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Abstract 43 

Global aridification is projected to intensify. Yet our knowledge of its potential impacts on species 44 
ranges remains limited. Here, we investigate global aridity velocity and its overlap with three 45 
sectors (natural protected areas, agricultural and urban areas) and terrestrial biodiversity in 46 
historical (1979-2016) and future periods (2050-2099), with and without considering vegetation 47 
physiological response to rising CO2. Both agricultural and urban areas showed a mean drying 48 
velocity in history, although the concurrent global aridity velocity was on average +0.05/+0.20 km 49 
yr-1 (no CO2 effects/with CO2 effects; “+” denoting wetting). Moreover, in drylands the shifts of 50 
vegetation greenness isolines were found to be significantly coupled with the tracks of aridity 51 
velocity. In future, the aridity velocity in natural protected areas is projected to change from 52 
wetting to drying across RCP2.6, RCP6.0 and RCP8.5 scenarios. When accounting for spatial 53 
distribution of terrestrial taxa (including plants, mammals, birds and amphibians), the global 54 
aridity velocity would be -0.15/-0.02 km yr-1 (“-” denoting drying; historical), -0.12/-0.15 km yr-1 55 
(RCP2.6), -0.36/-0.10 km yr-1 (RCP6.0) and -0.75/-0.29 km yr-1 (RCP8.5), with amphibians 56 
particularly negatively impacted. Under all scenarios, aridity velocity shows much higher multi-57 
directionality than temperature velocity, which is mainly poleward. These results suggest that 58 
aridification risks may significantly influence the distribution of terrestrial species besides 59 
warming impacts and further impact the effectiveness of current protected areas in future, 60 
especially under RCP8.5, which best matches historical CO2 emissions (1).  61 

 62 

Significance 63 

Under climate change, a point on a map needs to move in some speed and direction to maintain its 64 
current climate niche. We calculated the speeds and directions of aridity shifts across the globe to 65 
approximate species migration in natural-human systems driven by changes in water availability. 66 
We found historically the aridity shifts had driven migration of vegetation greenness isolines in 67 
multiple regions. Most importantly, global drying would be accelerated for terrestrial taxa without 68 
mitigation actions. This would leave some species unable to adapt quickly enough, especially 69 
amphibians, which will suffer the largest aridification speed against plants, birds and mammals. 70 
These findings suggest strong climate mitigation actions are required for the benefit of both 71 
terrestrial biodiversity and human well-being.      72 

 73 

Introduction 74 

There is general agreement that climate warming will be one of the greatest threats to ecosystem 75 
functioning in multiple ways and have substantial impacts on agriculture and human health (2, 3). 76 
As a response to warming, precipitation will also increase but with large spatial heterogeneity (4). 77 
The reshuffling of temperature and precipitation will lead to shift of current or emergence of new 78 
aridity regimes. These changes are predicted to result in complicated biological consequences as 79 
aridity plays an important role in controlling ecosystem dynamics and biogeochemical cycling (5-80 
8). This is true even in humid regions as the temporal distribution of water availability is usually 81 
not uniform and species have adapted to high water availability. Take tropical ecosystems as an 82 
instance, even modest changes in dry-season length can increase tropical tree mortality (9) and 83 
longer dry seasons can change the population growth rates and structure of tropical bird 84 



 

communities (10). Persistent drying would degrade tropical forest canopies (11) and further have 85 
detrimental effects on biodiversity (12), resulting in functional, taxonomic and phylogenetic 86 
homogenization (13).  87 

