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Abstract In the past decades, human activities caused global Earth system changes, e.g., climate change or
biodiversity loss. Simultaneously, these associated impacts have increased environmental awareness within
societies across the globe, thereby leading to dynamical feedbacks between the social and natural Earth
system. Contemporary modelling attempts of Earth system dynamics rarely incorporate such co-evolutions
and interactions are mostly studied unidirectionally through direct or remembered past impacts. Acknowl-
edging that societies have the additional capability for foresight, this work proposes a conceptual feedback
model of socio-ecological co-evolution with the specific construct of anticipation acting as a mediator
between the social and natural system. Our model reproduces results from previous sociological threshold
models with bistability if one assumes a static environment. Once the environment changes in response
to societal behaviour, the system instead converges towards a globally stable, but not necessarily desired,
attractor. Ultimately, we show that anticipation of future ecological states then leads to metastability of
the system where desired states can persist for a long time. We thereby demonstrate that foresight and
anticipation form an important mechanism which, once its time horizon becomes large enough, fosters
social tipping towards behaviour that can stabilise the environment and prevents potential socio-ecological
collapse.

1 Introduction

In the last decades, humanities’ impacts on the environ-
ment became increasingly more global in nature, more
rapid, extensive, and also threatening for the social and
environmental systems themselves [1–3]. Scientists refer
to this geological era as the Anthropocene due to the
impact humanity has and has had on the Earth system
[1,3]. In the Anthropocene, global challenges like cli-
mate change and resource scarcity need to be addressed
and interventions are required to build a sustainable
society which is able to overcome these challenges [4].

To improve the understanding of Earth system
dynamics in the Anthropocene, it is crucial to model
both the social and the ecological systems as coupled
together due to the interconnections and bidirectional
feedback processes between humanity and the environ-
ment [5–11], giving rise to the novel field of World-
Earth modelling [10]. Examples of such models include
network models of individual resource use and social
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adaptation [12,13] combined with effects of governance
and taxation [14]. Other models investigate land use
and social learning [15] or land use and management
[16]. There are also models which incorporate not only
a social and ecological system but additionally include
an economic branch [17].

One important feature of the World-Earth system
is that of tipping elements. Tipping elements change
rapidly and qualitatively after surpassing a critical
threshold, the so-called tipping point [2]. In the past,
many natural tipping elements, like the Greenland-ice
sheet which can either persist or melt-off completely,
due to the melt-elevation feedback, or the Amazon,
which does either exist in today’s rainforest state or
transition into a Savannah-like state, have been identi-
fied and their risk of tipping even within the 2 ◦C target
of the Paris agreement has been investigated [2,18].

On the other hand, social tipping and its poten-
tial to transform societies, so that the aforementioned
(unwanted) natural tipping may be prevented came into
research focus recently [19–22]. Social tipping can for
example be observed when a determined minority grows
larger than a critical mass and then becomes able to

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00011-5&domain=pdf
https://orcid.org/0000-0002-9459-7586
https://orcid.org/0000-0002-5926-4276
mailto:paul-manuel.mueller@charite.de


Eur. Phys. J. Spec. Top.

overturn the behaviour or conventions of the major-
ity [23,24]. Granovetter’s threshold model is an early
model formulating and explaining this phenomenon on
the example of riots [25]. For the binary decision of not
participating or participating in a riot, it is assumed
that every individual needs to observe a certain percent-
age of the population participating in the riot before
doing so themselves. This percentage is called their
(population-pertaining) threshold. From the distribu-
tion of the thresholds, one could then calculate the
equilibrium number of participants in the riot. How-
ever, real-world threshold distributions are hard to eval-
uate and reasonable guesses for the distributions lead
to everyone or no-one participating in the riot [22]. Two
possible extensions to tackle these issues are the intro-
duction of determined minorities and the explanation of
an individual’s apparent population-pertaining thresh-
old in terms of its position in the social network and
a uniform neighbour-pertaining threshold [22,26]. This
latter type of threshold determines what percentage of
a person’s acquaintances need to participate for the
person to participate itself. The wide distribution of
people’s population-pertaining thresholds then arises,
because an emerging cascade of activity reaches differ-
ent locations in the network at different stages of the
riot.

