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Abstract

The Atlantic Meridional Overturning Circulation (AMOC), a major ocean current
system transporting warm surface waters toward the northern Atlantic, has been
suggested to exhibit two distinct modes of operation. A collapse from the cur-
rently attained strong to the weak mode would have severe impacts on the global
climate system and further multi-stable Earth system components. Observations
and recently suggested fingerprints of AMOC variability indicate a gradual weak-
ening during the last decades, but estimates of the critical transition point remain
uncertain. Here, a robust and general early-warning indicator for forthcoming crit-
ical transitions is introduced. Significant early-warning signals are found in eight
independent AMOC indices, based on observational sea-surface temperature and
salinity data from across the Atlantic ocean basin. These results reveal spatially
consistent empirical evidence that in the course of the last century, the AMOC
may have evolved from relatively stable conditions to a point close to a critical
transition.

The Atlantic Meridional Overturning Circulation (AMOC) is the key circulation system
of the Atlantic ocean, transporting water masses northward at the surface, and southward at
the bottom of the ocean!. The AMOC is the archetypical example of potentially multi-stable
Earth system components?. Early studies based on box models® have indicated that the AMOC
has two different stable states of operation, corresponding to a strong and a weak circulation
mode. The AMOC’s bistability and corresponding hysteresis has henceforth been confirmed
in a hierarchy of models, from Earth system models of intermediate complexity (EMICs)*® to
comprehensively coupled atmosphere-ocean general circulation models (AOGCMs)®. It should
be noted, however, that AMOC bistability has not been identified in a considerable number
of state-of-the-art Earth system models” (ESMs). It remains debated whether this should be
interpreted as evidence for a monostable AMOC under current climate conditions, or rather as
evidence for excessive AMOC stability in these models®?: most comprehensive climate models
likely underestimate the freshwater export from the northern Atlantic ocean basin and hence
suppress the associated destabilizing feedback®?12. Moreover, it has been argued that in com-
prehensive models, very high spatial resolution is needed to obtain a good representation of the
AMOC response to freshwater forcing'®. Indeed, AMOC bistability has been revealed in recent
simulations with a comprehensive model with Eddy-permitting ocean module!4.

The strong AMOC state is currently attained, while the weak state has arguably been occu-
pied recurringly during previous glacial intervals. Different lines of evidence from paleoclimate
proxy records indicate that northern hemisphere temperatures have varied abruptly at millen-
nial time scales during previous glacial episodes, with corresponding changes of the AMOC
between its weak and strong modes!1%16. Speleothem and ocean sediment records from around
the world show that these so-called Dansgaard-Oeschger (DO) cycles had — mainly because of
the associated AMOC transitions — substantial impacts on global climate variability!” !?. Com-
plex interplays between the AMOC and North Atlantic sea-ice cover in conjunction with salinity
and circulation changes have been proposed as physical causes underlying the DO cycles, but
although the AMOC is widely accepted to play a key role, the exact chain of mechanisms is
still under debate!6:29-22,

In EMICs and AOGCMs, a shift from the strong to the weak AMOC mode can be trig-
gered by adding large amounts of freshwater to the North Atlantic, effectively reducing salinity
there!®23726 " Such hosing experiments have been performed with a large number of AOGCMs;
as noted above, hosing leads to an AMOC shutdown only in a subset of models. Moreover, in
those models that exhibit an AMOC shutdown considerably disagree on the exact freshwater
amounts needed to trigger the shutdown!#2%27:28 "indicating that the sensitivity of the AMOC
varies strongly across different models. The response of the AMOC to future COq rise and
associated warming has also been studied in different AOGCMs?"?%30, In addition to reducing



salinity via enhanced meltwater inflow into the North Atlantic, thermal expansion due to over-
all rising global temperatures can also have a decreasing effect on AMOC strength. A collapse
of the current AMOC state would have severe impacts on the global climate system?>3! and
would increase the risk of a cascade of further transitions in other major multi-stable compo-
nents of the Earth system, such as the Antarctic ice sheet, the tropical monsoon systems, and
the Amazon rainforest?3!.

Critical transitions between different equilibrium states of natural systems are preceded
by characteristic properties of the fluctuations in the systems’ dynamical behaviour that are
referred to as critical slowing down®?3%. For components of the Earth system that exhibit
multiple stable equilibrium states?, and in particular for the AMOC, indications of critical
slowing down can provide key information for predicting future abrupt climate transitions,
but also for climate change projections, climate model evaluation, and the identification of
adaptation and mitigation measures in general.

Critical slowing down is typically measured in terms of increasing variance and autocorre-
lation in time series encoding the dynamics of the system under study®*3436. These increases
thus provide early-warning signals (EWS) for an abrupt transition to an alternative stable state,
caused by a gradual change in the relevant control parameter. A potential problem with in-
terpreting variance and autocorrelation increases as indicators for critical slowing down — and
hence with using them as EWS for critical transitions — is that such increases can also be caused
by increasing variance and autocorrelation of the external noise that forces the system. An ad-
ditional indicator that is not biased in this way is therefore proposed here. The loss of stability
when approaching a critical transition can be directly quantified in terms of the restoring rate3”
A, obtained from linearization around a given stable equilibrium state x*: For a system state x
close to this equilibrium state, the dynamics can be approximated as % ~ Ax + 1, where 1 de-
notes a stochastic forcing representing high-frequency fluctuations. The restoring rate A can be
inferred from a linear regression of dz/dt onto z for a given time window, and can thus serve as
a measure of temporal stability changes. The estimated values of A are independent of changing
variance of the noise 7, and therefore yield an indicator that is not biased in the way that the
widely used variance indicator is. However, possible changes in the autocorrelation of the noise
term 7 can still bias the value of X if inferred via linear regression under the assumption that n
has constant autocorrelation. This regression is therefore performed with a suitable generalized
least-squares algorithm under the assumption of noise with varying autocorrelation (Methods).
The resulting estimate of A is not biased by changing variance and autocorrelation of the noise
n (Fig. 1 and Fig. S1). As for the classical indicators, the formal derivation of A\ as an EWS
requires that the dynamics should not be too far from equilibrium; it has been shown, however,
that the classical EWS indeed remain valid even in the non-equilibrium case of rate-induced
transitions®® (Methods).

