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Introduction

copan
  coevolutionary
 pathways

PIK’s 2013–2018 flagship project copan — coevolutionary pathways,
since 2019 continued as the copan collaboration between PIK’s Fu-
tureLabs on “Earth resilience in the Anthropocene” and “Game
theory and networks of interacting agents”, focusses on under-
standing and modelling the Anthropocene, the tightly intertwined
social-environmental planetary system that humanity now inhabits.
To this end, copan follows a social-ecological complex systems ap-
proach that allows to address the effects and limitations of human
agency and system-level effects of networks and complex coevolu-
tionary dynamics in the World-Earth system.

The project emerged from many informal discussions between
leading PIK scientists, prominently involving Wolfgang Lucht and
his ideas on a planetary social-ecology, and immensely influenced
by PIK founding director John Schellnhuber’s demand for “a gen-
uine Earth System Analysis” in order help “secure an acceptable
long-term coevolution of nature and civilization,” which he de-
scribed as “a cybernetic task for the emerging ‘Global Subject’”
[Schellnhuber, 1998]. It soon became clear that such an endeavor
would from the beginning require a balanced mix between natural
science based approaches (represented by Research Department
1) and complex systems science (represented by PIK Research De-
partment 4) and would have to be very open to insights from and
collaboration with the social sciences. In 2013, Jonathan Donges and
Jobst Heitzig were assigned the task to explore such an agenda in
a newly established flagship project, strongly supported by depart-
ment heads Wolfgang Lucht and Jürgen Kurths. copan was named
in reference to the ancient Maya city of Copán as just one exam-
ple of a past civilization that displayed complex social-ecological
dynamics leading to its eventual decline. The acronym officially
stands for coevolutionary pathways, and the letter ‘n’ inofficially
represents the heavy use of network-based modeling and analy-
sis. Its logo combines a stylized form of the Maya language glyph
‘Copán’ and a visualization of coevolutionary pathways in the spirit
of [Schellnhuber, 1998].

As of June 2021 the copan collaboration actively involves one
intern, two bachelor, three master, five PhD students, one postdoc
and five senior scientists. By the end of 2020, six Bachelor’s, 25

Master’s and five PhD theses have been completed. Furthermore,
67 papers were published in peer-reviewed journals. This work was

https://www.pik-potsdam.de/research/projects/activities/copan
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done by current and former copan members, who are listed in the
appendix of this reader. In addition, several software packages were
developed as part of copan projects. To name the most important
ones: the copan:CORE open World-Earth modelling framework and
pyunicorn – Python modules for complex network and nonlinear
time series analysis. A complete list can be found in the appendix.

This reader presents selected peer-reviewed and discussion pa-
pers put forward by copan at the Potsdam Institute for Climate
Impact Research. The papers are logically ordered and sorted
into topical sections on Conceptual foundations and making the case
(Sect. 1), Towards a unified analytical framework (Sect. 2), Theoretical
and methodological work (Sect. 3), and Analyses and studies of concrete
cases and contexts (Sect. 4).



1
Conceptual foundations and making the case

This first section starts with two perspectives papers calling for
a new way of looking at the Earth system and the human “World”
build upon it.

In “Closing the loop: Reconnecting human dynamics to Earth
system science” [Donges, J. F. and Winkelmann, R. et al., 2017],
former and current PIK directors John Schellnhuber and Johan
Rockström joined us to argue that the Anthropocene is dominated
by planetary-scale social-ecological feedbacks and thus requires a
new paradigm in Earth System science that is founded equally on a
deep understanding of the biophysical and the social World-Earth
System.

Adding to this, “The technosphere in Earth system analysis: A
coevolutionary perspective” [Donges et al., 2017] stresses the im-
portance of technological processes and proposes complex adaptive
networks as a concept for describing the interplay of social agents
with technospheric entities and their emergent dynamics for Earth
system analysis.

In the Anthropocene, human actions have become critical to
understanding planetary Earth system dynamics. To capture this
in conceptual models, in the paper “Social tipping dynamics for
stabilizing Earth’s climate by 2050” [Otto et al., 2020a] we ana-
lyzed the importance of potential social tipping interventions for
overall Earth system dynamics, using the terminology of tipping
points in social-ecological systems as defined in the literature re-
view [Milkoreit et al., 2018]. In addition, in “Human agency in the
Anthropocene” [Otto et al., 2020b] we explored alternative concepts
of human agency in the Earth system context.

The importance of this emerging perspective on the Earth system
is emphasized in “Trajectories of the Earth system in the Anthro-
pocene” [Steffen et al., 2018] with a small contribution of copan .
This paper concluded that Earth system stewardship leading to
transformative social-economic change is required to steer the Earth
System away from risky “hothouse Earth” trajectories.

In order to get a first idea of what ingredients novel models of
planetary-scale social-ecological coevolution might need to contain,
we include here two quite different studies that feature selected
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social-ecological feedbacks.
The first exemplary modelling study, “Sustainable use of renew-

able resources in a stylized social-ecological network model under
heterogeneous resource distribution” [Barfuss et al., 2017] analy-
ses the influence of heterogeneity on social interactions between
the users of local renewable resources. We used a model of social
learning agents in an adaptive network “copan:EXPLOIT” [Wieder-
mann et al., 2015], which will be introduced in more detail in a later
section of this reader. Due to its simplicity, it has become a kind of
paradigmatic example model used in several copan Master’s theses.

In the second exemplary modelling study, “Sustainability, col-
lapse and oscillations in a simple World-Earth model” [Nitzbon
et al., 2017], we use a very low-dimensional system of ordinary
differential equations for modelling the coevolutionary dynamics
of globally aggregated carbon, population, and capital stocks to
demonstrate that the inclusion of socio-economic feedbacks can
have a large influence on projected long-term Earth system trajecto-
ries.
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Abstract
International commitment to the appropriately ambitious Paris climate agreement and the 
United Nations Sustainable Development Goals in 2015 has pulled into the limelight the 
urgent need for major scientific progress in understanding and modelling the Anthropocene, 
the tightly intertwined social-environmental planetary system that humanity now inhabits. 
The Anthropocene qualitatively differs from previous eras in Earth’s history in three key 
characteristics: (1) There is planetary-scale human agency. (2) There are social and economic 
networks of teleconnections spanning the globe. (3) It is dominated by planetary-scale social-
ecological feedbacks. Bolting together old concepts and methodologies cannot be an adequate 
approach to describing this new geological era. Instead, we need a new paradigm in Earth System 
science that is founded equally on a deep understanding of the physical and biological Earth 
System – and of the economic, social and cultural forces that are now an intrinsic part of it. It is 
time to close the loop and bring socially mediated dynamics explicitly into theory, analysis and 
models that let us study the whole Earth System.
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Introduction

By pushing Earth’s climate and biosphere out of the dynamics of the Holocene (Steffen et  al., 
2015a) humanity is at risk of moving our planet outside a safe operating space for humanity by 
altering important feedback loops, potentially producing abrupt and irreversible systemic changes 
with impacts on current and future generations (Steffen et al., 2015b).

From the start, Earth System science has recognized that humans are an important component 
of the contemporary system (Mooney et al., 2013; NASA, 1988). Integrating natural and social 
science perspectives on the Earth System has been a key aim of a suite of research initiatives over 
the past decades (e.g. AIMES, IHOPE, International Human Dimensions Program and Future 
Earth). Despite these efforts, key characteristics of the Anthropocene – human agency, global 
social and economic networks and important feedback interactions between human systems and 
planetary processes – have not been dynamically represented or otherwise resolved in existing 
Earth System and integrated assessment models.

Capturing these dynamics in a new generation of Earth System models should allow us to 
address a number of critical questions about socio-ecological turbulence in the Anthropocene, such 
as: Could transnational social movements such as the push for divestment from fossil fuels tip the 
socio-economics of carbon emissions? How is climate change science processed in world cultures 
and traditions other than those of the secular West? How are climate tipping events such as in the 
West Antarctic Ice Sheet interlinked with social and political transitions?

The biggest challenge in answering such questions is to understand human activities and social 
structures as the least predictable, but at present also the most influential component of our planet 
in the Anthropocene. This would, finally, contribute to closing the loop in theory, analysis and 
models of Earth System analysis (Future Earth, 2014; Schellnhuber, 1998, 1999).

To meet this challenge, Earth System analysis requires significant progress in three key areas 
forming the systemic substratum that many pressing, real-world sustainability questions have in 
common (Figure 1).

First: How best to represent human agency?

