without pharmaceutical
interventions are new and we lack detailed knowl-
edge about their infection patterns, and in the absence
of functioning contact tracing many infections may
go unnoticed, especially if the symptoms are mild or
unspecific. Therefore, social distancing as a behavioral

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00138-5&domain=pdf
mailto:anvari@pik-potsdam.de


3274 Eur. Phys. J. Spec. Top. (2021) 230:3273–3280

change is the primary intervention for disease preven-
tion [14].

In the extreme case of reducing the number of con-
tacts in the social graph to zero, by necessity the disease
dies out and is fully controlled. If there are no links left
in the network, the disease can not spread. Intuitively,
we expect that the more contacts are removed, the
better a disease can be controlled and prevented from
becoming an epidemic. This can be made precise given
a model of the disease spread. For an approximation of
SIS dynamics with recovery rate δ and infectiousness
β it was shown in [15] that the epidemic threshold, τ ,
is determined by the inverse of the largest eigenvalue
of the adjacency matrix of the underlying contact net-
work, i.e., τ = λ−1

max. If τ > β/δ, the disease quickly
dies out and remains confined to a small section of the
network, if τ < β/δ; however, the disease spreads as an
epidemic over large parts of the network and becomes
endemic. At τ c = (λc

max)
−1 = β/δ, the system tips from

epidemic to non-epidemic regime. Decreasing λmax thus
represents a topological way of controlling an epidemic
that is independent of the unknown or unchangeable
disease parameters β and δ.

By removing links from a network, one can gener-
ally reduce the value of λmax. However, the size of this
reduction depends on the specific links removed (see the
example network in [15]). Here, we introduce a way to
remove links based on λmax to sample from ensembles
with a given disease-controlling property using Markov
chain Monte Carlo (MCMC) methods [16]. We thereby
study what characterizes contact reductions that per-
form well at controlling the disease spread. The largest
eigenvalue is a lower bound for SIS [17,18], and often,
but not always indicative of SIR [19,20]. Thus it is
a natural candidate for building well-controlling net-
works. In the last section we will see in simulation that
the resulting networks and methods do indeed work for
SIS and SIR models. We will see that well-controlling
networks on average have significantly lower λmax even
at relatively low ν. We find that well-controlling net-
works have a more strongly peaked degree distribu-
tion, as well as more homogeneously sized connected
components once the network is no longer connected.
We therefore suggest and test two heuristics for achiev-
ing a similar effect by homogenizing the node degrees
in the network through link removal and find them
to lead to a similarly strong control, suggesting that
the strongly peaked degree distribution characterizes
well-controlling networks. Finally, by running both SIS
and SIR models on networks obtained from different
removal strategies, we show that the tipping point in
the critical ratio of β/δ occurs for larger ratios in
the WCNE and degree-homogenized networks than in
generic removals.

The results are robust across all initial network
ensembles tested here, namely Barabasi–Albert (BA)
networks [21], random geometric (RG) graphs [22] and
a real-world network of friendships between high-school
students [23].

Basic notions and model description

We start from an initial graph ensemble representing
the social network relevant for the spreading. The BA-
and RG- network ensembles were chosen for their depic-
tion of different types and applications of networks,
on which epidemic spreading processes can happen.
BA-Networks were introduced as a simplified model
for online social networks, which are relevant for the
spreading opinions, ideas or computer viruses. RG-
networks, on the other hand, capture the spatially
embedded structure of most in-person social networks
most relevant for the spread of diseases.

We consider a generic reduction in which a certain
percentage of links are removed at random. Given a
social network Nsoc with E edges this defines an ensem-
ble of reduced networks qρ(N soc) that are equidis-
tributed on the subgraphs of N soc with (1−ρ)E edges,
where 0 < ρ < 1 is the contact reduction rate. We
then consider the canonical network ensemble [24] rela-
tive to this ensemble of generic reductions that achieves
a certain expectation value of the largest Eigenvalue
λmax. That is, the ensemble of networks that is least
distinguishable from random contact removals at a
given expectation value of λmax. The canonical network
ensemble is given by the probabilities

p(N) =
1
Z

e−νλmax(N)qρ(N). (1)

Here Z is a normalization factor, ν is the inverse
genericity as defined in [24], which interpolates between
the generic ensemble (at ν = 0) and one peaked
at the best controlling networks at ν → ∞ (opti-
mized). We call the family of ensembles with rea-
sonably high values of ν the well-controlling network
ensembles (WCNE) and samples drawn from such an
ensemble well-controlling networks (WCN). As in [24]
we obtain well-controlling networks by employing an
MCMC Metropolis–Hastings method [25,26].