The restoring rate A is negative for stable system states, and the point where it reaches zero
from below marks the bifurcation point, i.e. the critical value of the control parameter where
the abrupt transition will occur (Fig. 1g). This allows to quantify the distance to the critical
transition. It can moreover be shown that — if the system under study approaches a critical
transition — A evolves inversely proportionally to the sensitivity of the system’s equilibrium state
to changes in the control parameter T', given by dx*/dT. Moreover, the variance of the fluc-
tuations around z* increases proportionally to |dz*/dT)| if a critical transition is approached?®
(Methods). These relationships between the restoring rate A, the sensitivity dx*/dT, and the
variance of fluctuations around the stable state x* can be used to associate statistical EWS of
a critical transition with the underlying physical mechanisms.

Although not directly transferable to present-day climate conditions, the AMOC bistability
during glacial conditions — in combination with the AMOC bistability in simulations with com-
prehensive, Eddy-permitting models — suggest that also the present-day AMOC may exhibit a
second, substantially weaker circulation mode. In particular, the combined evidence make it



plausible that a critical transition to the weak mode may occur in response to rising temper-
atures and North Atlantic freshwater inflow. It is therefore justified to search for EWS for an
AMOC collapse in both model simulations and observations. EWS in terms of rising variance
and lag-one autocorrelation (AC1) prior to hosing-enforced AMOC transitions have been be
identified in low-order models®, EMICs3"4° and fully coupled AOGCMs*!. Recently, a spatial
analysis of comprehensive model simulations has revealed clear EWS prior to an AMOC collapse
under Holocene conditions in the sea-surface temperatures (SSTs) and seasurface salinity of the
northern Atlantic*?>. EWS have also been revealed in the decadal frequency bands of ice-core
derived proxy time series prior to the abrupt DO events during the last glacial interval?3:44,
which have been associated with AMOC transitions.

First, detrended SST and salinity time series in the Atlantic ocean are investigated, starting
in 1870 and 1900, respectively (Fig. 2). As previously reported3*45, the only negative SST
trends are found in the 'warming hole’ south of Greenland (Fig. 2a) and similarly, the strongest
negative salinity trends are found south of Greenland and in the Southern Ocean (Fig. 2b).
The exceptional negative trends in the subploar gyre region south of Greenland are consistent
with a slowdown of the AMOC. The restoring rate lambda exhibits the overall highest values
for both the SST and the salinity data in the northern Atlantic, around the supolar gyre region
where the negative SST and salinity trends are found (Fig. 2c,d). For both SST and salinity
time series, the linear trends of the restoring rate are strongly positive in most parts of the
northern Altantic and additionally in the southern Atlantic ocean where a salinity pile-up has
recently been observed®® (Fig. 2e,f). These results for the restoring rate A are consistent with
the other two EWS indicators (Extended Data Figs. 1 and 2). Although these results do not
allow a direct inference regarding the AMOC, they give a first indication that the Atlantic
ocean circulation system may be losing stability. A detailed analysis of observational, SST-and
salinity-based AMOC indices is presented in the following.

Direct observations of AMOC strength are only available for the last two decades®’. Al-
though a negative trend can be inferred from these observations, their temporal coverage is not
yet sufficient to infer a climatological AMOC weakening and a contribution by anthropogenic
climate change, as opposed to natural decadal fluctuations. Therefore, several fingerprints of
AMOC variability, based on different spatial averages of SST and salinity time series that are
available for longer periods, have been proposed and investigated!*851 Recent cooling anoma-
lies of SST's in the subpolar gyre region south of Greenland (Fig. 2a) have been associated with
a weakening AMOC during the last decades?®. By comparing observed SST anomaly patterns
in the subpolar gyre region with shorter-term observations of AMOC strength and simulations
from a suite of models from the Coupled Model Intercomparison Project (CMIP), and showing
that decreases in the SST-derived indices are consistent with the reductions of AMOC strength
in the models, fingerprints of a weakening AMOC over the last 150 years have been inferred?°.

Four SST-based and four salinity-based AMOC indices are considered here. The indices
SSTsc_aa®?, a version of the latter with linear contribution of the Atlantic Multidecadal
Oscillation removed (SSTsg—grm—anmo), as well as SSTgq— ~u* focus on the subpolar gyre
region south of Greenland, while the index SSTp;porE is constructed by subtracting South-
Atlantic from North-Atlantic SSTs''. These indices have been shown to highly correlate with the
actual AMOC strength in simulations with freshwater hosing and gradual CO4 increase, using
the high-resolution, eddy-permitting HadGEM3-GC2 model®!. Following Zhang®® and Chen
and Tung®, a salinity-based AMOC index is constructed by averaging the salinity concentration
over the North Atlantic. In addition, a smaller subset of this region south of Greenland is
considered for a second salinity-based index Sy 2, because recently EWS for an AMOC collapse
in model simulations have been identified there*2. Motivated by a recently revealed salinity
pile up?® a third and a fourth salinity-based index is constructed by averaging the salinity
concentration in the North and South Atlantic basins, respectively (see Methods and Figs. 2
and 3).



The nonlinearly detrended SST- and salinity based AMOC indices (Fig. 3a,b) almost all
show highly significant increases in the three considered EWS indicators (p < 0.05 except for
the AC1 of SSTsg—cr—amo, see Fig. 3c-h), giving evidence that the AMOC is approaching a
bifurcation-induced transition. Statistical significance of positive trends is determined from a
test based on phase surrogates that preserve both variance and autocorrelation (Methods) and
the results are not sensitive to changing the size of the sliding windows (Extended Data Figs. 3
and 4). The possibility of false alarms due to rising variance or AC1 of the high-frequency
forcing can be ruled out since the corrected restoring rate A has been considered here.

To put these results into closer context with the underlying bifurcation mechanism, the
fluctuations obtained by subtracting the observed AMOC indices from a modelled equilibrium
state of the AMOC are investigated. A simple model capturing the bi-stable dynamics of the
AMOC is given by a nonlinear differential equation model with two different stable equilibrium
states and an unstable state in between®? (see Methods). AMOC variability and in particular
its bifurcation structure in comprehensive models has been shown to be in good agreement with
such simplified descriptions®26:53. The conceptual models imply a third-order dependence of the
fixed point z* on the control parameter 7', for which the global mean SSTs are used. Assuming
linearly rising global mean SSTs, this also implies a third-order dependence of x* on time. In
order to assure that the EWS indicators are not biased by the statistical detrending performed
for the results shown in Fig. 2 and Fig. 3, a third-order model for the fixed point x* is hence
fitted to the different AMOC indices (Fig. 4 and Extended Data Fig. 5), and the fluctuations
around this fixed point are investigated. The restoring rate A increases significantly for almost
all AMOC indices (p < 0.05 except for the AC1 of SSTsq—cam—anmo and Sg). As expected for a
system approaching a bifurcation-induced transition, the time evolution of the restoring rate A
is strongly correlated with the inverse of the estimated model sensitivity dx*/dt, which provides
strong evidence that the AMOC is indeed approaching a critical, bifurcation-induced transition.
EWS in terms of rising variance and AC1 are also found for the eight different AMOC indices
(Fig. 4 and Extended Data Fig. 5).