While there is already quite a consolidated under-
standing of the dynamics within single tipping ele-
ments [27,28], especially from the natural realm [29,30],
it remains an important task of ongoing research to
study interactions between different elements, specifi-
cally across the climate and the social system [9,31],
since exemplary studies have shown that such interac-
tions can give rise to substantial changes of such sys-
tems on the macro-scale [32,33]. Recent work has inves-
tigated also the interaction of tipping elements in natu-
ral [34–38], social [19], socio-economic [39], or socio-
ecological systems [40]. However, most of the afore-
mentioned studies have either studied tipping elements
using identical prototypical normal forms for each ele-
ment [35–38,40] or by focussing on cascading effects and
interactions within either only natural or social subsys-
tems [19,34–38] and thus without explicitly accounting
for their potential cross-system interactions.

To bridge this gap, the present work investigates
potentially arising dynamics of coupled tipping ele-
ments across the natural and social system and pro-
poses a conceptual, low-dimensional model consisting of
a stylised environment being described by one macro-
scopic variable which we call the pollution and a social
network of individuals which change their behaviour,
i.e., either their contribution to the pollution or their
active decision to not contribute to it, according to
change probability rates based on three threshold pro-
cesses:

1. Direct environmental impacts like droughts, heat-
waves, or air pollution can threaten human society
[41–43]. An adaptation to and mitigation of these

impacts is necessary in a changing Earth system
[44].

2. Social contagion which is recognised as the spread
of behavioural patterns among many individuals in
an interacting society [45], e.g., social movements
[46–48] or the spread of social norms [49].

3. Anticipated environmental impacts are rarely dis-
cussed in World-Earth models where social system’s
are mostly coupled to the environment through
precedent or contemporary impacts. However, giv-
ing societies the capability of anticipation and fore-
sight might alter the social behavioural patterns sig-
nificantly. For example, the threat of global climate
changing to the worse, like in a “Hothouse Earth”
scenario [50], could spark and strengthen climate
movements with the goal to prevent consequential
environmental impacts [51]. Especially, information
and the anticipatory time horizon up to which an
individual projects such impacts can have signifi-
cant influence on the behaviour of individuals and
the macroscopic dynamics [11,52].

In particular, we incorporate the social system via
an agent-based model (ABM) similar to Ref. [22],
since ABMs have been proven as a promising tool
to model social behaviour and decision-making [53–
55]. In ABMs, individuals, called agents, adjust their
behaviour according to certain deterministic or stochas-
tic rules after assessing their individual situation [54].
One of the strengths of ABMs lies in the microscopic
details which arise from the simulation of individuals
and can induce emergent macroscopic phenomena [56].
Within ABMs, non-linear features, such as local het-
erogeneous structures, can be observed and analysed to
help understanding the impact of disturbances or causes
of unexpected outcomes [7]. However, ABMs come with
significant computational costs and are hard to analyse
formally. Therefore, we also apply a mean-field approx-
imation of the microscopic behaviour of the network of
interacting agents.

The model simulations presented in this work reveal
that a direct coupling between a dynamic environment
and social dynamics leads to one globally stable attrac-
tor. However, additionally accounting explicitly for the
effects of anticipation induces metastability where addi-
tional environmental states that are not within or close
to that stable attractor persist over a long time.

The remainder of this paper is structured as follows.
First, in Sect. 2, the micro-level socio-ecological model
itself is introduced and the implementation of the three
aforementioned processes is explained. Second, a mean-
field approximation of the model is given in Sect. 2.3.
Third, we give an overview of the model behaviour, first
for a static and then a dynamic environment, and com-
pare it to the mean-field approximation in Sect. 3.1. In
Sect. 3.2, one can find the main results of the paper,
metastability for high anticipation times resulting in
a stabilisation of potentially unpolluted environments
and thus social tipping. We close this paper with a dis-
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cussion of the results, possible connections to real-world
parameters, and a breif outlook in Sect. 4.

2 Model

To illustrate the influence of the environment on social
activation and vice versa, we formulate a conceptual
network model which is tuneable from a mainly social
dynamic version similar to Granovetter’s threshold
model [25] as in Ref. [22] to a coupled socio-ecological
agent-based model. A focus in the model is the effect of
anticipation. In Fig. 1, we provide a schematic overview
of the model’s setup which illustrates the different inter-
action mechanisms between the environment and the
social system, explained in detail below.

First, we define agent i’s pollution state as:

xi =

{
1, for polluting (i.e., not mitigating pollution) agents

0, for non-polluting (i.e., mitigating pollution) agents
.