There is a long tradition of philosophical, anthropological, sociological and psychological research 
on the nature and degree of human agency, i.e. to what extent are humans free to act and what is 
the structure of the factors that constrain them. This has produced a wide variety of schools of 
thought, ranging from assumptions of substantial freedom of choice to behaviour within social 
norms and economic rules (Ajzen et al., 1991), to no agency at all (e.g. physics-based theories of 
social macrodynamics; Garrett, 2014, 2015). Here, we are primarily motivated to understand how 
this broad spectrum of (socially and structurally differentiated) human agency and behaviour can 
be appropriately included and evaluated in Earth System models. Our starting assumption is that 
we need to go substantially deeper than the common scenario approaches used in current Earth 
System modelling, where the dominant underlying social narrative is driven by macroeconomic 
optimization paradigms. These approaches, whilst computationally efficient, will necessarily 
exclude a wide spectrum of behaviours. Consequently, we call for new narratives of global change 
based on the fundamental dynamics following from different assumptions about human agency, 
and within such analysis for differentiation by social groups.

Second: What are the system-level effects of social networks?

The social is networked. Social interactions are mediated via information, trade, political and infra-
structure networks. Such networks can change over time via adaptive, anticipatory and preference 
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formation processes. The dominant existing conceptualizations of Earth System loops – essentially 
using the same rigid box-and-arrow wiring diagram developed by the Bretherton Committee 
(NASA, 1988) – are no longer fit for purpose when the magnitude, direction of flows, and even 
composition of the components of the socio-environmental system are changing. Transformative 
phenomena such as the Great Acceleration (Steffen et al., 2015a) cannot be fully understood with-
out digging into the network structure of the Anthropocene such as the wide-ranging teleconnec-
tions that emerge in land use change (Seto et al., 2012) and are the essence of digital communication 
between people. Earth System analysis needs to recognize that values and norms shape human 
behaviour, leading to changes in Earth System functioning with feedbacks to behaviours, values, 
and norms. This is a coevolving social-environmental network with an indisputably very rich 
structure.

Third: What tipping points and complex dynamics arise from 
social-environmental loops?

Even simple nonlinear systems can surprise us with our mostly linear thinking; even more so 
highly complex systems such as the Earth’s climate. It is to be expected that social-environmental 
networks that feature myriad feedback loops will exhibit a wide range of complex behaviours. 
From observational records and modelling we know that there are several global-scale tipping ele-
ments in the climate system (Lenton et al., 2008; Schellnhuber et al., 2016). Even richer complex 
dynamics are expected and observed in the social sphere on comparably fast timescales (Bentley 
et al., 2014), particularly when interactions in the Anthropocene alter and strengthen feedbacks 

Figure 1.  Closing the loop. Understanding and modelling the Anthropocene, the tightly intertwined 
social-environmental planetary system that humanity now inhabits, requires addressing human agency, 
system-level effects of networks and complex coevolutionary dynamics. The loop sheds light on a 
coevolutionary view of Earth System dynamics (Schellnhuber, 1998, 1999) in the Anthropocene including 
multiple development pathways, obstacles (mountains), dangerous domains (spikes) and the sought-after 
safe and just space for humanity (oasis).
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between biogeophysical and social processes. Research and assessments ignoring the loops 
between and within these two spheres will inevitably overlook critical phenomena such as emerg-
ing multi-stabilities and tipping points. Models that allow for a systemic view that classifies poten-
tial pathways and identifies critical parameters, management options, windows of opportunity and 
dilemmas (Heitzig et al., 2016) represent important additions to studies more focused on quantifi-
cation and prediction of individual trajectories.

A complex systems view of the Anthropocene

Effects that may arise even in simple systems due to complex dynamics may be illustrated for the 
case of a deliberately elementary representation of decarbonization in the energy sector. A dirty 
(CO2-emitting) and a clean (e.g. sustainably renewable) energy technology compete while their 
market penetration can be influenced by a managing agent through subsidies. This is a hugely 
simplified case of the more general problem of multiple technologies, multiple economic incentive 
systems, non-economic values and, particularly, of a large number of interacting networked agents 
with different objectives and means. However, already this simple case system reveals non-trivial 
effects not usually taken into account in integrated Earth System modelling (Figure 2):

	(i)	 A rich landscape of possible pathways exists that are sensitive to parameter settings and 
initial state. The cost-optimal pathway, an example of the imposition of a utility to be opti-
mized (a very common practice in the analysis of such problems), is but one pathway 
toward a desired state and gives a rather incomplete picture of the dynamical landscape in 
which a manager is to operate. Closing the loop requires socio-ecological systems analysis. 
What is more, what is considered ‘desirable’ can differ among networked agents and poten-
tially lead to conflict. Closing the loop means better inclusion of plurality of worldviews, 
priorities and objectives.

	(ii)	 Large areas of parameter space form basins of attraction: pathways within these basins 
approach an end state that could have desired properties, but could also be an undesired 
state, underlining the importance for a manager to understand the structure of the dynami-
cal landscape. Closing the loop means considering agency that is more multi-dimensional 
than single-purpose optimization, i.e. to follow broader concepts that allow potential access 
to a larger subset of trajectories.

	(iii)	Pathways toward a desired end state do not always initially lead in the direction of this state 
but can counterintuitively follow less obvious dynamical routes (which presents a problem 
to politics measured as short-term success). Along these lines, some paths that lead to 
desired end states have to temporarily traverse intermediate states with undesired proper-
ties (the situation must get worse before it will get better). Closing the loop requires a 
broader temporal perspective which may challenge short-term thinking in governance and 
policy making.

	(iv)	Pathways optimizing a given utility may display the phenomenon of ‘optimizing to the 
edge’, i.e. they tend to follow the edge of domains bordering undesired states, rendering 
them vulnerable against fluctuations that may tip them into neighbouring, less favourable 
domains of attraction. Closing the loop informs notions of desirability by explicit consid-
eration of the resilience of trajectories.

This illustrative list of phenomena arising even in this simple example suggests that dilemmas in 
governing complex systems such as the global human–environment system (Heitzig et al., 2016) 
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require particular insight into three aspects of such dynamic landscapes. First, at issue is to what 
extent human intervention can alter the pathways upon which societies and the environment 
develop, i.e. what agency different types of agents have to manoeuvre on the landscape of trajec-
tories, and what the instruments are to achieve this. Second, since humans act collectively as social 
groups on environmental processes and these are equally characterized by hierarchical intercon-
nectedness, the macroscopic effects of coevolving complex networks on dynamic pathways have 
to be explored. And third, the topology of these dynamic landscapes has to be discovered as 
opposed to dissecting thin policy slices – this will require complex systems analysis, particularly 
regarding separation of domains of attraction, regions with steep gradients and faults, and critical 
dependence on key parameters.

Conclusion

We have shown how a simple model that explores trajectories towards decarbonization can pro-
duce complex behaviour and multiple outcomes, highlighting issues of agency over paths and of 
resulting complexity in the dynamical landscape of accessible paths. As such, this analysis demon-
strates the utility of taking a complex systems, coevolutionary approach to dilemmas of the 
Anthropocene. This example highlights the first and third key area identified above. It is to be 

Figure 2.  Complex dynamics arising from a conceptual model of decarbonization 
transformation. Mapping of trajectories in a dynamical system model of an energy market with 
competing dirty and clean technologies that can be influenced by subsidizing the clean technology 
(management). Business-as-usual trajectories without management (solid lines) as well as pathways with 
management (dashed lines) are shown. In this example, a market share of the clean technology larger than 
50% is normatively considered as desirable. Background colours indicate state space regions such as the 
safe operating space (shelter, light green), where trajectories can remain in the desirable domain without 
management, or the region from which the safe operating space can only be reached through desirable 
states when applying subsidies (glade, dark green), following Heitzig et al. (2016). A typical cost-optimal 
pathway as generated by integrated assessment models is indicated by the red line.
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expected that further complexities would arise by factoring in the collective effects of social net-
works on multiple agents and their interactions.

If science is to provide robust and useful input into this and other dilemmas that arise as a con-
sequence of the transition to the Anthropocene, then Earth System models must embrace wherever 
possible these three areas: representation of socially differentiated agency, social-economic net-
works and complex coevolutionary dynamics. This would produce useful models of the 
Anthropocene (Donges et al., 2017; Verburg et al., 2016).

We see examples of such approaches emerging. For example, theory and models of biogeo-
physical dynamics in the Earth System are well established, and recently developed adaptive net-
work approaches (Gross and Blasius, 2008) offer a flexible framework for modelling 
social-environmental regime shifts and transformations in an emergent and dynamic way without 
static prescription of scenarios, including phenomena such as social learning, segregation, norm 
and value change, and group dynamics such as coalition formation (Auer et al., 2015; Schleussner 
et al., 2016). Our vision for Earth System analysis calls for a synthesis of these so far disconnected 
phenomena within a complex systems framework.