Many studies have reported warming impacts on species ranges (14, 15), such as their poleward 88 
and uphill shifts. Yet, how aridity changes will drive species shifts has not been well addressed. 89 
Moreover, most previous studies ignored species like different varieties of crops and urban trees 90 
in human managed systems. To date, it is still a grand challenge to assess the shift rate of each of 91 
major species in response to climate forcing, as species-specific migration models are usually built 92 
upon very limited observations in the current climate conditions (16, 17) . Therefore, we use the 93 
generic but ecologically relevant local climate velocity to approximate species migration rates (15, 94 
18), which, through merging spatial and temporal gradients, describes the moving speed and 95 
direction required by a point to maintain its current climate domain. A number of studies have 96 
shown a remarkable correlation between observed terrestrial or marine species shifts and the 97 
velocity of climate warming (19-21). Since ecosystems are individually or jointly controlled by 98 
temperature and water availability, it is expected that ecosystems will also be impacted by the 99 
aridity velocity (derived from aridity index, the ratio of precipitation over potential 100 
evapotranspiration). 101 

In this study we evaluate how aridity velocity changes from historical (1979-2016) to future 102 
periods, using the aridity index based on the FAO reference crop potential evapotranspiration 103 
model (AI_RC) and one of its variants considering vegetation physiological responses to elevated 104 
CO2 (AI_CO2) developed by Yang et al. (22). Following Loarie et al. (15) and Diffenbaugh and 105 
Field (14), we focus on a future period (2050-2099) under three Representative Concentration 106 
Pathways (RCP2.6, RCP6.0 and RCP8.5) rather than the whole century as climate change is more 107 
linear within a limited time window, facilitating the assumption of linear trends in estimating 108 
climate velocity. Meanwhile, we also calculate the migration of isolines of vegetation greenness 109 
using satellite observations during 1982-2015 to compare with the concurrent aridity velocity. 110 
Furthermore, we stack the projected aridity velocity to the global distributions of terrestrial 111 
vertebrates and plants to identify areas and taxa of high aridification risks. Because aridity is a 112 
nonlinear function of multiple climatic variables that may have complex interactions, it is 113 
hypothesized that aridity velocity would show non-uniform change under different RCPs. 114 

Results 115 

Our results show that during 1979-2016 aridity velocities based on AI_RC and AI_CO2 showed 116 
minor difference in either speed or direction (Figs. 1A and 1B). Aridity velocity exhibited wetting 117 
patterns in Sahel Africa, southwestern Africa, most parts of Asia, and Australia, but drying patterns 118 
in most of North and South America, Europe, Middle East, and west Russia (Figs. 1A and 1B). In 119 
contrast, the changes in the concurrent temperature velocity were more homogeneous (Fig. 1C). 120 
The directions of aridity and temperature velocities showed obvious differences that aridity 121 
velocity (for both AI_RC and AI_CO2) was more multi-directional at the global scale (SI Appendix, 122 
Figs. S1A and S1B) whereas temperature velocity was generally poleward (SI Appendix, Fig. S1C). 123 
But at the regional scale aridity velocity showed one uniform direction in some areas, such as in 124 
central U.S. (eastward), Sahel Africa (northward), and northwestern Australia (southward, SI 125 
Appendix, Figs. S1A and S1B). In future, the aridity velocity tends to be more southward and 126 
eastward (SI Appendix, Fig. S1). We also compared the aridity velocities (for AI_RC) derived from 127 
two different historical climate datasets, i.e., EWEMBI and CRUNCEP, and found they were 128 



 

generally consistent in the spatial patterns (SI Appendix, Fig. S2) and had comparable global mean 129 
aridity velocity (+0.05 km yr-1 vs. +0.01 km yr-1), with major differences located in east North 130 
America and east Australia (SI Appendix, Fig. S2). 131 

