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Abstract

In this study we analysed the multi-annual (2002-2011) average summer surface urban heat

island (SUHI) intensity of the 5,000 largest urban clusters in Europe. We investigated its

relationship with a proposed Gravitational Urban Morphology (GUM) index that can cap-

ture the local context sensitivity of SUHI. The GUM index was found to be an effective

predictor of SUHI intensity. Together with other urban factors we built different multivari-

ate linear regression models and a climate space based geographically weighted regression

(GWR) model that can better predict SUHI intensity. As the GWR model captures the

variation of influence from different urban factors on SUHI, it considerably outperformed

linear models in predicting SUHI intensity in terms of R2 and other statistical criteria. By

investigating the variation of GWR coefficients against background climate factors, we fur-

ther built a nonlinear regression model that takes into account the sensitivity of SUHI to

regional climate context. The nonlinear model showed comparable performance to that of
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the GWR model and it prevailed against all the linear models. Our work underlines the po-

tential of SUHI reduction through optimising urban morphology, as well as the importance

of integrating future urbanisation and climate change into the implementation of urban heat

mitigation strategies.

Keywords: urban form;, surface urban heat island;, climate context;, geographically

weighted regression

Highlights:

• A Gravitational Urban Morphology (GUM) index that captures the local scale context

sensitivity of SUHI was proposed.

• The GUM index can serve as an effective predictor of SUHI intensity.

• Climate space based GWR model outperformed linear models for SUHI assessment.

• A nonlinear model that captures the regional climate context sensitivity of SUHI per-

forms well.
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Notations

UHI urban heat island

SUHI surface urban heat island

GUM index /D gravitational urban morphology index

GWR geographically weighted regression

LST land surface temperature

OLS ordinary least squares

LCZ local climate zone

LULC land use/land cover

EVI enhanced vegetation index

∆T surface urban heat island intensity, [◦C]

A urban area, [km2]

U∆Wat water surface fraction difference between urban area and boundary area

U∆V eg EVI difference between urban area and boundary area

U∆Ele elevation difference between urban area and boundary area, [m]

BEle average elevation of boundary area, [m]

BWin average summer wind speed of boundary area, [ms−1]

BPre average summer precipitation of boundary area, [mm]

BTmx average summer maximum daily temperature of boundary area, [◦C]

BLat Latitude of the urban centroid



1. Introduction

The urban heat island (UHI) effect, which refers to the phenomenon that urban areas

tend to experience higher temperatures than their rural surroundings, is one of the clearest

examples of anthropogenic climate modification (Oke et al., 2017). The UHI effect has

various impacts on the local environment and human health (Grimm et al., 2008). The most

direct adverse impacts are heat-related health problems (Tan et al., 2010) and increased risk

of heat morbidity and mortality (Gabriel and Endlicher, 2011; Krummenauer et al., 2019)

during hot summer days, as in many cities the UHI effect exposes urban dwellers to extra

heat stress.

There are several types of UHI according to the schemes used to measure them (Oke

et al., 2017). Among them, the surface UHI (SUHI), measured by urban/non-urban radia-

tive temperature differences derived usually from satellite land surface temperature (LST)

data, has attracted considerable interest in recent years due to the advancement of remote

sensing techniques, as well as its association with rapid urbanisation and global warming

which draw increasing attention (Zhou et al., 2019a). The advantages (e.g. spatial/temporal

resolution and coverage, data accessibility) of remote sensing data enable researchers to con-

duct spatially-explicit studies at various spatial and temporal scales (Deilami et al., 2018;

Zhou et al., 2019a).

Case studies on small scales (e.g. raster pixel, block, and district level) usually try to

explore spatial or temporal SUHI variations to examine statistically a wide range of factors

(for example, share of vegetation and impervious surface, building density, etc.) and their



contributions to SUHI (Deilami et al., 2018; Li et al., 2018; Yang et al., 2019). Studies at this

scale often take the LST as proxy of SUHI intensity and mainly use ordinary least squares

(OLS) regression with one or more factors as predictors (Deilami et al., 2018). Recently,

an increasing number of studies on the relationship between local climate zones (LCZs) and

SUHI intensity (Demuzere et al., 2019; Geletič et al., 2019; Ochola et al., 2020) have been

published with resort to the LCZ classification scheme proposed by Stewart and Oke (2012).

Some researchers also try to link SUHI variations across time with the dynamic of land

use/land cover (LULC) (Singh et al., 2017; Sultana and Satyanarayana, 2020).

However, due to fluxes and energy flows between different LULC types, the landscape

heterogeneity also plays an important role (Li et al., 2017; Zhou et al., 2019b) and therefore

the SUHI is context sensitive at the local scale (Song et al., 2014). It was found when taking

the effects of neighbouring elements (e.g. grid cell or landscape patch) into account by using

spatial regression models (Chun and Guldmann, 2018; Yin et al., 2018; Dai et al., 2018;

Galletti et al., 2019; Guo et al., 2020) or geographically weighted regression (GWR) models

(Buyantuyev and Wu, 2010; Li et al., 2010; Su et al., 2012; Szymanowski and Kryza, 2012;

Deilami et al., 2018; Liu et al., 2019; Zhang et al., 2019), higher explanatory or predictive

power can be obtained to model/assess the relationship between SUHI variations and the

contributing factors. This implies that SUHI at the local scale is influenced by the proximity

to and the spatial distribution of nearby warming/cooling factors, and this influence decays

as the distance increases.

With this in mind, one could easily arrive at the presumption that when the city is con-

sidered as a whole, urban morphology (used in the narrow sense, refers mainly to geometric



form) could also have an impact on the city-scale SUHI effect, as urban morphology per

se is the aggregated result of the spatial configuration/placement of the fine-scale urban

elements. Although many studies (Deilami et al., 2018; Zhou et al., 2019a) have compared

SUHI intensities of different cities and attempted to explore the influence of city-level fac-

tors (e.g. urban size and density) (Zhou et al., 2013; Li et al., 2017; Song et al., 2020) on

SUHI, only a few efforts have been addressed regarding the influence of urban morphol-

ogy on SUHI. The reasons may be twofold. On the one hand, cities are complex systems

with high heterogeneity in various aspects, a less pronounced association between the urban

morphology and SUHI intensity is more likely to be obscured by the noise. For example,

“compact city” means denser land utilisation but probably also leads to less traffic emission

(Wang et al., 2015), to which extent the influence from one of these two aspects prevails

the other varies across cities. On the other hand, the difference in biophysical background

may further dim the signal from inter-city statistics as the SUHI effect is also sensitive to

the regional background climate (Peng et al., 2012; Zhao et al., 2014; Zhou et al., 2014; He,

2018; Manoli et al., 2019).