The Paris climate targets (UNFCCC, 2015) and United Nations Sustainable Development Goals 
(UN SDGs, 2015) are examples of humanity’s ambition to remain within a safe operating space at 
the same time as continuing to increase the wellbeing of the global population. Earth System sci-
ence should play a critical part in this endeavour. To do so it must connect the behaviour and 
impacts of humans to biophysical processes and seek to understand the resulting very rich dynam-
ics. We have existing tools and approaches to study such phenomena. Such analysis offers signifi-
cant potential to augment existing models and methodologies and so help humanity chart a course 
towards a desirable Holocene-like Anthropocene.
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Abstract
Earth System analysis is the study of the joint dynamics of biogeophysical, social and technological 
processes on our planet. To advance our understanding of possible future development 
pathways and identify management options for navigating to safe operating spaces while avoiding 
undesirable domains, computer models of the Earth System are developed and applied. These 
models hardly represent dynamical properties of technological processes despite their great 
planetary-scale influence on the biogeophysical components of the Earth System and the 
associated risks for human societies posed, e.g. by climatic change or novel entities. In this 
contribution, we reflect on the technosphere from the perspective of Earth System analysis with 
a threefold focus on agency, networks and complex coevolutionary dynamics. First, we argue 
that Haff’s conception of the technosphere takes an extreme position in implying a strongly 
constrained human agency in the Earth System. Assuming that the technosphere develops 
according to dynamics largely independently of human intentions, Haff’s perspective appears 
incompatible with a humanistic view that underlies the sustainability discourse at large and, more 
specifically, current frameworks such as UN sustainable development goals and the safe and just 
operating space for humanity. Second, as an alternative to Haff’s static three-stratum picture, we 
propose complex adaptive networks as a concept for describing the interplay of social agents 
and technospheric entities and their emergent dynamics for Earth System analysis. Third, we 
argue that following a coevolutionary approach in conceptualising and modelling technospheric 
dynamics, also including the socio-cultural and biophysical spheres of the Earth System, could 
resolve the apparent conflict between the discourses on sustainability and the technosphere. 
Hence, this coevolutionary approach may point the way forward in modelling technological 
influences in the Earth System and may lead to a considerably deeper understanding of pathways 
to sustainable development in the future.
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Introduction

As a defining characteristic of the Anthropocene, human societies have created large-scale techno-
logical infrastructures such as world-spanning industrialized energy and food production and distri-
bution systems for supporting historically unprecedented numbers of human beings embedded in 
increasingly complex socio-cultural structures while significantly intervening in the dynamics of the 
Earth System on a planetary scale. In this way, the worldwide evolving network of mutually inter-
dependent technological and social macrostructures (examples for the latter include modern states, 
bureaucracies and social institutions in general), the technosphere in the sense of Haff (2014a), 
gives rise to key global environmental crises. These crises and their local and regional manifesta-
tions are reflected in the transgression of planetary boundaries such as those related to anthropo-
genic climate change, degenerative land-use change, accelerated biodiversity loss, perturbation of 
the global biogeochemical cycles of nitrogen and phosphorus, and the creation and release of novel 
entities such as nanoparticles and genetically engineered organisms (Steffen et al., 2015b).

In this contribution to the Anthropocene Review’s Special Issue on the technosphere, we reflect on 
the implications and relevance of Haff’s concept in the context of Earth System analysis. This field 
of research explores possible future development pathways compatible with the coevolutionary 
dynamics of the biogeophysical and socio-technological spheres and aims at identifying management 
options for navigating to sustainable safe operating spaces while avoiding undesirable Earth System 
states such as ‘catastrophe domains’ (Schellnhuber, 1998, 1999). Our contribution intends to connect 
separate discourses about the technosphere on the one hand, and Earth System analysis and sustain-
able development on the other hand, by providing insights into current debates on how to include 
technological dynamics in Earth System models and exploring how the concept of the technosphere 
could be used to advance the understanding of these dynamics.We begin by discussing human agency 
in Haff’s technosphere concept from the perspective of sustainability science. Then we briefly con-
sider the relevant state-of-the-art of modelling technological dynamics in Earth System science and 
discuss issues of collective human agency in this context. Finally, we propose a complex systems 
approach for analytically dealing with the technosphere in the Earth System that is founded on (1) 
coevolutionary dynamics and emergence and (2) adaptive Earth System networks.

The technosphere and human agency

Agency is a key concept in the Anthropocene discourse. It arises as a crucial issue when considering 
an Earth System that is not only influenced by a socio-technological complex but also generates 
with increasing severity unintended consequences from the actions of that complex with repercus-
sions for human societies. The notion of agency is traditionally debated in philosophy and sociol-
ogy, but has received much attention as well in psychology and neuroscience in the last decades. Put 
simply, in these fields agency is the human experience of being the subject or owner of one’s actions. 
This sense of agency is refined in the philosophy of action, where the term usually refers to the 
capability of an agent to perform deliberate and intentional action as opposed to forced, determined 
or random behaviour (Moya, 1990; Schlosser, 2015). The sociological concept of agency is often 
used as an antonym to social structure (Elder-Vass, 2010; Ritzer, 2010). On the one hand, structure 
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determines the individual’s actions and behaviour. On the other hand, structure emerges from the 
actions of individuals, forming a coevolutionary loop (Snijders et al., 2010). The concept of agency 
of the individual emphasizes some degree of potential primacy of the individual over structure. Thus 
agency can be understood as one part of a dialectic understanding of the social.

Haff’s concept of the technosphere shifts the focus from social relations to relations between 
humans and technology, a theme that is explored from other perspectives in the field of science and 
technology studies (e.g. Latour, 2014). Haff raises important questions regarding human agency 
and the controllability of large-scale technologies as well as the role of technology in the interrela-
tion between human societies and other parts of the Earth System. Haff attempts to take a physi-
cist’s outside point of view on the technosphere as a ‘geological phenomenon’, postulating that the 
technosphere follows some ‘physical law’ or ‘quasi-autonomous dynamics’ such as the principle of 
maximum entropy production (Haff, 2014a). From this perspective, human agency and purpose 
may have been the originators of technological systems, but are no longer their controlling factor. 
Haff thus presents an account of recent human development as only a part of the systemic dynamics 
of the technosphere, thereby challenging the intuition that political decisions and societal change 
are solely the result of human volitions.

Haff notes that human actions are strongly constrained by technological possibilities and 
dependencies. Technologies and institutions increase societies’ robustness to external and internal 
disturbances but also constitute path-dependencies and lock-ins that make large-scale changes dif-
ficult. The energy system is a good example of such a lock-in: Investments in fossil fuel technology 
can be considered as costs that owners of such investments wish to recover (and large parts of 
society wish to make use of). A radical shift in energy production towards renewable energies 
would make these prior investments worthless. Thus, a rapid transition to renewable energies is 
proving to be difficult.

Haff takes this argument to the extreme: Motivated by an apparent separation of scales between 
the level of the individual and the large-scale technological complexes, as suggested by Haff’s 
rules of inaccessibility and impotence (Haff, 2014a), humans as individuals do not, in his view, 
exert direct influence on the dynamics of the technosphere and hence its repercussions (Haff, 
2014b). Similarly, other authors argue that social metabolism can be described as a thermodynamic 
machine with intrinsic momentum originating in the flows of energy and material required to con-
struct, maintain and transform large-scale infrastructures (Garrett, 2014, 2015). Haff puts this 
extreme position only partly into perspective, by focusing on leadership and control. Even if 
humans might have agency on an individual level, he argues that they do not have it on the aggre-
gate level. Instead, the argument in Haff’s papers suggests that the technosphere has non-human 
agency, which is in line with the discourse on the possibility of the emergence of general artificial 
intelligence and its consequences (Bostrom, 2014). The technosphere is presented as an emergent 
super-organism with its own teleology, desires and needs (Haff, 2014a), rather than serving human 
needs and normative goals.

Let us follow, for a moment, the assertion that the technosphere follows its own independent 
dynamics. This would imply that there is little room for political or ethical choice on a planetary 
level, e.g. for an intentional shift of technology towards sustainable production. Without the ability 
to influence technological development at a large scale, efforts to establish and implement norma-
tive goals such as UN sustainable development goals (Griggs et al., 2013) and frameworks such as 
sustainability paradigms (Schellnhuber, 1998, 1999) and the safe and just operating space for 
humanity (Raworth, 2012; Rockström et al., 2009) would be futile. Taking this into consideration, 
Haff’s concept of the technosphere is incompatible with a sustainable development discourse 
founded on humanitarian principles.
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However, we currently see at best mixed evidence for technology following its own dynamics 
in a manner that is totally independent of human intentions. Certainly, deviations from the busi-
ness-as-usual path require more effort to succeed because well-established vested interests and 
technological inertia have to be overcome. But there is, in our view, no a priori reason why norma-
tive goals are unachievable; there are many examples where policies can opt out of large-scale 
technologies (e.g. the global banning of CFCs and the nuclear fade out in Germany). Instead of 
taking the development of technology as given, we suggest to do the opposite: frame it as a politi-
cal question, i.e. regarding collective social action.