<Figure 1 here> 132 

Aridity velocities under RCP2.6 generally show a weaker magnitude than those in history, but 133 
there would be more areas with drying velocities in the Southern Hemisphere (Figs. 1D and 1E). 134 
Particularly in Australia, the historical wetting velocities would turn to drying velocities (Figs. 1D 135 
and 1E) directing to coastlines (SI Appendix, Figs. S1D and S1E). Higher warming under RCP6.0 136 
would greatly influence the spatial patterns of aridity velocities in the Northern Hemisphere (Figs. 137 
S1G and S1H). The most obvious changes occur in east North America, Europe west and east 138 
Siberia with the sign of aridity velocity reversed (Figs. 1G and 1H). Further warming under 139 
RCP8.5 results in similar spatial patterns of aridity velocities to those under RCP6.0 but with larger 140 
speeds, notably in North America, Europe, east Siberia, South America and southern Africa (Figs. 141 
1J and 1K). Across all the three RCP scenarios, the largest uncertainty (in standard deviation) of 142 
aridity velocity among different climate projections occurs in northern high latitudes, Amazon and 143 
Australia (SI Appendix, Fig. S4). The spatial patterns of uncertainty in future aridity velocity are 144 
similar to those of future temperature velocity (SI Appendix, Fig. S3) and both are related to 145 
topography (SI Appendix, Fig. S4 and Discussion S1).  146 

To validate whether the estimated aridity velocities are indicative of vegetation shifts, we 147 
calculated isolines of multi-year mean annual vegetation greenness during 1982-1986 and 2011-148 
2015, respectively, using the AVHRR NDVI3g v1 dataset. Northern Australia, Sahel and southern 149 
Africa (Fig. 2) were particularly taken as examples, because ecosystems in these regions are water-150 
dominated and have relatively flat landscapes and low intensity of human activities, such as 151 
irrigation, grazing, wood harvest and deforestation (SI Appendix, Figs. S5-S8), which are 152 
particularly beneficial for detecting long-term expansion or contraction of vegetation ranges 153 
induced by aridity changes. The migration distances (SI Appendix, Method S1) of NDVI isolines 154 
in the three regions were all significantly correlated with the concurrent aridity velocities (Fig. 2). 155 
Moreover, we also used the AVHRR vegetation continuous fields (VCF) data to investigate 156 
whether the isolines of herbaceous fractions migrated following aridity velocity. The results show 157 
that herbaceous VCF was significantly coupled with aridity velocity in both Sahel (r = 0.35 and p 158 
< 0.001; SI Appendix, Fig. S9B) and southern Africa (r = 0.73 and p < 0.001; SI Appendix, Fig. 159 
S9C), except in northern Australia. The reason lies in that the responses of vegetation greenness 160 
and vegetation composition to drying or wetting are not always synchronous. In northern Australia, 161 
as wetting during 1982-2015, NDVI generally increased but herbaceous fraction decreased in a 162 
large extent (Fig. 2A and SI Appendix, Fig. S9A). Zhang et al. (23) also reported this phenomenon 163 
and found the altered rainfall climatology characterized by the increase of heavy rainfall favored 164 
woody vegetation in its competition with herbaceous vegetation. 165 

<Figure 2 here> 166 

Across the globe, aridity velocity basically obeys a Gaussian distribution, with the mean speed of 167 
AI_RC based aridity velocity from +0.05 km yr-1 in history changing to a drying speed of -0.06 168 
km yr-1 under RCP2.6, -0.19 km yr-1 under RCP6.0 and -0.42 km yr-1 under RCP8.5, respectively 169 
(Fig. 3A). The corresponding global mean speed of AI_CO2 based aridity velocity is +0.20 km yr-170 
1, -0.11 km yr-1, +0.13 km yr-1, and +0.15 km yr-1, respectively (Fig. 3E). Beyond the global 171 
average aridity velocities are their specific changes in protected areas, agricultural areas, and urban 172 