Regardless of the challenges, some previous investigations provided important insights on

this topic. For example, Zhang et al. (2012) analysed the SUHI of 42 northeastern US urban

areas within the same ecological context, and they found a linear relationship between SUHI

intensity and an urban shape indicator calculated as logarithmic urban area/perimeter ra-

tio. In order to reduce the noise from background climate, Liang et al. (2020) studied SUHI

of 150 cities with a relatively uniform climate condition in the Jing-Jin-Ji region of China.

Based on various regression models, urban form indicators like fractal dimension, contiguity,



elongation have been found to have a stronger positive contribution to the summer daytime

SUHI, whereas for SUHI during nights or other seasons, their contributions vary both quan-

titatively and qualitatively. Some studies also explored qualitatively the climate sensitivity

of the relationship between SUHI and urban morphology. For instance, from the statistics

based on the 5,000 largest urban clusters in Europe, Zhou et al. (2017) found that a compact

urban form featured with large box-counting fractal dimension and small anisometry tends

to increase the summer SUHI intensity whilst the influence varies regionally. In a more

recent work, Liu et al. (2021b) examined the relationships between different urban form

metrics and SUHI intensity based on 1288 urban clusters in China and they found these

relationships vary against the climate zones.

These findings advance our understanding of the influence of urban morphology on SUHI

as well as its sensitivity to the climate context. However, the quantitative understanding of

this sensitivity, which is important for fast SUHI assessment across climate regions, is still

lacking. Moreover, urban morphology indicators used in previous studies focus mainly on

2D morphology of the urban clusters or their component elements, while the spatial pattern

of the intra-city heterogeneity in density, which are key to capture the context sensitivity of

SUHI at the local scale, are largely underrepresented.

Recently, based on numerical climate simulations with generated 3D urban structure

data (Li et al., 2021), Li et al. (2020) proposed a 3D urban morphology indicator that

was found to be an effective quantitative indicator linking urban form and canopy UHI

intensity. Although physical processes behind the SHUI effect and the canopy UHI effect

are different (Oke et al., 2017; Peng et al., 2012), the underlying assumption may still apply



in both cases, i.e. individual urban cells exert a warming/cooling effect on each other which

decays with distance. This assumption is consistent with the context sensitivity of SUHI

at the local scale. Therefore, whether a similar indicator also applies for SUHI is worth

an exploration. As in (Li et al., 2020) the urban morphology indicator was calculated

resembling the gravitational force, hereafter we name it Gravitational Urban Morphology

index and GUM index in short.

In this work we extract the 5,000 largest urban clusters in Europe and calculate their

SUHI intensities as well as GUM index similar to Li et al. (2020) and analyse the correla-

tions between both. Further, various regression models are built by taking several city-level

variables as predictors, such as urban size, urban-rural difference in vegetation, and water

surface share. We explore quantitatively the context sensitivity of SUHI to the regional

climate with resort to climate space based GWR model. We explore quantitatively the

background climates governed influences of urban factors on SUHI and illustrate how back-

ground climate factors can be integrated into a nonlinear model that outperforms linear

ones.

2. Data and methods

2.1. Data

The binary urban/non-urban Urban Morphological Zones 2006 (UMZ2006) data-set at

250m resolution from the European Environment Agency (EEA) was used to delineate

the urban/non-urban area. It was created from CORINE Land Cover data of the year

2006 (CLC2006) following the reclassification method as described in (Simon et al., 2010).



UMZ2006 covers 38 European Environmental Agency member states and cooperating coun-

tries except Greece.

The LST data set from the Moderate Resolution Imaging Spectroradiometer (MODIS)

onboard the NASA Aqua platform was used, i.e. the 8-day composite product (MYD11A2,

version 6 Wan et al. (2015)). For this work we only analysed the LST at around 13:30 local

time during summer months (June, July, and August) from the years 2002-2011. The LST

data set was then processed to get multi-annual summer mean LST following the method

used in (Zhou et al., 2017).

Auxiliary data considered in this work include vegetation, background climate, topogra-

phy, water bodies, as well as urban impervious density.

The vegetation information was extracted from MODIS EVI data (MOD13Q1, version 6,

Didan (2015)). We downloaded the 250m 16-day composite product during all summer

months from the years 2002-2011 and calculated the multi-annual average of the summer

EVI.

Regarding the background climate conditions, the multi-annual average of summer pre-

cipitation, summer daily maximum 2m temperature, and summer 10m wind speed were

calculated based on the corresponding monthly values from two data sets. The monthly

precipitation and daily maximum air temperature during summertime from 2002-2011 were

taken from CHELSA (climatologies at high resolution for the Earth’s land surface areas)

climate data set. CHELSA is based on a quasi-mechanistical statistical downscaling global

reanalysis and global circulation model output (Karger et al., 2017) and has a resolution

of 30 arc seconds (∼1km). It is hosted by the Swiss Federal Institute for Forest, Snow



and Landscape Research (WSL) and freely available at https://chelsa-climate.org/. The

monthly 10m wind speed data set comes from the German Weather Service (Deutscher

Wetterdienst, DWD) Climate Data Centre. This data set consists of gridded monthly mean

near-surface (10m) wind speed values (Brinckmann, 2016) for Europe, and it was created by

the project DecReg/MiKlip (Brinckmann et al., 2015) using an interpolation model which

combines observation data and reanalysis data. The data set covers the period of 2001–2010

and has a resolution of 0.044◦ (∼5km). Similar to the precipitation data, only values from

summer months were processed.

Another data source is the Copernicus Land Monitoring Service (CLMS, https://land.

copernicus.eu/) funded by the European Union. From CLMS we downloaded the Imper-

viousness Density 2006 (IMD2006) at 20m resolution, and the European Digital Elevation

Model (EU-DEM, version 1.0) with 25m resolution, as well as the CLC2006 at 100m reso-

lution. We aggregated the IMD2006 and EU-DEM data to a coarser resolution of 250m by

assigning each coarse cell the mean value from the fine cells it covers. The CLC2006 was

first reclassified into binary water/land map according to whether the cells belong to the

level-1 class “Water” (which includes water courses, water bodies, coastal lagoons, estuaries,

sea and ocean, see (Büttner et al., 2012)). The binary map was then resampled to a 250m

resolution with each coarse cell receiving a value of water surface fraction.

