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28 Future climate change significantly alters interannual wheat yield 

29 variability over half of harvested areas

30 Abstract

31 Climate change affects the spatial and temporal distribution of crop yields, which can 

32 critically impair food security across scales. A number of previous studies have 

33 assessed the impact of climate change on mean crop yield and future food availability, 

34 but much less is known about potential future changes in interannual yield variability. 

35 Here, we evaluate future changes in relative interannual global wheat yield variability 

36 (the coefficient of variation; CV) at 0.25° spatial resolution for two representative 

37 concentration pathways (RCP4.5 and RCP8.5). A multi-model ensemble of crop model 

38 emulators based on global process-based models is used to evaluate responses to 

39 changes in temperature, precipitation, and CO2. The results indicate that over 60% of 

40 harvested areas could experience significant changes in interannual yield variability 

41 under a high-emission scenario by the end of the 21st century (2066–2095). 31% and 

42 44% of harvested areas are projected to undergo significant reductions of relative yield 

43 variability under RCP4.5 and RCP8.5, respectively. In turn, wheat yield is projected to 

44 become more unstable across 23% (RCP4.5) and 18% (RCP8.5) of global harvested 

45 areas—mostly in hot or low fertilizer input regions, including some of the major 

46 breadbasket countries. The major driver of increasing yield CV change is the increase 

47 in yield standard deviation, whereas declining yield CV is mostly caused by stronger 

48 increases in mean yield than in the standard deviation. Changes in temperature are the 

49 dominant cause of change in wheat yield CVs, having a greater influence than changes 

50 in precipitation in 53% and 72% of global harvested areas by the end of the century 

51 under RCP4.5 and RCP8.5, respectively. This research highlights the potential 

52 challenges posed by increased yield variability and the need for tailored regional 

53 adaptation strategies.
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54

55 Keywords: yield coefficient-of-variation; crop model emulator; contributions of 

56 climatic drivers; yield stability; global food security

57 1. Introduction

58 Interannual crop yield variability is one of the primary drivers of food system instability 

59 (IPCC 2019). Assessing the effects of climate change on yield variability is critical to 

60 understanding the impact of climate change on food security (FAO, 2019). Due to 

61 trends in global warming (Lobell et al., 2011) and the changing frequency and intensity 

62 of climate extremes (Trnka et al., 2014), potential decreases in the mean yields of crops 

63 and an increase in the interannual yield variability could adversely affect the livelihoods 

64 of producers, create spikes in food prices, lead to hunger (IPCC, 2014), and even cause 

65 political instabilities at a regional level (Sternberg, 2011). Previously, the impact of 

66 climate change on mean crop yield (Rosenzweig et al 2014, Lobell et al 2011) has been 

67 investigated with a focus on food availability (Wollenberg et al., 2016). From a climate 

68 risk perspective, the concept of time of climate impact emergence has recently been 

69 introduced, linking mean yield changes with historical yield variability (Jägermeyr et 

70 al 2021). Yet, the impact of climate change on future interannual yield variability has 

71 not received sufficient attention (Wheeler et al., 2013; Challinor et al., 2014).

72

73 Interannual yield variability has always been one of the key risk indicators of crop 

74 production. Early studies have either assumed a stationary process without considering 

75 variability changes (Ray et al., 2015; Tao et al., 2016; Matiu et al., 2017; Ceglar et al., 

76 2016) or linked changes in variability to non-climatic factors (Döring and Reckling 

77 2018, Knapp and van der Heijden 2018, Kucharik and Ramankutty 2005, Müller et al 

78 2018). Recent studies have provided evidence for changes in the interannual yield 

79 variability of major cereal crops and identified significant impacts of climate change at 

80 the global scale 0.5° grid level or at the country level (Osborne and Wheeler, 2013; 
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81 Iizumi and Ramankutty 2016). These studies have been followed up by regional, 

82 county-level analyses of the interannual yield variability of maize (Leng, 2017; 

83 Hawkins et al., 2013; Lobell et al., 2014). Efforts have also been devoted to projecting 

84 the impact of future climate change on interannual yield variability, focusing on wheat 

85 and maize at global and regional scales, using process-based crop models (Liu et al., 

86 2019; Moriondo et al., 2011) and statistical models (Urban et al., 2012; Ben-Ari et al., 

87 2018 Tigchelaar et al., 2018). Results from these studies have indicated substantial 

88 changes in interannual yield variability as a result of climate change, and that the sign 

89 and magnitude of change varies by production region. 

90

91 Climate-related risk assessment on crop yield requires reflecting the spatial 

92 heterogeneity of both agricultural systems and climate change effects relevant for 

93 interannual yield variability (Benami et al., 2021). There are still major research gaps 

94 in our understanding of these linkages across regions. In terms of major staple crops, 

95 only changes in yield CV of wheat (Liu et al., 2019) and maize have been analysed 

96 (Tigchelaar et al., 2018) at the global scale. As these studies have used either site-based 

97 simulation or globally homogeneous warming perturbations, it is difficult to deduce 

98 robust conclusions on changes in interannual yield variability, reflecting the spatial 

99 heterogeneity of climate projections (Leng and Hall, 2020). In addition, although the 

100 mechanism of impact and the mean yield response to change in climate drivers (e.g., 

101 temperature, precipitation, and CO2) have been intensively discussed (Zhu et al., 2019; 

102 Schlenker and Roberts, 2009), the response of interannual yield variability to changes 

103 in the various climate drivers is not well understood.

