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Abstract 

Southeastern South America is subject to considerable precipitation variability on 

seasonal to decadal timescales and has undergone very heavy land-cover changes since 

the middle of the past century. The influence of local land-cover change and precipitation 

as drivers of regional evapotranspiration long-term trends and variability remains largely 

unknown in the region. Here, ensembles of stand-alone Dynamic Global Vegetation 

Models with different atmospheric forcings are used to disentangle the influence of those 

two drivers on austral summer evapotranspiration from 1950 to 2010. This paper 

examines the influence of both the ENSO and the dipole-like first-mode of southeastern 

South American precipitation variability (EOF1) on regional evapotranspiration. We found 

that in the lower La Plata Basin, evapotranspiration was driven by precipitation variability 

and showed a positive summer trend. Moreover, the region showed marked seasonal 

anomalies during El Niño and La Niña summers but mainly during EOF1 phases. On the 

contrary, in the upper La Plata Basin, land-cover changes forced the negative summer 

evapotranspiration trend and particularly reduced the summer anomalies of the late 

1990s, a period of ENSO and EOF1-positive phases. In the South Atlantic Convergence 



 

Zone region, the high evapotranspiration uncertainty across ensemble members impeded 

finding robust results, which highlights the importance of using multiple DGVMs and 

atmospheric forcings instead of relying on single model/forcing results. 

1. Introduction 

Evapotranspiration (ET) plays a vital role in shaping climate variability, trends, and 

extremes and connects the land with the atmosphere (Jung et al. 2010; Wang and 

Dickinson, 2012; Douville et al. 2013; Teuling et al. 2009; Miralles et al. 2018). ET is driven 

principally by precipitation and solar radiation variability at different spatial and time 

scales (Martens et al. 2018) and is constrained by land surface conditions, such as soil 

moisture and vegetation. Land-cover change (LCC) practices affect the surface 

energy/water balances modulating ET directly through biophysical (e.g., albedo) and 

biogeochemical changes (e.g., CO2 emissions by agricultural activities); and indirectly by 

runoff or soil erosion, among others (Pielke et al. 2011, Lapola et al. 2014; Mahmood et al. 

2014; Perugini et al. 2017). Therefore, evapotranspiration is an integral part of 

meteorological, hydrological, and biological processes. Here, modelled ET over several 

decades and its response to precipitation variability and LCC are explored in three South 

American regions (Fig. 1): South Atlantic Convergence Zone (SACZ), upper La Plata Basin 

(uLPB), and lower La Plata Basin (lLPB). These highly socio-economically developed regions 

show notable precipitation trends and variability, and since the middle of the twentieth 

century, they have undergone intense land-cover changes. 

Precipitation in southeastern South America exhibits considerable variability from 

seasonal to decadal timescales (Vera et al. 2006; Garreaud et al. 2009; Marengo et al. 

2012; Grimm et al. 2020). Sea surface temperature conditions of the tropical oceans (e.g. 

El Niño-Southern Oscillation [ENSO]) and over the polar regions have been identified as 

remote sources of regional variability that induce precipitation anomalies through 

distinctive teleconnection patterns in circulation anomalies (e.g., Vera et al. 2006). During 



 

the warm part of the year, the leading continental pattern of interannual precipitation 

variability is characterized by a dipolar spatial structure with anomaly cores of opposite-

sign located over the SACZ and the subtropical plains (lLPB) with the strongest 

components over the SACZ (e.g., Grimm, 2011, mode 1 in their Fig. 6; Grimm and Zilli, 

2009, mode 1 in their Fig. 3). This continental dipole-like mode is weakly connected with 

ENSO. Here, we focus on a subtropical dipole represented by the first-mode of summer 

precipitation variability in southeastern South America (SESA region represented in Fig. 

1a), hereafter EOF1, whose strongest components occur over lLPB and the opposite weak 

ones, over SACZ, and is connected with ENSO (Grimm and Zilli, 2009, mode 3 in their Fig. 

3). The standard convention associates the positive EOF1 phase (hereafter +EOF1) with 

wetter-than-normal conditions in lLPB and drier-than-normal conditions in SACZ. In 

contrast, the negative phase (hereafter -EOF1) represents the opposite situation (e.g., 

Doyle and Barros, 2002; Diaz and Vera, 2017). Wetter-than-normal (drier-than-normal) 

conditions are more common in lLPB during El Niño (La Niña) austral summer (DJF), while 

the response over the SACZ region is less clear and is more sensitive to the specific area or 

month analyzed (e.g., Grimm, 2003, 2004; Cai et al. 2020). In lLPB, precipitation has shown 

a positive trend since the beginning of the 20th century (Gonzalez et al. 2013; Zhang et al. 

2016a; Saurral et al. 2017). The austral summer trend can be at least partially explained by 

the increase of greenhouse gas concentrations by human activities (e.g., Vera and Diaz, 

2015). Moreover, using both observations and climate model outputs, Diaz and Vera 

(2017) showed that the positive DJF trend in lLPB is in part associated with an increase 

(decrease) of the frequency of +EOF1 (-EOF1) events from the early 20th century to the 

present. Negative but not significant DJF trends in precipitation anomalies over SACZ have 

been detected for the same period (Vera and Diaz, 2015). In addition, the anthropogenic 

climate change signal in both regions could be affected by natural interdecadal variability 

(e.g. Grimm and Saboia, 2015; Dai, 2021). 

Although a less explored connection, ET and land surface conditions also play an essential 

role in precipitation variability (Sörensson and Menéndez, 2010; Ruscica et al. 2015; Giles 



 

et al. 2020). They shape climate, even influencing the relationship between the main 

continental variability modes of spring and summer (Grimm et al. 2007; Grimm and Zilli, 

2009). For instance, the dipole-like first variability mode has been found recently in the 

main variability patterns of two vegetation indices during the austral spring season (Chug 

and Dominguez, 2019).  

Southeastern South America has suffered different types of LCC (Salazar et al. 2015). SACZ 

and uLPB include parts of the seasonally-dry Cerrado and Atlantic Forest ecosystems, 

where native vegetation has been reduced drastically to expand cattle ranching and to 

cultivate sugarcane and soybean (Lapola et al. 2014). The continental-scale land cover 

evidenced an extreme change in uLPB and eastern SACZ between 1950 and 2010, leaving 

only around 25% of natural vegetation by 2010 (Fig. 1b,c). The lLPB includes most of the 

subhumid temperate Pampas Plains where native grasslands have been converted to 

croplands (e.g., soybean, wheat) at increasing rates, and recently even to exotic tree 

plantations (Nosetto et al. 2012). While the type of LCC in each region is well known, less 

is known about how this change forces near-surface variables. Different ET responses 

have been found depending on the methodological approach (Lee and Berbery, 2012); on 

the crop seasonal cycle stage (e.g., Georgescu et al. 2013); and/or on the type of native 

vegetation (Beltrán-Przekurat et al. 2012). 