To overlay the various quantities, all the processed data sets were reprojected to the

sinusoidal coordinate system as used by the LST data set.

https://chelsa-climate.org/
https://land.copernicus.eu/
https://land.copernicus.eu/


2.2. Methods

2.2.1. SUHI calculation

We follow a similar methodology as Peng et al. (2012) and Zhou et al. (2013, 2017). First

we apply the City Clustering Algorithm (CCA) (Rozenfeld et al., 2008, 2011; Fluschnik et al.,

2016) to the UMZ2006 map, with the parameter l = 250m, to assign all cells which are no

more than 250m apart from each other to the same urban cluster. Then we identify the

5,000 largest urban clusters (in terms of area) and the centroid location of each cluster

(indicated in Fig. 1(h)). For each of the selected urban clusters, a boundary area with

approximately the same size as the urban cluster is created following the method used in

(Zhou et al., 2013). Cells that have a water surface fraction over 50% or belong to other

urban clusters are excluded when creating the boundary area. Some example urban clusters

and the corresponding boundary areas are shown in Fig. 1(a-f). Last we define the SUHI

intensity (◦C) as ∆T = T u− T b, where T u and T b are the average LST of the urban cluster

and of the boundary area, respectively.

2.2.2. Other variables extraction

Analogously, for each urban cluster we calculate the difference between the average value

of water surface fraction, summertime EVI, and elevation of the urban area and the corre-

sponding average value of the boundary area, and denote them as U∆Wat, U∆V eg, U∆Ele (m),

respectively.

Moreover, we calculate the average value (summer time if applicable) of elevation, EVI,

wind speed, precipitation, and maximum temperature within each boundary area and denote



them as background biophysical factors BEle (m), BV eg, BWin (ms−1), BPre (mm) and BTmx

(◦C), respectively. As an important factor controlling the solar radiation, the latitude of the

centre of mass for each urban cluster is also extracted and is denoted as BLat (◦).

2.2.3. Geographically weighted regression model

In addition to ordinary least square (OLS) regression models, we performed a GWR

to explore spatially varying relationships between the SUHI intensity and its explanatory

variables. GWR is a non-parametric model that takes spatial non-stationary influences from

associated factors into account by applying a locally weighted linear regression (WLR, see

Jian et al. (1996)) for each observation with a subset of nearby observations (Fotheringham

et al., 2003), and therefore allows parameters to vary across space. GWR usually takes the

form

yi = θ0(ui, vi) +
n∑
k

θk(ui, vi)xk,i + εi , (1)

where n is the number of independent variables; i denotes the ith observation; (ui, vi) is

the coordinate of the ith location; θ0(ui, vi) is the constant intercept depending on the

coordinate (ui, vi); yi, xk,i, and εi are dependent variables, independent variable and the error

term respectively; and the coefficients θk(ui, vi) are varying conditionals of the observation

locations (Nakaya et al., 2014).

Proximity of geographical positions can, to some extent, represent the similarity of cli-

mate condition, but not always. For example, two cities located in proximity to each

other but on opposite sides of a ridge may largely differ in background climate, espe-

cially in the patterns of precipitation and wind. One of our goals is to investigate the



climate control on the SUHI. Therefore, instead of a common GWR that takes only geo-

graphical location (u, v) as coordinates into account for Eq. (1), in this work we project

the 5,000 cities into a 6-dimension space using their corresponding background biophys-

ical factors, namely BPre, BTmx, BV eg, BWin, BEle, and BLat – forming a kind of cli-

mate space. A similar application of GWR can be found in (Hooker et al., 2018). To

remove the influence of the magnitude of different climate variables, the z-score normal-

isation is applied to each of them. The coordinate of the ith city in the constructed

space will be ~Pi = {z(BPre)i, z(BTmx)i, z(BLat)i, z(BV eg)i, z(BEle)i, z(BWin)i}. This way,

the distance between city i and j within the 6-dimension space can be calculated as

di,j = |
−−→
PiPj| =

√∑6
k=1(Pi,k − Pj,k)2.

For a city at location i, coefficients θk,i and εi are estimated by locally fitting a WLR

that only takes its neighbouring cities within a certain distance L in the constructed climate

space into account. In this work, the weight of city j is calculated using a tricube function,

i.e. wj = (1 − (di,j/L)3)1/3, with di,j ≤ L. The local WLR leads to a set of coefficients

{θ0(~Pi), θ1(~Pi), ..., θn(~Pi), εi } and after application to each of the 5,000 cities we get 5,000

sets of coefficients. The GWR is implemented using the R-package "GWmodel" (Lu et al.,

2014). An optimally fixed band width L is estimated using the leave-one-out cross-validation

method, technical details can be found in Lu et al. (2014).

2.2.4. GUM index calculation

In the work of Li et al. (2020), a GUM index was found to be capable of capturing the

influence of urban form on canopy urban heat island intensity. This index is calculated as



1
N

∑N
j

∑N
i 6=j f(xi)d

−β
ij , where N is the number of cells of the considered urban cluster, dij is

the distance between two urban cells i and j, and f(xi) is the function of the urban metric x

influencing the temperature at site i. This was based on the hypothesis that an urban cell is

affected by the warmth of other urban cells and this effect declines with the distance between

them, also warmer urban cells have stronger effects on its neighbouring cells. Many studies

show that the land surface temperature is highly related to characteristics like impervious

surface fraction (Morabito et al., 2020; Li et al., 2011), building density (Song et al., 2020;

Yin et al., 2018), vegetation fraction (Mathew et al., 2017; Li et al., 2011; Zhou et al.,

2014), etc. Particularly, Li et al. (2018) revealed a linear relationship between land surface

temperature and regionalised impervious surface area. Therefore, in this work we include

impervious surface fraction and calculate our GUM index according to

D =
1

N

N∑
j

N∑
i 6=j

uαi d
−β
ij , (2)

where ui is the impervious surface fraction of urban grid cell i, α and β are key exponent

parameters. We calculate D for each of the 5,000 urban clusters and examine whether it

also has an impact on the SUHI intensity.

3. Results

3.1. Influence of urban size and morphology on SUHI

We find that SUHI intensity ∆T is moderately related to urban area A, see supplementary

Table S1 and Fig. S1. There is roughly a linear relationship between ∆T and logarithmic

A, which is consistent with previous studies (Zhang et al., 2012; Zhou et al., 2017; Li et al.,



2017). This implies that with same amount of urban area increment, a larger city tends to

experience a smaller increase in SUHI intensity. However, this does not mean it is preferable

to have urban expansion concentrated in large cities, as the cost from heat stress is a super-

linear function of temperature and population size (Estrada et al., 2017; Krummenauer et al.,

2019).