104

105 The aim of this study is to evaluate potential changes in interannual wheat yield 

106 variability under two climate change scenarios globally, and to attribute individual 

107 contributions of temperature, precipitation, and CO2. The main research questions are: 

108 1) How could climate change affect interannual wheat yield variability on current 

109 wheat-growing areas by the end of the century? 2) How much of these changes can be 

Page 4 of 35AUTHOR SUBMITTED MANUSCRIPT - ERL-111360.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



5

110 attributed to changes in temperature, precipitation, and their interaction, respectively? 

111 3) To what extent can elevated CO2 concentrations mitigate potential increases in yield 

112 variability? Answers to these questions will provide crucial information for climate risk 

113 assessment and effective adaptation measures.

114

115 We address these questions by conducting multi-model ensemble simulations with crop 

116 model emulators forced with global climate projections at high spatial resolution 

117 (0.25°). Statistical crop model emulators are developed based on simulations from 

118 global gridded crop models (GGCMs), facilitated by AgMIP’s Global Gridded Crop 

119 Model Intercomparison Project (GGCMI). Crop model emulators have recently gained 

120 popularity as a powerful tool for assessing the impact of climate change on crop yield 

121 (Oyebamiji et al 2015, Lobell and Burke 2010, Holzkämper et al 2012, Raimondo et al 

122 2020, Müller et al 2021). Emulators substantially improve computational efficiency 

123 and reduce data-processing requirements compared to running the original models, 

124 without sacrificing much prediction performance (Folberth et al 2019, Blanc and Sultan 

125 2015, Blanc 2017, Franke et al 2020a, Ringeval et al 2020). The use of a large ensemble 

126 of GCM projections in combination with the ensemble of crop yield emulators allows 

127 for comprehensively evaluating changes in future yield variability and the associated 

128 distribution of extreme yield levels. 

129 2. Materials and methods

130 2.1 Input data

131 2.1.1 Gridded crop model data for emulator construction

132 The input and output data for the simulation of global gridded wheat yield were 

133 obtained from the GGCMI phase 2 experiment dataset (Franke et al., 2020b). The 

134 spatial resolution of this dataset is 0.5°. The input data included four different data types, 

135 i.e., climate, soil, atmospheric CO2 concentration, and nitrogen fertilizer application 
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136 rates (Table S1, Franke et al., 2020b). Baseline climate inputs were used from the 

137 AgMIP Modern-Era Retrospective Analysis for Research and Applications 

138 (AgMERRA) forcing dataset (1980-2010), including daily maximum and minimum 

139 temperatures, precipitation, and solar radiation (Ruane et al 2015). Based on these 

140 baseline reference simulations, the GGCMI phase 2 experiment used systematic 

141 perturbations in each grid cell with seven temperature levels (from -1 K to +6 K in 1K 

142 interval, with +5K skipped), nine precipitation levels (from -50% to +30%, in 10% 

143 interval, with -40% skipped), four CO2-concentration levels (360, 510, 660, and 810 

144 ppm), and three nitrogen levels (10, 60, and 200 kg/ha) (Table S2; Franke et al. 2020b). 

145 Twelve GGCMs were then forced with each of these perturbations of the original 

146 reanalysis weather data. The GGCMs used a national and subnational crop calendar for 

147 wheat that is based on Sacks et al (2010), Portmann et al (2010), and environment-

148 based extrapolations (Elliott et al 2015).

149

150 The output data contained irrigated and rainfed yield simulations from 1980 to 2010 for 

151 each of the different perturbation levels. In this study, we selected 8 out of the 12 crop 

152 models in the GGCMI phase 2 experiment for constructing the emulators. These were 

153 APSIM-UGOE, EPIC-IIASA, EPIC-TAMU, GEPIC, LPJ-GUESS, LPJmL, pDSSAT, 

154 and PEPIC. CARAIB was not included as it did not consider nitrogen stress. 

155 ORCHIDEE-crop was not included as it did not provide simulation results for spring 

156 wheat. PROMET and JULES were not included as they used different climate inputs.  

157 Although these eight crop models differed in their representation of crop phenology, 

158 leaf-area development, yield formation, root expansion, and nutrient assimilation, all 

159 accounted for the effects of water and heat stress and assumed no technological change 

160 (Blanc, 2017). All input and output data sets were provided by GGCMI at the 

161 standardized spatial resolution of 0.5°. More detailed descriptions of the individual crop 

162 models and the input and output data characteristics are available in the Supplementary 

163 Material (SM).
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164 2.1.2 Data for emulator-based yield projections

165 To project a high spatial resolution global wheat yield, the Earth Exchange Global Daily 

166 Downscaled Projections (NEX-GDDP) dataset (Thrasher 2012), with a spatial 

167 resolution of 0.25°, was obtained from the National Aeronautics Space Administration 

168 (NASA). This database contains the global daily maximum/minimum near-surface air 

169 temperature and precipitation data from 21 GCMs from the Coupled Model 

170 Intercomparison Project phase 5 (CMIP5, Taylor et al 2012) under two representative 

171 concentration pathways (RCP4.5 and RCP8.5), covering the years 1950–2100. Other 

172 RCPs are not available through NEX-GDDP. 

173

174 The emulator-based projections used a national and subnational crop calendar for wheat 

175 from MIRCA2000 (Portmann et al 2010). Given that MIRCA2000 has only monthly 

176 resolution, it was assumed that the first day of the month was the date of planting, and 

177 the last day of the month was the date of harvesting (Elliott et al 2015). The calendar 

178 we used to project yield was only MIRCA2000 because if we used the calendar of the 

179 GGCMI phase 2, we would be troubled with the mismatch between the separated spring 

180 and winter wheat calendar and only wheat harvested areas in SPAM. Global wheat 

181 harvested area distribution around the year 2005 was obtained from the spatial 

182 production allocation model (SPAM) for rainfed and irrigated systems at five arc-

183 minute resolution (You et al 2014).