One may argue that the control parameter T, given by the global mean SSTs, does not
increase strictly linearly in time. Therefore, to further confirm the above results, the different
AMOC indices are directly investigated as functions of the global mean SSTs (Fig. 5a and
Extended Data Fig. 6). The variance of fluctuations around the fixed point increases as a
function of the global mean SSTs, in close relationship with the absolute value of the model
sensitivity |dz*/dT| (Fig. bb) as expected for a destabilising AMOC on the way to a critical
transition (see Methods). These results are robust across the eight different AMOC indices
(Extended Data Fig. 6). Note that the fact that the theoretically expected relationships between
variance and A on the one hand, and the sensitivity dx*/dT" on the other hand, hold true for the
empirical AMOC indices indicates that the dynamics is indeed not too far from equilibrium.

Using three different indicators, highly significant EWS for an abrupt AMOC transition in
four SST- and four salinity-based AMOC indices, covering the time spans from 1870 to 2019
and 1900 to 2019, respectively, have thus been revealed. The restoring rate A has evolved
almost linearly from values close to —1 to values close to 0 in course of the last century. Since
A = 0 marks the bifurcation point at which the critical transition is expected to occur, these
results give empirical evidence that the AMOC is now close to a critical transition. The fact
that significant increases of the corrected restoring rate A proposed here are obtained rules out
that the EWS revealed EWS are caused by corresponding changes in the external noise forcing.
In addition to the robustness in terms of different AMOC indices, the presented results are
also robust against different detrending and detection methods (Figs. 3, 4, 5), the choice of
the sliding window size (Extended Data Figs. 3, 4, 7, and 8), and the employed SST dataset
(Extended Data Fig. 9); see Methods.

Corresponding EWS in terms of the restoring rate A\ are only found in a subset of the
historical simulations of the CMIP5 models: For the modelled AMOC strength, quantified as



the maximum strength over all ocean depth at 26°N, six out of 15 models yield simulations
with significant (p < 0.05) increases of A in the period 1870 to 2018 (Fig. 6a). For the modelled
SST-based AMOC index, derived in the same way as the observed one by subtracting subpolar
gyre SSTs from the global mean’, significantly (p < 0.05) increasing A are only found in three
out of the 15 investigated models (Fig. 6b). None of the models exhibit significantly increasing
A for both the modelled AMOC strength and the modelled SST-based index. Notably, from
the three models with highest correlations between modelled AMOC strength and modelled
SST-based AMOC index, as well as highest correlations between the modelled SST-based index
and the observed SST-based index, only one (GFDL-ESM2M) exhibits significant increases of
the restoring rate A for the modelled SST-based AMOC index (Fig. 6¢). Similar results are
obtained when considering the maximum modelled AMOC strength over all ocean depths from
20°N to 60°N (Extended Data Fig. 10). At a confidence level of 0.05, one would expect to obtain
an apparently significant positive trend in only one out of 20 test realisations by chance, if there
was in fact no underlying trend. Although higher numbers of significant EWS are obtained
for the CMIP models, these findings still raise concern whether state-of-the-art climate models
would be skilful in predicting a forthcoming AMOC collapse. This is in agreement with previous
results showing that the present AMOC mode is too stable in state-of-the-art models?, most
likely due to an underestimation of the freshwater export from the northern Atlantic ocean,
caused by errors in the salinity fields and insufficient model resolution'?. The high-resolution,
eddy-permitting HadGEM3-GC2 model, which was used to establish the suitability of the SST-
based AMOC indices employed here®!, constitutes a major step forward concerning a more
accurate representation of the AMOC and its stability!?!. A continuous evaluation of new
model versions in terms of AMOC indices and their EWS will be subject of future research. In
particular, for models with excessively stable AMOC one would not expect to observe EWS,
and the results presented here could therefore be used to identify observational constraints for
climate models.

In simulations with a coupled AOGCM with hosing-enforced AMOC collapse, EWS in terms
of rising variance and AC1 have been revealed*'. The evolution of the AC1 prior to the AMOC
collapse in the simulations of the latter study (see Fig. 4c there) is very similar to the evolution
of the AC1 of the observation-based indices investigated here (Figs. 3g,h and 4c, as well as
Extended Data Figs. 3g,h, 4g.h, 5g,h, 7g,h, and 8g,h). The EWS revealed here for observation-
based AMOC indices thus behave exactly like corresponding signals in comprehensive model
simulations prior to an AMOC collapse. Note that in the model hosing experiment?!, the
AMOC collapses even before the AC1 reaches the critical value AC1, = 1 (corresponding to
Ae = 0, see Methods), because the fluctuations push the AMOC out of the weakly stable state
already before it ceases to exist. Similar observations have been made also in more recent hosing
experiments53.

The results presented here hence show that the recently discovered AMOC decline during
the last decades is not just a fluctuation related to low-frequency climate variability, or a linear
response to increasing temperatures. Rather, the presented findings suggest that this decline
may be associated with an almost complete stability loss of the AMOC in course of the last
century, and that the AMOC could be close a critical transition to its weak circulation mode.
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Code availability

All python code used for the analysis is available from the author upon request (boers@pik-
potsdam.de) or on GitHub under https://github.com/niklasboers/AMOC_EWS.

Competing interests statement

NB declares that he has no conflicts of interests.