 

areas. Protection areas have covered 4~25% of 14 major terrestrial biomes since 2009 (24) and 173 
contain high levels of endemism and small-ranged species. Thus, the changes of aridity velocity 174 
therein are more meaningful than the global average. Our analysis shows the aridity velocity in 175 
protected areas would change from historical +0.22 km yr-1/+0.36 km yr-1 (no CO2 effects/with 176 
CO2 effects) to -0.72 km yr-1/-0.24 km yr-1 under RCP8.5 (Fig. 3). The aridity velocity also 177 
manifests a significant change from historical -0.56 km yr-1/-0.41 km yr-1 to -0.65 km yr-1/-0.13 178 
km yr-1 under RCP8.5 in agricultural areas (Fig. 3). In urban areas, the corresponding values are 179 
changing from -0.66 km yr-1/-0.52 km yr-1 to -0.77 km yr-1/-0.24 km yr-1 (Fig. 3). Of 18 socio-180 
economic regions (SI Appendix, Fig. S10), protected areas in Brazil, Southern Africa, Central 181 
America and Oceania, agricultural areas in Brazil, Europe, Southern Africa and Central America, 182 
and urban areas in Southern Africa, Europe, and Brazil would experience the largest drying 183 
velocity under RCP8.5 (SI Appendix, Fig. S11 and Discussion S2). 184 

<Figure 3 here> 185 

Since most wetting velocities occur in high latitudes under RCP6.0 and RCP8.5 (Fig. 1) while 186 
most terrestrial species live in low- and high-latitudes, it is necessary to consider the spatial pattern 187 
of terrestrial biodiversity to evaluate potential impacts of changing aridity velocity. When 188 
accounting for richness distribution of terrestrial taxa (including amphibians, birds, mammals and 189 
plants), the global mean aridity velocity changes from historical -0.15 km yr-1 to -0.12 km yr-1, -190 
0.36 km yr-1 and -0.75 km yr-1 based on AI_RC or from historical -0.02 km yr-1 to -0.15 km yr-1, -191 
0.10 km yr-1 and -0.29 km yr-1 based on AI_CO2, respectively, under the three RCPs. Across all 192 
scenarios, taxa in arid regions would experience the largest change in aridity velocity from 193 
historical wetting to future drying (Fig. 4). Taxa in humid regions, which have the highest species 194 
richness, would experience the largest drying velocities under RCP8.5 (Fig. 4). Of all taxa, 195 
amphibians are projected to be most negatively impacted, particularly those in semi-arid, semi-196 
humid and humid regions under RCP8.5, which tracks closely cumulative CO2 emissions until 197 
now (1).     198 

<Figure 4 here> 199 

 200 

Discussion 201 

The selected dryness metric is of central importance for aridity projection. AI_RC is questioned 202 
about overestimation of future dryness as it lacks description of vegetation physiological response 203 
to increasing CO2 (24, 25). AI_CO2 could reproduce CMIP5 projected runoff using the offline 204 
Budyko model over most of the globe through water saving effects of elevated CO2 (22). But it 205 
must be noted that such water-saving effects are not always persistent. For example, Ukkola et al. 206 
(26) reported that elevated CO2 lead to vegetation greening (through CO2 fertilization effects) and 207 
more water consumption in sub-humid and semi-arid basins but nonsignificant changes in NDVI 208 
and reductions in evapotranspiration in wet and arid basins across Australia during 1982-2010. 209 
Shimono et al. (27) also found that canopy evapotranspiration rate showed much lower 210 
responsiveness than stomatal conductance to open-air CO2 elevation in rice. These observations 211 
mean that our original AI_RC formulation is still a reasonable approach in reflecting aridity 212 
changes even in a world of increasing CO2 concentration. Therefore, AI_RC and AI_CO2 are 213 
simultaneously used in this study to represent a spectrum of possible dryness change in future. 214 



 

Before this effort, little research has focused on the impacts of water availability on species shifts 215 
except few examples (3, 28). However, these exceptional studies still used precipitation to indicate 216 
water availability, which is projected to have an increasing trend opposite to aridity (SI Appendix, 217 
Fig. S12). Therefore, previous estimates, based on temperature only or even taking precipitation 218 
into account, when assessing threats of climate change to species shifts and the associated 219 
complexity could be underestimated. From this perspective, our results can provide complemental 220 
references for guiding allocation of limited conservation and adaptation resources. 221 