Regarding the urban morphology, the relationship between GUM index D and SUHI

intenisty ∆T varies with the exponents α and β. Specifically, when α = 0.2 and β = 2,

D has a high correlation with ∆T , the Pearson correlation coefficient r reaches 0.64 ( see

supplementary Table S1 and Fig. S1 for the correlation and the spreading range of D).

In Fig. 1(a-f) we show six example urban clusters with approximately the same area and

corresponding D values when α = 0.2 and β = 2 are used. It can be seen – when keeping the

urban size constant – compact cities generally tend to have a larger D value. However, it

has to be noted that this does not always hold as the impervious surface density also has an

influence on D. As D is a very complex indicator which involves the spatial configuration of

the urban cells as well as their built-up density, without some preconditions (i.e., same size

or same impervious surface fraction), it is hard to get the conceptual impression whether

one city is more compact than another through comparison of their value D. Generally,

cities with rounder shape and higher impervious density will have larger D value. Fig. 1(g)

shows ∆T against D (with α = 0.2, β = 2) of some example cities with approximately

the same area (15 ± 0.06km2, for other areas sizes, see supplementary Fig. S2). As shown,

∆T is positively related to the D value despite the fluctuation that might be attributed

to the influence from other factors, in particular background climate and water bodies.



This implies that more compact and denser urban structures tend to have higher SUHI

intensities. Moreover, urban heat mitigation strategy through optimising urban morphology

should carefully consider the local scale context sensitivity of SUHI, as this neighbourhood

effect can impact the city scale thermal environment when aggregated.



Figure 1: Some example urban clusters with approximately the same size, their boundary areas,

as well as the corresponding D values and SUHI intensities. Panel (a-f) show the clusters of the

highlighted clusters in panel g, the size of this six clusters range from 14.94-15.06 km2. Panel (g) shows the

SUHI intensity against D value of 41 urban clusters with approximately the same size, where the points in

colours represent the clusters in Panel (a-f). Panel (h) shows the spatial locations of all 5,000 clusters with

the clusters in panel (a-f) highlighted in colours.

Similar to the approach used by Li et al. (2020), we regress ∆T with A and D as:

∆T = a1 lnA+ a2D + a3 with D =
1

N

N∑
j

N∑
i 6=j

uαi d
−β
ij , (3)



where a1, a2, a3 are parameters. Fitting Eq. (3) using the data of all 5,000 cities with different

combinations of α and β, we obtain varying R2 (see Fig. 2).

We find α = 0.2, β = 2 leads to best results in terms of R2 (which is 0.40). These values

differ from the ones found by Li et al. (2020) for canopy UHI intensity (α = 0.5, β = 1.5).

As canopy and surface UHI involve different processes, we cannot directly compare them,

but it is still worth thinking about possible implications for the conceptualisation. A larger

β value implies that the neighbourhood influence of the LST decays faster and thus has a

shorter range than the canopy layer temperature. It is plausible that air temperature has a

smoother spatial gradient than the LST as the former is more easily influenced by energy

and air flow. This indicates that at local scale SUHI is less context sensitive than CUHI.

For SUHI, the influence from nearby urban cells decays very fast with increasing distance.

Thus, the neighbourhood influence can only reach a rather small range.

Figure 2: The R2 of the OLS fitting on Eq. (3) as a function of α and β values. (a) 2D visualisation,

deeper red for higher R2. (b) R2 profile when β = 2. (c) R2 profile when α = 0.2.

The coefficients from the fitting for Eq. (3) with α = 0.2, β = 2 are also shown in Table 1,



all of them are above 95% significance level. It is also worth mentioning that although D

and lnA are not independent, a variance inflation factor of 2.21 suggests an insignificant

impact of the co-linearity between lnA and D on the reliability of the regression, as usually

a value > 10 is considered severe (Neter et al., 1996).

To avoid ambiguity, the GUM index D was calculated with α = 0.2, β = 2 for the

remainder of this paper.

3.2. Influence of additional urban factors

Figure 3: ∆T against additional urban factors. (a) U∆V eg, urban-boundary difference in EVI, (b)

U∆Ele, urban-boundary difference in elevation, and (c) U∆Wat, urban-boundary difference in water surface

fraction. On the top of each panel Pearson Correlation (r) and p value are listed.

Although we obtain a slightly higher R2 when using Eq. (3) as regression with less pa-

rameters compared to the multivariate linear regression in (Zhou et al., 2017), there is still a

large part of variance of ∆T that is not explained by lnA and D (see supplementary Fig. S5

and Fig. S3). This is due to the influences from many other factors. As reported in vari-

ous studies, water bodies (Zhou et al., 2014; Yin et al., 2018; Wang et al., 2019), vegetation



(Zhou et al., 2011, 2014; Yu et al., 2018), and altitude (Mathew et al., 2017; Guo et al., 2020)

are also associated with SUHI intensity. This is further confirmed by our results, as we can

see in Fig. 3, there is a statistically significant correlation between ∆T and urban-boundary

difference in EVI (U∆V eg), in water surface fraction (U∆Wat), and in elevation (U∆Ele). In

general, cities with less vegetation, lower altitude, and less water surface than their sur-

roundings, tend to experience stronger SUHI intensities. This is consistent with previous

studies on the contributions of green and blue infrastructure to urban heat mitigation. Our

results particularly underpins the effect of urban greening on SUHI reduction. Including

these factors in Eq. (3) and using the regression

∆T = b1 lnA+ b2D + b3U∆Wat + b4U∆V eg + b5U∆Ele + b6 , (4)

we obtain coefficients detailed in Table 1, where all coefficients are above 99% significance

level. Including U∆Wat, U∆V eg, and U∆Ele in the regression model, Eq. (4) achieved a clear

improvement of R2 and of root mean square error (RMSE) in contrast to Eq. (3).

3.3. Sensitivity of SUHI to regional climate context

Besides the intrinsic urban factors that denote the urban-boundary differences due to

land surface modification from urbanisation, SUHI has been reported to be associated also

with various background biophysical factors such as precipitation, temperature, humidity,

wind speed, latitude, and altitude, among which precipitation (Peng et al., 2012; Zhao et al.,

2014; Manoli et al., 2019), and temperature (Peng et al., 2012; Zhou et al., 2016; Manoli

et al., 2019) seem to be most documented. Therefore, SUHI is also context sensitive to

regional climate background.