10



Figures

11



Model with critical transition: true EWS Model without transition: false alarms

a b
1 -
5 -
0 -
] 01
—— Stochastic TS
11 — Deterministic TS 5
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000
0.0125 T d
—— Variance ] Variance
o 0.0100 - -—- p<1073
c
2 0.0075 A
©
>
0.0050 A
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
e — § 1.00 .
0.98 1 — AC1 — AC1
-=- p<1073 -=- p<1073
6' 0.97 1 D' 0.98 -
< <
0.96 A
0‘95 ) T T T T 0.96 ] T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
9 - h 0.00
—0.02 4 A A
-—- p<1073 —0.024 === p<1073
~< —0.03 1 — Acor ~ — Acor
—0.04 -—- p<1073 -0.04 === p=0.3W
_0.05 L T T T T _006 T J T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

time time

Figure 1: Comparison of the robustness of different EWS indicators. a Simulated
time series from the nonlinear model dz/dt = —z3 + x — T + n(t), with white noise forcing 7(t)
with standard deviation ¢ = 0.2, and control parameter 7' linearly increasing from 7' = —1
to T = +1. A critical transition occurs at around 7000 model integration time steps (blue
vertical line). A corresponding time series obtained by simulating the model without noise
forcing, which represents the nonlinear trend that is used to detrend the stochastic time series,
is shown in red for comparison. Note that the noise in the stochastic case causes the transition
to occur earlier than in the deterministic case. b Simulated time series from the linear model
dx/dt = —5x + n(t) with autocorrelated noise 7, with the standard deviation o of n linearly
rising from 0.2 to 1.0, and the AR(1) coefficient of 7 linearly rising from 0.1 to 0.95. The system
does hence not destabilise, only the statistics of the noise forcing change. ¢ Variance of the time
series shown in (a) with nonlinear trend removed. d Variance of the time series shown in (b). e
Lag-one autocorrelation (AC1) of the time series shown in (a) with nonlinear trend removed. f
AC1 of the time series shown in (b). g The restoring rate A of the time series shown in (a) with
nonlinear trend removed, estimated under the assumption of Gaussian white noise (black), and
assuming autocorrelated noise (red). h The restoring rate A of the time series shown in (b),
estimated under the assumption of Gaussian white noise (black) and assuming autocorrelated
noise (red). Note that for the model that undergoes a critical transition, all four indicators
yield a significant warning (c,e,g). For the linear model with rising variance and AC1 of the
noise term, the increases in variance, AC1, and the uncorrected A give spurious EWS and hence
false alarms, in contrast to the corrected restoring rate A\. All EWS indicators are estimated
in sliding windows of size w = 2000 time steps. The first and last w/2 = 1000 time steps are
omitted to assure that each sliding window has the same number of data points (Methods).
See Supplementary Figure S1 for corresponding results using the nonlinear model forced with
autocorrelated noise instead of white noise.
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Figure 2: Spatial trends and early-warning signals in Atlantic SSTs and salinity.
a Linear SST trends in the Atlantic, estimated from the HadISST dataset®. The coloured
boxes indicate the regions used to define the different SST-based AMOC indices (Methods and
Fig. 3): the subploar gyre region® (blue) used to define SSTsq_an’, SSTsq_ar—Amo, and
SSTsc_nu*®, as well as the North (cyan) and South (magenta) Atlantic regions used to define
SSTprpore'!. b Linear salinity trends in the Atlantic ocean, estimated from averages of the
EN4 dataset® over ocean levels from 300 m to the surface. The coloured boxes indicate the
regions used to define the different salinity-based AMOC indices (Methods and Fig. 3): The
northern North Atlantic region used by Chen and Tung® (S 1, black), the smaller northern
North Atlantic region proposed by Klus et al.*? (Sy e, yellow), as well as the North (orange)
and South (red) Atlantic regions proposed by Zhu and Liu*. ¢ Mean restoring rate A for the
nonlinearly detrended SSTs (running mean with window size r = 50 yr), estimated under the
assumption of autocorrelated noise in sliding windows of size w = 70 yr. d Same as (c) but for
the nonlinearly detrended salinity. e Linear trend of the restoring rate A for the SSTs. f Same
as (e) but for the salinity. Stippling in (e) and (f) marks regions with significantly increasing
trends (p < 0.05, see Methods for details on the statistical test). Corresponding results for the
variance and AC1 are shown in Extended Data Figs. 1 and 2.
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Figure 3: Early-warning signals for SST- and salinity-based AMOC indices.

SST-based AMOC indices (thin) together with 50-yr running means (thick). b Salinity-based
AMOC indices (thin) together with 50-yr running means (thick). ¢ The restoring rate A of the
detrended SST-based AMOC indices, estimated under the assumption of autocorrelated noise.
d The restoring rate A of the detrended salinity-based AMOC indices, estimated under the
assumption of autocorrelated noise. e Same as (c) but for the variance. f Same as (d) but for
the variance. g Same as (c) but for the AC1. h Same as (d) but for the AC1. The dashed
lines indicate the linear trends of the three early-warning indicators, with p-values given in the
legends. Values for each sliding window are plotted at the centre point of that window. Data
for the first and the last w/2 = 35 yr are omitted because no full time windows to estimate
the different early-warning indicators are available there. Corresponding results using different
sliding window sizes are shown in Extended Data Figs. 3 and 4.
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Figure 4: Early-warning signals for AMOC index SSTgsg_gn with modelled fixed
point. a The SST-based AMOC index SSTsa_aar, constructed by subtracting the global mean
SSTs from the average SSTs of the subpolar gyre region (black) and least-squares fit of the fixed
point of a conceptual AMOC model (red, see Methods). b The restoring rate A (red) estimated
from fluctuations around the fitted fixed point under the assumption of autocorrelated residual
noise, in sliding windows of width w = 70 yr; the inverse sensitivity (dz*/dt)~! of the model
is shown in blue for comparison (see Methods). ¢ Variance (red) and AC1 (blue), estimated
from fluctuations around the fixed point. In panels (b) and (c), the dashed lines indicate the
linear trends of the three early-warning indicators, with p-values given in the legends. Note
that the linear trends for variance and AC1 overlay each other in this case. Values for each
sliding window are plotted at the centre point of that window. As above, data for the first
and the last w/2 = 35 yr are omitted because no full time windows to estimate the different
early-warning indicators are available there. Corresponding results for the other seven AMOC
indices are shown in Extended Data Fig. 5.
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Figure 5: AMOC index SSTgc_¢gum and early-warning signals as functions of global
mean temperature. a The SST-based AMOC SSTgg_gar index as a function of global mean
SSTs, and least-squares fit of the fixed point of a conceptual AMOC model. b Variance of
fluctuations of the AMOC index around the fixed point (red), and corresponding sensitivity
|dz*/dT| of the model, with control parameter T' given by the global mean SSTs. Values for
each sliding window are plotted at the centre point of that window. Windows with less than
30 data points to estimate the variance are omitted. Corresponding results for the other seven
AMOC indices are shown in Extended Data Fig. 6.
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Figure 6: AMOC strength and SST-based index in CMIP5 models. a The restor-
ing rate A computed for the AMOC strength ¢ as modelled by 15 different CMIP5 models.
Models that exhibit significant increases of A (p < 0.05) are indicated by (*) in the legend.
b Same as (a), but for the SST-based AMOC index SSTgg_car as simulated by the differ-
ent models®®. The observation-based AMOC index (black solid) is shown for comparison. c
Correlation between the modelled and observed AMOC index versus the correlation between
modelled AMOC strength and modelled SST-based AMOC index. Crosses indicate that neither
the modelled AMOC strength nor the modelled AMOC index exhibit significant increases of A,
squares indicate that the modelled AMOC strength exhibits significant (p < 0.05) increases of
A, and circles indicate that the modelled SST-based AMOC index exhibits significant (p < 0.05)
increases of .
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Methods