For nature conservation, our estimated aridity velocity can help identify priority regions where 222 
species shifts are influenced by water availability, particularly at the leading edges of species range 223 
and for narrow-ranged species (16). In the identified hotspot areas, conservation actions may focus 224 
on monitoring of immigration or emigration of species and devote to mitigating other disturbances 225 
to aid indigenous species to adapt (16). A more specific example is that Malhi et al. (29) 226 
recommended to keep the core northwest Amazon intact as a biological refuge as it hosts the 227 
highest biodiversity and was expected to be the most resistant to climate drying in Amazon based 228 
on previous mid-range (A1B) emission scenarios. Our analysis, however, shows the northwest 229 
Amazon is also projected to experience considerable drying under high emission scenarios (Fig. 230 
1), implying the imperative requirement for conservation actions to mitigate negative impacts of 231 
other factors in this area, such as reducing deforestation and controlling fires. Moreover, our results 232 
show that along coastal areas aridity velocities may point to coastlines (e.g., Australia; SI Appendix, 233 
Fig. S1), which means many coastal niches could not find their climate analogs due to the ocean 234 
barrier. In addition, our methodology and results can help the design of protected area networks 235 
and ecological corridors to connect large nature reserves across a continent. An excellent effort 236 
has been conducted in informing the design of the North American protected area network (28). 237 
Batllori et al. (28) found the majority of protected areas in North America might be exposed to 238 
high climate velocity and the nearest climatic analogs are outside the current network of protected 239 
areas. Thus, they suggest that conservation plan needs to take advantage of these unprotected 240 
climate refuges and avoid additional threats there beyond climate change. 241 

Under all the three RCPs, some regions are projected to experience large aridification risks for 242 
crop species and food production, particularly in rain-fed areas like Southern Africa and Brazil (SI 243 
Appendix, Fig. S13). Unfortunately, there has been much less research on migration of crop species, 244 
pasture, weeds and insects, etc. in responding to climate velocity. But limited evidence shows that 245 
crop wild relatives could lose up to 91% of their distribution range in protected areas even with 246 
full dispersal under RCP8.5, which is 50% higher than that under RCP2.6 (30). Yield loss risk for 247 
four major crops (wheat, maize, rice and soybeans) has also been reported across moderate to 248 
exceptional drought conditions, particularly in the US, and it could be amplified by high 249 
temperature (31). A very recent study (32) also shows that changes in growing season temperature 250 
had driven migration of the harvested areas of rainfed maize, wheat, rice and soybean during 1973-251 
2012. For species that are highly sensitive to climate change, the situation could be more severe. 252 
Take coffee for instance, its distribution area is predicted to decrease by about 50% across RCPs, 253 
and the new suitable habitats are far from the current plantation locations and currently occupied 254 
by forests (33). In addition, insects like locusts generally thrive in warm and dry conditions (34), 255 
and their dispersal tracking aridity velocity will no doubt deteriorate food production. Therefore, 256 
as population increases, this might drive agricultural area, irrigated fraction or fertilizer application 257 
to increase to compensate for yield loss, in which case securing food supply would inevitably 258 
conflict with the exacerbated aridity velocity predicted here and environmental externalities of 259 



 

crop production increase. To cope with this situation, crop drought traits and planting structure 260 
should be improved.  261 

The drying velocities in urban areas (e.g., in Central America and Europe; SI Appendix, Fig. S11) 262 
could greatly influence plants, animals and human health there. Since urban landscapes are usually 263 
highly fragmented, urban trees or forests are unlikely to escape from increased aridity through 264 
spatial shifts. Those tree species that are not suited to low water availability would have to be 265 
substituted by drought-tolerant species or irrigated more often, which will increase maintenance 266 
cost. Animals that depend on original trees or forests may suffer from water scarcity and loss of 267 
feeding source or shelters, and it is difficult for them to cross the urban barrier to migrate elsewhere. 268 
The possible decreased benefits provided by urban trees or forests, such as aesthetic value, tree 269 
shade, and air and water quality, are associated with health problems (35-37). The efforts for 270 
enabling urban areas to adapt to the drying aridity velocity may involve high cost, for example, 271 
infrastructure upgrade fee.  272 