(1)

Agents are able to switch from one state to the other,
and especially, the direction from polluting to actively
non-polluting is of importance if one wants to guide the
system towards an unpolluted state. The mean share of
polluting agents will be denoted X = 1

N

∑
i xi where N

is the number of agents. We use this macroscopic vari-
able X to couple the social system to the environment
which is represented by only one macroscopic variable,
the pollution Y .

Fig. 1 Schematics for the model setup. The environment is
represented by just one variable, the global pollution level
Y , which changes proportional to its own value and the
social systems mean state, the share of polluting agents
X. The social system consists of individual agents which
are either adding to the pollution or not. They change
their binary state xi depending on the current pollution
level (direct impacts), the pollution level they anticipate in
the future (anticipated impacts) and the behaviour of their
direct neighbours in the network (social contagion)

2.1 Ecological dynamics

As greenhouse gases, especially CO2, are the major
driving force of anthropogenic climate change [57,58],
we motivate our environmental module with their fun-
damental dynamics. Carbon added to the atmosphere,
for example by burning fossil fuel, does not stay in the
atmosphere, but is constantly removed through natural
carbon sinks like terrestrial ecosystems or the ocean,
with the latter being the major carbon sink in the
Earth system [59,60]. For simplicity, the carbon decay
is modelled by a linear differential equation with a sin-
gle average lifetime τ [59,61,62]. Additionally, pollution
is added proportionally to the share of polluting agents
X:

Ẏ =
1
τ

(X − Y ). (2)

In particular, Y is measured in units of maximal equi-
librium pollution, so that if all N agents pollute con-
sistently (X = 1), then Y → 1. The average lifetime
of pollution, τ > 0, allows to scale the system to a
quasi-static environment by letting τ → ∞. Here, the
term quasi-static means that the environmental dynam-
ics become very slow in comparison to the dynamics of
the social system for which we will explain all further
details below in Sect. 2.2. However, a reasonable esti-
mate for a real-world average lifetime of atmospheric
carbon is approximately 50 years [60,61]. Consequently,
for τ = 1, one time unit in our model roughly corre-
sponds to 50 years in a real-world representation of the
Earth’s atmosphere. We are aware that this implemen-
tation of the environment is very conceptual and that
there are also comparatively more advanced models of
the carbon cycle [59,63–65]. However, for the qualita-
tive behaviour of our model only some form of natural
decay is necessary, so the environmental dynamics from
Eq. (2) suffices.

2.2 Social dynamics

The social dynamics of the share of polluting agents
X arise from the dynamics of the single agents’ states
x = (xi)N

i=1. The agents change their states with the
change probability rates p−

i (x, Y ) from polluting to
non-polluting (xi = 1 → xi = 0) and p+i (x, Y ) from
non-polluting to polluting (xi = 0 → xi = 1):

p−
i (x, Y ) = α · p−

dir(Y ) + β · p−
i,soc(x) · p−

ant(X,Y ),
(3)

p+i (x, Y ) = α · p+dir(Y ) + β · p+i,soc(x) · p+ant(X,Y ).
(4)

There are three contributions to the change probability
rates which we will motivate and explain in detail in the
following paragraphs: those due to direct environmental
impacts, p±

dir(Y ), due to social contagion, p±
i,soc(x), and

due to anticipated environmental impacts, p±
ant(X,Y ).
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The first contribution is scaled by a parameter α ≥ 0
which we call the vulnerability, since one could interpret
it as how susceptible an agent is to immediate changes
in their environment. The second and third contribu-
tions are coupled together and are scaled by a param-
eter β ≥ 0 which we call the farsightedness, since it
weights the anticipation effect. This coupling can be
understood as social contagion leading to a spread of
the action due to anticipated environmental impacts.
Note that among these factors, only p±

i,soc(x) depends
on the microstate x, while the others only depend on
the macrostate (X,Y ).

2.2.1 Direct environmental impacts

Direct environmental impacts like droughts or storms
have triggered sudden societal changes in the past,
including the onset of migratory patterns or even the
collapse of whole nations [66,67]. In our model, we link
the behaviour of agents to the current pollution level Y
through a threshold function. If the pollution is above
the pollution threshold parameter γ ∈ [0, 1], a polluting
agent has a higher probability to become non-polluting
and vice versa:

p−
dir(Y ) = H (Y − γ) , (5)

p+dir(Y ) = 1 − H (Y − γ) , (6)

where H is the Heaviside step function.