Understanding how LCC affects regional ET dynamics requires the use of models, given 

the complexity of the processes involved and the scarcity of measurements (Lawrence 

and Vandecar, 2015; IPCC SRCCL, Jia et al. 2019). Dynamic Global Vegetation Models 

(DGVMs) simulate surface processes ranging from the transfer of energy, water, and 

momentum between the land surface and the atmosphere; through biogeochemical 

cycles, carbon assimilation and allocation, plant phenology, to land-use change (Prentice 

et al. 2007; Rezende et al. 2015). Stand-alone DGVMs (forced by atmospheric data) allow 

obtaining land-surface variables at large spatial and long temporal scales to answer 

questions related to water resources. However, the modelling of ET involves many 



 

uncertainties (Mueller et al. 2011; Jiménez et al. 2011), such as the choice of atmospheric 

forcing data (Badgley et al. 2015) or the LCC scenario (Douville et al. 2013). Moreover, 

DGVMs still miss the representation of other processes such as plant hydraulics strategies, 

which are essential to a correct simulation of how quickly plants react to droughts 

(Papastefanou et al. 2020). In particular, land-surface models and DGVMs show large ET 

uncertainties in South America (Sörensson and Ruscica, 2018; Sakschewski et al. 2021). So 

far, only some global studies have analyzed long-term ET evolution using stand-alone 

DGVMs (e.g. Douville et al. 2013; Livneh et al. 2013). To evaluate the role of LCC in ET, 

related uncertainties and regional gaps, we performed an ensemble of simulations over 

South America with four state-of-the-art DGVMs (INLAND, LPJmL4, LPJ-GUESS, and 

ORCHIDEE (v2.0)), which have been applied in other studies (e.g., ISIMIP 

(https://www.isimip.org/), Guimberteau et al. 2017). 

This study aims to find out how precipitation variability and/or LCC affected ET in SACZ, 

uLPB, and lLPB, during 1950–2010. To that end, we explored regional ET seasonality, DJF 

trends, and anomalies in simulations with and without LCC information and using 

composites of ENSO and EOF1 summers. ET monthly data in 0.5°x0.5° grid resolution were 

taken from a new ensemble of 24 stand-alone DGVM simulations, a product of the 

CLIMAX project (http://www.climax-sa.org). The DGVMs were run offline, so feedbacks 

from the land to the atmosphere were not considered. All the data and the ENSO/EOF1 

definition are described in section 2, and a climate characterization of each region is made 

in Section 3. Section 4 shows evapotranspiration results and discussion, and conclusions 

are presented in section 5.  

2. Data and methodology 

2.1. Simulations and gridded products 

We performed 24 simulations over South America based on the combination of four 

DGVMs forced by three atmospheric datasets, each using two different land-cover 

http://www.climax-sa.org/


 

conditions (Fig. 2, top): observed land-cover changes (LCC) and potential natural 

vegetation (PNV). The PNV concept refers to the expected state of mature vegetation 

conditions in the absence of human activities (e.g., Chiarucci et al. 2010). Here each DGVM 

uses its own set of criteria to define PNV. On the other hand, LCC annual data combine 

two historical land-use datasets that are shared by all LCC simulations. Fig. 1(b, c) shows 

these LCC data as fractions of natural vegetation in the first and last years of the analyzed 

period in South America. Table 1 summarizes the information and references about LCC 

data, DGVMs, and atmospheric forcing datasets (GLDAS_2.0, GSWP3, and WATCH+WFDEI) 

as well as about three ET gridded global products (GLDAS_2.0, GLEAM_3.3a, and PML) 

used as reference data for DGVM comparison. It is important to note that although 

GLDAS_2.0 is one of the atmospheric forcings, it also includes ET as a variable. All datasets 

have a monthly time step and a spatial resolution of 0.5° x 0.5°, except GLEAM_3.3a, 

which is available at 0.25°x0.25°. The analyses were done over the 1950–2010 time 

period, except for the analysis of austral summers (1951–2010) and the model comparison 

to reference data (1980–2010). Following the same simulation protocol, DGVMs were 

executed with vegetation spin-ups ranging from 1000 to 2000 years to achieve equilibrium 

between climate and vegetation. 

LPJmL4, LPJ-GUESS, and INLAND models were originally developed as DGVMs; ORCHIDEE, 

on the other hand, was originally developed as a Land Surface Model. These DGVMs have 

distinct configuration structures (time step, soil depth, vegetation characteristics) and 

therefore they need different sets of forcing variables (Table 1). 

2.2. Definition of multi-model ensembles 

Sub-samples of the 24 simulations were clustered in five Multi-Model Ensembles 

(hereafter MME): MMEGLDAS, MMEMOD, and MMEFORC for the LCC case only; and for both 

cases MMELCC and MMEPNV (Fig. 2, bottom). Note that simulations (s) are tagged with a 

number (e.g. s5) at the top of Fig. 2 to indicate the composition of the multi-model 

ensembles.  



 

DGVMs ability to describe the seasonal evolution of ET monthly means and the 

corresponding interannual variability during 1950–2010 is assessed in section 4.1. The 

mean and individual members of the 4-member MMEGLDAS are compared with the 

GLDAS_2.0 data as a reference. This analysis will allow a direct comparison among DGVMs 

since we focus on one atmospheric forcing dataset only (GLDAS_2.0) which is also 

consistent with the ET GLDAS_2.0 reference data (the only dataset available for the period 

1950–2010). Moreover, ET from GLDAS_2.0 has been used in other studies of South 

America (e.g., Spennemann and Saulo, 2015).  

MMEMOD and MMEFORC are defined to distinguish the ET uncertainty from DGVMs from the 

ET uncertainty in the forcing data, respectively. Moreover, since uncertainty levels present 

in ET gridded reference datasets over South America are not negligible (Sörensson and 

Ruscica, 2018), both MMEMOD and MMEFORC are compared to the ensemble of ET 

reference datasets (GLDAS_2.0, GLEAM_3.3a, and PML, see Table 1) in section 4.2. In this 

case, the period is reduced to 1980–2010 since GLEAM_3.3a and PML are based on 

satellite information, which was made available widely in the 1980s.  