184 2.2 Methods 

185 The methodologies for evaluating changes in wheat yield variability under future 

186 climate scenarios includes the following steps (Figure 1): 1) Develop annual yield 

187 emulators for the process-based GGCMI crop models. 2) Conduct emulator-based  

188 yield projections based on the NEX-GDDP climate model ensemble. 3) Summarize the 

189 future changes in wheat yield variability relative to the baseline; decompose the 

190 changes in yield variability into changes in mean yield and yield standard deviation. 
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191 And 4) Separate the contributions from the changes in climatic drivers to the changes 

192 in the yield variability.

193

Coarse 
spatial 
resolution 
(0.5°) GGCM 
input and 
output data 
(climate, soil, 
phenology, 
management, 
yield)

Machine learning model (extreme gradient boosting)
Training emulator

Finer spatial 
resolution 
(0.25°) dataset 
for MME 
(climate, soil, 
phenology, 
management)

8 GGCMs of GGCMI phase 2 experiment

Yield aggregation weighted by harvested area

Predicted rainfed yieldPredicted irrigated yield

Simulated rainfed yieldSimulated irrigated yield

Use coefficient of variation (CV) to measure the yield variability

Use relative change of 
yield CV to measure the 
yield variability change 
relative to baseline.

Yield in baseline
(1976-2005)

Step 1: 

Develop annual yield 

emulators for process-based 

GGCMI crop models

Step 3:

Summarize yield 

variability change and 

decompose the changes 

in yield CV into mean 

yield and yield 

standard deviation

Effect of temperature
Step 4:

Separate the 

contributions of 

climatic drivers to 

changes in yield 

variability

Emulators on irrigated condition Emulators on rainfed condition

Multi-model (8 emulators + 21 GCMs) ensemble simulation

Yield in future
(2030s, 2050s, 2080s)

Step 2:

Conduct emulator-

based yield 

projections

Use regression to 
measure the relationship 
between yield CV 
change and growing 
season climate factors

Controlled 

factor groups

T change alone

T+P change

T+P+CO2

change

P change alone

T change alone

Effect of precipitation P change alone

Interaction effect between 
temperature and precipitation

T+P change T change alone P change alone- -

=

=

=

CO2 fertilization effect
T+P+CO2

change
T+P change= -

Decompose the changes 
in yield CV into changes 
in mean yield and yield 
standard deviation. 

194 Figure 1 Framework for evaluating changes in global wheat yield interannual variability (T: temperature, 

195 P: precipitation).

196 2.2.1 Development of annual GGCM emulators by extreme gradient boosting

197 A previous study developed emulators of climatological-mean yield based on GGCMI 

198 phase 2 experiment data (Franke et al., 2020a). We, however, develop an emulator 

199 capable of capturing year-to-year variability in yield. A machine-learning approach was 

200 used in this study for its flexibility for data-driven development of models with high 

201 accuracy (Folberth et al., 2019) and its associated computational efficiency. 

202

203 Development of the emulator consists of training—via a machine-learning (ML) 

204 algorithm—on specific GGCM input and output datasets, so that the emulator replicates 
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205 the complex process of yield simulation within the crop model. Variables that have 

206 been frequently reported to significantly influence wheat yield were prepared as the 

207 predicting variables, including climate, soil type, length of growing season, and 

208 management practices (Table S3). All the data for training were computed/adapted 

209 from the GGCMs’ input and output datasets. 

210

211 All prediction variables were computed/obtained from the GGCMI phase 2 data archive. 

212 The climate data are supplied as daily values and were, in a first step, aggregated to 

213 monthly sums or averages (MON). For each grid, the month of planting was defined as 

214 month 1 to harmonize, on a global basis, the order of months from planting. 

215 Subsequently, prediction variables were calculated for each month in the growing-

216 season months and the entire growing season (GS, based on the planting and harvesting 

217 dates for the GGCMs). Soil properties were adopted primarily for the topsoil class. 

218 Additional characteristics like length of growing season were regarded as a cultivar 

219 characteristic. The total amount and fraction of the nitrogen fertilizer application and 

220 CO2 concentration were uniform for each grid.

221

222 In total, 32 different emulators were trained for the eight GGCMs, each with two water 

223 management modalities (rainfed and irrigation) and two wheat types (spring wheat and 

224 winter wheat). An extreme gradient boosting (XGB) algorithm was used due to its 

225 better performance in terms of goodness-of-fit, cross-validation errors, and 

226 computation efficiency compared with a random forest algorithm (Folberth et al., 2019). 