This is perhaps the most fundamental shortcoming of Haff’s technosphere concept as it stands: 
the fact that humans reflect on their relationship with the world and adapt their actions accordingly 
does not seem to have any consequence for the emergent phenomenon of the technosphere. But 
history, for example of economic institutions, shows that theories about human societies and their 
environments can influence their behaviour, sometimes even leading to situations of self-fulfilling 
or self-defeating prophecy (e.g. Ferraro et al., 2005). Therefore, we think it is essential to consider 
human reflexivity as an integral part in the coevolution between technology and human societies.

In the following, we aim for a more differentiated understanding on the technosphere concept 
building on Haff’s notion that

The technosphere includes the world’s large-scale energy and resource extraction systems, power 
generation and transmission systems, communication, transportation, financial and other networks, 
governments and bureaucracies, cities, factories, farms and myriad other ‘built’ systems, as well as all the 
parts of these systems, including computers, windows, tractors, office memos and humans. It also includes 
systems which traditionally we think of as social or human-dominated, such as religious institutions or 
NGOs. (Haff, 2014a)

While Haff capitalizes on a geophysical perspective on the dynamics of large-scale technological 
systems, he still includes social-dominated systems into his picture of the technosphere. To develop 
our arguments further, we attempt to distinguish more clearly between those two classes of phe-
nomena that are emergent from the point of view of human individuals and technological objects: 
(1) macrosocial entities and structures such as social networks, governments and bureaucracies, 
religious institutions or non-governmental institutions (NGOs) and (2) technological macrostruc-
tures such as the internet or large-scale energy and resource extraction and transport systems. 
While such a classification is not always strictly feasible because of the myriad of interdependen-
cies and co-enabling effects in densely entangled social and technological macrosystems, it is use-
ful for distinguishing agency on the level of human individuals with respect to macrosocial entities 
and structures from the macro-agency of social macrostructures with respect to technological mac-
rostructures. We refer to macro-agency as the collective agency of social macrostructures in the 
sense of their capability to govern, influence, direct and transform technological macrostructures. 
It should be stressed that this macro-agency arises from the individual agencies and is not an 
expression of an independent will, it is an emergent macro-phenomenon of networked individuals. 
Macro-agency differs qualitatively from the agency of human individuals because it is subject to 
distinct and strong path-dependencies and self-set rules.

Representation of technological systems in Earth System 
modelling

In Earth System analysis, mathematical and computer models are used as the main analytical tool 
to gain insights into the functioning and future development of components of the Earth System 
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and of the system as a whole. However, the representation of human societies and technology pose 
great challenges to formal modelling. Human activities as a whole are modelled in a number of 
different ways at several scales (Verburg et al., 2016). At present, most global models such as those 
employed in the assessment reports of the Intergovernmental Panel on Climate Change (IPCC) do 
not do an adequate job of simulating the human component of the Earth System in a dynamical 
way. Most global-level representations are based on general equilibrium models of the economy, 
which often do not include non-linear dynamics (e.g. feedbacks and emergent properties from 
agent interactions) and are based on strong assumptions about aggregate economic behaviour. For 
example, integrated assessment models typically only couple biophysical Earth System models 
(normally climate models) with economic models in a simple, one-way direction (van Vuuren 
et  al., 2012). On the other hand, complex system approaches, such as agent-based models and 
simple conceptual (toy) models, generally do not operate at the large regional or global levels.

Perhaps an exception to this assessment, while still lacking representations of emergent social-
technological structures and dynamics, is the World3 model, made famous by its use in the Limits 
to Growth scenarios (Meadows et al., 1972). The World3 model is basically a systems dynamics 
model that is organized around five sectors – population, capital, agriculture, non-renewable 
resources and persistent pollution (Costanza et  al., 2007a). So although it does not contain an 
explicit technosphere module, World3 does simulate the metabolism of the technosphere – that is, 
the human commandeering of energy and resources and the expulsion of pollutants into the Earth 
System – and some of the critical feedbacks associated with this metabolism. Importantly, the 
model describes the metabolism of the technosphere as a deterministic dynamical system without 
invoking explicit representations of the agency of a social planner seeking optimal trajectories 
according to some prescribed utility function. Intriguingly, World3 does a remarkably good job of 
simulating the observed metabolism of the technosphere from the early 1970s to the present 
(Turner, 2014).

An early attempt at building a simple conceptual model of the technosphere itself, particularly 
its internal structure and dynamics, arose from an analysis of the dynamics of the post-1950 Great 
Acceleration (Figure 1; Hibbard et  al., 2006; Steffen et  al., 2007, 2015a). Although developed 
before the concept of the technosphere was published, this simple conceptual model has several 
features that are consistent with the technosphere idea and thus may provide a starting point for 
including it in simple World–Earth System models that represent the coevolutionary dynamics of 
social-technological macrostructures (‘World’) and biogeophysical processes (‘Earth’). First, the 
core of the model is a production/consumption loop, driven by energy, which can be linked to a 
biophysical Earth System model via resource use and waste output. Second, the critical role of sci-
ence, technology and knowledge (which can include cultural norms and values) in driving the 
production/consumption loop is explicitly included. Third, the role of human agency via institu-
tions and political economy is included at a scale consistent with the technosphere concept. 
Although a very simple conceptualisation, this model describes ‘… a human-created system … 
that operates beyond our control and that imposes its own requirements on human behaviour’ 
(Haff, 2014a).

Haff’s technosphere concept raises important questions about the adequate representation of 
social and technological mechanisms and constraints in Earth System models. It presents (at least) 
three basic challenges for current approaches to Earth System modelling:

(1)	 the technosphere’s internal complex dynamics – feedbacks, networks, emergent properties 
(Verburg et al., 2016) – must be simulated at the global level;

(2)	 it must be interactively coupled with the rest of the Earth System at the appropriate scale, 
and its most basic metabolic interactions – the commandeering of energy and resources and 
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the expulsion of waste materials (pollutants) back into the rest of the Earth System – must 
be simulated; and

(3)	 the model must account for human (macro-) agency at the appropriate organizational and 
spatial scale, implying for instance that individual humans cannot influence the techno-
sphere at the scale that matters for Earth System dynamics.

In the following, we discuss adaptive coevolutionary modelling approaches, which might help to 
tackle these challenges.

The technosphere and emergence of complex coevolutionary 
dynamics

The technosphere can be thought of as an emergent, coevolved phenomenon of human societies. 
Issues of scale interaction between the technosphere and human societies should therefore be con-
sidered from a coevolutionary perspective. Understanding the emergence of the processes and 
pathways involved can shed light on the nature of today’s interactions between the technosphere 
and its social sphere of origin. This is particularly important when transitioning from diagnostics 
of historical developments to projections of possible future trajectories.

From the early palaeolithic, human societies have been characterized by an interwoven complex 
of technological practices and non-trivial social structures (Camps and Chauhan, 2009). 
Technologies shaped social structures, while social structures governed the use of technologies 
(Boserup, 1965). The post-glacial transition from the mesolithic to the neolithic is best understood 
as a transition in a socio-technological complex (Weisdorf, 2005). Early civilizations were enabled 

Figure 1.  An early conceptual model of the technosphere based on an analysis of the dynamics of the 
Great Acceleration.
Source: adapted from Hibbard et al. (2006).
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by the technologies they produced and in turn structured by the demands of maintaining these 
technologies in villages, cities and subsequently across empires (Tainter, 1990). Today, a techno-
industrial complex is producing wide-ranging social consequences from the structure of the cities 
we live in to the channels of communication we use to the daily journeys we undertake. In turn, 
social dynamics and the resulting systems of preference are continuously influencing the directions 
and forms technological systems take.

In both cases, the technological and the social, history has seen an emergence of interrelated 
macro-scale structures. The Great Acceleration of the post-war era should be seen not only as a 
marked acceleration of the environmental impacts of industrialization, technological innovation, 
increased global connectivity, availability of energy and the break-through of globalized neoliberal 
market principles against imperial divisions of territories and practices (Costanza et al., 2007b). It 
should be equally seen as the more substantial emergence of increasingly large-scale and complex 
global technological and social structures, namely the technosphere and the human sociosphere 
(where the word ‘sphere’ denotes planetary-scale effects). The key question regarding the position 
of the technosphere in this coevolutionary emergence, today leading to an impending environmen-
tal overexploitation of the Earth System with potentially undesirable or even catastrophic out-
comes for human societies, is that of collective agency of human societies over the technosphere, 
as outlined by Haff (2014a).