Finally, MMELCC and MMEPNV are employed to describe the characteristics of the trend, 

variability, and extremes of ET anomalies in the three regions of study for the period 

1951–2010 (section 4.3). With this choice, we want to analyze the influence of LCC on ET 

long-term dynamics, differently from the analyses in Sections 4.1 and 4.2, where we focus 

on DGVM and forcing uncertainties related to the seasonal cycle only. Particular focus is 

made on the summer season —DJF— when precipitation trends and variability are 

remarkable. MMELCC and MMEPNV results are shown with boxplots, highlighting their 

medians, which were analyzed statistically with the Wilcoxon rank test (Gibbons and 

Chakraborti, 2011; Hollander and Wolfe, 1999). It is a paired difference test that can be 

used as an alternative to the paired Student's t-test when the distribution of the 

difference between two sample means cannot be assumed to be normally distributed. The 

MME spread is defined as the interquartile range of each boxplot. As the same 



 

atmospheric forcings drive both types of experiments (LCC and PNV), the differences 

between results will identify the impact of land-cover changes on regional 

evapotranspiration. 

2.3. Selection of summer ENSO and EOF1 events 

Historical ENSO episodes are identified using the Oceanic Niño Index (ONI) developed by 

NOAA’s Climate Prediction Center (CPC, online at 

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php). 

The ONI is computed from 3-month running mean values of ERSST.v5 sea surface 

temperature (Huang et al. 2017) anomalies in the Niño 3.4 region. El Niño (EN) events are 

characterized by a positive ONI greater than or equal to +0.5°C, while La Niña (LN) events 

are characterized by ONI values less than or equal to −0.5°C, for a period of at least 5 

consecutive overlapping 3-month seasons according to CPC definition. 

The influence of the activity of the year-to-year summer rainfall variability leading pattern 

(EOF1) is also assessed. Following Díaz and Vera (2017), the EOF1 was obtained as the first 

mode of an Empirical Orthogonal Function (EOF) analysis applied over the subtropical 

SESA domain encompassed between 39°–16°S and 64°–31°W (dashed rectangle in Fig. 1a).  

The EOF applied was computed using the DJF precipitation anomalies of each of the three 

atmospheric forcing datasets (Table 1). Each EOF1 temporal evolution is described 

through its corresponding principal component time series. Fig.1a shows the correlation 

pattern between DJF precipitation anomalies at each SESA point with the temporal 

evolution of subtropical EOF1, computed with the GLDAS_2.0 database as an example 

(GSWP3 and WATCH+WFDEI yield similar results). To define positive and negative events 

of the EOF1, we averaged the EOF1 temporal evolution of the three datasets. Positive 

(negative) EOF1 events are defined as those DJF for which the average is larger (smaller) 

than 1 (-1) standard deviation of the 1951–2010 period.  

https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php


 

Table 2 summarizes DJFs that are identified as ENSO (EN, LN) and/or EOF1 events. In total, 

22 EN, 18 LN, 10 positive EOF1 (+EOF1), and 10 negative EOF1 (-EOF1) events are 

identified within the 1951–2010 period. Note that some DJFs are identified twice, for 

example, 2009 is both an LN event and a -EOF1 event.  

3. Regions: climate characterization 

While the lLPB and SACZ regions are defined considering the dipole-like spatial structure 

and localization of the main cores of action of the subtropical EOF1 (Fig. 1a), the 

motivation for studying uLPB relies on the maximum native vegetation reduction in the 

entire continent (Fig. 1c). As a result, SACZ is comprised between 22°–14°S and 47°–39°W 

but without the southwestern corner comprised between 19°S and 22°S and 47°W and 

44°W; lLPB is between 36°–27°S and 62°–50°W; and uLPB, between 26°–19°S and 57°–

47°W.  

The climatic features of SACZ, lLPB, and uLPB are explored through the mean seasonal 

cycle and interannual variability of monthly values of precipitation and incoming 

shortwave radiation (Fig. 3). The ensemble mean and spread (i.e., max–min) of the three 

atmospheric forcing datasets (Table 1) are used for such purposes. Mean seasonal cycles 

(Fig. 3A) show that SACZ and lLPB have a kind of opposite behaviour regarding the annual 

amplitude of both variables. SACZ has a marked monsoon regime with heavy summer 

rainfall and a marked dry JJA season (Fig. 3a) with low amplitude in the annual radiation 

cycle (Fig. 3b). lLPB does not have a marked dry season (Fig. 3e) and incoming radiation 

follows the solar cycle with marked amplitude (Fig. 3f). uLPB shows a wet summer and a 

lighter dry season in late winter in respect to SACZ (Fig. 3c); its radiation cycle minimizes in 

June, but maximizes earlier in November (lLPB/SACZ peaks in December/February) (Fig. 

3d). Note that the greatest spread in the representation of the annual cycle of radiation 

corresponds to SACZ (Fig. 3b). 



 

Interannual variability (Fig. 3B) of precipitation shows similar behaviour to the mean 

annual cycle (larger rainfall volumes imply more rainfall variability (e.g., Garreaud et al. 

2009)), with lower values. Regarding incoming radiation, the largest amplitude is now 

seen in SACZ (Fig. 3h) and reduced in lLPB (Fig. 3l), which is quite similar to uLPB (Fig. 3j). 

Note that the spread among atmospheric datasets is larger for radiation than for 

precipitation. 

4. Evapotranspiration results and discussion 

4.1. Seasonal cycle 

To evaluate the annual cycle of ET in the entire simulation period, we analyzed ET 

seasonality from DGVMs forced only by the GLDAS_2.0 atmospheric dataset (members in 

MMEGLDAS) and compared it to the ET GLDAS_2.0 reference data for the 1950–2010 period 

(Fig. 4). GLDAS_2.0 is the only forcing dataset that includes ET information and the only 

reference dataset that goes back to 1950. 

ET mean annual cycles evidence seasonality with values ranging from 20 to 120 

mm/month approximately (Fig. 4a, b, c). Unlike the seasonal cycles of precipitation and 

radiation, ET annual cycles are quite similar among regions. The MMEGLDAS mean (black 

line) is closer to the reference dataset (magenta line) than individual simulations, with 

values lower than GLDAS_2.0 ones in all regions (mainly in lLPB) and months, except 

during the beginning of the wet season in SACZ (SON) and uLPB (SO) when they are equal. 