This regional scale context sensitivity can be seen in Fig. 4. When plotting ∆T against

each of the 6 background factors, ∆T has a clear correlation with BPre and with BTmax,

which is consistent with previous studies (Peng et al., 2012; Zhou et al., 2014). The positive

relationship between ∆T and Bveg can be explained by the tendency of boundary areas

with higher EVI to be generally cooler due to stronger evapotranspiration. There is a

positive correlation between ∆T and BLat, which is consistent with the finding in (Li et al.,

2017). However, beyond a certain latitude, ∆T seems to decrease when latitude increases.

Our results do not show statistically significant correlation between ∆T and BEle or BWin,

which might be due to the correlation being too weak to stand out from noises caused

by other factors. The correlation between the residuals from the regression of Eq. (4)

and the six background biophysical factors (as shown in supplementary Fig. S4) indicates

that the explanatory power of the regression model could be improved by including these

background factors. In principal, one could just extend the regression by including them in

the multivariate linear model. However, those background factors are likely to interact with

urban factors and the interactions are not necessarily linear (Li et al., 2019; Manoli et al.,

2019). Moreover, It is plausible that the dependence of SUHI on climate context results

from the role of background climate in controlling how SUHI respond to urban factors.

3.4. Geographically Weighted Regression

We are interested in exploring how the influence of urban factors on the SUHI intensity

varies regionally across the climate context. To this end, we apply the GWR

∆Ti = θ0(~Pi) +
5∑
k

θk(~Pi)xk,i + εi , (5)



Figure 4: SUHI intensity ∆T against background biophysical factors: (a) summer precipitation

BPre. (b) summer mean maximum temperature BTmx. (c) latitude BLat. (d) summer EVI of boundary

area Bveg. (e) elevation BEle. (f) summer 10m wind speed BWin. r and p on the top of each panel indicate

the Pearson correlation coefficient and the significant level of the plotted variables.

where θ0(~Pi) is the intercept of the regression for the ith city, xk,i is the kth independent

variable as that used in Eq. (4) of the ith city.

Fitting Eq. (5) leads to a set of coefficients {θ0,i, θ1,i, ..., θ5,i, εi } for each of the 5,000

cities and thus we get 5,000 sets of coefficients. We notice that Li et al. (2017) applied GWR

on 5,000 urban clusters across continental US based on their geographical location and then

investigated the spatial variation of the relationship between SUHI and urban area. In our



work, the GWR is applied based on a constructed 6-dimension biophysical space in order

to study the variation of the relationship between SUHI and various urban factors against

each background biophysical factor.

The statistics of GWR results can be found in Table 1. Compared to the regression

of Eq. (3) and Eq. (4), it shows apparent improvement in R2 and RMSE. This indicates

that the relationship between SUHI and urban factors is not stationary across the climate

context. The density plot of residuals from all the three regression models are also compared

in supplementary Fig. S5.

Table 1: Comparison of OLS fitting and GWR fitting. Numbers within the bracket are the standard

deviations of corresponding values. AICc is calculated following Zhou et al. (2016).

model Eq. (3) Eq. (4) GWR

coef. lnA 5.13× 10−2 0.17 5.44× 10−2(0.10)

coef. D 1.31× 10−2 6.15× 10−3 1.09× 10−2(6.05× 10−3)

coef. U∆Wat – -6.00 -4.90 (2.03)

coef. U∆V eg – -6.53 -4.27 (3.24)

coef. U∆Ele – −3.90× 10−3 −5.69× 10−3(2.21× 10−3)

intercept -0.90 -0.79 -0.86 (0.21)

R2 0.40 0.55 0.74

RMSE 0.63 0.54 0.41

AICc 1161.56 395.67 -979.27

We also plot the residuals of the GWR model against the background biophysical factors



as in Fig. 5. Compared to the supplementary Fig. S4 where residuals from the linear regres-

sion of Eq. (4) are plotted against the background biophysical factors, we can clearly see

that the residuals from the GWR model are much less correlated with background factors.

This implies that the variation of coefficients of the GWR model to a large extent resolves

the sensitivity of SUHI to regional climate context and the background factors impact SUHI

through affecting the way that SUHI responds to urban factors. This varying relationships

also suggest that the cost-efficiency of different urban heat mitigation strategies is highly

dependent on climate context. Special caution should be exercised when extending lessons

learned from one city to another, especially when they share less in common in background

climate.

3.5. Non-stationary influences of urban factors governed by background climates

The GWR model gives flexibility to the coefficients of the regression. Thus it takes the

non-stationary associations of different factors with SUHI into consideration. As this non-

stationarity is also believed to be modulated by climate context, we apply the GWR based

on a constructed climate space. In this way, the local regression is applied on the clusters of

cities with most similar background climate, so that the influence from background factors is

minimised and the statistical contribution of each urban factor can be examined regionally.

In the supplementary Table S2 we show the Pearson correlation coefficients between the

GWR coefficients and the background biophysical factors. Some background factors, such as

precipitation BPre, air temperature BTmx, latitude BLat, and vegetation condition BV eg, have

a clear correlation with GWR coefficients, where the highest correlation coefficient reaches



Figure 5: residuals from GWR model against background factors: (a) summer precipitation BPre.

(b) summer mean maximum temperature BTmx. (c) latitude BLat. (d) summer EVI of boundary area Bveg.

(e) elevation BEle. (f) summer 10m wind speed BWin.

0.84, indicating the strong influence of the background factors on the variation of the GWR

coefficients. This is not surprising as in previous studies it has been found that precipitation

and temperature show a strong control on daytime SUHI (Zhao et al., 2014; Zhou et al.,

2016; Manoli et al., 2019). We can also see that some coefficients show a strong correlation

with more than one background factor. However, without comprehensively studying the

underlying dynamics it is difficult to prioritise one background factor over another.

We plot each GWR coefficient against its highest correlated background factor in Fig. 6.



Figure 6: Relationship between some coefficients from GWR and background climate factors.

The dashed lines are a guide to the eye from LOWESS (Locally Weighted Scatterplot Smoothing) regression.