2.2.2 Social contagion

The embedding of individuals in a social network and
the observation of their immediate surroundings has
been proven to have a large influence on people’s
behaviour [45,49,68,69]. Recently proposed network
models allow to incorporate and explain such dynam-
ics in the context of opinion formation [70], behaviour
[68,71] and information spread [72] or social move-
ments and collective action [69]. Granovetter’s thresh-
old model [25] and recent network-based extensions
[22,73–75] describe such influence by other individ-
uals or direct neighbours, also known as social con-
tagion [76]. From Refs. [22,26], we take the idea to
define a microscopic neighbour-pertaining threshold χ ∈
[0, 1] which influences the likelihood of the agents’
behavioural change. If the share of polluting neigh-
bours in the fixed social network G, Xi

ki
, is lower than

the social threshold χ, a polluting agent becomes more
likely to convert to being non-polluting and vice versa.
Here, Xi = |{j : (i, j) ∈ E, xj = 1}| gives the number
of polluting neighbours, ki = |{j : (i, j) ∈ E}| is i’s
degree (number of neighbours), and E is the fixed set
of network edges:

p−
i,soc(x) = 1 − H

(
Xi

ki
− χ

)

, (7)

p+i,soc(x) = H

(
Xi

ki
− χ

)

. (8)

2.2.3 Anticipated environmental impacts

The anticipation of potential environmental catastro-
phes might spark, strengthen, and justify climate move-
ments like the recent Fridays for Future-movement [51].
Specifically, the anticipation time, i.e., how far one
extrapolates the trajectory of the Earth system into the
future, can have a big impact on the social urge to act
[11,52]. We assume the simplest possible form of antic-
ipation, a linear extrapolation, and therefore define the
anticipated pollution as:

Yant = Y + θẎ , (9)

where θ > 0 is the anticipation time. If the anticipated
pollution is above the pollution threshold γ, a polluting
agent becomes more likely to get non-polluting. Like-
wise, if it is below, a non-polluting agent becomes more
likely to get polluting:

p−
ant(X,Y ) = H

(
Y + θẎ − γ

)

= H

(

Y +
θ

τ
(X − Y ) − γ

)

, (10)

p+ant(X,Y ) = 1 − H
(
Y + θẎ − γ

)

= 1 − H

(

Y +
θ

τ
(X − Y ) − γ

)

. (11)

Plugging these factors into Eqs. (3, 4) yields the full
change probability rates:

p−
i (x, Y ) = αH(Y − γ) + β [1 − H(Xi − χki)]

× H

(

Y +
θ

τ
(X − Y ) − γ

)

, (12)

p+i (x, Y ) = α [1 − H(Y − γ)] + βH(Xi − χki)

×
[

1 − H

(

Y +
θ

τ
(X − Y ) − γ

)]

,

(13)

which together with Eq. (2) fully define our system for
a given network structure.

2.3 Mean-field approximation

Applying a mean-field approximation and therefore
eliminating the explicit network dependence allows us
to get important insights into the systems dominant
dynamics. We therefore assume that the network is
large, densely connected, and has a small diameter, such
that changes spread fast through the network and thus,
most of the time, the share of polluting neighbours is
approximately equal for all nodes. Consequently, the
latter can be approximated well by the overall share of
polluting agents:

Xi

ki
≈ X. (14)
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Plugging this into Eqs. (7, 8) cancels out the network
dependence and all agents have approximately the same
change probability rates:
p−(x, Y ) ≈ p̃−(X, Y ) = αH(Y − γ) + β [1 − H(X − χ)]

× H
(
Y + θẎ − γ

)
, (15)

p+(x, Y ) ≈ p̃+(X, Y ) = α [1 − H(Y − γ)] + βH(X − χ)

× [
1 − H

(
Y + θẎ − γ

)]
. (16)

Since the network is also assumed to be very large, the
actual stochastic change in X can be approximated by
its expectation value and we obtain finally the deter-
ministic differential equations:

Ẋ = (1 − X)p̃+(X,Y ) − Xp̃−(X,Y ),

Ẏ =
1
τ

(X − Y ). (17)