In both synthetic cases, the initial networks N soc

have 100 nodes and an average degree of 〈k〉 ≈ 18,
amounting to around 900 links. The precise number
of links for the random geometric networks fluctuates
slightly around that value due to the network construc-
tion algorithm used.

Starting from a reduced network drawn randomly
from qρ(Nsoc) at a given contact reduction rate ρ, we
keep the number of links constant through all changes
of the network. We then vary the set of removed links
using MCMC. The probability of increasing/decreasing
λmax in this step depends on the selected value of ν.

Figure 1 shows example networks from a generic
removal and WCNE ensembles of BA and RG start-
ing ensembles with a removal rate of ρ = 0.8. At first
glance, we see that the WCNE examples have fewer
disconnected nodes and a generally more homogeneous
distribution of degrees and component sizes. In the fol-
lowing, we describe the applied MCMC approach and
its energy function in detail.
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Fig. 1 Example networks from network ensembles after
removing 80% of contacts from an initial BA and RG graph
with N = 100 and E ≈ 900. a and c The generic contact
reductions at ν = 0 or, in the other word, they show generic
networks with random removed links. b and d WCNE at
ν = 1000. In all figures nodes with the same color and

size have the same degree. To compare WCNE networks,
i.e. b and d, with the corresponding generic networks with
random removed links in a and c), it is visually clear that
WCNE networks have more homogeneous degree distribu-
tion as well as more homogeneous component sizes

The state of the system at a time step t is given by
the network structure and thus the adjacency matrix
At. The energy function for the process is given by the
largest eigenvalue of the adjacency matrix At, describ-
ing the remaining network (i.e., the one obtained after
removing the current candidate set of edges),

ε(A) = λmax(A). (2)

As mentioned in the introduction, it was shown in
[15] that the epidemic threshold τ is proportional to
the inverse of λmax for an approximation of the SIS
model. In the same paper, it was also conjectured that
this proportionality also holds in the SIR model. Thus,
following that conjecture, we use λmax as our energy
function.

At each Monte Carlo step t → t + 1, a proposal A′
is generated to swap one edge between the remaining
set of edges in the network and the set of currently
removed edges, thus keeping the number of removed
edges constant. The proposal is then accepted with a
probability

PA→A′ = min
(
1, eν(ε(A)−ε(A′))

)
(3)

sampling from the canonical network ensemble at
inverse genericity ν. Thus, a small ν results in almost
every proposal being accepted and many random
changes being made. The final ensemble is then not

different from the one obtained by randomly removing
the edges. In the other extreme of very large ν, almost
only those proposals are accepted that lower the energy,
resulting in an ensemble with a lower average λmax.

This procedure is repeated until a steady state in
λmax is reached, fluctuating around λmax(t → ∞). We
found this to be the case after 11000 steps. It should
be noted that for both the BA and RG initial network
ensembles we repeat the explained strategy for n =
100 different network configurations and, then, average
over all final values of the largest eigenvalue to obtain
〈λmax〉 = 1

n

∑n
i=1 iλmax(final).

Results

Examples for the evolution of λmax are shown in Fig. 2
a and c for a range of ν and ρ = 0.4.

While the ensemble after random link removal (ν =
0) has largest eigenvalues fluctuating around λmax ≈
13.5 for both BA and RG networks at ρ = 0.4, for the
least general ensemble with ν = 1000 this goes down
to λmax ≈ 11 in case of BA networks and λmax ≈ 10.5
in case of RG networks. Values of ν > 1000 were not
considered here for several reasons. First, they require
much longer (or more) runs to ensure a proper mixing,
also the gains between ν = 500 and ν = 1000 were
already minimal. Secondly our practical interest was in
sampling the WCNE, rather than finding the optimal
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(a) (b)

(c) (d)

Fig. 2 MCMC substantially decreases λmax at higher
inverse genericity ν. a and c and show, respectively, the
decrease of λmax with MCMC for different initial networks
for a range of values of the genericity ν. In all networks
the removal rate is ρ = 0.4. For high genericity, such as
ν → 0, λmax fluctuates just around its initial value after
link removal (yellow line), while it reaches a low steady

state for the smaller genericity (black line). b and d show
the average of λmax for a range of removal fractions ρ =
{0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} and genericities. As it is
clear in these figures, in the larger ν, the curve is shifted
more downwards, indicating a significant increase in the epi-
demic thresholdλ−1

max

link removal, because in practical scenarios, the under-
lying network is neither known, nor always perfectly
controllable.