227 The predicting variables and the simulated yield in the GGCMs were randomly split 

228 into training and validation sets, which contained 75% and 25% of the samples (Yue et 

229 al., 2019), respectively. Depending on the size of the dataset supplied by each GGCM, 

230 1.7 × 106–2.3×107 (0.9×107–1.9×108) samples were used for model training and 0.6× 

231 106–0.8×107 (0.3×107–0.6×108) samples were used for validation of irrigation (rainfed) 

232 conditions, covering the period of 1981–2010. More details on emulator training, 

233 validation, and performance evaluation are available in SM and Figures S1 and S2.
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234 2.2.2 Emulator-based wheat yield projections 

235 The emulators were then used to project global wheat yield by using future GCM 

236 projections. It is important to ensure that emulator-based projections do not exceed the 

237 range of training samples to avoid unrealistic extrapolation effects (Franke et al 2020a, 

238 Folberth et al 2019). The GGCMI phase 2 perturbations were designed to accommodate 

239 high-end warming scenarios (RCP8.5-2080s). For growing season average maximum 

240 temperature, the range of training data (interannual and spatial variability in 

241 AgMERRA + GGCMI perturbation) covered the entire range of the GCM projections. 

242 CO2 concentrations were averaged with a 30-year moving window and the highest CO2 

243 concentration under RCP8.5-2080s is 760 ppm.

244

245 Ensemble yield projections were conducted at the global level for grids with a spatial 

246 resolution of 0.25° for the years 1976–2005 (baseline), 2006–2035 (2030s), 2036–2065 

247 (2050s), and 2066–2095 (2080s) under RCPs of 4.5 and 8.5. If the spring and winter 

248 wheat are grown in parallel at national or subnational level, we determined the wheat 

249 type with larger harvested areas according to MIRCA2000 (Portmann et al. 2010). The 

250 multi-model ensemble approach improves the robustness of future climate-change 

251 impact estimates and allows for analyses of spatial heterogeneity and inter-model 

252 uncertainty (Martre et al., 2015). There were 336 future wheat yield estimates (21 

253 GCMs × 8 emulators × 2 RCPs), each simulated for 4 × 30-year periods. Throughout 

254 all simulations, planting dates, cultivar selection, soil properties, and management 

255 practices were assumed to remain constant over time, which is consistent with the 

256 GGCMI Phase 2 experimental design A0 (Franke et al 2020b), which is used for 

257 training the emulators here. Final estimates of future yield responses are based on the 

258 median across the crop model emulators and GCMs.

259 2.2.3 Measuring the change in yield variability

260 Rainfed and irrigated yield were first aggregated to grid and national levels using an 
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261 area-weighted average (Müller et al 2017), as described in the following equation:

262 . (1)
( )

, , , ,1 1

1

n n

i firr t firr i noirr t noirri i
t n

firr noirri

y area y area
y

area area

= =

=

× + ×
=

+

å å

å

263 where i is the index of any grid cell assigned to the spatial unit in year t, n is the number 

264 of grid cells in that spatial unit,  is the emulator-projected yield under fully 
, ,i firr t

y

265 irrigated conditions in grid cell i, and  is the emulator-projected yield for 
, ,i noirr t

y

266 rainfed conditions in grid cell i;  is the harvested area in grid cell i, either due to area

267 fully irrigated or rainfed, obtained from SPAM.

268

269 We used the coefficient of variation (CV) a measure of interannual yield variability, 

270 where , in which  and  are the standard deviation and mean, CV s m= s m

271 respectively, over a reference period. We compare the baseline period (1976-2005) with 

272 six future scenario-periods: RCP4.5-2030s, RCP4.5-2050s, RCP4.5-2080s, RCP8.5-

273 2030s, RCP8.5-2050s, and RCP8.5-2080s. The percentage change in yield CV in one 

274 of the six future scenario-periods relative to the baseline period is then measured by:

275 (2)100%scenario baseline
scenario

baseline

CV CV

CV
d

-
= ×

276

277 2.2.4 The effects of changes in temperature, precipitation, and CO2

278 The effects of changes in temperature, precipitation, and CO2 were separated by using 

279 individual climate driver perturbed simulations, with one climate factor at a time taken 

280 from a climate scenario and the rest from the baseline. Four such climate driver 

281 sensitivity simulations (Table 1) were conducted to isolate the effects of changes in 

282 temperature, precipitation, their interaction effects, and the CO2 fertilization effect.

283 Table 1 Climate driver sensitivity simulations

Climate drivers Descriptions
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“T” Using future scenarios of temperature, other drivers taken from baseline

“P” Using future scenarios of precipitation, other drivers taken from baseline

“T+P” Using future scenarios of temperature and precipitation, holding CO2 

constant at 360 ppm

“T+P+CO2” Using future scenarios of temperature, precipitation, and CO2 

284 The climate driver sensitivity simulations listed in Table 1 allow for addressing the 

285 following: 

286 1) The effects of temperature and precipitation changes can be derived by comparing 

287 the results of groups “T” and “P” with the baseline simulations, respectively. 

288 2) The interaction between temperature and precipitation changes can be evaluated 

289 using the difference between groups “T+P” and “T” + “P”.

290 3) The effect of CO2 fertilization can be evaluated using the difference between groups, 

291 “T+P+CO2” and “T+P”. 

292 3. Results

293 3.1 Global patterns of future change in wheat yield interannual variability 

294 By the end of the century, model simulations indicate an overall decrease in wheat yield 

295 CV, but in some regions, including major producing countries, there would be more 

296 unstable wheat yield (Figure 2). The spatial patterns of CV changes intensify towards 

297 the end of the century, indicating a more polarized pattern under the long-term scenarios 

298 RCP4.5-2080s and RCP8.5-2080s (Figure S3). Under RCP8.5-2080s, with the CO2 

299 fertilization effect (“T+P+CO2”), the yield CV increases significantly in 18% of 

300 harvested areas (p<0.05; see Figure S4 for significance test), while 44% of harvested 

301 areas experience significant decrease of the yield CV (p<0.05). Under RCP4.5-2080s, 

302 with the CO2 fertilization effect (“T+P+CO2”), 23% of harvested areas undergoes 

303 significant increase of yield CV (p<0.05), while yield becomes more stable in 31% of 

304 harvested areas significantly (p<0.05). Western Europe, northern Australia, central US, 

305 South Asia, Southwest China, and Myanmar are found to experience a small increase 
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306 in yield CV (<40%). In eastern Europe, southern Australia, and central India yield CV 

307 is indicated to decrease by >20% under RCP8.5-2080s (Figure 2). The spatial patterns 

308 of changes are consistent across different scenarios and time periods, but the size of 

309 changes varies (Figure S5). The uncertainty across crop yield projections (standard 

310 deviation of CVs across all 8 emulators and 21 GCMs) ranged between 17%-119% with 

311 the CO2 fertilization effect, with a global mean of 39% under RCP8.5-2080s. 