From the viewpoint of coevolutionary emergence, at issue is both the relationship between 
agency of individual humans vis-a-vis their social macrostructures such as international institu-
tions, industrial complexes and bureaucratic states, and the collective macro-agency of these 
macro-scale social entities vis-a-vis the technological macro-infrastructures they collectively have 
produced and set on their trajectories (Figure 2). Again from a coevolutionary viewpoint, social 
macrostructures are the product of evolved networks of social interactions. Equally, the techno-
sphere can be conceived of as a network of evolved technological interdependencies, resource and 
information flows, actions by individuals induced by the technological systems, and interactions 
with social macrostructures. Haff’s particular question on the technosphere concerns the physical 
and chemical laws governing technological macrosystems. However, since macrosocial and 
macro-technological complexes have coevolved, there is also a large number of interconnections 
between the social and technological realms that govern their joint trajectories. The dependencies 
do not run largely in one direction, from the technological to the social, as Haff implies. Rather, the 
open question encountered is that concerning joint coevolution, that is, the nature of the coupled 
interplay between social and technological dynamics.

From the viewpoint of the individual, the challenge is twofold: understanding the relationship of 
individual agency vis-a-vis macrosocial structures, i.e. the role of the individual as part of an increas-
ingly interconnected mega-society and its institutions, and the interrelationship of these mega-
societies with their technocomplexes (Figure 2). In all of this, one should keep in mind that 
technological realities are heterogeneous across the globe, that historical evolution is spatially asyn-
chronous and shaped by regional preconditions, cultures and preferences. Nonetheless, the present-
day dominance of industrialization following a Western development model is striking and seems to 
be, at least in the present, an attractor of the socio-technological complex once it has emerged.

Modelling the technosphere as adaptive social–technological–
ecological networks

To study the technosphere therefore requires three ingredients: consideration of coevolution and 
emergence, consideration of social, technological and environmental–ecological networks and 
their coupled macro-dynamics, and considerations of complexity in these dynamics. Only when 
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this tangle of coevolutionary effects is somewhat understood would the tools be at hand to ask once 
more questions about the extent and particular role of human agency in governing the techno-
sphere. To assume that a decoupling of scales occurred between the social and technological 
macro-levels and the level of individual agency is to downplay the collective effects of a multitude 
of networks that link the scales. These networks, transferring agency, if indirectly, produce feed-
backs between the scales, the overall dynamics of which are hard to predict without the aid of 
systematic, methodologically sound modelling of complex networks.

We suggest that computer simulation models of the technosphere in an Earth System context as 
an intertwined social–technological–ecological system should be formulated as adaptive network 
models (Figure 2; Gross and Blasius, 2008; Gross and Sayama, 2009). These models contain at 
their core an explicit representation of the coevolutionary dynamics of the states of social, techno-
logical and ecological entities (nodes) and their connectivities and interdependencies (links). 
Within the framework of adaptive coevolutionary networks, social processes such as opinion, pref-
erence and coalition formation (Auer et al., 2015; Holme and Newman, 2006; Wiedermann et al., 
2015; Schleussner et al., 2016) can be integrated with the metabolic network dynamics of techno-
logical infrastructures (Bettencourt et al., 2007; Jarvis et al., 2015) and technological change and 
innovation, none of which are represented in state-of-the-art Earth System or mainstream inte-
grated assessment models. This perspective is in line with, and should integrate, efforts to apply 
complex systems approaches and agent-based modelling techniques to the study of the economy 
(Farmer and Foley, 2009; Farmer et al., 2015) as a key constituent of the technosphere. In such 
an adaptive network modelling system, human agency would be reflected through decision 
rules and strategies implemented at different levels of social hierarchy and coarse-graining.  

Figure 2.  The technosphere reconceptualised as an emergent phenomenon in adaptive social–
technological networks in the World–Earth System. The figure illustrates the distinction between 
individual human agency (micro-level) with respect to influencing macrosocial entities and structures (e.g. 
nation states, bureaucracies and other social institutions) and their collective macro-agency with respect 
to technological macrostructures (e.g. the internet, global energy system, industrialized food production). 
In contrast, Haff’s technosphere concept capitalizes on individual human agency mainly with respect to 
technological macrostructures, but also social macrostructures.
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The effectiveness of this agency would then be revealed by the degree of their manifestation in the 
structures and dynamics emerging on macroscopic scales (Figure 2).

Such a modelling effort would need an enormous amount of data and the theoretical knowledge 
to make use of it, regarding for example the drivers of technological development, government and 
business decision making on resource use and emissions, and preference formation of consumers 
(Helbing et  al., 2012; Verburg et  al., 2016). A big challenge will be to integrate social science 
research, that operates in case-specific contexts, with the generalizing framework of Earth System 
models. In view of computational limitations, such models will only work by making significantly 
simplifying assumptions and generalizations about the complex dynamics of the Earth System, the 
social metabolisms that operate within it and the environmental and social feedbacks between 
them. Therefore, we want to stress that the modelling of social–technological systems and, hence, 
the technosphere, should not aim primarily at prediction of single future development pathways, 
but at increasing the understanding of their macroscopic properties and emergent dynamics. 
Such properties of interest include (1) the coarse-grained topology of World–Earth System state  
space regions of qualitatively different degrees of desirability and safety (including safe and just 
operating spaces) and resulting management dilemmas (Heitzig et al., 2016); (2) critical control 
points for the technosphere where human agency can trigger transformative change, e.g. in the 
energy system; and (3) interactions between social–technological and climatic tipping processes 
(Schellnhuber, 2009). In this context, it will be relevant to deal with the fact that the self-referentiality 
of the modeller herself and the infrastructures supporting modelling are parts of the system (the 
technosphere/Earth System) that she is trying to model. This analytical complication is related to 
the progression from first order to second order geocybernetics in Earth System analysis as dis-
cussed by Schellnhuber (1998).

Conclusions

Reflecting on Haff’s technosphere from the point of view of Earth System analysis, we argue on the 
one hand that in discourses on sustainable development and global change it is highly relevant to 
take into account explicitly the constraints imposed on human actions by the technosphere (e.g. 
intrinsic inertia of technological systems), as well as unanticipated risks resulting from feedback 
dynamics. In addition to environmental risks related to the transgression of planetary boundaries, 
examples for unpredictable human extinction-level hazards (and related environmental impacts) 
associated with technological advances including biotechnologies and the emergence of general 
artificial intelligence (related to the concept of the singularity; Bostrom, 2014) are increasingly 
coming into the focus of scientific scrutiny as reflected, e.g. by the recent formation of the University 
of Cambridge Centre for Study for Existential Risks (http://cser.org/). On the other hand, emergent 
dynamics of the technosphere do not necessarily imply extensive loss of human (macro-) agency as 
arguably exemplified by the German Energiewende, planned decarbonisation policies in the wake 
of the Paris 2015 climate agreement, and the social movement on divestment from fossil fuels 
(Schellnhuber et al., 2016). Consequently, the technosphere should be studied as a coevolutionary 
planetary phenomenon that can be understood by means of complex systems theory. Computer 
simulation models as the prominent tools of Earth System analysis play a major role in this endeav-
our. Therefore, the dynamics of the technosphere and networked feedback processes with the human 
socio-cultural sphere and the biogeophysical environment need to be captured in next generation 
models, World–Earth models, to paint a comprehensive panoroma of global sustainability. By 
allowing a focus on highly relevant emergent critical phenomena such as social–technological tip-
ping elements and their interactions with climatic and biospheric tipping processes, such analytical 
tools can provide a novel and much needed systemic perspective on the safe and just operating space 
for humanity and can characterize transformative pathways that lead towards it.
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Safely achieving the goals of the Paris Climate Agreement requires a
worldwide transformation to carbon-neutral societies within the next
30 y. Accelerated technological progress and policy implementations
are required to deliver emissions reductions at rates sufficiently fast
to avoid crossing dangerous tipping points in the Earth’s climate
system. Here, we discuss and evaluate the potential of social tipping
interventions (STIs) that can activate contagious processes of rapidly
spreading technologies, behaviors, social norms, and structural re-
organization within their functional domains that we refer to as
social tipping elements (STEs). STEs are subdomains of the planetary
socioeconomic system where the required disruptive change may
take place and lead to a sufficiently fast reduction in anthropogenic
greenhouse gas emissions. The results are based on online expert
elicitation, a subsequent expert workshop, and a literature review.
The STIs that could trigger the tipping of STE subsystems include 1)
removing fossil-fuel subsidies and incentivizing decentralized en-
ergy generation (STE1, energy production and storage systems), 2)
building carbon-neutral cities (STE2, human settlements), 3) divesting
from assets linked to fossil fuels (STE3, financial markets), 4) revealing
the moral implications of fossil fuels (STE4, norms and value systems),
5) strengthening climate education and engagement (STE5, education
system), and 6) disclosing information on greenhouse gas emissions
(STE6, information feedbacks). Our research reveals important areas
of focus for larger-scale empirical and modeling efforts to better un-
derstand the potentials of harnessing social tipping dynamics for
climate change mitigation.

climate change | Paris Agreement | decarbonization | social tipping
elements | social tipping interventions