In Fig. 2b and d, we see that the improvement from
MCMC persists in both network ensembles and over all
removal fractions. We see that the impact of removing
90% of links randomly can alternatively be achieved by
removing only 80% in a targeted manner, leaving each
individual with twice as many contacts on average.

Network analysis

We now analyze the resulting ensembles and thus
compare several network measures across random and
WCNE removals in Fig. 3. We find several indicators
pointing to a homogenization of the networks through
the reduction of λmax.

Across all initial network ensembles we observe a
more strongly peaked degree distribution for WCNE
(blue diamonds), compared to the generic ensemble (red
circles), as shown in Fig. 3a and b.

Furthermore the number of connected components
for the WCNE remains at 1 until a removal ratio of
ρ = 0.8 compared to ρ = 0.6 for the most generic
removals in BA networks (see Fig. 3c, d), blue lines.
This indicates homogeneity again, as no single nodes
are split off from the giant component. Investigating
further the regime of large removal rates by looking at

the size of the giant component at ρ = 0.9, we find
in Fig. 3e, f that the largest component is smaller in
the WCNE ensemble than it is in the generic one. This
means that it is not single nodes or small sub-graphs
that are disconnected but the network splits into sev-
eral networks of similar size, in line with our ad hoc
observation from Fig. 1.

While the MCMC procedure is effective at increasing
the epidemic threshold of networks compared to sim-
ilarly dense networks with randomly removed edges,
it is often not practically feasible to use. The proce-
dure requires knowledge of the original social network,
which is not typically accessible when suggesting social
distancing measures. Moreover, there is not one fixed
real network that can be optimized, but rather an ever-
changing, unknown interaction structure. We need gen-
eral characteristics of well-performing removal sets, that
can be applied to a time dependent, unknown network.
By understanding general characteristics of removals
that reduce the spreading we can formulate policies
for targeted reductions. Our above observations suggest
that we need to homogenize the degree distribution.

We, therefore, now introduce two ad hoc methods for
link removal, with this aim, one operating with only
local and one with global information.

(i) The first one we call the degree product method.
Starting from the original network, we iteratively
remove one of the links with the highest degree prod-
uct at random, which we define as the product of the
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Fig. 3 Network measures
in the ensembles. For both
initial network ensembles
(BA and RG), the
ensembles after link
removal are analyzed. a
and b show the degree
distributions after removal
of 80% of links. d and e
show the average number
of components after the
removal of ρ links. g and h
demonstrate the size of the
giant component after
removal of 90% links

(a) (b)

(c) (d)

(e) (f)

(a) (b) (c)

Fig. 4 Top: Successively removing the link with the highest degree product results in networks with a very narrow degree
distribution. Bottom: Go through nodes in order of increasing node number and remove any links exceeding the cap kmax = 3

degrees of the two end nodes, until the fraction ρ of
removed links is reached. An illustrative example is
shown in Fig. 5 (top).

(ii) The second one we call the degree cap. In order of
ascending node number, each node with degree > kmax

has all but kmax of its links removed at random. This
is a random order in case of RG networks. In the BA
ensemble, low node numbers tend to be correlated with

high degrees, thus high-degree nodes are reduced first.
However this discrepancy results in similar effects on
the network structure as shown in Fig. 3. An illustrative
example of the algorithm is shown in Fig. 5 (bottom).

We have included networks generated with both
degree-homogenizing methods in the analyses of Fig. 3
and show their reduction of the largest eigenvalues in
Fig. 4. Subfigure c) also shows a similar level of reduc-
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Fig. 5 The degree-based
strategies reduce λmax

almost as well as MCMC.
The reduction is greater
for smaller removal ratios
but persists even if 90 % of
edges are removed

(a) (b) (c)