312 Uncertainty was most pronounced in central Europe to eastern Russia, and in the 

313 northern Indian production regions (Figure S6). We further break the total uncertainty 

314 to those associated with the emulators and those with the GCMs, by analysis of variance. 

315 Disagreement across the emulators explained less than 50% of the total variance in 47% 

316 of the harvested areas (Figure S7).

317
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318

319 Figure 2 Changes in wheat yield CV (RCP4.5-2080s and RCP8.5-2080s) relative to the baseline (1976-

320 2005) based on the median of 21 GCMs and 8 crop model emulators using perturbations of temperature, 

321 precipitation, and CO2 concentration according to RCP4.5 and RCP8.5 (“T+P+CO2”). 

322

323 Changes in yield CV are linked to changes in mean yield and yield standard deviation. 

324 Under RCP8.5-2080s, mean yield levels increase in 92.1% of harvested areas and the 

325 yield standard deviation increases in 95.3% of harvested areas (Figure S8). 30.8% of 

326 the areas in which CV is found to increase, CV changes are dominated by increases in 

327 yield standard deviation (|SD+| > |MY+|). In regions where CV is decreasing, 59.3% of 

328 the areas are dominated by mean yield increases (|SD+| < |MY+|) (Figure 3, Table 2). 

329 Under RCP4.5-2080s, mean yield levels and the yield standard deviation increase in 

330 92.8% and 94.5% of the harvested areas, respectively (Figure S8). 42.7% of the areas 

331 in which CV is found to increase, CV changes are dominated by increases in yield 

332 standard deviation (|SD+| > |MY+|). In regions where CV is decreasing, 47.6% of the 

333 areas are dominated by mean yield increases (|SD+| < |MY+|) (Figure 3, Table 2).
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334

335

336 Figure 3 Factors of yield CV changes, including mean yield changes (MY) and yield standard 

337 deviation changes (SD). Positive changes are indicated with “+” and negative changes with “-”. The 

338 |MY+| and |SD+| denote the absolute increase of mean yield and yield standard deviation, respectively.

339

340 Table 2 Attribution of wheat harvested area with yield CV changes to changes in mean yield (MY) and 

341 standard deviation (SD) under RCP4.5-2080s and RCP8.5-2080s.

Fraction of harvested areas
Changes in yield CV Category of SD and MY change

RCP4.5 RCP8.5

SD+ & MY- 4.3% 5.2%

|SD+| > |MY+| 42.7% 30.8%CV+

|SD-| < |MY-| 2% 0.6%
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|SD+| < |MY+| 47.6% 59.3%

|SD-| > |MY-| 0.9% 2.1%CV-

SD- & MY+ 2.6% 2.0%

342 * “+” denotes positive changes, and the “-” denotes negative changes. “|SD+| > |MY+|” denotes the 

343 absolute value of increase in yield SD is greater than that in the mean yield.

344

345 3.2 Changes in the yield CV across different climatic regions

346 Changes in the wheat yield CV exhibited a clear relationship with the baseline regional 

347 temperature, precipitation, and nitrogen fertilizer application rate. In general, regions 

348 with hotter growing seasons (growing season average temperature >20 ° C) or with 

349 lower nitrogen fertilizer application rates (nitrogen application rate < 200kg/ha), 

350 experienced the largest relative increase in wheat yield CV (Figure 4).

351

352 The increases in yield CV tend to be greater in regions with hotter growing seasons 

353 under both RCP4.5 and RCP8.5, including sub-Saharan Africa, India, Australia’s wheat 

354 belt, South East US, and southern Brazil and Argentina. These are regions in which 

355 mean wheat yields are expected to decrease under high-emission climate change 

356 scenarios, whereas at higher latitudes with lower growing season temperatures mean 

357 wheat yields are generally projected to increase (Jägermeyr et al 2021). The change in 

358 yield CV undergoes smaller decline under RCP8.5 and even experiences subtle increase 

359 under RCP4.5 in regions with wetter growing seasons, which can be attributed to 

360 stronger variability of precipitation in wetter regions. Underperforming wheat 

361 production system regions, like Brazil, sub-Saharan Africa, and South East Asia, with 

362 lower levels of nitrogen application, are likely to experience a greater increase in yield 

363 CV under both RCP4.5 and RCP8.5.
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364

365

366 Figure 4 Wheat yield CV change under RCP4.5 and RCP8.5, separated by different climatic and 

367 management bins: growing season mean temperature (a), growing season total precipitation (b), and 

368 nitrogen fertilizer application (c). The bin classification refers to baseline reference conditions. CV 

369 change is based on the T+P+CO2 simulations. Box-and-whisker plots show the distribution of yield CV 

370 changes across all cultivated grid cells in each class. The group divisions are based on approximately 

371 equal sample sizes.