Preventing dangerous climate change and its devastating con-
sequences is a defining task for humanity (1, 2). It is also an

indispensable prerequisite for achieving sustainable development
(3, 4). Limiting global warming to 1.5 °C as stipulated in the
Paris Climate Agreement (5) scientifically implies a complete net
decarbonization of the world’s energy and transport systems, in-
dustrial production, and land use by the middle of this century. In
their “roadmap for rapid decarbonization,” Rockström et al. (6)
highlight that rapid increase of the share of zero-carbon energy
within the global energy system would be needed to achieve this
objective, likely alongside a considerable strengthening of terres-
trial carbon sinks. In one scenario, the zero-carbon share of the
energy system doubles every 5 to 7 y for the next several decades
(6). Carbon emissions that are currently still on the rise at rates of
0 to 2% per year, despite decades-long efforts in international cli-
mate negotiations, would thereby need to pivot to a rapid decline of
ultimately 7% per year and more. These emission reduction rates

would surpass by far even those experienced only during periods
of massive socioeconomic crisis in the 20th century, such as World
War II and the collapse of communism (Fig. 1).
Here, the historically decisive question is whether and how such

rapid rates of deployment can be collectively achieved. Current
deployment rates of low-carbon energy sources are compatible with
the required shift but when scaled up are expected to encounter
considerable resistance due to the rigidities inherent in political
and economic decision making (7, 8), as well as new technological
demands (9, 10). Although an increasing number of countries have
already introduced or are committed to introducing carbon pricing,
the initiatives covered by carbon pricing included only 15% of
global greenhouse gas emissions in 2017 (11) and have so far
driven only marginal emission reductions (12). It is increasingly
recognized that business-as-usual technological progress and carbon
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pricing alone are not likely to lead to rapid and deep reductions in
greenhouse gas emissions (13).
At the same time, there is evidence from various scientific

fields demonstrating that rapid rates of change can be observed
under certain critical conditions in natural (14–16), socioeconomic
(17–20) and social-ecological systems (SESs) (21, 22). Increasing
attention is being given to the concept of tipping dynamics as a
nonlinear mechanism behind such disruptive system changes.
Based on a review on social-ecological tipping points research,
Milkoreit et al. (23) propose a common definition of social tipping
points (STPs) as points “within an SES at which a small quanti-
tative change inevitably triggers a non-linear change in the social
component of the SES, driven by self-reinforcing positive-feedback
mechanisms, that inevitably and often irreversibly lead to a qual-
itatively different state of the social system.” There are historical
examples of dynamic social spreading effects leading to a large
self-amplification of small interventions: For example, the writings
of one man, Martin Luther, injected through newly available printing
technology into a public ready for such change, triggered the
worldwide establishment of Protestant churches (24). An exam-
ple in the field of climate policy is the introduction of tariffs,
subsidies, and mandates to incentivize the growth of renewable
energy production. This has led to a substantial system response
in the form of mutually reinforcing market growth and expo-
nential technology cost improvement (25, 26).
In this paper, we examine a number of potential “social tipping

elements” (STEs) for decarbonization (27, 28) that represent
specific subdomains of the planetary social-economic system.
Tipping of these subsystems could be triggered by “social tipping
interventions” (STIs) that could contribute to rapid transition of
the world system into a state of net zero anthropogenic green-
house gas emissions. The results reported in this study are based
on an online expert survey, an expert workshop, and an extensive
literature review (SI Appendix).
Our results complement the existing shared socioeconomic

pathways (SSPs) that are used alongside the representative con-
centration pathways (RCPs) to analyze the feedbacks between
climate change and socioeconomic factors, such as world population

growth, economic development, and technological progress (29).
Our results could be useful for exploring possible transformative
pathways leading to scenarios that reach net zero emissions by
2050 (30).

Defining STEs and STIs Relevant for Decarbonization
Transformation
Various types of tipping processes can be differentiated in the
literature. Many authors refer to critical thresholds (16, 28), a
notion closely related to the metaphor of a “butterfly effect” (31,
32). Other processes related to tipping dynamics include meta-
morphosis, where a rapid loss of structures of one sort occurs si-
multaneously with the development of new structures (33), as well
as cascades driven by positive feedbacks in processes occurring
simultaneously at smaller scales (34).
The social tipping dynamics of interest for this study are typ-

ically manifested as spreading processes in complex social networks
(35, 36) of behaviors, opinions, knowledge, technologies, and social
norms (37, 38), including spreading processes of structural change
and reorganization (34). These spreading processes resemble con-
tagious dynamics observed in epidemiology that spread through
social networks (39). Once triggered, such processes can be irre-
versible and difficult to stop. Similar contagious dynamics have been
observed in human behavior (35, 36), for example in assaultive vi-
olence (39), participation in social movements (40), or health-related
behaviors and traits (36), such as smoking or obesity (41, 42).
We understand STEs as functional subsystems of the planetary-

scale World–Earth system (43) consisting of interacting biophysical
subsystems of the Earth, and the social, cultural, economic, and
technological subsystems of the world of human societies (43, 44).
Potential STEs share one defining characteristic: A small change
or intervention in the subsystem can lead to large changes at the
macroscopic level (23) and drive the World–Earth system into a
new basin of attraction, making the transition difficult to reverse
(20). Exact quantifications of the relationship between big and
small are, however, rare, as are empirical examples (Table 1). For
the combination of big interventions and big effects, there are
currently no convincing examples; however, the potential use

Fig. 1. The rate of change in annual greenhouse gas emissions required for net decarbonization. Social tipping dynamics in the context of the representative
concentration pathways (RCPs) of the Intergovernmental Panel on Climate Change (IPCC) and the Paris Agreement. Left and Right exhibit the rate of change
in CO2 emission per year between 1930 and 2060, and the increase in global mean temperature by 2100 relative to the preindustrial period, respectively,
under the four RCPs. The transition to a new net decarbonized state requires shifting from an incremental rise in emissions of 0 to 2% per year to nonlinear
decline at the rate of 7% per year and more (6). The figure was created using the RCP emission projections (153) and Coupled Model Intercomparison Project 5
(CMIP5) temperature projections (154).
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solar radiation management geoengineering in the future would
fall into this category. Finally, some changes in the World–Earth
system might be driven by nonhuman and unintentional forces
(e.g., a sufficiently large meteorite hitting the Earth or a disease
outbreak), while others might be driven by conscious interven-
tions of human agency (45).
Tipping processes might be analyzed as a function of change in

a suitably selected forcing variable or control parameter (15, 27).
The pertinent World–Earth system features such as the anthro-
pogenic carbon emissions are commonly the product of complex
interactions of multiple drivers. These factor can, however, in some
cases be combined into a single dominant control parameter.
In this study, we identify a subsystem of the World–Earth system

as a STE relevant for decarbonization transformation if it fulfils the
following criteria:

C1. A set of parameters or drivers controlling its state can be
described by a combined control parameter that after
crossing a critical threshold (the STP) by a small amount
influences a crucial system feature of relevance (here the
rate of anthropogenic greenhouse gas emissions) leading
to a qualitative change in the system after a reference time
has passed allowing for the emergence of the effect (15).

C2. It is possible to differentiate particular human interven-
tions leading to the small change in the control parameter
that has a big effect on the crucial system feature, which
will be referred to as the STI (Fig. 2).

Established social systems, including their infrastructures, while
they may partly be open to change, tend also to possess self-
stabilizing mechanisms that oppose change, be it through infra-
structural inertia due to investment cycles or cultural or political
inertia due to deeply held traditions or power structures all rep-
resenting aspects of social complexities (Fig. 2 and refs. 46 and
47). For this reason, a cumulation of effects due to social conta-
gion, repetitive nudging, or direct intervention can lead to social
tipping dynamics (48). Starting points for such cumulations of
effects are here called STIs. Naturally, their existence, nature, and
point of departure are a function of the cumulated history of the
respective social system and, in that sense, STIs and social tipping
dynamics are path dependent.
Following Rockström et al. (6), in order to achieve the Paris

Climate Agreement’s goals and to avoid higher levels of global
warming at the end of this century that would imply crossing
dangerous tipping points in the Earth’s climate system (27), global
anthropogenic carbon emissions would need to be halved every
decade, achieving a peak in 2020 and then steadily decreasing to
reach net zero emissions by 2050. Achieving net zero global
emissions around 2050 is necessary for there to be a significant
probability of limiting global warming to 1.5 °C by the end of the
century (1). To ensure that the social tipping dynamics identified
in this study are compatible with these constraints, we impose the
following filtering criteria:

F1. The time needed to trigger the tipping should not exceed
∼15 y, and the time needed to observe a qualitative change
at the whole system level should not exceed ∼30 y (Fig. 1).