Derivation of SST- and salinity-based AMOC indices

SST-based indices. Following Rahmstorf et al.*> and Caesar et al.", the set of SST grid cells in
the North Atlantic is used that exhibits relative cooling when normalised to the global mean SST
trend in either the HadISST reanalysis data®* or the simulations of a CO5 doubling experiment
of the GFDL CM2.6 climate model (blue contour in Fig. 2a, note that the presented results
are not sensitive to small variations of this region). Thereafter, the average over this subpolar
gyre region for each November-May season is taken, and the global mean SST's is subtracted to
obtain the AMOC index SSTsq_gar as proposed by Caesar et al3Y. Since the decadal variability
of this AMOC index is closely related to the Atlantic Multidecadal Oscillation (AMO), a simple
linear regression of the AMOC index onto the AMO is performed, and the residual is taken
as a modified AMOC index SSTsq_aym—anmo for comparison. For the latter case, the AMO
index is computed following Trenberthet al.’® as the difference between mean North Atlantic
(0°N — 80°N) SSTs and global mean SSTs, normalized by the mean difference for the time
period 1900-1970. For a third SST-based index SSTsq_ng , the mean subpolar gyre SSTs are
taken, and the northern-hemisphere mean is subtracted, as originally proposed by Rahmstorf
et al.*. Finally, the index SSTprporE, originally proposed by Roberts et al.'!, is constructed
by subtracting SSTs in the south Atlantic region defined by 0°S — 45°S, 70°W — 30°E from
SSTs in the north Atlantic region defined by 45°N — 80°N, 70°W — 30°E. The three indices
SSTsa—cm, SSTsg—arm—anmo and SSTprporg have been shown to highly correlate with the
actual AMOC strength in simulations of the high-resolution, eddy-permitting coupled climate
model HadGEM3-GC25!.

Salinity-based indices. Following Zhang®® and Chen and Tung®, the salinity-based AMOC in-
dex Syn1 is constructed by averaging the salinity content of the Atlantic ocean basin from
45°N to 65°N using the EN4 dataset®®. Also a smaller subset of the northern North Atlantic
region (54°N to 62°N; 62°W to 26°W) is taken for a second salinity-based index Sy 2, because
recently EWS for an AMOC collapse in model simulations have been identified in this region*?.
Motivated by the results of Zhu and Liu®®, the salinity concentration in the North Atlantic
basin from 10°N to 40°N is averaged to obtain the index Spy. Finally, a salinity pile-up in
the South Atlantic has recently been revealed and associated with the AMOC slowing of the
last decades®®. Accordingly, a South Atlantic AMOC index is considered by averaging salin-
ity over the Atlantic basin from 10°S to 34°S (Sg); see Figs. 2b and 3b. All salinity indices
are obtained by averaging over ocean levels from 300 m to the surface and multiplying with —146.

Robust precursor signals for critical transitions.
Early-warning signals. Consider a random nonlinear dynamical system described by the follow-
ing equation of motion:

dx ,
== U ;T
o U'(z;T) +n(t)

where = denotes the time-dependent state variable of the system and U a potential that ex-
hibits two minima (i.e., stable equilibria or fixed points) for intermediate values of the con-
trol parametfr T, but only one minimum for p outside a given range. For example, for

U T) = % — %2 + Tz, leading to the equation of motion dx/dt = —z3 + 2 — T + n(t),

there would be two minima for ——2- < T < -2 and only one minimum for T outside this

range. The minima of U, Correspoflgng to the 31;/0§ssible stable equilibria of the system (where
dx/dt = 0), are also called stable equilibrium or fixed points, while the relative maximum be-
tween the two minima (where also dz/dt = 0) is referred to as an unstable equilibrium or fixed
point. The critical values of T" where the number of stable equilibrium points change are the
bifurcation points. The above system is driven by an external random forcing 7, whose variance

and autocorrelation may change over time.
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The stability loss of an equilibrium state of a nonlinear dynamical system (i.e., one of the
minima of U in the example above) is associated with a widening of the corresponding potential
well. At the bifurcation, the stable fixed point and the associated potential well eventually cease
to exist, causing the system to rapidly transition to an alternative stable state. The widening
of the potential well leads to weaker restoring forces — observe the U’ in the above equation —
in response external (random) perturbations given by 7, and correspondingly slower recovery
times. These characteristics give rise to the notion of ’critical slowing down’. In such idealized
systems, this critical slowing down is accompanied by increases in variance (because of weaker
restoring forces in response to perturbations) and autocorrelation (because of slower recovery
times from perturbed states) of the time series encoding the dynamics of x. These statistical
early-warning signals (EWS) preceding abrupt transitions have been discovered in many natural
system323357,