372 3.3 Climatic drivers of and their relative contributions to the change in yield CV

373 In simulations based on individual climate drivers, temperature changes alone increase 

374 the yield CV for 55% and 56% of the harvested areas under RCP4.5-2080s and RCP8.5-

375 2080s, respectively. Under RCP8.5-2080s the magnitude of increased yield CV with 

376 temperature change alone is larger than that with precipitation change alone, but the 

377 extent of the area affected by increasing yield CV is smaller (Figure 5). The yield CV 

378 increases in 64% and 60% of harvested areas when only precipitation change is 
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379 assumed under RCP4.5-2080s and RCP8.5-2080s, respectively (Figure 5).

380

381

382 Figure 5 Changes in yield CV under isolated temperature and precipitation perturbations (RCP4.5-2080s 

383 and RCP8.5-2080s). Yield CV changes are shown as the median of 21 GCMs and 8 crop model emulators. 

384 “T” is the effect of temperature change, and “P” is the effect of precipitation change.

385

386 After separating the relative contributions of climate drivers under RCP4.5-2080s, 

387 precipitation was the dominant driver to increase the yield CV in 33% of harvested 

388 areas, even if the temperature change plays a more important role in yield CV change 

389 in over half of harvested areas (53%). The interaction between temperature and 

390 precipitation change played a dominant role in changes in yield CV in 10% of harvested 

391 areas. Under RCP8.5-2080s, temperature becomes a more important factor and was 

392 found to be the dominant driver in 72% of global wheat harvested areas, of which, yield 

393 CV increased in 41% of harvested areas. Precipitation was found to be the dominant 

394 driver in 21% of harvested areas, of which, yield CV increased in 17% of harvested 

395 areas. The interaction between temperature and precipitation played a dominant role in 

396 the change in yield CV in only 8% harvested areas (Figure 6). 
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397

398

399 Figure 6 Major contributors to the change in wheat yield CV (RCP4.5-2080s and RCP8.5-2080s). The 

400 dominant factors driving the change in yield CV are defined as the driving factors that contribute the 

401 most to the increase (or decrease) in the yield CV in each grid cell. The suffix ‘+’ attached to the driving 

402 factor name indicates increase in the CV, whereas a ‘-’ indicates a reduction in the CV.

403

404 The elevated CO2 concentration reduced the increase in yield CV, which was greatest 

405 in RCP8.5-2080s. The effect was strongest (>15%) in central Europe, south Asia, North 

406 and Southwest China, and North America. The mitigation effect was weaker under the 

407 other RCP4.5-2080s, but the spatial patterns were largely consistent with RCP8.5-
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408 2080s (Figure 7).

409

410

411 Figure 7 Reduction effect (“T+P+CO2” - “T+P”) on change in yield CV from CO2 fertilization. 

412

413 To elucidate the link between changes in yield CV and climate factors, we further 

414 examined the change in yield CV with climatic factors changes in mean, variability, 

415 and extremes of temperature and precipitation by using perturbation “T” and “P” results. 

416 A linear regression was conducted between median changes in yield CV and growing 

417 season climatic factors from food producing units (FPUs, Kummu et al., 2010) (Figure 
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418 8). The change in yield CV was positively correlated with change in interannual 

419 variability (TgsinterV, Figure 8-c), intra-seasonal variability (TgsintraV, Figure 8-d), and 

420 extreme degree day (EDDgs, Figure 8-e) of temperature. The relationship between mean 

421 temperature and yield CV varied by region. For regions with hotter growing seasons 

422 (Tgsmean > 10°C, Figure 8-a), a warming trend tended to increase the yield CV, and 

423 decrease the yield CV in regions with colder growing season (Tgsmean < 10°C, Figure 

424 8-b). For the effect of precipitation change, results from grid cells with rainfed systems 

425 showed that change in yield CV was negatively correlated with change in total 

426 precipitation (Pgsmean, Figure 8-f), but positively correlated with interannual 

427 variability of precipitation (PgsinterCV, Figure 8-g), and drought intensity (consecutive 

428 drought days, CDDgs, Figure 8-h), all statistically significant.

429

430

431
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432 Figure 8 Correlations of changes in yield CV with the changes in mean, variability, and extremes of 

433 temperature and precipitation at the FPU level relative to the baseline. In each panel, the changes in 

434 growing season climate factor are: (a) mean temperature (baseline value > 10°C), (b) mean temperature 

435 (baseline value < 10°C), (c) interannual variability (standard deviation) of mean temperature, (d) intra-

436 season variation of daily temperature, (e extreme degree days, (f) total precipitation, (g) interannual 

437 variability (coefficient of variation) of precipitation, and (h) consecutive drought days. 

438 4. Discussion

439 4.1 Changes in future wheat yield variability 

440 Our results indicate that wheat yield CV might increase significantly in 18% of the 

441 global harvested area under a high-emission climate change scenario. In turn, yield 

442 variability is found to decrease in 44% of currently cultivated areas, regions in which 

443 mean yields are projected to increase under climate change. Globally, our findings are 

444 consistent with those of earlier studies indicating that declining yield variability is wide-

445 spread but increasing yield variability is found across important breadbasket regions 

446 (Iizumi and Ramankutty 2016, Leng 2017). Site-based simulation results for a 2°C 

447 warming scenario (Liu et al., 2019) have provided a more pessimistic estimation, with 

448 wheat yield CV increases in 36 out of the 60 sites, including the CO2 fertilization effect. 