Note that the MMEGLDAS mean in SACZ/lLPB tends to follow the annual cycle of 

precipitation (Fig. 3a) / incoming radiation (Fig. 3f). This behaviour somehow explains why 

the timing of the ET minimum is different in each region, being it August in SACZ and June 

in lLPB. On the intra-annual scale, ET responds more directly to precipitation in SACZ.  In 

lLPB, it responds more to radiation because of water availability throughout the year; 

however, energy for latent heat is limited in winter. ET reacts differently in uLPB, with a 



 

maximum in January (as in precipitation, Fig. 3c) and a minimum in June (as in radiation, 

Fig. 3d). The spread among MMEGLDAS components exhibits seasonal variations too. The 

best agreement among DGVMs occurs in lLPB during winter months when atmospheric 

demand (i.e., radiation) is relatively low, and in SACZ with the ending of the dry season 

when this demand (partially) maximizes. uLPB stands out as the region where the 

disagreement among DGVMs occurs all year long, probably because precipitation and 

radiation never reach such low minimum values as seen in SACZ and lLPB. Across the three 

regions, LPJmL4 and LPJ-GUESS behave similarly and reproduce the GLDAS_2.0 relative 

minimum in February, while ORCHIDEE is a lower outlier. INLAND is an upper outlier just 

in SACZ and uLPB since in lLPB, it is overpassed by GLDAS_2.0 which lies mainly beyond 

the DGVM spread. 

The seasonal evolution of the interannual variability of ET monthly values differs among 

regions (Fig. 4d, e, f).  In contrast to the seasonal cycles of precipitation and radiation, 

annual cycles in SACZ and uLPB are distinct with prominent peaks in October and 

September, respectively. In SACZ, such peak occurs after a very dry winter (Fig. 3a) with 

too low soil water storage followed by an increment in incoming radiation entering spring 

(Fig. 3b). With these surface conditions, the remotely driven early or late beginning of the 

monsoon season makes much difference to ET (Grimm et al. 2007). The DGVMs highly 

agree on the ET peak and highly disagree during the rest of the year when the DGVM 

spread is vast. For example, no decrease is observed in the interannual variability of 

INLAND ET during the dry season in SACZ (Fig. 4d), probably because absolute ET is high 

during these months (Fig. 4a). Variability in lLPB (Fig. 4f) is similar to that of the mean 

seasonal cycle (Fig. 4c) as it was seen in precipitation (Fig. 3b,k), with more agreement 

among DGVMs during cold months. MMEGLDAS mean values are still generally lower than 

GLDAS_2.0 ones, though only in lLPB (Fig. 4f). The opposite occurs in SACZ and uLPB (Fig. 

4d, e). 

4.2. Sources of uncertainty  



 

The role of DGVMs versus that of atmospheric forcing (used by the DGVM) in contributing 

to the uncertainties associated with the mean seasonal cycle of ET is further analyzed. The 

uncertainty due to DGVMs is quantified by the spread between members of MMEMOD and 

the uncertainty due to forcings, by the spread between members of MMEFORC (section 2.2 

for MME compositions). Fig. 5 shows a much larger spread in MMEMOD (light grey band) 

than in MMEFORC (dark grey band) where the spread is almost zero in many months. This 

means that the differences in DGVMs provide larger uncertainty ranges in ET seasonality 

than those emerging from differences in atmospheric forcings. At this mean monthly 

scale, the low ET uncertainty due to forcings is consistent with the low uncertainty in both 

precipitation and radiation forcings (Fig. 3A).  

Moreover, and unlike the previous section where only GLDAS_2.0 was considered as ET 

reference dataset, here we present the uncertainty existing in the ensemble of three ET 

reference datasets and in a shorter period (section 2.1). Uncertainty (light magenta band) 

is present almost all year in SACZ (Fig. 5a) and lLPB (Fig. 5c), and notably from April to 

August in uLPB (Fig. 5c).  

If we now focus on ensemble means, the annual cycles are represented with black lines 

for modelled ET and magenta lines for ET reference data. Note that the black line 

represents the MMELCC mean which is equal to the MMEMOD mean and to the MMEFORC 

mean because of how the ensembles were built (Fig. 2). Consequently, these lines show 

the most general ET comparison between the whole multi-model ensemble and the 

reference data for a shorter period of 31 years (the annual cycle of MMELCC of the long 61-

year period was very similar, not shown). Analogously to Fig. 4, MMELCC mean values are 

generally lower than the means of the reference dataset even though this difference is 

smaller in Fig. 5. In other words, the comparison between Fig. 5 and Fig. 4 made it possible 

to identify GLDAS_2.0 as an upper outlier in respect to both satellite-based ET reference 

products, mainly for the winter months in lLPB (magenta line in Fig. 4c is shifted to lower 

values in Fig. 5c). The original reasons for using ET from GLDAS_2.0 were its long-period 



 

(equal to the multi-model ensemble) and its consistency as one of the atmospheric 

forcings used for the simulations. However, although ET data in GLDAS_2.0 are obtained 

similarly to ET in DGVMs, the land surface model used to obtain GLDAS_2.0 data (Noah) 

disregards the temporal variability of vegetation unlike other ET sources (DGVMs, 

GLEAM_3.3a, and PML).  

4.3. Summer evapotranspiration dynamics 

4.3.1. Evapotranspiration trends 

Austral summer ET linear trend magnitudes were estimated for each region through linear 

least square regression analysis using Pearson's correlation and are displayed in Fig. 6. In 

this figure, trends are shown for each MMELCC and MMEPNV simulation (as described in Fig. 

2) and also with boxplots for each MME in both scenarios (each boxplot includes a sample 

of 12 trends). Trends in the GLDAS_2.0 reference dataset (magenta dots) are shown for 

comparison, but they are not statistically significant. 