Despite some noise, all the GWR coefficients except that of lnA generally maintain the sign

while varying in quantity. This implies that strategies for SUHI reduction through changing

one of the urban factors might show different efficiency under different biophysical context –

the consequence seems to be consistent qualitatively. Our results indicate that when other

urban factors remain constant, urban sprawl tends to cause smaller SUHI increment for cities

in northern European, or more specifically, in colder, wetter, windier and more vegetated

areas (see supplementary Fig. S6). Likewise, with similar preconditions we can infer that a

colder, wetter, windier and more vegetated context would favour the contribution of urban



morphology D to SUHI, but weaken the contribution of water surface share difference U∆Wat

and EVI difference U∆V eg (see supplementary Fig. S7-S9). However, a general trend on the

variation of coefficient of elevation difference U∆Ele is more complex and can hardly be drawn

qualitatively (supplementary Fig. S10).

3.6. Nonlinear model considering climate context sensitivity of SUHI

In principle, all the factors used in this study can be fed into a multiple linear regression

model of the form

∆T =c1 lnA+ c2D + c3U∆Wat + c4U∆V eg + c5U∆Ele+

c6BPre + c7BTmx + c8BV eg + c9BEle + c10BLat + c11 ,

(6)

and with more variables we could obtain a RMSE of 0.46, which is better than that of

fitting Eq. (4), but still larger than the RMSE from the GWR model. As there are complex

dynamic processes controlling the SUHI, the factors, both from urban metrics and from

background biophysical factors, tend to interact with each other non-linearly. A linear

regression model certainly cannot capture the interacting effect as it is just a combination

of the linear approximation for each factor.

However, although regression with the GWR model has a higher accuracy, it does not

necessarily mean the GWRmodel has better practical usability. The parameter estimation of

GWR comes from local fitting with location specific information, which limits the generality

of the model and a better understanding cannot be obtained without further exploration.

Instead, by examining the linkages between the variation of the GWR coefficients of each

urban factor and background factors, the effect of interactions between the background



Figure 7: GWR coefficients as a function of background biophysical factors. The solid line is the

fitted curve as expressed on top of each panel.

factors and urban factors can be quantitatively studied. This could help to formulate a

more general regression model to estimate the SUHI intensity. For example, in Fig. 7(a),

after having a careful look at the relationship between the GWR coefficients of D and the

latitude BLat, and considering that the total solar irradiance should be a trigonometric

function of the latitude, we could fit the coefficient of D with latitude BLat in the form of

e1 sin (x+ e2) + e3. Similarly, for the coefficient of U∆Wat and the coefficient of U∆V eg, we

find they can be roughly expressed as a linear function of BTmx. With this knowledge, we

extend the global linear regression of Eq. (4) by replacing the coefficients of D, U∆Wat and

U∆V eg with functions of the above mentioned climate factors

∆T =d1 lnA+ [d2 sin (BLat + d3) + d4]D+

d5BTmxU∆Wat + (d6BTmx + d7)U∆V eg + d8U∆Ele + d9,

(7)

and we obtain a RMSE of 0.44 from fitting Eq. (7), which is better than the fitting with all

considered factors and very close to the RMSE from the GWR model.

In supplementary Fig. S5, we compare all the regression models mentioned in this work in



terms of their residuals, RMSE, and AICc. It can be seen that the GWR model outperforms

all other models, which is followed by the nonlinear regression of Eq. (7). Particularly, if

we compare regression of Eq. (7) with that of Eq. (6), a smaller RMSE is achieved with

fewer parameters when some interactions between the factors are taken into account. This

shows that the GWR model can help to find a better SUHI prediction model as it enables

us to explore the interactions between some factors. Thus, the model based on Eq. (7) is

preferable as a tool for SUHI prediction and may have even more implications for SUHI

assessment under the scenarios of future urbanisation and climate change, as the model uses

both urban factors and background biophysical factors as predictors for SUHI intensity.

It has to be noted that the nonlinear model in the form of Eq. (7) may not be the optimal

one as different background factors can be introduced with functions taking different forms

(see Supplementary Fig. S6-S10). Rather, we illustrate here how the GWR model can help

to obtain a better model that captures the context sensitivity of SUHI to regional climate.

4. Discussion

4.1. Urban morphology and SUHI

Taking the similar form as the one proposed in (Li et al., 2020) which was used to

link canopy UHI intensity to urban morphology, the GUM index in this work turns out

to be also an effective indicator to capture the relationship between SUHI intensity and

urban morphology. Our results agree with previous studies on the contribution both of

2D urban compactness (Zhang et al., 2012; Zhou et al., 2017) and of the urban density

(Zhang et al., 2012; Li et al., 2018; Song et al., 2020) to SUHI intensity. Compared to



various metrics for quantifying 2D urban morphology in previous studies, our approach

underlines the importance of looking at cities from a 3D perspective, as 2D urban morphology

neglects the influences from urban development within already urbanised areas (i.e., urban

densification). The GUM index combines the 2D geometry of the urban clusters and the

spatial heterogeneity of the impervious density inside, where the latter is key to capture the

local scale context sensitivity of SUHI and could affect the city scale SUHI when aggregated.

It can serve as an effective predictor for SUHI intensity assessment in view of urbanisation

which usually involves both densification and sprawl.

Also similar as in (Li et al., 2020), generally the GUM index indicates that cities with

higher compactness and density tend to have stronger SUHI. However, specific implications

regarding the influence of urban morphology on SUHI intensity could only be interpreted

with some preconditions. For example, assuming the urban area A remains unchanged and

the impervious surface fraction u is homogeneous within the urban cluster, the GUM index

D degrades to a indicator that measures the compactness of the 2D urban morphology.

Under this circumstance, it implies that from a 2D perspective cities with rounder shape

will have larger SUHI intensity.

In principal, the weight function used in calculating the GUM index D should not be

limited to a function of only urban impervious surface fraction u. Other indices like urban

canyon geometry, building density, water surface fraction, vegetation fraction can also mod-

ulate the LST at local scale (Zhang et al., 2012; Mathew et al., 2017; Song et al., 2020; Liu

et al., 2021a). Therefore, a more complex indicator that considers the heterogeneous config-

uration of and the interaction between these indices within the urban cluster probably can



carry more prediction power on the resulted SUHI intensity. However, this requires much

more effort and a more comprehensive understanding of the underlying biophysical processes

(Manoli et al., 2019) through which the considered factors influence the LST. Future work

in this direction is needed.

4.2. Drivers of SUHI

While it is easy to infer the statistical linkages between SUHI and related factors, reveal-

ing the causality is a very different challenge, especially given the fact that many natural and

socioeconomic factors found to be associated with SUHI are correlated among themselves.