It may happen, however, that the variance and autocorrelation of 7 increase due to external
reasons unrelated to critical slowing down, which would in turn cause increasing variance and
autocorrelation in the time series of z, leading to a false alarm of a forthcoming transition (right
column of Fig. 1). A different indicator for destabilisation and the associated critical slowing
down is therefore proposed here. For x in the vicinity of a stable fixed point z*, the potential U
can be approximated by a quadratic function, leading to the approximate equation of motion
for the fluctuations around the stable fixed point (Ax =z — x*)

d?—tx ~ ANz +1(t) ,

where A < 0 if the fixed point is stable. For white noise n with constant variance, this defines an
additive Ornstein-Uhlenbeck process with restoring rate A, which corresponds to the steepness
of the corresponding quadratic approximation of the potential around the fixed point. The
value of A thus directly quantifies the stability of the system3”. Similar observations have been
made in discrete settings in the context of epidemic outbreaks®®. Within a given time window,
the derivative dx/dt can be estimated from the time series of x, and linearly regressing dx/dt
onto x yields a direct estimate of the restoring rate A\. As long as 7 is white, Gaussian noise, the
estimate of A is not biased by changing variance of 7. However, if n is given by red noise with
autocorrelation changing over time (which is indeed a very realistic assumption for the case of
climate variability), a linear regression of dz/dt onto z, using a least-squares algorithm assuming
white noise, will lead to biases in the estimation of A (right column of Fig. 1). The regression of
dzx/dt onto x is therefore performed under the assumption of autocorrelated residual noise with
the autoregression coefficient as a free parameter. Using this estimation for A yields an indicator
that is not sensitive to increasing variance or autocorrelation of 7 (right column of Fig. 1), but
provides a robust warning if the system is indeed approaching a critical, bifurcation-induced
transition (left column of Fig. 1).

The discretization of the Ornstein-Uhlenbeck process (with time step At equal to one year
for the case at hand) gives an order-one autoregressive process with variance

2
2 _ 0-
(Az%) = 1 _ o2 A
and autocorrelation function
_nAAt
a, =e .

With A < 0 approaching zero from below on the way to the critical transition, the variance
will thus diverge to +oo and the AC1 (i.e. «7) will increase toward 1, which explains why
these statistical indicators can serve to detect critical slowing down under the assumption that
the statistical properties of 7 remain constant. Note that these relationships of (Az?) and a,
with A are the theoretical motivation for using variance and AC1 as EWS; the restoring rate
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A should thus be preferred because it yields a more direct, and unbiased, estimate of critical
slowing down and destabilisation.

Note that the above formal derivation of the EWS indicators (Az?), oy, and A relies on
the assumption that the dynamics is close to the equilibrium, and hence that the linearized
dynamics of the fluctuations around the equilibrium can be considered. It has been shown,
however, that even in the extreme non-equilibrium case of so-called rate-induced transitions,
EWS in terms of delayed rising variance and autocorrelation arise3®.

Sensitivity. Consider a general equation of motion of the form

dz
X~ fla) =T+t
L fa)~ T+ ()
with a nonlinear function f (which is given by f(z) = —2® + x in the above example of a

double-well system) and control parameter T'. Linearisation around a fixed point x* yields for

the fluctuations Az =z — z*
dAx

T f'(@")Az +n(t)
and hence, comparing to the above, A\ = f/(z*). On the other hand, since by definition dz/dt = 0
at © = x* and thus f(2*) = T, for the sensitivity it holds that
dx* 1

dT — fl(a*)’
Therefore, if a nonlinear system of the above form is approaching a bifurcation, it should be
theoretically expected that
de*\ !
A
< (ar)

as observed in Fig. 4b and the corresponding Extended Data figures (assuming an approximately
linear relationship between time ¢ and the control parameter T'). Moreover, since for the locally
linearised and discretized system the variance is approximately proportional to o2 /(—2\) (recall
that A < 0 and in the given case At = 1), for the fluctuations around x* it holds that®>

dx*

<ASU2> X d7T

as observed in Fig. 4c. The consistency of the behaviour of the restoring rate A and the variance
(Az?) with the behaviour of the sensitivity dx*/dT provides strong evidence of a forthcoming
critical transition because the above relationships would not hold without a destabilisation of
the system.

Testing the statistical significance of increasing trends

A widely used test to assess the statistical significance of trends is the Mann-Kendall test. This
test, however, assumes identically and independently distributed data points. Given that pre-
cursor signals for critical transitions (such as variance, AC1, or the restoring rate A proposed
here) are estimated via sliding windows across the time series under study, serial correlations
have to be accounted for and the Mann-Kendall test is not applicable. A different significance
test, based on surrogates that preserve both the variance and the autocorrelation function of
the original time series3243:4459 is therefore employed here. These surrogates are constructed
by first computing the Fourier transform of the underlying time series, and then randomising
the phases. Statistical significance of trends is then estimated from the statistics of linear trends
obtained from 100,000 such surrogates. The significance of the increasing trends of the EWS
indicators is therefore tested, rather than the significance of their individual values®®. The
minimum number of data points to infer statistically significant EWS depends strongly on the
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specific statistical test, but of course also on the strength of the signal and the specific dynamics
in each individual case.

Conceptual AMOC model

Conceptual models of the AMOC commonly exhibit two stable states and effectively, the
dynamics can be described by a fourth-order potential with two minima, as introduced above.
The corresponding bifurcation diagrams, which depict the stable fixed points as functions of the
control parameter T', exhibit a stable branch corresponding to the strong AMOC mode. This
branch can be approximated by a third-order function of the form f(z) = po + (—p1(z — p2))*/3
for arbitrary pg and positive p; and peo. In order to obtain the best-suited fixed point curve as
a function of the control parameter 7" — under the assumption that the dynamics is not too far
from equilibrium — an ordinary least-squares fit of the function f to the eight different AMOC
indices is performed (red in Fig. 5a, see also Extended Data Figs. 5, 7, and 8). The fluctuations
of the AMOC indices around their fixed points are then computed, and EWS are searched for
in these fluctuations. Note that for the results shown in Fig. 4, a linear relationship between
time and the control parameter T has been assumed.

3,52

Sensitivity of results

To rule out the possibility that the significant indicators for a destabilisation of the AMOC are
caused by changes in the decadal frequency variability of the Atlantic Multidecadal Oscillation
(AMO), a version of the SST-based AMOC index introduced by3? from which AMO variability
is removed via linear regression (SSTsg_gam—anmo is considered; see derivation of the different
indices above).

The presented results are insensitive to the specific method used for detrending the un-
derlying AMOC indices. Fig. 3, and Extended Data Figs. 3 and 4 show results for nonlinearly
detrended time series using a running mean filter with size r = 50 yr, while Fig. 4 and Extended
Data Fig. 5 show results for nonlinearly detrended time series using the best estimate of the
fixed point of a simplified AMOC model. Moreover, investigating the EWS directly as functions
of the control parameter T', rather than as functions of time, yields equivalent results (compare
Fig. 4 and Fig. 5).