Fig. 6 Decreased λmax shifts the epidemic threshold to
more infectious values of the disease spreading models’
parameters in both SIR (a) and SIS (b) simulations. This
shift persists across removal rates ρ and tends to be larger
for larger ρ. It also persists for the degree-homogenizing

methods. c Shows the smallest value of β/δ for each removal
rate ρ, for which the cumulative number of infected individ-
uals exceeds 1% using the SIS model. It clearly indicates the
shift and verifies that it exists for both ad hoc strategies as
well as for the WCNE

tion effect for a real world high school contact net-
work. Both methods result in networks with a more
peaked degree distribution than for random removals.
The degree-product method (black stars) reaches the
most peaked one and correlates very well with the net-
work ensemble resulting from MCMC simulations in
most network measures. The degree cap (yellow crosses)
results in a less pronounced peak. Both methods mimic
the delay of the onset of network fracturing, again with
the degree product method having a more pronounced
effect. Interestingly for the size of the giant component
shown in Fig. 3e, f, the results differ for the differ-
ent initial ensembles. While the degree product method
consistently results in smaller giant components at a
similar range of λmax than the WCNE, the degree cap
method results in component sizes comparable to the
generic ensemble for BA and RG networks. In the high-
school example, it produces the same component size as
the degree product method, which is lower than even
those of WCNE.

Simulation and real-world networks

To validate our removal strategies’ disease-slowing
property, we run both SIS and SIR simulations on a
real social network of high-school students. As a mea-
sure for the disease becoming endemic, we compute the
cumulative number of infected nodes. This is plotted
versus different disease parameter ratios β/δ in Fig. 6a
and b for SIR and SIS, respectively. The size of the
network is N = 1062 and the figure averages over 640
realizations of SIR and SIS simulations with 10 nodes
initially infected at random. They were simulated for
1000 steps for SIS and until equilibrium was reached
for SIR. We consistently find that tipping into the epi-
demic state occurs at lower values of β/δ in the generic
networks than in the WCNE across all removal ratios
for both SIR and SIS. However, the figure also indi-
cates that there may be a kind of trade-off here. While
the tipping point is shifted, the transition also becomes
steeper, leading to larger numbers of total infected peo-
ple at very large β/δ.

Finally, Fig. 6c shows the smallest value of β/δ for
each removal rate ρ, for which the cumulative number
of infected individuals exceeds 1% using the SIS model.

123



Eur. Phys. J. Spec. Top. (2021) 230:3273–3280 3279

It clearly indicates the shift and verifies that it exists
for both ad hoc strategies as well as for the WCNE,
supporting our conjecture that the sharper peak in the
degree distribution may be the cause of the reduction
in spreading.

Discussion and conclusion

We have studied the effects of targeted link removal
on the epidemic threshold in a network by comparing
random removal, removal based on the largest eigen-
value as an energy function and two types of degree-
homogenizing removal. We have found that at suffi-
ciently low genericities (i.e., high ν), all three types of
targeted removal have a significantly higher epidemic
threshold (i.e., lower λmax) than the random removal.
This also results in a shift of the tipping point to the
epidemic state in SIS and SIR simulations, such that
more infectious diseases can be controlled with fewer
link removals necessary.

We have found this to coincide with a more sharply
peaked degree distribution as well as fewer and more
homogeneously sized connected components, which we
have interpreted as an overall homogenization. Conse-
quently, we have proposed the two degree-homogenizing
methods, which are also effective at decreasing λmax, as
well as shift the onset of epidemic spreading. It is worth
mentioning that we have also tested a removal strategy
based on edge-betweenness. However, it was found to be
less effective at increasing the epidemic threshold than
random removal and thus omitted in the results.

While running a full MCMC may be infeasible in
practice, where the social network is fluctuating and
unknown, the two ad hoc methods provide a simple
topological way of targeting links. This shows that a
cap in the number of permitted contacts per person, as
already practised in many countries as part of social dis-
tancing measures against COVID-19, is actually close
to optimal in terms of topological link targeting in static
networks, at least in rather simple model simulations
such as ours.

Realistically, however, measures may also include
non-binary changes (such as wearing masks, shorten-
ing contacts or keeping a distance) as well as tempo-
ral changes in infectiousness and fluctuating interac-
tion patterns. Although we have chosen the epidemic
threshold in this work as our measure to reduce out-
break sizes, it would be a very interesting follow-up of
this work to compare our results to ensembles result-
ing from other network measures, such as giant con-
nected component, commonly associated with reduced
outbreak sizes. While we have here exemplified the
method using simple static SIR and SIS models, a more
complex energy function would in principle make such
an analysis possible also in the case of inhomogeneous
(weighted) or temporally fluctuating transmission prob-
abilities β, as well as node, rather than edge removal
(vaccinations). Changes of connection strengths or edge
weights could be used instead of complete removals of

edges as a model of transmission reductions through
measures, such as mask wearing, meeting outdoors,
improved ventilation and keeping a distance.
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