In SACZ and uLPB, there is marked uncertainty in the sign of trends, with values going 

from -10 to +12 mm/season/decade. This uncertainty is mainly associated with DGVM 

response to different atmospheric forcings. For example, the largest robust ET trends for 

all DGVMs, regions, and scenarios were obtained from simulations driven by the 

WATCH+WFDEI atmospheric forcing (squares). WATCH+WFDEI radiation behaves 

differently from the other two forcings (not shown) and could be the reason for the 

different trends. On the contrary, and with a less pronounced response, GLDAS_2.0 

forcing (circles) causes significant negative ET trends in the LCC scenario. These results 

highlight the importance of trends in forcing precipitation and other ET drivers such as 

radiation (Teuling et al. 2009) or vapour pressure deficit (Barkhordarian et. al. 2019). On 

the other hand, lLPB shows the lowest uncertainty, with robustly positive trends and 

values roughly between 2 and 4 mm/season/decade. LPJmL4 differs from the rest of the 

DGVMs and shows the largest trend with the lowest forcing uncertainty. 



 

The analysis of MME medians reveals that no trend signal is seen over SACZ (median not 

different from 0); lLPB shows significant positive trends (p=0.5); and uLPB has a significant 

trend of -3.15mm/season/decade in the LCC scenario significantly differing from the 

missing trend in the PNV case. Note that although uLPB shows a large MME spread (as 

SACZ), the median MME trend responds to the LCC effect significantly.  

Therefore, land-cover change is not a dominant factor in explaining the positive 

evapotranspiration trend over lLPB but it is probably the cause for the negative ET trend in 

uLPB. The LCC effect on surface fluxes seems easier to estimate in regions such as uLPB 

where land conversion was made from forests. This can be partially explained by the fact 

that in lLPB, changes have been mainly from grasslands to croplands instead of from 

forest to cropland (Salazar et al. 2015). Since grasslands and cropland have similar rates of 

ET, smaller differences can be expected than in uLPB. Moreover, in the lLPB domain 

defined for this study, the change in the fraction of natural vegetation between 1950 and 

2010 is not meaningful (Fig. 1b, c). 

4.3.2. ET response to main modes of precipitation variability 

Detrended DJF ET anomalies were computed from the MMELCC and MMEPNV. To assess the 

influence of ENSO on ET variability, we calculated the ET seasonal anomaly averaged over 

the 22 EN and 18 LN ENSO-events (Table 2) for each of the 12 MME members. Fig. 7 

shows the boxplots of the 12 MME ET anomalies as well as GLDAS_2.0 ET anomalies. MME 

anomalies are relatively small in magnitude for EN events over SACZ and uLPB with 

negative and positive values, respectively. Most anomalies in LN events are negligible 

(MME medians not different from 0). On the other hand, ET anomalies over lLPB are all 

positive in EN events with magnitudes around +10 mm/season. In LN events, all anomalies 

are negative with magnitudes around -10mm/season. Differently, the MME spread 

presents asymmetric behaviour, with a lower interquartile range in LN than in EN events. 

The influence of the leading pattern of southeastern South American precipitation 

variability, EOF1, was also assessed in the same figure. Mostly in lLPB and to a lesser 



 

degree in uLPB, the behaviour of composites with smaller sub-samples of ET anomalies 

(ten +EOF1s and ten -EOF1s, Table 2) is similar to that observed for precipitation, i.e., 

positive anomalies for +EOF1 and negative for -EOF1. The opposite phase but with low 

median values is seen in SACZ. GLDAS_2.0 DJF ET anomalies are found statistically 

significant in all cases (EN, LN, EOF1s) for lLPB, and in the +EOF1 case for uLPB. These 

anomalies are consistent in sign with MME median values, with better matching in EOF1s 

than in ENSO cases.  

Overall, the MME median and spread during EOF1 DJF events are higher than during 

ENSO. Therefore, DJF ET anomalies seem to be more affected by regional precipitation 

variability than by large-scale variability. However, DJF ENSO and EOF1 events are not 

independent, and the number of ENSO events doubles that of EOF1 events (Table 2). Note 

that in SACZ, the low ET response to ENSO and EOF1 phases is coherent with the fact that 

the summer continental first mode, with strongest dipole component over the SACZ and 

weaker component of opposite sign over lLPB, does not have significant connection with 

ENSO (first mode in Grimm 2011; Grimm and Zilli, 2009). Yet, the EOF1 used as reference 

in this manuscript is a subtropical mode (domain over SESA, Fig. 1a) with the strongest 

dipole component over lLPB and weaker ones of opposite sign over SACZ. Therefore, 

higher median values of the anomalies in lLPB (Fig. 7) are expected, since this mode 

represents the variability in lLPB much better than in SACZ and it is connected with ENSO 

because lLPB is much affected by ENSO. This mode is similar to summer mode 3 in Grimm 

and Zilli (2009), which is connected to ENSO and also presents a trend. 

These results were mostly valid for MMELCC and MMEPNV since no significant difference 

between median anomalies of MMELCC and MMEPNV was found in this analysis. 

4.3.3. ET interannual variability and extremes 

The subsequent analysis focuses on lLPB and uLPB regions since SACZ results were not 

robust. In Fig. 8, the temporal evolution of linear detrended summer ET anomalies is 



 

represented for each DJF by boxplots of the corresponding MMELCC and MMEPNV values. 

DJF anomalies of GLDAS_2.0 reference data are added for comparison.  

Since ET summer anomalies over lLPB resemble clearly the corresponding precipitation 

anomalies during ENSO and EOF1 events, as described in the past section, high negative 

(positive) ET absolute anomalies will indicate dry (wet) summers. In Fig. 8a, robust results 

were obtained for more than one third of DJFs, i.e., all members of the MMELCC show the 

same anomaly sign.  Of those “robust” wet (dry) DJFs, two thirds and one third are 

identified as EN and +EOF1 (LN and -EOF1), respectively (Table 2). In particular, the 

commonly agreed precipitation sign behaviour is seen in ET, mainly in the wet 1998 and 

2010 EN/+EOF1 events and the dry 1965 and 2009 LN/-EOF1 events. On the other hand, 

the -EOF1/EN 1952 event is identified as dry, while the +EOF1/LN 2001 is wet. These 

results would indicate that EN (LN) is not the only driver of climate anomalies leading to 

wet (dry) conditions in lLPB.  

According to the literature, the dry LN/-EOF1 DJF of 1965 recorded a moderate drought. 