The choice of the window size used to estimate changes in the EWS indicators variance,
AC1, and the restoring rate A is determined by a tradeoff between having sufficient data points
in each window to reliably estimate the different indicators, and having sufficient data points in
total, obtained from each window, to reliably estimate trends. In the main text, results using a
window size w = 70 yr are shown. These remain very similar when using windows sizes ranging
from w = 60 yr to w = 80 yr (Extended Data Figs. 3 and 4, 7, and 8).

Very similar results for the SST-based index, in terms of significant indicators for an ongoing
destabilisation of the AMOC, are obtained when using the ERSSTS! instead of HadISST dataset
(Extended Data Fig. 9).
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Extended Data Figure 1: Mean early-warning indicators for the Atlantic ocean. a
Corrected restoring rate A estimated from the HadISST dataset assuming autocorrelated noise.
b Same as (a) but for the EN4 salinity dataset. ¢ Variance estimated from the HadISST dataset.
d Same as (c) but for the EN4 salinity dataset. e AC1 estimated from the HadISST dataset.
f Same as (e) but for the EN4 salinity dataset. Note the high values in the northern Atlantic
and the subpolar gyre region in particular for A and ACI.
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Extended Data Figure 2: Trends of early-warning indicators for the Atlantic ocean.
a Linear trends of the corrected restoring rate A estimated from the HadISST dataset assuming
autocorrelated noise. b Same as (a) but for the EN4 salinity dataset. ¢ Linear trends of the
variance estimated from the HadISST dataset. d Same as (c¢) but for the EN4 salinity dataset.
e Linear trends of the AC1 estimated from the HadISST dataset. f Same as (e) but for the EN4
salinity dataset. Note the high positive values in the northern Atlantic and the subpolar gyre
region in particular for A and AC1, but also in the southern Atlantic ocean where a salinity
pileup has recently been associated with an AMOC slowdown [46].
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Extended Data Figure 3: Same as Fig. 3, but with sliding window size w = 60 yr
to estimate EWS. a SST-based AMOC indices (thin) together with 50-yr running means
(thick). b Salinity-based AMOC indices (thin) together with 50-yr running means (thick).
¢ The restoring rate A of the SST-based AMOC indices, estimated under the assumption of
autocorrelated noise. d The restoring rate A of the salinity-based AMOC indices, estimated
under the assumption of autocorrelated noise. e Same as (c¢) but for the variance. f Same as
(d) but for the variance. g Same as (c) but for the AC1. h Same as (d) but for the AC1. The
dashed lines indicate the linear trends of the three early-warning indicators, with p-values given
in the legends. Values for each sliding window are plotted at the centre point of that window.
Data for the first and the last w/2 = 30 yr are omitted because no full time windows to estimate
the different early-warning indicators are available there.
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Extended Data Figure 4: Same as Fig. 3, but with sliding window size w = 80 yr
to estimate EWS. a SST-based AMOC indices (thin) together with 50-yr running means
(thick). b Salinity-based AMOC indices (thin) together with 50-yr running means (thick).
¢ The restoring rate A of the SST-based AMOC indices, estimated under the assumption of
autocorrelated noise. d The restoring rate A of the salinity-based AMOC indices, estimated
under the assumption of autocorrelated noise. e Same as (c¢) but for the variance. f Same as
(d) but for the variance. g Same as (c) but for the AC1. h Same as (d) but for the AC1. The
dashed lines indicate the linear trends of the three early-warning indicators, with p-values given
in the legends. Values for each sliding window are plotted at the centre point of that window.
Data for the first and the last w/2 = 40 yr are omitted because no full time windows to estimate
the different early-warning indicators are available there.
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Extended Data Figure 5: Same as Fig. 4 in the main text, but for the remaining six
AMOC indices as indicated in the legends. a SST-based AMOC indices and fitted fixed
point of a conceptual AMOC model. b Salinity-based AMOC indices and fitted fixed point of a
conceptual AMOC model. b ¢ The restoring rate A of the SST-based AMOC indices, estimated
under the assumption of autocorrelated noise. d The restoring rate A of the salinity-based
AMOC indices, estimated under the assumption of autocorrelated noise. e Same as (c) but for
the variance. f Same as (d) but for the variance. g Same as (c) but for the AC1l. h Same
as (d) but for the AC1. The dashed lines indicate the linear trends of the three early-warning
indicators, with p-values given in the legends. Values for each sliding window are plotted at the
centre point of that window. Data for the first and the last w/2 = 35 yr are omitted because
no full time windows to estimate the different early-warning indicators are available there.