F2. Since abrupt social changes have historically often been
associated with social unrest, war, or even collapse (49),
human intervention and its foreseeable effects should here
be explicitly compatible with the Sustainable Develop-
ment Goals (50), in the sense of positive social tipping
dynamics (34).

Finally, due to the networked and multilevel character of the
social system (51), we also ask about the feedback mechanisms
connecting and potentially mutually reinforcing the identified
candidates for STEs and STIs.

Results
Candidates for STEs from Expert Elicitation. Both natural and social
systems are characterized by a high level of complexity and are
linked by coevolutionary dynamics (52). Isolating the elements of
such systems is difficult. Although we provided our respondents
with a written definition of a STE, most of the online survey
participants referred to what we define as STIs. On the basis of
the responses, 12 groups of candidates for STEs could be iden-
tified, each referring to a distinctive control parameter (Table 2).
The critical threshold of the control parameter needed to be crossed
in order to trigger the tipping process was in most of groups not
quantified by the experts but described qualitatively. The STP was
often referred to as the point when a certain belief, behavior, or
technology, spreads from a minor tendency to a major practice.
Documented instances of technology and business solutions show
that a 17 to 20% market or population share can be sufficient to
cross the tipping point and scale up to become the dominant
pattern (53). Some authors, however, argue that it must be the
“right” share of population, including well-connected influential
people, trendsetters, and other types of social leaders with a high
degree of agency (38, 54). In other cases, the experts referred to
the STP that would be achieved if the price of fossil-fuel–free
products and services falls below that of those products and ser-
vices based on fossil fuels. Table 2 presents an overview of expert
elicitation results.

Critical Interventions for Inducing Social Tipping Dynamics. Building
upon the results of our expert elicitation, we differentiated six
key candidates for STEs and associated STIs for which we were
able to find empirical material showing that they fulfill the
conditions specified in our definition (as listed in Table 3). These
do not necessarily comprise a comprehensive list of “silver bul-
let” solutions; rather, this is an initial selection that can help in
developing more refined socioeconomic rapid transformation
pathways and narratives customized at appropriate scales. Be-
low, we present a review of literature on each of the STEs and
STIs nominated by the experts. We search for evidence sup-
porting the potential of the interventions to trigger tipping-like
changes in their domains leading to a qualitative change at the
World–Earth system level; we ask whether critical thresholds in

Table 1. Illustrative examples of intervention-and-effect relationships in the context of climate change mitigation

Intervention types Small effect Big effect

Small intervention An incremental change, e.g., a town mitigation
plan (157)

A tipping effect, e.g., feed-in tariffs in the German
“Energiewende” (158)

Big intervention Inefficient interventions, e.g., the implementation
of the European Carbon Emission Trading
Scheme leading to a marginal reduction of
greenhouse gas emissions due to leakage effects
(159)

An elephant effect, e.g., reducing the Earth’s carbon burden
by means of solar radiation management geoengineering
(160)
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the control parameters can be determined; and finally we begin
to examine the interactions and feedbacks among the identified
tipping elements.
STIs in the energy production system. The technological development
in the energy production system is a dominant element of the
decarbonization discussions in international institutions (55, 56)
and business partnerships (57). The results of our expert elici-
tation confirm that technology development is likely to play a key
role, however, not in the sense of yet-to-be invented technolog-
ical solutions, but rather in the adaptation of existing carbon-free
technology primarily in the power sector and by facilitating a smarter
utilization of energy. The main control parameter that drives the
adaptation of fossil-fuel–free energy technology is associated with
the financial returns of its adoption (58). Our expert group be-
lieved that the critical condition needed to trigger the tipping
process is the moment when fossil-fuel–free energy production
yields higher financial returns than the energy production based
on fossil fuels. The empirical data show that this critical threshold
is about to be reached; the prices of renewables have dropped
sharply in the last few years, and they have already become the
cheapest source of energy in many world regions. The average cost
of onshore wind dropped by 18%, and offshore wind fell by 28%
(59). The costs of photovoltaic modules fell by about 20% with
every doubling of cumulative capacity since the 1970s (60) and the
key role in reducing the cost of photovoltaics was played by pol-
icies that stimulate market growth (26). Optimization modeling
shows that renewable energy supplies can potentially supply 100%
of human power demand (61), and in theory, rapid transformation
to low energy demand is possible (30) and will be cost-effective in
the long run (62). However, there are large costs associated with
adapting existing infrastructure and supply and demand support
services to meet the demands of nondispatchable, volatile renew-
able sources like wind and solar in electricity generation. The
question is whether the cost of transforming the energy infrastruc-
ture is worthwhile compared to the cost of inaction. The prioritiza-
tion of societal preferences in the competition for scarce budgetary
resources is influenced by the dominant social values (63).
Our expert group believed that redirecting national subsidy

programs to renewables and low-carbon energy sources or re-
moving the subsidies for fossil-fuel technologies are the tipping
interventions that are needed for the take-off and diffusion of fossil-
fuel–free energy systems. The key actors who have the agency to
implement these interventions include national governments and
energy ministries, and the response of large energy companies is

important. One-third of global industrial greenhouse gas emissions
can be linked just to 29 oil and gas companies (64). The Interna-
tional Energy Agency has tracked fossil-fuel subsidies over the last
decade and in 2009 estimated that $312bn was spent worldwide in
fossil-fuel subsidies, compared to $57bn on renewables in that year
(65). By 2015, the gap had narrowed, but the subsidies received by
fossil fuels were still more than twice those of renewables (66).
Estimates show that a universal phaseout of fossil-fuel subsidies
could lower annual carbon emissions by 4.4% (67). Coady et al.
(68) argue that eliminating subsidies for fossil fuels would have
reduced global carbon emissions in 2013 by 21%.
Furthermore, our expert group believed that the global energy

production and storage system can also be radically changed by
decentralization of energy production. Since large power stations
relying on coal, oil, or gas exploitation are not profitable below a
certain threshold of households supplied, decentralized genera-
tion systems and transitioning to local power generation might be
expected to lead to a virtually complete decarbonization of pro-
duction systems (69, 70). However, this is also likely to lead to an
increase in costs due to the loss of economies of scale (69), and the
complexities of integrating variable, distributed power sources
(71). This emphasizes the need for decentralized energy genera-
tion and demand management to be part of the wider energy
systems transformation (72). It has been argued that citizens also
have a major role to play as nodes in a smart system capable of
facilitating flexible demand management (73). Some authors also
warn that meeting current levels of demand (let alone future
projected demand) with renewables alone is likely to be extremely
difficult (74, 75). Nonetheless, interest in decentralized control of
energy systems is growing. Across the Global North, there are a
multitude of examples of energy cooperatives and community-
driven energy projects (76). Such projects have often found cre-
ative ways to overcome limitations imposed by centralized distri-
bution networks, e.g., by using smart technologies to divert excess
power for local heating (77), or by bringing municipal supply
networks into community ownership (78). They show such ini-
tiatives may also spark around the Global South by skipping the
“megadevelopment” phase associated with large power stations
and massive grid infrastructure expansion. Due to the positive
knowledge and technology spillover effects from such decentral-
ized systems, the technology costs are likely to be further reduced
with their increased diffusion (79, 80). The time elapsing be-
tween the planning phase and actual installation and utilization
of decentralized energy generation is reportedly less than 10 y (81).

Level of decarbonization Social complexities

Stability Social tipping interventions

Decarbonized state

Business-as-usual
state

Low

High

A B

Fig. 2. The concept of decarbonization transformation as social tipping dynamics. As illustrated in A by an abstract stability landscape (155), the world’s
socioeconomic system today is trapped in a valley where it still depends heavily on burning fossil fuels, leading to high rates of greenhouse gas (GHG)
emissions. STIs have the potential to erode the barrier through triggering social tipping dynamics in different sectors (Fig. 3) and thus paving the way for rapid
transformative change. Uncertainties and complexities inherent in the many dimensions of human societies beyond their level of decarbonization (46) can be
envisioned as forming a rougher stability landscape featuring multiple attracting states and a larger number of barriers that need to be eroded or overcome
(B). This inherent “social noise” may complicate transformative change but could also accelerate it by means of dynamical phenomena such as stochastic
resonance (156).
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Table 2. The candidates for social tipping elements for rapid decarbonization identified by expert elicitation

Candidates for social
tipping elements

Key actors able to influence
the control parameter Main control parameter Examples of interventions

Critical threshold in the
control parameter

Climate policy
enforcement

International agencies,
national and local
governments, political
elites, industry, NGOs,
business, the public

The number of
regulations restricting
the use of fossil fuels

A global environmental court;
producer responsibility and
circular economy; limiting the
use of fossil fuels sector by
sector; banning advertisement
of fossil-fuel products;
abolishing the trade in fossil
fuels

Eliminating the use of fossil
fuels from most of
sectors and spheres of
human life

n* = 42 (20%);
Conf.†=3

Information feedback Scientific community,
media, citizen
organizations, industry