449 Our results confirm higher yield variability in hot regions as reported by (Liu et al., 

450 2019) and in regions with low nitrogen fertilizer application rates as reported by (Han 

451 et al., 2020). Similarly, the low yield CV in high nitrogen fertilizer application rates 

452 regions is consistent with the findings of nutrients-driven intensification that additional 

453 nutrient inputs raise mean crop yields and thus decrease yield CV (Müller et al 2018).

454

455 A detailed comparison of yield CV changes between site-based projections (Liu et al 

456 2019b) and our gridded projections demonstrates the importance of revealing spatial 

457 heterogeneity of yield variability changes. Changes in yield CV were identified as 

458 significantly increasing at all 14 sites for the 2°C warming scenario (Liu et al., 2019). 

459 Among the 14 sites, our estimates were consistent with 10 of the 14 stations. For the 

Page 22 of 35AUTHOR SUBMITTED MANUSCRIPT - ERL-111360.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



23

460 other 46 sites, our results are largely consistent with the 25 sites across the central U.S., 

461 South America, the Middle East, the western European coastline, and Southern Russia; 

462 but are different in the direction of change for other sites. Spatial heterogenous yield 

463 variability changes are the main cause of inconsistence between our projections and Liu 

464 et al. (2019). This is the case in Glen and Bloemfontein in South Africa, and Dharwar 

465 in India for the four inconsistent sites, as well as 11 out of the other 21 inconsistent 

466 sites, including those in northwest US, around the western or northern coast of the Black 

467 Sea, in central southern Russia, North China, and south-eastern Australia. Besides, 

468 another cause may be the choice of the crop model ensemble and underlying 

469 uncertainties. We examined our results for each crop model emulator. The direction of 

470 each site-based change in yield CV reported by Liu et al. (2019) can be found in the 

471 result of at least one of our emulators, indicating GCMs-crop models ensemble 

472 combination is critical to yield projection.

473

474 Spatial heterogeneity of crop yield variability creates a huge challenge for agricultural 

475 risk management (Benami et al 2021). The spatially heterogeneous yield CV changes 

476 are also found in earlier reports that yield variability changes in rice and wheat are 

477 sensitive to spatial resolution (Iizumi et al 2018). Previous yield variability projections 

478 conducted with site-based, process-based models have found that regional yield 

479 variability changes are not consistent across different sites (Liu et al 2020). Thus, the 

480 gridded process-based crop models can provide an overview of global or regional 

481 changes in yield variability (Parkes et al 2018, Ostberg et al 2018). The ability to 

482 represent this spatial heterogeneity in yield variability in light-weight emulators allows 

483 for more comprehensive assessments of the risk of changes in yield variability.

484 4.2 Climatic drivers of changes in future wheat yield variability

485 The present results indicate strong links between changes in the wheat yield CV 

486 and changes in temperature and precipitation. Previous reports have suggested that 

487 changes in yield interannual variability are closely related to changes in the variability 
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488 (both interannual and intra-seasonal) (Iizumi et al., 2013; Peng et al., 2018) and 

489 extremes of climate factors (Chen et al., 2018; Iizumi and Ramankutty, 2016). In 

490 addition, due to the non-linear relationship between yield and temperature, changes in 

491 the mean temperature, away from the optimal range, will increase the interannual yield 

492 CV (Urban et al., 2012; Tigchelaar et al., 2018). The response of the interannual yield 

493 variability to changes in precipitation is more complex than for temperature. In general, 

494 changes in precipitation have smaller effects on irrigated yield than on rainfed yield 

495 (Kothari et al., 2019; Tubiello et al., 2002). In rainfed systems, yield interannual 

496 variability has been known to be closely related to interannual variability of rainfall, as 

497 well as frequency and intensity of drought (Webber et al., 2018). The effect of total 

498 precipitation change largely depends on the baseline humidity of the production region. 

499 For drylands, increasing total precipitation increases mean yield (Fronzek et al., 2018) 

500 and consequently reduces CV. Also, the interaction between temperature and 

501 precipitation changes can mitigate the increase in yield CV, although the magnitude of 

502 the interaction effect on change in yield CV is modest, within 10%. This is similar to 

503 the mitigation effect of irrigation on heat stress (Zaveri and B. Lobell, 2019). However, 

504 the interaction effect cannot be explicitly explained, depending on the timing, intensity, 

505 and volume of rainfall (Tack et al., 2017). 

506

507 Higher atmospheric CO2 concentrations mitigate variability changes in crop yield 

508 (Urban et al., 2015), a consistent finding across different scenarios and time periods 

509 (Figure 7). The mitigation effect is mainly attributed to increases in mean crop yield 

510 under elevated CO2. Wheat as a C3 crop is known to have a high capacity to benefit 

511 from elevated CO2 levels, which has been confirmed by various previous experiment-

512 based evidences (Kimball 2016, Toreti et al 2020) . Negative effects of global warming 

513 on future wheat yield could potentially be fully compensated by yield-amplifying 

514 effects of elevated atmospheric CO2 concentrations (Ye et al., 2020).
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515 4.3 Uncertainties

516 The spatial pattern of uncertainty in our results is consistent with different uncertainty 

517 distribution between high and low latitudes provided by crop model simulation (Xiong 

518 et al 2020). Including the CO2 fertilization effect would further increase the total size 

519 of uncertainty in the projected yield. This is in agreement with a recent analysis on 

520 sources of uncertainty regarding GCMs and GGCM statistical emulators (Müller et al., 

521 2021). 