It is important to note that climate velocity has its own caveats. Brito-Morales et al. (16) 273 
summarized that climate velocity does not include biological information and may be misleading 274 
due to its fractional nature (i.e., ratio of a temporal trend over a spatial gradient). In our analysis, 275 
we also noticed that there existed some aridity velocities of abnormally large magnitudes compared 276 
to their neighboring counterparts (Fig. 2) and the migration of vegetation herbaceous fraction does 277 
not always track climate velocity (SI Appendix, Fig. S9A). Therefore, interpretation of changes in 278 
climate velocity and their impacts on biodiversity needs carefulness and fully considering the 279 
exposure, sensitivity, and vulnerability of individual species to climate change, together with their 280 
adaptive capacities (38). However, the magnitude and direction of climate velocity are still 281 
indicative in reflecting expected shifts of species ranges.  282 

The spatial and temporal resolutions used in this analysis are also a potential source of uncertainty 283 
in estimating aridity velocity and its impacts on biodiversity. The half-degree climate data doesn’t 284 
capture fine-scale topographic differences in climate and may underestimate climate 285 
heterogeneity, especially for urban or mountain areas. Therefore, our results may underestimate 286 
drying velocity in urban areas, as cities usually have higher temperature than neighboring areas 287 
due to the heat island effect. Meanwhile, the annual time step can obscure the signal of intra-annual 288 
variations in water availability, which may have considerable impacts on changes in ecosystem 289 
production and composition (9, 10). However, urban extent data and parameters and climate data 290 
at the half-degree or similar resolutions have been employed to examine interaction between urban 291 
expansion and climate warming (39-41), providing a certain confidence for employing climate 292 
data of the half-degree resolution. Moreover, consideration of long-term changes in aridity velocity 293 
of different seasons would be much more complex as different species or biological processes have 294 
different matching temporal windows (16). Therefore, for this study we still focus on the annual 295 
changes in aridity velocity to keep it simple and leave seasonal climate velocity in future research, 296 
which could be another great story to explore.  297 

 298 

 299 

 300 

 301 

 302 



 

Materials and Methods 303 

Aridity index. We used the aridity index, the ratio of precipitation to potential evapotranspiration 304 
(PET), to indicate aridity. PET is estimated through the FAO reference method (42; PET_RC) and 305 
one of its variants considering surface response to elevated CO2 (22; PET_CO2), which are 306 
parameterized, respectively, as: 307 

𝑃𝑃𝑃𝑃𝑃𝑃_𝑅𝑅𝑅𝑅 =
0.408∆𝑅𝑅𝑛𝑛∗ +𝛾𝛾

900
𝑇𝑇+273𝑢𝑢𝑢𝑢

∆+𝛾𝛾(1+0.34𝑢𝑢)
                                                         (1)  308 

𝑃𝑃𝑃𝑃𝑃𝑃_𝐶𝐶𝐶𝐶2 =
0.408∆𝑅𝑅𝑛𝑛∗+𝛾𝛾

900
𝑇𝑇+273𝑢𝑢𝑢𝑢

∆+𝛾𝛾(1+𝑢𝑢�0.34+2.4×10−4([𝐶𝐶𝐶𝐶2]−300)�)
                                           (2)  309 