The driest summer occurred in 1989 during LN (median of -54.1 mm/season) and was 

identified within a prolonged drought that significantly decreased corn productivity in the 

region (Rivera and Penalba, 2014). The second driest summer was LN/-EOF1 2009 with -

50.1mm/season, reflecting the 2008/9 macro-regional extreme drought over southern 

South America (Müller et al. 2014; Spinoni et al. 2019). The wettest DJFs took place during 

the last decade of the whole period with +42.7mm/season in the EN/+EOF1 2010 followed 

by +37.8mm/season in 2003. Note that dry summers are more extreme than wet 

summers in terms of magnitude of ET anomalies, as there is possibly an atmospheric 

upper limit to ET, while no lower limit exists. The same happens with GLDAS_2.0 

extremes, which show particularly large negative anomalies in the mentioned dry 

summers of 1965, 1989, and 2009. 

Larger DJF ET anomalies and interannual variability are seen in lLPB as compared to uLPB 

(Fig. 8b) (as also shown in Fig. 4 and Fig. 7). The standard deviation as a measure of the 



 

interannual variability of the MMELCC median time series is 22mm/season in lLPB and 

8mm/season in uLPB. GLDAS_2.0 also detects the larger variability in lLPB (31mm/season) 

as compared to uLPB (12mm/season). The large ET interannual variability in lLPB is 

consistent with large DJF surface variability (Ruscica et al. 2016; Spennemann et al. 2018), 

particularly in temperature (Menéndez et al. 2016; 2019). In line with the previous 

analysis, ET changes due to LCC are less significant in lLPB than in uLPB. The interannual 

variability of PNV almost equals the interannual variability of LCC (21mm/season) and 

there is practically no significant difference between medians (p>=0.37). The wet El Niño 

2007 is the only exception, with the median of MMELCC exceeding the positive median of 

MMEPNV by 50% (p=0.08); however, these anomalies are below 15mm/season.   

In uLPB, ET is sensitive to LCC, which is seen in the 15% reduction in interannual variability 

from PNV to LCC; and in the median anomalies during three consecutive summers in the 

late 1990s. Fig. 8b shows that positive anomalies disappear in 1997 (p=0.04) and drop by 

45% in 1999 (p=0.02) because of LCC. To a lesser degree, LCC also reduced the positive ET 

anomaly by 35% in 1998 (p=0.2). According to Table 2, summers were neutral (but almost 

+EOF1) in 1997, EN/+EOF1 in 1998, and LN in 1999. Some global studies have found a high 

ET mean during the 1997–98 period identified as an intense EN (Jung et al. 2010; Douville 

et al. 2013). It turns out that these three summers that showed a robust reduction in 

positive ET anomalies due to LCC, were under well-defined ENSO and positive dipole 

phase conditions. These results are validated by the GLDAS_2.0 reference dataset that 

shows anomalies falling within MME ranges, particularly during the late 1990s. 

The smaller spreads in MMELCC compared to MMEPNV can be explained by the fact that all 

MMELCC members were obtained with the same LCC data while in MMEPNV there is a larger 

dependency on the geographical distribution of natural vegetation simulated by each 

DGVM. 



 

5. Summary and conclusions  

The effect of historical land-cover changes (LCC) and precipitation variability on modelled 

evapotranspiration (ET) seasonality, and DJF summer trends and variability were analyzed 

over three regions in southeastern South America. ET data were taken from a new 

ensemble of 24 monthly, 50x50km2 stand-alone DGVM simulations for 1950–2010, a 

product of the CLIMAX project (http://www.climax-sa.org/). The ET annual cycle 

behaviour of DGVMs was found to be similar to the GLDAS_2.0, GLEAM_3.3a, and PML 

reference datasets. This ET seasonal analysis also showed that DGVMs mostly agree when 

mean values reach their minimum during cold and dry months and when interannual 

variability peaks at the beginning of the monsoon season. Fig. 9 summarizes the main 

findings in each region. 

ET uncertainties were more pronounced over SACZ, a region with a marked monsoon 

regime where ET was found to depend on precipitation seasonality mostly. However, 

there is little agreement on the main drivers of ET in the SACZ region which has been 

defined both as energy-limited —where ET is mostly driven by the atmosphere 

(Spennemann and Saulo, 2015; Menéndez et al. 2016)— and as water-limited (Zhang et al. 

2016c; Sörensson and Ruscica, 2018). This contradiction could be due to uncertainties in 

atmospheric drivers, as we found here for radiation. Differences in how the applied 

DGVMs represent the response of vegetation and ET to atmospheric drivers cause 

considerable uncertainty in the annual cycles of both the mean values and the standard 

deviations of simulated ET. Previous studies have also found notable differences among ET 

monthly anomalies from different ET datasets (Sörensson and Ruscica, 2018) and among 

absolute ET values (Pereira et al. 2017) in central-eastern Brazil. During DJF months, the 

interannual variability of radiation and precipitation in SACZ is larger than in uLPB and 

lLPB. The response of ET to precipitation modes of variability and the ET trend signal were 

not robust, in line with the non-significant precipitation trend found in Vera and Diaz 

(2015). In summary, the uncertainty in modelled ET impedes finding a clear ET response to 



 

land and atmospheric conditions in SACZ, which highlights the importance of using 

multiple DGVMs and atmospheric forcings instead of relying on the results of a single 

model or forcing factor.  

In the radiation-limited lLPB region, no clear response was seen of ET to LCC, probably 

because the historical LCC between 1950 and 2010 was not so marked in that region, but 

also because the vegetation types there (grasslands and/or croplands) have similar ET 

rates. On the other hand, ET showed robust responses to regional and large-scale 

variability of precipitation in lLPB. A positive DJF ET trend was simulated coherently with 

the known positive observed precipitation trend over the region (Diaz and Vera, 2017). 

Consistently with the known sign in precipitation anomalies, ET DJF anomalies were 

positive (negative) in EN and +EOF1 (LN and -EOF1) event composites. This is consistent 

with Miralles et al. (2014) who found a significant correlation between GLEAM monthly 

anomalies of ET and an ENSO index in some parts of lLPB (see their Fig. 3a), in the last 30 

years of our study period. Another close influence of precipitation on ET was indirectly 

detected in some extreme summer anomalies related to droughts in lLPB (Müller et al. 

2014; Spinoni et al. 2019). Moreover, the largest summer interannual variability of ET was 

consistent with the fact that lLPB has been identified as a hotspot of land-atmosphere 

interaction (Spennemann et al. 2018). In this region, all the modelled ET statistics (trend, 

anomalies, variability) were mostly consistent with the behaviour of the GLDAS_2.0 ET 

reference dataset. 