Through this approximation, we reduced the num-
ber of equations from 2N + 1 to only two (however
non-smooth) differential equations which can be solved
numerically. In addition, a piece-wise analytical solu-
tion is possible, since the change rates p± are constant
except when X hits the threshold χ or when Y or
Yant hits the threshold γ. For constant p±, the differ-
ential equations become linear in X and Y and can be
solved through an exponential ansatz and the method
of varying constants (see S1). However, due to the non-
smoothness, it is not possible to find a full solution,
but only such a piece-wise solution. For the numeri-
cal implementation, we used the piece-wise calculated
equations for X and Y and probed through integrat-
ing for discrete time steps which particular piece-wise
solution has to be used each time t.1

3 Results

In the first part of this section, we compare the dynam-
ics of the microscopic model to the dynamics of the
above introduced mean-field approximation. First, the
case of a static environment is studied, i.e., the social
dynamics are significantly faster than the environmen-
tal dynamics (α , β = const., τ → ∞), to show that our
model displays a bistable behaviour as also found in
other works on social tipping [22,74]. Second, we study
the case of a dynamic environment, i.e., the social sys-
tem evolves on a similar timescale as the environmen-
tal system, and we investigate the attractors of this
feedback system. Subsequently, we use the mean-field
approximation and identify multi-stability in the regime
of long anticipation times.

1 Implementations of the mean-field model and the agent-
based simulations are available online at https://github.
com/PaulMMueller/GranoEnv.

3.1 Comparing the microscopic model to the
mean-field approximation

We compare the mean-field approximation with micro-
scopic model simulations for Erdős–Rényi networks
with N = 200 nodes and an average degree of k̄ = 10.
Calculations are robust against larger network size, so
that finite-size effects are negligible in the presented
results (not shown). In Fig. 2a–d, results for a static
environment (τ = 106) are displayed. Additionally, the
social system does not directly respond to the envi-
ronment (α = 0) but only to the anticipated impacts
(β = 10). These parameter choices ensure that the
dynamics are dominantly driven by social contagion, see
Eqs. (3, 4), so that we can compare our model in this
boundary case against other studies [22,74]. The micro-
scopic results are shown in Fig. 2a, b and the mean-
field approximation results in Fig. 2c, d. In Fig. 2a,
c, the distribution of the long-term share of polluters,
p(X(t = 20)), is shown as a histogram. In both cases,
we observe two prominent maxima at X = 0 and X = 1
which compares well to previous network-based thresh-
old models that are showing bistability, as well [22,74].
The exemplary trajectories in Fig. 2b, d show that the
trajectories approach X = 0 if Y � γ and X < χ. In
the microscopic case, Fig. 2b, trajectories with X(t = 0)
slightly above χ can approach the attractor at X = 0,
even though the social system would be above the social
threshold. This can be explained through the local het-
erogeneity of the network leading to some nodes in an
environment with Xi

ki
< χ, even though X � χ. These

nodes can then start a cascade eventually leading to
all nodes approaching the same state. In the mean-
field approximation, Fig. 2d, such a behaviour cannot
be observed as X < χ and Y + θẎ � γ results in
all change rates becoming zero. To account for these
mismatches, future work should explore more advanced
approximation techniques, such as heterogeneous mean-
field approximations [77] to provide a better represen-
tation of the model’s dynamics for those limiting cases
as well. Since most other trajectories and the distribu-
tions of steady states, however, match well across the
numerical experiments and the analytical estimations
we consider our approximation to perform sufficiently
well for the purpose of the present study.

In Fig. 2e–h, we introduce a dynamic environment
(τ = 1) and couple the social system directly to the
environment (α = 0.1). The system again reaches its
attractor before t = 20, and in Fig. 2e, g, the distribu-
tion of X(t = 20) is displayed. In contrast to the static
environment case, it peaks around X ≈ Y ≈ γ for both
the microscopic simulations (Fig. 2e) and the mean-field
calculations (Fig. 2g). The existence of only one main
attractor around X ≈ Y ≈ γ is emphasized through the
trajectories in Fig. 2f, h which in the long-term show
the same behaviour for microscopic and mean-field sim-
ulations. However, in the transient phase (t < 2), the
microscopic simulations still differ from the mean-field
solution due to the heterogeneity of the underlying net-
work. The coupling to a dynamic environment, Fig. 2e–
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Fig. 2 Comparison of the microscopic model (a, b, e, f)
to the mean-field approximation (c, d, g, h). a–d Static
environment with parameters γ = 0.6, χ = 0.4, α = 0,
β = 10, τ = 106, θ = 1, and three different initial con-
ditions (dashed, dotted, and dash-dotted). In (a, c), the
distribution of trajectories p (X(t = 20)) with X(t = 20) is
illustrated through a histogram (initial conditions (X0, Y0)
are taken from the unit interval X0, Y0 ∈ [0, 1] with a step
size 0.05 each). Generally, two main attractors at X = 0
and X = 1 can be seen. Panels (b, d) show trajectories
with Y (t = 0) = 1 and three different X(t = 0) for the
microscopic simulations and the mean-field approximation,