where Δ (Pa K-1) is the gradient of saturation vapor pressure against temperature, 𝑅𝑅𝑛𝑛∗  (MJ m-2 d-1) 310 
is the surface available net radiation, γ (Pa K-1) is the psychrometric constant, T (°C) is the air 311 
temperature at 2 m height, D (Pa) is air vapor pressure deficit, u (m s-1) is the wind speed at 2 m 312 
height, and [CO2] is the atmospheric CO2 concentration. These PET models take into account 313 
changes in available energy, atmospheric humidity and wind speed, and thus can give more 314 
realistic estimation of PET than those methods only considering changes in temperature. During 315 
1979-2016, the daily EWEMBI (40) (E2OBS, WFDEI and ERAI data Merged and Bias-corrected 316 
for ISIMIP) and CRU-NCEP v8.0 dataset (both at a 0.5˚ resolution), including surface air 317 
temperature, precipitation, surface wind speed, atmospheric pressure, specific humidity and 318 
downward shortwave radiation, were used to estimate daily PET, which then was aggregated to 319 
the annual time-scale to derive annual aridity index. For the future period, according to the RCP 320 
and daily data availability, we used outputs of nine global climate models (including CSIRO-321 
Mk3.6.0, GFDL-CM3, GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC5, MIROC-322 
ESM-CHEM, MRI-CGCM3, and NorESM1-M) to derive aridity index under RCP2.6, RCP6.0 323 
and RCP8.5. These models can well represent the CMIP5 ensemble in terms of equilibrium climate 324 
sensitivity (3.55 °C vs. 3.22 °C) and transient climate response (1.81 °C vs. 1.84 °C; SI Appendix, 325 
Fig. S14). The climate projections have been bias-corrected at a daily timestep and downscaled 326 
referring to EWEMBI. The annul aridity velocities of each of the nine models and the ensemble 327 
mean were adopted to represent the future aridity velocity under the three RCP scenarios and the 328 
corresponding standard deviation.   329 

Aridity velocity. The local climate velocity approach (15) was used to calculate the moving speed 330 
and direction of aridity. Originally, the approach was introduced to estimate the local migration 331 
velocity of species to maintain their favorable temperatures as global warming shifts temperature 332 
isolines in space. Here we apply the approach to both AI_RC and AI_CO2 instead of to 333 

temperature. Specifically, climate velocity is calculated as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

. The temporal slope is 334 

derived by linearly regressing the annual time series in a grid cell. The spatial gradient is 335 
determined from a 3×3 window of mean climate during 1979-2016 using the cell-neighborhood 336 
method. The direction of climate velocity depends on both the sign of the temporal slope and the 337 
direction of the spatial gradient. The value of a velocity direction ranges from 0˚ to 360˚, with 180˚ 338 
towards the straight south. Assuming the aridity velocity has a positive value of 1 km yr-1 and a 339 
spatial gradient direction of 90˚ during 2017-2050 and the reference mean climate is calculated 340 
from 1979-2016, the mean aridity in a specific grid cell during 1979-2016 could be found 33 km 341 
to the east by the year 2050, where it has a drier climate than the grid during 1979-2016. In our 342 
analysis, the reference period was set to 1979-2016 to calculate the climatology of aridity index to 343 
derive the spatial gradient. 344 



 

Land use, region classification, vegetation greenness, herbaceous cover fraction and 345 
biodiversity richness. The protected areas (SI Appendix, Fig. S8) were compiled from the World 346 
Database on Protected Areas (WDPA, https://protectedplanet.net/), April 2019. The WDPA is the 347 
most comprehensive database of terrestrial and marine protected areas, jointly developed by UN 348 
Environment and the International Union for Conservation of Nature. There are now over 220,000 349 
protected areas and only terrestrial ones are used here. The agricultural areas (including crops and 350 
pastures), urban areas and irrigation fractions in 2018 (SI Appendix, Fig. S13) were from the LUH2 351 
v2h (land use harmonization, http://luh.umd.edu) data, which has a spatial resolution of 352 
0.25˚×0.25˚ and an annual time-step. The region classification is shown in supplemental material 353 
(SI Appendix, Fig. S10). The AVHRR (Advanced Very High Resolution Radiometer) GIMMS 354 
(Global Inventory Monitoring and Modeling System) Normalized Difference Vegetation Index 355 
(NDVI) data (NDVI3g.v1) in 1982-1986 and 2011-2015 was resampled from 1 km to 0.5˚ to show 356 
the spatial shifts of vegetation greenness isolines. The AVHRR vegetation continuous fields (VCF) 357 
data (https://lpdaac.usgs.gov/products/vcf5kyrv001/) was also resampled from 0.05˚ to 0.5˚ to 358 
identify the spatial shifts of herbaceous fraction isolines. The plant biodiversity data was developed 359 
by combining spatially explicit models and estimates for native species loss and gains (43) and 360 
was achieved at http://ecotope.org/anthromes/biodiversity/plants/data/. The richness data for 361 
amphibians, birds, and mammals were mapped based on >21,000 species and at a spatial grain of 362 
10×10 km (44) and available at https://biodiversitymapping.org/wordpress/index.php/home/.  363 
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 501 