Therefore, efforts to identify the driving factors as well as their corresponding contribution

to SUHI might lead to discrepant and sometimes contradicting conclusions. This is either

due to the combination of factors chosen or due to the studied samples that are not suitable

for factor separating.

For example, although the association between SUHI and urban area has been examined

by studies at different scales (Peng et al., 2012; Zhou et al., 2017; Li et al., 2017), community

consensus over the understanding of this statistical correlation still lacks. Peng et al. (2012)

find no obvious effect of urban size on the SUHI for 419 global big cities but significant

positive correlation exists for 56 European cities, they surmise that the effect of urban size

at the global scale might be masked by the differences in background climate or economic

development. Zhou et al. (2017) take a logarithmic function to capture the relationship

between SUHI and urban size, meanwhile they also illustrate the suitability of a log-logistic

function as an alternative. Li et al. (2017) point out that although the log-linear relationship



between SUHI and urban area exists across the continental US with local variation attributed

to contextual biome, urban area is only a useful surrogate of other factors determining SUHI

instead of being a major direct driving factor. This is plausible especially considering the

fact that urban area is strongly correlated with population size, infrastructure size, energy

consumption, and many other city-level socioeconomic metrics via well documented urban

scaling laws (Gudipudi et al., 2019).

For other factors, attempts to quantify their contribution as a driving factor of UHI face

similar problems as when studying urban area as driving factor. Thus, without a general

understanding, results from one region carry little application capability for another region,

or at least, it is risky to extrapolate the implication from one study beyond space and

time. Therefore, causal attribution requires more than statistical analyses between SUHI

and the potential driving factors. A combination of a statistical with a proper analytical

attribution model (Li et al., 2019; Chen et al., 2020) based on energy balance could help to

advance our understanding of the SUHI and thus guide the inference of causality between

SUHI and related factors. For instance, in the work by Manoli et al. (2019), various urban

characteristics and aerodynamic properties are expressed using urban population size with

resort to the urban scaling law and a coarse-grained model has been developed to foster the

general understanding of SUHI and the model has been shown capable of explaining the

seasonal SUHI hysteresis (Zhou et al., 2013; Manoli et al., 2020).

Partitioning the contribution from different factors to the SUHI is beyond the scope

of this work. With the observed results, we could only draw the implication that in gen-

eral, larger, more compact cities with less water surface, less vegetation and lower than



surrounding area altitude tend to experience a stronger SUHI. When taking these factors

as predictors, the regression model works quite well. With the help of the GWR model, we

are also able to see how the influence from each urban factor vary across background bio-

physical space. Generally, cities in Europe with colder, wetter, windier and more vegetated

background tend to experience stronger SUHI increment due to increased compactness, but

less SUHI reduction due to increased water surface and vegetation. Moreover, with the

help of GWR model, we are able to build a more general nonlinear model that can take

the context sensitivity of SUHI at both local and regional scale. This model could serve as

useful quantitative tool for SUHI intensity assessment with different urbanisation scenarios

and climate change scenarios as input.

4.3. Possible explanation of outliers

In addition to the factors considered in this study, many others like building density,

albedo, humidity, wind direction, water proximity also play a role in the formation of SUHI

(Peng et al., 2012; Oke et al., 2017), and we assume they can be neglected. Although the

urban-boundary differences in water surface fraction and in elevation are considered in the

regression model, they cannot fully capture the influence of water proximity and topography

on SUHI.

In the supplementary text, by further analysing the cities with large errors (|ε| > 1) of

the GWR regression, we examine qualitatively how water proximity affect SUHI intensity of

a city in some cases. Specifically, the proximity to nearby large water body and particularly,

whether urban area is closer to water body than boundary area, can strongly influence their



difference in the received cooling effect ( see Fig. S13). However, a proper indicator is in need

to quantitatively capture this difference. Based on fine Landsat LST image, Wang et al.

(2019) proposed a gravitational water index that measures the cooling effect from nearby

water cells received by grid cell i as GWIi =
∑

dij<R

Aj
dγij

, where Aj is the water area in cell j.

This index considers the influence from other water surface within a certain distance R for

each grid cell and the influence decays as a power-law function of the distance to the water

surface. The gravitational water index was found to be able to explain the LST variation

at different grid scales. Probably a similar index can be developed for quantifying city-scale

influence from nearby water surfaces and it may be an effective predictor of SUHI intensity.

However, as two major parameters of the gravitational water index, the exponent γ which

defines how stark the cooling effect decays and the distance threshold R up to which the

cooling effect can reach, are very likely to vary even within one city (Du et al., 2016), not

to mention for whole Europe. Therefore, it is beyond our scope to verify such an index or

its variant.

Moreover, we also observe some cities with a larger positive prediction error which are

situated in a valley like in Fig. S12(b-c). This might imply that topography also plays a role

by influencing the heat dissipation. Although the GWR model already showed that cities

with larger elevation differences between urban and boundary area tend to have stronger

SUHI, the topography characteristics as in Fig. S12(b-c) may not be simply quantified by

elevation differences. Future effort for proper indicators that consider the spatial pattern of

the topography can help with a better SUHI intensity estimation model.



5. Conclusion

In this study we investigate the summer daytime SUHI intensity of the 5,000 largest

urban clusters in Europe and demonstrate the capability of the proposed GUM index as an

effective predictor of SUHI intensity. The GUM index is designed to capture the context

sensitivity of SUHI to local neighbourhood effect and it quantifies the urban structure from

a 3D perspective. The regression model can be improved when taking other urban factors

like urban-boundary difference in vegetation, in water surface fraction and in elevation into

account. The regression models show that generally larger, denser, and more compact cities

tend to experience stronger SUHI, whereas cities with larger urban-boundary difference in

elevation, vegetation cover and water surface cover tend to have lower SUHI intensity.

To explore the sensitivity of SUHI to regional climate context, we then project all the

cities in a 6-dimension climate space constructed using six background biophysical factors.

The GWR model is applied based on the constructed climate space to explore how the

coefficients vary against different background biophysical factors. The GWR model shows

further considerable improvement in terms of R2 and RMSE compared to multivariate linear

models. By enabling the variation of coefficients, the control from the background climate

on the non-stationary contribution of different urban factors to SUHI can be captured by

the GWR model. As influence of different urban factors on SUHI is context sensitive to

regional climate, extrapolating knowledge from one area to another should be done with

great caution, especially between areas with disparate climates.