respectively. The black lines indicate the thresholds γ and
χ. e–h Dynamical environment with τ = 1, a direct cou-
pling of the social system to the environment, α = 0.1,
and other parameters as before. There is only one main
attractor at X(t = 20) ≈ γ for both the microscopic sim-
ulations (e, f) and the mean-field approximation (g, h).
Deviations can be found in the transient behaviour (t < 2)
as seen in the trajectories, as shown in (f, h), while the
long-term behaviour is similar. In the insets, oscillations
around the pollution threshold γ are shown for one trajec-
tory (X(t = 0) = 0.75, Y (t = 0) = 1)

h, leads to a loss of the multi-stability of the pure social
model shown in Fig. 2a–d which can be interpreted as a
form of “damping”. Additionally, one can observe that
|X − Y | becomes very small which should be expected,
since due to Eq. (2), the pollution always follows the
value of X. However, X and Y do not completely con-
verge, but oscillate around the pollution threshold γ
which is illustrated in the insets in Fig. 2f, h for one
illustrative instance of X(t) (X(t = 0) = 0.75). During

each period of this oscillation, both Y and Yant cross the
threshold γ twice, so the trajectory is continuous but
not smooth. Due to the stochasticity of the microscopic
simulations, the oscillations in Fig. 2f are less regular
than the oscillations in the mean-field approximation,
see the inset in Fig. 2h.

We saw that the mean-field approximation is not
accurate in the transient behaviour, see Fig. 2f, h for
t < 2, but generally provides comparable results in the
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Fig. 3 a A metastability diagram with respect to antici-
pation time θ is shown for model parameters of α = 0.1,
β = 10, τ = 1, γ = 0.6, and χ = 0.4. Every column corre-
sponds to a histogram obtained for one θ representing the
occurrences of share of polluters p(X(t = 20)). The black
dashed lines indicate the values of θ in panels (b–d). b Phase
space diagram with two exemplary trajectories (blue and red
lines) for θ = 5 and other parameters as before. Line colours

darken with time t. D gives the diagonal where X = Y
and S the line where Yant = γ. R, L, and H indicate loca-
tions where the trajectories show discontinuous transitions.
A more-detailed discussion can be found in the Supplement
(see S2 and Fig. S.1). c, d Polluting agents X(t = 20) as a
function of the initial condition plotted as a colour code for
θ = 20 (c) and θ = 100 (d)

long-term behaviour. Therefore, it qualifies for a quali-
tative assessment of the model dynamics which we will
use in the next section to analyse the trajectories for dif-
ferent anticipation times θ. In a similar spirit as above,
we suggest to explore the potential for higher order
mean-field approximations [77] to further improve the
representation of the model’s dynamics in the transient
phase as well.

3.2 Metastability for high anticipation time

The introduction of anticipation is one of the key fea-
tures of our model and therefore needs special evalu-
ation. Thus, we show in Fig. 3a the long-term share
of polluters p(X(t = 20)) resolved for varying antici-
pation times and model parameters α = 0.1, β = 10,
and τ = 1 as a histogram. For α > β, the dynam-
ics are dominated by direct environmental impacts and
the system converges towards one attractor at the pol-
lution threshold γ similar to Fig. 2e–h. The choices of
α = 0.1 and β = 10 ensure that we can observe social
dynamics which are driven dominantly by social con-
tagion processes instead of behavioural changes due to
direct environmental impacts. Our choice of τ allows

for the dynamic evolution of the environment on similar
timescales as the social dynamics, compare Fig. 2e–h.