Fig. 1. Speed maps of historical and future aridity and temperature velocities. The negative 502 
sign of speed indicates drying/cooling and the positive sign indicating wetting/warming. The future 503 
speed values are the ensemble mean of multiple models. Pixels in each speed map with values 504 
outside the 0.5-99.5% quantiles are removed. All velocities are calculated by using the spatial 505 
gradient during 1979-2016. Stippling indicates the agreement in the sign of estimated velocities 506 
under RCPs across at least seven of nine models (75% of models). AI_RC refers to the aridity 507 
index based on the FAO reference crop potential evapotranspiration model and AI_CO2 to one of 508 
its variants considering vegetation physiological responses to elevated CO2. 509 
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 521 
Fig. 2. Coupling between aridity velocity (without considering CO2 effects) and migration of 522 
NDVI isolines at multiple regions during 1982-2015. (A) The migration of NDVI isolines 523 
(NDVI=0.30) in northern Australia during 1982-2015. (B) The migration of NDVI isolines 524 
(NDVI=0.20) in Sahel during 1982-2015. (C) The migration of NDVI isolines (NDVI=0.20) in 525 
southern Africa during 1982-2015. (A-C) The black and red lines denote NDVI isolines during 526 
1982-1986 and during 2011-2015, respectively. The blue arrows indicate the directions of wetting 527 
velocity and the red arrows indicating directions of drying velocity. The length of arrows 528 
represents the migration distances of aridity velocity. The aridity velocities are calculated based 529 
on the spatial gradient during 1982-2015. The pixel values indicate the differences between NDVI 530 
during 1982-1986 and that during 2011-2015. (D) Correlations between migration distances of 531 
points along the NDVI isolines and the climate migration distances derived using the aridity 532 
velocity of these points. The black line is 1:1 line. All correlations are statistically significant with 533 
r = 0.52 & p < 0.002, r = 0.37 & p < 0.001, and r = 0.36 & p < 0.015, respectively. 534 
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 538 
Fig. 3. Probability density distribution of aridity velocity based on AI_RC or AI_CO2 across 539 
different land use types. (A-D) Probability density distribution of speeds of aridity velocity for 540 
the globe, protected areas (PA), agricultural areas, and urban areas. Negative values indicate drying 541 
while the positive values indicating wetting. In each land use type, the two sample t-test is 542 
conducted for aridity velocities under different scenarios and the results show they are all 543 
significantly different (p < 0.001). AI_RC refers to the aridity index based on the FAO reference 544 
crop potential evapotranspiration model and AI_CO2 to one of its variants considering vegetation 545 
physiological responses to elevated CO2.  546 
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 558 
 559 
Fig. 4. Aridity velocities for all taxa (amphibians, birds, mammals and plants) and 560 
amphibians under different scenarios. The mean speed of aridity velocity for each taxon is 561 
weighted by grid area and species richness, in hyper-arid (HA), arid (A), semi-arid (SA), sub-562 
humid (SH), and humid (H) regions. AI_RC refers to the aridity index based on the FAO reference 563 
crop potential evapotranspiration model and AI_CO2 to one of its variants considering vegetation 564 
physiological responses to elevated CO2. 565 
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