28



z g oo0s - — Fixed Point Syn
a o b £
£ oo g o0
£ -0s £ -00s
@ @
-10
148 149 150 151 152 153 154 155
GuT
1880 1900 1920 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000
time [yr] time [yr]
020 12
© Variance SSTsq_au ooo1a] © VerienceSua 0.04215
—= Linear fit . == Linear fit 0.04210
8 £ 0.0012 0.04205 5
I > b >
K 08 3 ¢ 0.04200 £
2 0.10 - 5 0.0010 2
g a z 0.04195 2
2 3 s 3
L 06 0.0008 0.04190
ity 195" o
— sensitivity || — sensitivity 171 | ¢ 04185
04 0.0006
148 149 150 151 152 153 154 155 148 149 150 151 152 153 154 155
GMT [°C] GMT [°C]
)
2 os L] — Fixed Point SSTsg - au-awo 2 o1j® . P © — Fixed Point Sz
c = : . d = .
£ oo i £
2 ’ e XY g
5 Y s 5
B -05 . ™ 7
2 2
148 149 150 151 152 153 154 155 148 149 150 151 152 153 154 155
GMT (- GMT [
1880 1900 1920 1940 1960 1980 2000 1900 1920 1940 1960 1980 2000
time [yr] time [yr]
b 0.008 04
2007 ® Variance SSTsq_ou-auo ° 0614 © Variance S
H == Linear fit ® o == Linear fit
. 0.006 03 —
3006 o~ H &
g & , ik
1 005 £ 0.004 ] 02 %
2 5 2
H 5 H
5004  0.002 01 %
B L — sensitvity 141 | 0,606 — sensitivty %51
0.000 0.0
148 149 150 151 152 153 154 155 148 149 150 151 152 153 154 155
GMT (C] GMT [°C]
e f .
z —— Fixed Point SSToroie g 005 . —— Fixed Point Sy
2 00 >
H £ o000
5 5
5 0s g0
.
148 149 151 152 154 155 148 149 151 152 154 155
GuT [-C GMT [-C
1880 1900 1920 1940 1960 1980 2000 190 1920 1940 1960 1980 2000
time [yr] time [yr]
056600 0.0025 030
0061 ® Variance SSToroue © Variance Sy
- Linear fit 056575 0.0020 == Linear fit 025
0.56550 3 & 0.0015 0.20 3
> g >
0.56525 = 5 0.0010 015 3
056500 § > 0.0005 010 §
e 0.0000 tivity (2| | 005
—— Sensitivity || [ 0.56475 — Sensitivity |25
0. 0.00
148 149 150 151 152 153 154 155 148 149 150 151 152 153 154 155
GMT (C] GMT [C]
g T h .. 2 rvearons
£ os . so-m1 £ . int S5
3 > of 3 .
£ oo o 0 £ o0
H Ce H
£ -05 P
@ 3} -01
148 149 150 151 152 153 154 155 148 149 150 151 153 154 155
G G
1880 1900 1920 1940 1960 1980 2000 190 1920 1940 1960 1980 2000
me [yr] time [yr]
014 10 0s
© Variance SSTsc-ms o 00031 ¢ variance s
£0.12 == Uinearfit ) == Linear fit 0.4
3 & 0.002 i
010 . 03
£ 0.08 £ 0.001 023
s 3 2
s &
£ o006 01
> — Sensitivty 1551 0000 - - Sensitviy 2]
0.04 4 00
148 149 150 151 152 153 154 155 148 149 150 151 152 153 154 155
GMT [C) GMT [C]

Extended Data Figure 6: Same as Fig. 5 in the main text, but for the remaining
six AMOC indices SSTSG—GM—AMO (a), SSTDIPOOLE (C), SSTSG—NH (e), SNN (b),
Sy (d), Syn (f), as indicated in the legends. In each panel, the respective AMOC index
(top) and the corresponding variance (bottom) are shown as functions of the control parameter
T.
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Extended Data Figure 7: Same as Extended Data Fig. 5, but with sliding window
size w = 60 yr to estimate EWS. a SST-based AMOC indices and fitted fixed point of a
conceptual AMOC model. b Salinity-based AMOC indices and fitted fixed point of a conceptual
AMOC model. b ¢ The restoring rate A of the SST-based AMOC indices, estimated under the
assumption of autocorrelated noise. d The restoring rate A of the salinity-based AMOC indices,
estimated under the assumption of autocorrelated noise. e Same as (c) but for the variance. f
Same as (d) but for the variance. g Same as (c) but for the AC1. h Same as (d) but for the
AC1. The dashed lines indicate the linear trends of the three early-warning indicators, with
p-values given in the legends. Values for each sliding window are plotted at the centre point
of that window. Data for the first and the last w/2 = 30 yr are omitted because no full time
windows to estimate the different early-warning indicators are available there.
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Extended Data Figure 8: Same as Extended Data Fig. 5, but with sliding window
size w = 80 yr to estimate EWS. a SST-based AMOC indices and fitted fixed point of a
conceptual AMOC model. b Salinity-based AMOC indices and fitted fixed point of a conceptual
AMOC model. b ¢ The restoring rate A of the SST-based AMOC indices, estimated under the
assumption of autocorrelated noise. d The restoring rate A of the salinity-based AMOC indices,
estimated under the assumption of autocorrelated noise. e Same as (c) but for the variance. f
Same as (d) but for the variance. g Same as (c) but for the AC1. h Same as (d) but for the
AC1. The dashed lines indicate the linear trends of the three early-warning indicators, with
p-values given in the legends. Values for each sliding window are plotted at the centre point
of that window. Data for the first and the last w/2 = 40 yr are omitted because no full time
windows to estimate the different early-warning indicators are available there.
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Extended Data Figure 9: Early-warning signals for the SST-based AMOC index
SSTsq_ga- Same as Fig. 5, but using the ERSST instead of the HadISST dataset.

32



<
ao
C
g
i
O
o
=
<
el
Q
[}
©
o)
E
<
.
©
- —-1.241
o
b=
% -1.4 1 /
= 1880 1900 1920 1940 1960 1980 2000 2020
Time [yr]
b
)
3 -0.2 1
£
(6}
g
z —0.4 A
<
g
E _06 .
(o))
£
S
3 -0.8 -
o
= 1880 1900 1920 1940 1960 1980 2000 2020
§ Time [yr]
c o
g 041 X
< | X
2 0.3 X >
]
%]
S
< 0.2 A
()
T
£
0 0.1 B X
o
=
<
2 0.0 1
[}
é X
‘g -0.2 0.0 0.2 0.4 0.6
O Cor(modelled AMOC Strength, modelled AMOC Index)

CanESM2
CCSM4
CESM1-BGC
CESM1-CAM5
CESM1-CAM5-1-FV2
CNRM-CM5
GFDL-ESM2M
GISS-E2-R
INMCM4
*MPI-ESM-LR
MPI-ESM-MR
*MRI-CGCM3
*MRI-ESM1
*Nor-ESM1-M
Nor-ESM1-ME

CanESM2

CCsM4

CESM1-BGC
CESM1-CAM5
CESM1-CAM5-1-FV2
CNRM-CM5
*GFDL-ESM2M
*GISS-E2-R

INMCM4
*MPI-ESM-LR
MPI-ESM-MR
MRI-CGCM3
MRI-ESM1
Nor-ESM1-M
Nor-ESM1-ME
observed SSTsg-6m

CanESM2
CCSM4
CESM1-BGC
CESM1-CAM5
CESM1-CAM5-1-FV2
CNRM-CM5
GFDL-ESM2M
GISS-E2-R
INMCM4
MPI-ESM-LR
MPI-ESM-MR
MRI-CGCM3
MRI-ESM1
Nor-ESM1-M
Nor-ESM1-ME

Extended Data Figure 10: AMOC strength and SST-based index in CMIP5 models.
Same as Fig. 6, but for the modelled maximum AMOC strength over all ocean depths from

20°N to 60°N, instead of at 26°N.
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