As our main focus is the qualitative model behaviour,
we use the mean-field approximation given by Eq. (17)
which leads to an overall good agreement to the numer-
ical experiments (compare Fig. 2). In Fig. 3, the results
for the dynamics with different anticipation times θ are
displayed. On the left-hand side of Fig. 3a, the exis-
tance of only one attractor at X = Y = γ = 0.6 is
clear. This reproduces for small θ the results from the
previous section, compare Fig. 2g. In Fig. 3b, a phase
space diagram is shown for two exemplary trajectories
(red and blue lines) in which the trajectories approach
the line where the anticipated pollution is equal to
Yant = Y + θ

τ (X −Y ) = γ (dotted line S in Fig. 3b) and
then approach the attractor at X = Y = γ through a
large number of small steps. However, between χ and γ,
the trajectories can deviate from S. In the Supplement
(see S2), we show that, indeed, X = Y = γ is a stable
fixed point of the deterministic macroscopic approxi-
mation whenever χ < γ < β/(α + β) (see lines L, H,
and R in Fig. 3b, respectively) and θ > τ .

Despite this unique attractor that determines the
long-term fate of the system, two kinds of long metastable
behaviour emerge if the anticipation time θ is large
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enough. In the snapshot at time t = 20 shown in Fig. 3a
as a function of θ, one can see that first an upper
“branch” appears for θ � 10, representing trajectories
that at some point visit a region of both high X and
Y and then decrease very slowly towards γ, like the
red one, as shown in Fig. 3b. More interestingly, also a
lower branch becomes visible for θ � 20, representing
trajectories that at some point visit a region of both
low X and Y , then increase slowly towards X = χ and
Yant = γ before then suddenly moving fast to X,Y > γ
and eventually converging to the attractor, like the blue
one shown in Fig. 3b. The exact dependence of the sys-
tem’s position at t = 20 on its initial condition is shown
in Fig. 3c, d for θ = 20 and θ = 100, red and blue areas
representing X(t = 20) > γ and X(t = 20) < γ, respec-
tively.

The metastability in both branches arises because of
two effects. First, close to line S, the sign of Ẋ alter-
nates fast (as seen in the insets in Figs. 2f, h, 3b), keep-
ing the system close to that line. Second, the larger
θ, the closer line S is to the diagonal D, causing |Ẏ | to
become very small when on S. Since in the macroscopic
approximation Ẏ has a constant sign throughout such a
phase, it slowly converges to either X = Y = γ (red) or
X = χ, Yant = γ (blue). In the latter case, once the sys-
tem crosses X = χ (line L), it moves fast towards the
upper right. In addition to these long-term effects that
can be well explained by the macroscopic approxima-
tion the micro-model exhibits even longer metastable
phases when θ becomes large. In that case, the lines S
and D are close enough, so that the finite-size changes
of the micro-model can move the system across D while
close to S. As a result, not only the sign of Ẋ but also
that of Ẏ will alternate. In the limit of θ → ∞, S and D
coincide and the system may stay forever in any point
on S with X < χ or γ < X < β/(α + β) (see S3 in the
Supplement for details).

4 Discussion and conclusion

We have proposed a conceptual co-evolutionary model
of social contagion, environmental dynamics, and asso-
ciated immediate and anticipated impacts that serve as
a mediator between the two subsystems. The coupling
of the social system to a dynamic environment has led
to a dampening of the social dynamics onto one attrac-
tor. The influence of anticipation on the dynamics has
opened the possibility to guide the system towards a
region with low shares of polluting agents X.

In Sect. 3.1, we recovered that the pure social dynam-
ics can be multi-stable if the environment is static. How-
ever, introducing a direct coupling to a dynamic envi-
ronment dampened the multi-stability and one main
attractor formed exactly at the pollution threshold γ.
This can be explained by the general tendency of the
agents to lower their environmental impact if the pol-
lution is high but also reduce their mitigation cost if
the pollution is low. If the agents act short-sightedly
and adjust their behaviour directly with regard to the