Although both lLPB and SACZ regions were defined over the main anomaly cores of the 

subtropical precipitation dipole (EOF1), ET trends and variability were robust in the former 

region and uncertain in the latter. This could be related to the asymmetry of the analyzed 

dipole, which has a stronger component over lLPB than over SACZ (our Fig. 1a). This 

asymmetry was seen in the continental EOF3 shown in Grimm and Zilli (2009), who also 

found a significant trend (till late 1990s) and a stronger relationship to ENSO. On the other 

hand, ET anomalies and associated spread were larger during active dipole phases than 



 

during ENSO phases, since EOF1s capture regional precipitation variability better than 

ENSO indices (e.g., Grimm et al. 2007). 

The region with the most intense LCC is uLPB, with only 20% of natural vegetation left in 

2010 in respect to 1950. Coherently, we found a significant negative DJF ET trend during 

this period, which could not be confirmed with the only ET reference dataset available for 

the period 1951–2010 (GLDAS_2.0, Noah–land surface model). Changes in vegetation are 

usually not implemented in these kinds of land surface models, which lead to a false 

representation of trends in ET components, such as transpiration (Zhang et al. 2016). LCC 

significantly reduced positive DJF ET anomalies in the late 1990s, which according to Tucci 

and Clarke (1998), was when forested areas were reduced to less than 20% of their size in 

the 1950s. Moreover, it was a period that included a positive dipole phase and the warm 

ENSO of 1997–98. However, the magnitude of DJF ET anomalies during ENSO/EOF1s 

composites was low. Therefore, ET dynamics in uLPB was found to be driven by LCC but 

not by precipitation variability, a behaviour also observed in river discharge (Tucci and 

Clarke, 1998; Saurral et al. 2008; Doyle and Barros, 2010). 

The DGVMs used in this study differ in terms of processes and vegetation-type 

parameterization (i.e., plant functional types), so they require different sets of forcings. 

While LPJmL4 and LPJ-GUESS use precipitation, temperature, and downward shortwave 

radiation as input; INLAND and ORCHIDEE additionally need downward longwave 

radiation as well as wind speed and specific humidity at 2m. LPJ-GUESS and LPJmL4 

represent some processes similarly, such as photosynthesis and evapotranspiration, but 

differ in representing vegetation dynamics. These differences amongst DGVMs were 

important for the modelled seasonal cycle of ET, which resulted to be more related to the 

DGVM structure than to the atmospheric forcing dataset. On the contrary, ET trends were 

found to be more dependent on the forcing datasets than on the DGVMs. Specifically, 

radiative forcing introduces a source of high uncertainty on modelled ET (e.g., Badgley et 

al. 2015). Note that there is no contradiction regarding the cause of modelled ET 



 

uncertainties (DGVM and forcings), since we examined different statistics such as 

seasonality and trends, as shown in Sörensson and Ruscica (2018). Similar DGVM 

divergences due to internal processes and climatic forcings are also found in Rezende et 

al. (2021, unpublished data) who explore anthropogenic effects on vegetation productivity 

and evapotranspiration in the southern Amazon.  

Finally, we want to emphasize that since we used uncoupled simulations, we were unable 

to analyze the effects of the land surface, i.e., evapotranspiration, on the atmosphere. In a 

coupled system, reduced ET could lead to reduced or enhanced rainfall by inducing non-

local circulation changes in lower-level moisture fluxes and in the convergence of those 

fluxes (Grimm et al. 2007; Lee and Berbery, 2012; Pereira et al. 2017; Giles et al. 2020). 

These complex processes should be subject of future studies to improve the knowledge of 

land-atmosphere interactions in a system under intense and dynamic anthropogenic 

actions, such as land-cover changes.  
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Abbreviation Complete name and key characteristics of datasets References 

Dynamic Global Vegetation Models (DGVMs) 

INLAND INtegrated model of LAND surface processes (INPE, São José dos Campos, Brazil) 
Timestep: 30min. Atmos. forcing variables: Tmax, Tmin, P, swdwn, lwdwn, w, q. Maximum soil depth: 4 m. #PFTs: 16 Tourigny et al. (2014) 

LPJmL4 Lund Potsdam Jena managed Land model (version 4.0) (PIK, Potsdam, Germany) 
Timestep: daily. Atmos. forcing variables: T, P, swdwn, lwnet. Maximum soil depth: 3 m. #PFTs: 11 Schaphoff et al. (2018) 

LPJ-GUESS Lund-Potsdam-Jena General Ecosystem Simulator (version 4.0.1) (Lund University, Lund, Sweden) 
Timestep: daily. Atmos. forcing variables: T, P and swdwn. Maximum soil depth: 1.5 m. #PFTs: 13 (5 in the tropics) Smith et al. (2014) 

ORCHIDEE ORganising Carbon and Hydrology In Dynamic EcosystEms (version 2.0) (IPSL, Paris, France) 
Timestep: 30min. Atmos. forcing variables: T, P, swdwn, lwdwn, w, q. Maximum soil depth: 2m. #PFTs: 13 Krinner et al. (2005) 

Atmospheric forcing datasets (0.5°x0.5°) 

GLDAS_2.0 Global Land Data Assimilation System (v2).  
http://ldas.gsfc.nasa.gov/gldas  Rodell et al. (2004) 

GSWP3 Global Soil Wetness Project Phase 3.  
http://hydro.iis.u-tokyo.ac.jp/GSWP3/exp1.html Kim et al. n. d. 

WATCH+WFDEI The WFDEI Meteorological Forcing Data as used in the ISIMIP project  
https://www.isimip.org/gettingstarted/input-data-bias-correction/details/5/  Weedon et al. (2011, 2014) 

Evapotranspiration reference datasets  

GLDAS_2.0 Global Land Data Assimilation System (v2) with Noah Land Surface Model.  
http://ldas.gsfc.nasa.gov/gldas. Available between 1948 and 2010 

Ek et al. (2003), Rodell et al. 
(2004), Sheffield et al. (2006) 

GLEAM_3.3a Global Land Evaporation Amsterdam Model. Version 3a.  
https://www.gleam.eu. Available between 1980 and 2010 Martens et al. (2017) 

PML Observation-driven Penman–Monteith–Leuning model.  
https://data.csiro.au/dap/. Available between 1980 and 2010 Zhang et al. (2016b) 

Land-cover change data (1km2) 

LCC PRODES (INPE-PRODES 2019) in Brazilian Amazon and Cerrado, IBGE rest of Brazil, and LUH2 (Land use 
Harmonization) in the rest of the South American countries. 