522

523 The use of emulator ensemble simulation enabled the estimation of wheat yield 

524 variability change driven by climate change. Nevertheless, our approach has two 

525 limitations. First, crop damage from climate extremes is a major driving force of 

526 interannual yield variability (Trnka et al., 2014), but the capability of most crop models 

527 in reproducing extreme climate damage to crops is still limited (Rötter et al., 2018). For 

528 instance, process-based crop models of the GGCMI phase 1 experiment fail to 

529 reproduce yield impact from too wet conditions (Li et al 2019). Also, process-based 

530 crop models underestimate the extremeness of the 2003 heat-drought (Schewe et al 

531 2019). We employ newly developed crop model emulators to project future wheat yield 

532 and these emulators are capable of capturing the direction of yield anomalies due to 

533 climate extremes, indicating the type of extreme event-induced yield variability that is 

534 captured by the models (heat, drought) will increase yield variability in a fair share of 

535 current cropland. Second, interannual yield variability driven by non-climatic factors is 

536 not considered in our analysis. These non-climatic factors can strongly affect yield 

537 variability (Albers et al 2017) and changes in management can also strongly affect yield 

538 levels under climate change (Minoli et al 2019, Zabel et al 2021).

539 4.4 Implications 

540 The spatial scale of our estimates reached the sub-province scale in China and the sub-

541 state scale in the US and thus provided more insight than previous global estimates. 
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542 First, gridded estimated yield variability change could provide more detail on spatial 

543 heterogeneity in local areas. Such local spatial differences were pronounced in South 

544 Africa, eastern Africa, and Central Russia. Second, when there is a need to estimate 

545 regional or country-level aggregated yield variability change, our gridded estimates 

546 could enable straightforward aggregation rather than upscaling from site-based 

547 estimates—these estimates rely heavily on the representativeness of sites.

548

549 High-spatial resolution gridded estimates of future yield variability change enabled 

550 global estimates of future change in yield CV. Globally, changes in yield CV tend to 

551 decrease in 44% of global harvested areas; but still yields would become more unstable 

552 in 18% of global harvested areas under RCP8.5-2080s, including several major 

553 production regions and countries. This indicates potential challenges to the stability of 

554 grain supply, market pricing, and consequently, the whole food system in the context 

555 of future climate change. It is important for local and regional economies to proactively 

556 implement adaptation measures and policy support (Iizumi and Ramankutty, 2016). In 

557 light of this, our results can provide details of spatial heterogeneity in local areas and 

558 identify regions with urgent needs, including those hot and low-fertilizer application 

559 regions. The predominant climate driver is also identified, so that adaptation strategies 

560 can be tailored for regional or local challenges.

561

562 To face the challenge of increased yield interannual variability, adaptations including 

563 mean-increasing and variance-reducing strategies (Mehrabi and Ramankutty, 2019), 

564 are needed because the changes in relative yield variability (CV) are sourced from both 

565 changes in mean yield and yield standard deviation (Figure S9). The focus on the 

566 relative yield variability (CV) rather than absolute (e.g. SD) reflects the producer 

567 perspective, where the variability around the mean is relevant (storage, financial buffers) 

568 even if the mean is increasing in the long-term. Shifting cultivars (Olmstead and Rhode, 

569 2011; Liu et al., 2010) and adjusting planting dates (Lobell, 2014; Huang et al., 2020) 

570 have been recognized as effective adaptation options to address heat stress. Likewise, 
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571 reinforcing irrigation equipment and adjusting irrigation strategies could relieve water 

572 shortages (Zhao et al., 2020). Additionally, increasing nitrogen application rates in 

573 underperforming wheat production system regions could mitigate the increase in yield 

574 CV (Han et al., 2020). From a risk management perspective, the risk in increased yield 

575 CV requires better domestic inter-temporal reserves of wheat grain to smooth 

576 fluctuations in interannual production, market supply, and commodity price and better 

577 financial buffers at the producer level, to mitigate financial losses from local less-than-

578 average yields.

579 5. Conclusions

580 This study presents one of the first projections of future wheat yield interannual 

581 variability change at high spatial resolution and disentangles the impacts from changes 

582 in temperature, precipitation, and CO2 on those changes. Our results reveal that future 

583 climate change alters wheat yield interannual variability in over 60% of harvested areas. 

584 Wheat yield variability may decrease in over 40% of global wheat harvested areas under 

585 a high-emission climate change scenario (RCP8.5-2080s), while under RCP4.5-2080s 

586 only 31% of harvested areas undergo the declined yield CV. However, 23% and 18% 

587 of harvested areas experience increased yield CV under RCP4.5-2080s and RCP8.5-

588 2080s, respectively. Greater increase in yield standard deviation than that in the mean 

589 yield was the main reason for the increase yield variability under both RCP4.5 and 

590 RCP8.5. Yields in hotter or lower fertilizer regions are projected to become more 

591 unstable. Worldwide, changes in temperature have a stronger influence on changes in 

592 yield variability compared with precipitation in 72% of global harvested areas under 

593 RCP8.5-2080s, whereas under RCP4.5-2080s the areas controlled by temperature 

594 changes are smaller (predominant in 53% of harvested areas). The global mean of yield 

595 CV reduction due to rising CO2 concentration across current harvested areas are 5% 

596 and 8% under RCP4.5-2080s and RCP8.5-2080s, respectively. High spatial resolution 

597 patterns of changes in wheat yield variability, as well as site-specific major driver 
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598 identification results, have great implications for policy-making with regard to where 

599 food supply and farmer income need to be stabilized by additional measures in wheat 

600 production throughout the world.

601
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