Investigating how the GWR coefficients vary against different background biophysical



factors, we demonstrate how to replace the coefficients a in multivariate linear model with

the background factors and propose a nonlinear model that can capture some of the inter-

action between the urban factors and the background biophysical factors. It carries fewer

parameters but outperforms multivariate linear models. The nonlinear model considers the

context sensitivity of SUHI at both local and regional scale, it is a more general model that

can be used for SUHI assessment under different urbanisation and climate change scenarios.

Our results could provide useful information regarding urban heat reduction strategies,

especially considering the ongoing rapid global urbanisation and climate change. A better

urban development plan that takes the influence of urban morphology into account could

benefit the urban thermal environment. Moreover, measures for urban heat mitigation

should also consider the predicted climate change. As the climate context of a city may

change in the future, heat mitigation strategies that are effective for a short term might

show little efficiency for a long term.
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Appendix A. Supplementary information

Appendix A.1. Influence of water body proximity on SUHI

To examine influence of water proximity on SUHI, we plot the spatial distribution of the

residuals from the GWR model as in Fig. S12. Most of the cities with large errors (|ε| > 1)

of the GWR regression are located at the coast of the sea or a big lake. This might be due

to the urban-boundary difference in received cooling effect of the breeze from large water

bodies. This difference could be influenced by wind direction and the proximity to water

bodies. The influence from wind speed and urban-boundary difference in water surface share

can be captured by the GWR model, so we assume the cooling effect from nearby water

bodies not considered in the regression model can explain large predicting errors, as the

cooling effect of water bodies has been found to decay along the distance (Su et al., 2012;

Du et al., 2016; Wang et al., 2019).

As an attempt to quantify the difference in water body proximity between urban area and

boundary area, for each city we calculate the ratio of neighbouring water cells for both urban

area and boundary area (namely the number of water cells adjacent to urban cells divided

by the number of urban cells, and the number of water cells adjacent to boundary area cells

divided by the number of boundary area cells, respectively) and take the difference in the

ratios as an indicator. From the supplementary Fig. S13 we can see that the majority of the

cities with large negative prediction errors (∆T −∆Tpredicted < −1◦C) have a larger ratio of

neighbouring water cells for the boundary area than for the urban area and a majority of

the cities with large positive prediction errors (∆T −∆Tpredicted > 1◦C) have a larger ratio



of neighbouring water cells of the urban area than of the boundary area. However, Fig. S13

also shows that a large difference in ratio of neighbouring water cells does not necessarily

lead to a large prediction error. This means that a better indicator is needed to quantify

the influence of water proximity on SUHI.

We explore the influence of water bodies rather qualitatively. In Fig. S12(d-i) we show the

maps of some example urban clusters as well as their boundary areas. In the panels (d) and

(e) the GWR prediction error is larger than 1 ◦C, which means the SUHI intensity is larger

than the GWR model predicted. It might be due to their boundary areas which are relatively

close to water compared to the urban clusters. For example, in panels (f)-(i) the predicted

SUHI intensity is much larger than observed, as the GWR prediction error is always smaller

than -1 degree. A possible reason is that urban clusters are much closer to water bodies

than the corresponding boundary area, thus the urban clusters are exposed to more cooling.

We find that similar to the examples in Fig. S12(f)-(i), most of the cities spreading in a strip

shape along the coast of the sea or a lake, tend to have a larger negative prediction error.

Whereas only a few exceptions exist, which might be because the influence from topography

or the summer prevailing wind direction that does not favour the penetration of cool breeze

into urban area.



Appendix A.2. Supplementary figures and tables

Figure S1: Pearson correlation coefficient between (a) ∆T and lnA, (b) ∆T and D

Figure S2: Pearson correlation coefficient between the ∆T and D of the sample set selected by a

sliding window, plotted against the average area A of the sample set. The sample sets are selected

using a window size (number of cities within each sample set) of 50 (panel a) and 200 (panel b) according

to their ranking in area, so that cities within one sample set have a similar value of area A, the smaller the

window size, the closer the area values.



Figure S3: Residuals from regression of Eq. (3) against U∆Wat, U∆V eg and U∆Ele.

Figure S4: Residuals from fitting of Eq. (4) against background biophysical factors. (a) summer

precipitation BPre. (b) summer mean maximum temperature BTmx. (c) latitude BLat. (d) summer EVI of

boundary area Bveg. (e) elevation BEle. (f) summer 10m wind speed BWin.



Figure S5: Comparison of residuals from fitting of Eq. (3), Eq. (4), GWR, Eq. (6), Eq. (7).



Figure S6: Coefficient of lnA from GWR against the background biophysical factors.



Figure S7: Coefficient of D from GWR against the background biophysical factors.



Figure S8: Coefficient of U∆Wat from GWR against the background biophysical factors.



Figure S9: Coefficient of U∆V eg from GWR against the background biophysical factors.



Figure S10: Coefficient of U∆Ele from GWR against the background biophysical factors.



Figure S11: Intercept from GWR against the background biophysical factors.



Figure S12: Examples with large residuals (observed ∆T - model predicted ∆T ) of the GWR

model. (a) the spatial distribution of the residuals overlapping on the elevation map. (b-e) examples of

cities with very large positive residual (ε). (f-i) examples of cities with very large negative residual.



Figure S13: ∆T plotted against the water-cell-neighbour ratio difference between urban area

and boundary area. The water-cell-neighbour ratio is calculated as number of neighbouring water body

cells of a cluster divided by the number of cells of this area. For each city the water-cell-neighbour ratio is

calculated for the urban cluster and its boundary area respectively, and then the difference between them

is calculated (ratio of urban cluster minus ratio of boundary area). Points highlighted in red are the ones

with residual from GWR larger than 1◦C, which means they have much larger ∆T than the GWR model

predicted. While the ones in green have residual smaller than -1◦C.
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Table S2: Pearson correlation coefficient between the GWR coefficients and the background

biophysical factors.

BPre BTmx BLat BV eg BEle BWin

Intercept -0.61 0.64 -0.59 -0.71 0.43 -0.21

Coef. D 0.74 -0.84 0.78 0.80 -0.33 0.32

Coef. lnA -0.48 0.84 -0.74 -0.57 0.41 -0.64

Coef. U∆Wat 0.49 -0.66 0.66 0.49 -0.04 0.15

Coef. U∆V eg 0.76 -0.83 0.77 0.80 -0.31 0.29

Coef. U∆Ele -0.56 0.49 -0.53 -0.54 -0.09 0.02
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