current pollution level, this leads to a fast convergence
towards a trade-off scenario between environmental and
“economic” benefits. Thus, if the pollution threshold
were to represent the level of pollution the agents really
consider “optimal”, the short-sighted behaviour would
be perfectly rational, since it reaches and stabilises the
optimum as fast as possible. In our more “boundedly
rational” interpretation of the model, however, the pol-
lution threshold does not represent the optimal level of
pollution. Instead, it is assumed to be much lower, but
represents the level at which the problem of pollution
is perceived as so urgent by the agent that immediate
action seems due. For that case, we considered an addi-
tional farsighted driver for behaviour that is, however,
modulated by social dynamics: agents may stop pol-
luting already when they anticipate pollution to cross
the pollution threshold at a certain future time and
enough of their neighbours are non-polluting already.
If this additional neighbour-pertaining threshold χ is
well below the pollution threshold and the anticipation
time is high, this has the effect that trajectories starting
at low pollution levels become metastable, staying for
very long time close to the (lower) neighbour-pertaining
threshold. Afterwards, it suddenly increases to a level
above the pollution threshold. From here, the trajec-
tories eventually converge to the threshold from above
(blue line in Fig. 3b). The downside of this encouraging
result is that now trajectories starting at high pollution
levels also become metastable above the threshold and
decrease towards it only very slowly without an inter-
mediate low pollution phase (red line in Fig. 3b). This
metastable regime seems to form rather nonlinearly
when θ is increased. Even though Fig. 3a reminds of a
bifurcation diagram, there is no actual bifurcation: X =
Y = γ remains the only attractor of the deterministic
macroscopic approximation throughout. The stochastic
microscopic model, however, can in principle visit and
stay in the region around X = Y = χ frequently due to
its finite-size stochastic jumps. Thus, we argue to find
a process that one may denote as social tipping, even
though it is not possible to define only one critical antic-
ipation time above which the metastable behaviour pre-
dominantly exists. We conclude that the larger the
anticipation time, the longer we expect the system to
remain in the metastable regime before potentially (at
least in the mean-field approximation) converging back
to the stable attractor. The desired time that the sys-
tem should stay within the transient metastable regime
may very well vary across different real-world applica-
tions. Hence, our results illustrate that social tipping
can be interpreted as more than simply a parameter-
induced (saddle-node) bifurcation. Instead, our model
results align with recent definitions of social tipping
that specifically account for the existence of qualita-
tively alternative (meta-)stable states whose existence
can not solely be explained by a single control param-
eter [20,78].

If one wants to decrease the long-term average pollu-
tion level of the modelled system by tweaking its param-
eters or directly influencing its state, one could con-
sider the following strategy. Whenever the system is
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at X > χ (more agents polluting than the neighbour-
pertaining threshold), it first has to be moved to X < χ.
In the real world, this could be achieved by temporary
measures such as taxation or punishment for pollution
or subsidies for environmentally friendly behaviours.
Note that a mere reduction of X below γ but not below
χ, or a reduction of Y instead of X would not suf-
fice, since then X and Y would grow again due to the
social dynamics. If the anticipation time θ can be influ-
enced, then once the system is at X < χ, θ could be
raised to increase the length of the resulting metastable
phase with X < χ. How this could be achieved in real-
ity is less clear, since the anticipation time is strongly
linked to how much agents care about the future. If
the neighbour-pertaining threshold χ can be influenced,
a trade-off emerges between (i) lowering χ to achieve
lower pollution levels during the metastable phase, and
(ii) keeping χ large enough, so that X can always be
brought back to X < χ by political measures once a
metastable phase has ended. Note that such political
measures seem not essential during a metastable phase
but may of course help to prolong it.

Even though our conceptual model is relatively sim-
ple, it provides important and surprising insights into
the socio-ecological dynamics with anticipation as a
key feature. However, it offers room for adjustments,
e.g., the implementation of more realistic environmental
dynamics which themselves could be subject to tipping
such as previously described for ice dynamics [30,36].

Studying the effect of logistically growing change
probabilities can alter a systems overall behaviour and
lead to novel trajectories [79,80] which would be a
promising addition to our model, as well. In general,
studying other effects in addition to social activation,
such as adaption, which has been shown to play a
crucial role for the stability of co-evolutionary socio-
ecological systems [12,14,81,82], is a promising step to
broaden the application of our model and strengthen
its meaningfulness. An additional step in this direc-
tion would be the discussion of other potentially more
realistic network topologies, such as scale-free or small-
world networks, in their effect on the simulated dynam-
ics. Along those lines, advanced approximation tech-
niques that are specifically tailored to such network
topologies, e.g., heterogeneous mean-field approxima-
tions [77], could thereby further strengthen the over-
lap between numerical results and analytical calcula-
tion and at the same time explain some of the mis-
matches that we have observed in our present work.
In summary, our work provides a valuable first step in
investigating potentially emergent dynamics from inter-
actions between individuals in a dynamic and accessible
environment.
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