INPE, PRODES. 
Hurtt et al. (2020) 

Table 1: Summary of key characteristics of DGVMs, atmospheric forcing variables, and land-cover change datasets used for simulations; and 
evapotranspiration reference datasets. T refers to surface air temperature, Tmax and Tmin refer to surface air maximum and minimum temperatures 
respectively, P to precipitation, swdwn to shortwave downward radiation, lwdwn to long wave downward radiation, lwnet to long wave net radiation, 

w to wind speed and q to air specific humidity. #PFTs indicates the number of plant functional types. 

http://ldas.gsfc.nasa.gov/gldas


 
 +EOF1 -EOF1 - Total 

EN 1966, 1973/7, 1998, 
2010 1952, 1964 1954/8/9, 1969, 1970/8, 1980/3/7/8, 1992/5, 

2003/5/7 22 

LN 1971/4, 1984, 2001 1965, 1985, 2009 1955/6, 1972/5/6, 1989, 1996/9, 2000/6/8 18 
Neutral  1981 1957, 1960/2/8, 1979 rest of 14 DJFs  
Total 10 10   

 
Table 2: Austral summers (DJFs) identified as EOF1s (columns) and/or ENSO (rows) events 

during the analyzed 1951–2010 period. EOF1 events are based on precipitation forcings, while 
ENSO events are taken from the NOAA´s CPC website (see section 2.3. for details). The year 

label corresponds to that of February, for example, 1956 refers to the summer of 1955–1956. 
 



 

Fig. 1: (a) Correlation pattern (p-value<0.05) between DJF precipitation and the temporal evolution of the 
subtropical EOF1 calculated for southeastern South America (SESA, dashed rectangle) using GLDAS_2.0 
dataset (see section 2.3 for details). Black lines indicate the three regions under study: South Atlantic 

Convergence Zone (SACZ), upper La Plata Basin (uLPB), and lower La Plata Basin (lLPB). Fraction of natural 
vegetation in (b) 1950 and (c) 2010, representing the land-cover change undergone by the continent. 
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Fig. 2. (Top) Diagram of simulation protocol: Evapotranspiration (ET) simulations obtained from four DGVMs 
forced by three atmospheric datasets, under two conditions: observed land-cover changes (LCC) and 
potential natural vegetation (PNV). The 24 ET simulations (s) are tagged with a number, e.g., the ET 

simulation from LPJmL4 DGVM forced by GSWP3 under the LCC scenario is defined as ‘s5.’ (Bottom) Multi-
model ensemble definitions: Five multi-model ensembles (MME) are combinations of 24 simulations. MMEs 

use only land-cover change simulations, except MMEPNV. 
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Fig. 3. Annual cycles of precipitation (blue) and incoming radiation (red) of the three atmospheric forcings 
(Table 1) for each region under study (rows), in 1950–2010. Spread (measured as maximum–minimum) in 
grey and mean in full lines. Monthly means are shown in A) and monthly standard deviations as an indicator 

of interannual variability in B). 
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Fig. 4. Annual cycles of evapotranspiration (mm/month) of the MMEGLDAS members (mean in black line) and 
GLDAS_2.0 (magenta line) for each region (rows), in 1950–2010. Left: monthly means. Right: monthly 

standard deviations as an indicator of interannual variability. 
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Fig. 5. Mean evapotranspiration (ET) annual cycles from MMEMOD and MMEMOD (spread in grey and means in 
black lines) compared to ET reference datasets (spread in light magenta and means in magenta lines), for 

each region (rows), in 1980–2010 (mm/month). Note that means (black lines) of MMEMOD and MMEFORC are 
equal and the same as MMELCC (see section 4.2 for details). 
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Fig. 6. Summer (DJF) ET linear trend slopes of both MME (boxplots, LCC in red and PNV in blue) for each 
region (rows), in 1951–2010. The bottom, middle and top of each boxplot are the 25th, 50th, and 75th 

percentiles, respectively. Bottom and top whiskers represent minimum and maximum values. Wilcoxon rank 
test detects MME medians that are different from 0 (x), and between LCC and PNV scenarios (**) (p<0.15). 

Individual ET trends for each DGVM driven by the GLDAS_2.0 (circles), GSWP3 (triangles) or 
WATCH+WFDEI (squares) atmospheric forcings, and GLDAS_2.0 ET reference dataset (magenta circle). 

Significant trends have black borders (thinner for p<0.2 and thicker for p<0.05). 
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Fig. 7: Composite of linear detrended summer ET mean anomalies of both MME (LCC in red and PNV in blue) 
under El Niño (EN), La Niña (LN), positive and negative EOF1 DJF, for each region (rows), in 1951–2010. 

Wilcoxon rank test detects MME medians that are different from 0 (x), and between LCC and PNV scenarios 
(**, none in this case) (p<0.15). Magenta dots: similar GLDAS_2.0 anomalies. Black borders: means 

different from 0 in GLDAS_2.0 (p<0.08). 
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Fig. 8:  Linear detrended summer ET anomalies of both MME (LCC in red and PNV in blue) in (a) lLPB and 
(b) uLPB regions. Full lines: temporal evolutions of MME medians. Outliers were removed for clear 

visualization of results. Wilcoxon rank test detects MME medians that are different between LCC and PNV 
scenarios (**, p<0.15). Magenta dots: similar GLDAS_2.0 anomalies. The year label corresponds to 

February (e.g., 1960 refers to the DJF of 1959–1960). Notice that vertical ranges are different. 
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Fig. 9: Summary of main findings in each region. Arrows indicate trends in evapotranspiration (ET), 
precipitation (P), and fraction of natural vegetation (NV). Arrows with letters indicate trends that are 

statistically significant. LCC: land-cover change. 

A
cc

ep
te

d 
A

rti
cl

e

This article is protected by copyright. All rights reserved.


	joc.7350.pdf
	Abstract
	1. Introduction
	2. Data and methodology
	2.1. Simulations and gridded products
	2.2. Definition of multi-model ensembles
	2.3. Selection of summer ENSO and EOF1 events

	3. Regions: climate characterization
	4. Evapotranspiration results and discussion
	4.1. Seasonal cycle
	4.3. Summer evapotranspiration dynamics
	4.3.1. Evapotranspiration trends
	4.3.2. ET response to main modes of precipitation variability
	4.3.3. ET interannual variability and extremes


	5. Summary and conclusions
	7. Bibliography