The share of products
and services
containing GHG
emission information

Adequate information on
emissions of products and
services; labeling; growing
awareness of global risks and
health consequences

The GHG emissions
information visible for
most of products and
services

n = 37 (17%); Conf.=3

Financial market International agencies,
national and local
governments, financial
sector, industry

Market value of fossil-
fuel extraction and
industry

Carbon taxes and permits;
Divesting; reinvesting; national
banks warning commercial
banks to reduce risk with
carbon-intensive investments

The market value
decreasing rapidly in
comparison with other
comparable investments

n = 26 (12%); Conf.=3.6

Energy production and
storage

Conventional and green
industries, national and
local governments,
NGOs, public–private
partnerships

The relative price of
fossil-fuel–free
energy production
and storage

Cessation of subsidies for fossil-
fuel technologies; decentralized
and distributed energy
generation; renewable energy
deployment; community energy
hubs; nuclear energy
deployment

The price of fossil-fuel–free
energy becoming lower
than the price of fossil-
fuel energy

n = 24 (11%); Conf.=3.8

Knowledge system Intellectual leaders,
scientific community,
media

The number of people
having worldviews
accounting for
socioecological
complexities

Reconceptualization of economics
and valuation measures;
convincing narratives of what
can be gained from
decarbonization; indigenous
approaches to nature

The worldviews spreading
from the minority to the
majority of key actors

n* = 16 (7,7%);
Conf.†=3.7

Other technology Industry, governments,
media, agro-industry

Energy demand Digitalization of the economy;
tele-working; e-mobility;
artificial meat; multipurpose
farm-ponds

Energy demand reduced to
a level that can be
sustainably produced

n = 15 (7%); Conf.=4

Values and norms Spiritual leaders, media,
young generation,
middle class

The perception of fossil
fuels as immoral

A new set of moral and ethical
codes; revealing the moral
implications of fossil fuels,
stigmatization of fossil fuels

Spreading from the
minority to the majority
of key actors

n = 12 (6%); Conf.=3

Human settlements Industry, city authorities,
governments

The demand for fossil-
fuel–free technology

Reallocation and redesigning of
human settlements; energy
independent housing; new
building materials; carbon-
neutral cities

Fossil-fuel–free technology
becoming the first choice
in new infrastructure
projects

n = 10 (5%); Conf.=3.7

Lifestyles Food and car industry,
writers, wealthy
fashionable people,
media

Number of people
choosing fossil-fuel
free products

Vegetarian diets; lower
consumption; fossil-fuel free
consumption

Spreading from the
minority to the majority
of the population

n = 10 (5%); Conf.=3.7

Citizenship involvement Civic and nonprofit
organizations, media,
the public

Citizenship commitment
to climate mitigation

Grassroots organizing resistance; a
global network of social
movements

From a minor tendency to a
global citizen movementn = 7 (3.8%); Conf.=3.1

Education system Scientists, teachers,
educational ministries

The presence of climate
change and relevant
concepts in the public
education

New educational programs at all
levels of public education
including climate change,
ecological networks, system
thinking

The relevant concepts
becoming a part of the
main curriculum

n = 5 (2.4%); Conf.=3.2

Population control Political leaders, religious
organizations

The number of
greenhouse gas
emitters

Limiting human population
growth

Population decreasing to a
number that can be
sustainably supported

n = 3 (1.4%); Conf.=2.3

*n: The frequency of survey answers is referring to the number of the survey answers refereeing to this topical area and a share (percentage) of total survey
answers.
†Conf.: How confident are you that the associated social tipping point is actually going to take place and contribute substantially to a rapid and complete
global decarbonization by 2050? 1, Very uncertain; 2, uncertain; 3, rather uncertain, 4, rather confident; 5, confident; 6, very confident.
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However, existing energy systems and infrastructure are likely to
shape the future for decades to come (82).
STIs in human settlements. Direct and indirect emissions from
buildings account for almost 20% of all carbon emissions, and we
observe an unprecedented scale of global urbanization; each
week the global urban population increases by 1.3 million (55).
The average life span of buildings is about 50 y (83). Public in-
frastructure and planning structures can last even longer (50 to
150 y) and play an active role in both climate mitigation and
adaptation (84). Modifying building codes for construction and
infrastructural projects can actively drive the demand for fossil-
fuel–free technologies and are crucial especially for countries in
the Global South, where building booms are driving up energy
and other resource use (85). An example of a STI in this realm is
the creation of large-scale demonstration projects such as carbon-
neutral cities. These are important in order to educate the general
public and stimulate consumer interest in environmental tech-
nologies, accelerating their dissemination and commercialization
(85). In addition, local technology clusters create positive spillover
effects of lowering the information and transaction costs (86),
which can indirectly lead to a reduction in the costs of fossil-fuel–
free technologies for energy production and storage. The critical
conditions for social tipping in this control parameter would be

achieved if the fossil-fuel–free technology became the first choice
for new construction and infrastructure projects. There are many
new construction materials that not only imply lower emissions but
also could actively support carbon sequestration efforts in urban
areas. To give an example, constructing a 142-m-high residential
building using above 80% laminated timber could lead to seques-
trating 21,040 tons CO2 and avoiding 50,000 tons CO2 emissions
otherwise entailed in using standard construction materials such as
steel and concrete, which is equivalent to the amount 33,000 cars
emit per year (87). In addition, large-scale public infrastructure in-
vestments support the emergence of a shared belief in the emerging
new social equilibrium that can help individuals coordinate changes
and find new focal points (88). The example of the Transition Town
Movement that started in 2006 in the United Kingdom and in 2014
spanned over 41 countries shows how local grassroots initiatives can
encourage citizens to take direct action toward lowering energy
demand and building local resilience despite lack of policy sup-
port at national levels (89). Another example includes the En-
ergy Cities Association, whose primary goal is to accelerate the
transition to sustainable energy in urban areas in Europe. The
Association was created in 1990 and currently represents more
than 1,000 towns and cities in 30 countries (90). The evidence
from a case study on communities implementing plans for zero

Table 3. Synthesis of the research results on the key candidates for social tipping elements selected by the experts and their associated
social tipping interventions

Social tipping
element

Social tipping
intervention

Control
parameter Key actors

GHG emission
reduction potential

Dominant social
structure level

Estimated time
needed to

trigger tipping

STE1: Energy
production
and storage

STI1.1: Subsidy
programs

The relative price
of fossil-fuel–
free energy

Governments,
energy ministries,
big energy
producers (68)

Up to 21% globally
in 1 y (68)

National policy (68) 10 to 20 y
(including the
policy-
formative
phase) (161)

STI1.2: Decentralized
energy
production

Citizens,
communities (73),
local governments
(162), policy
makers (163),
energy planners
(164)

Up to 100% in power
supply (61)

Community/town
governance (165)

Less than 10 y
(81)

STE2: Human
settlements

STI2.2: Carbon-
neutral cities

The demand for
fossil-fuel–free
technology

City administration,
citizens, and
citizen groups
(166)

Reduction by 32% in
14 y (91)

Urban governance
(91)

Approximately
10 y (91).

STE3: Financial
market

STI3.1: Divestment
movement

Profitability of
fossil fuel
exploitation

Financial investors
(96)

26% emissions tied to
investments of a large
Canadian university
(167)

Market exchange,
enterprise (98)

Very rapid, could
occur
within hours
(142)

STE4: Norms and
values system

STI4.1: Recognition
of the immoral
character of fossil
fuels

The perception
of fossil fuels
as immoral

Peer groups,
environmental
organizations,
youth, opinion
leaders (168–170)

Unprecedented Informal
institutions,
enforcement
through peer
groups (171)

30 to 40 y (172)

STE5: Education
system

STI5.1: Climate
education and
engagement

Climate change
and impacts
awareness

Teachers, climate
educators (117),
youth (113)

Up to 30% reduction in
2 y in the emissions of
the Italian
households included
in the study (124)

National policy (173) 10 to 20 y (173)

STE6:
Information
feedback

STI6.1: Emission
information
disclosure

The number of
products and
services
disclosing their
carbon
emissions

The business and
producers;
governments for
setting disclosure
guidelines and
regulations (174)

Up to 10% reduction of
emissions in UK
households’ grocery
consumption in a year
(175)

Market, exchange
(176); enterprise
(177)

A few years (178)
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emissions shows that these communities were able to reduce
their per-capita emissions by 32% in 14 y (91).
STIs in the financial system. The financial crisis in 2008 demonstrated
how rapidly changes in the market value of assets in one sector
and country can propagate and destabilize the global system of
human societies and accelerate changes at the level of individ-
ual investment and consumption behavior as well as collective-
organizational and policy responses (92). Maintaining global
warming below 2 °C implies that 33% of oil, 49% of gas, and
82% of coal resources should not be burned (93). This suggests
there might be a risk of a carbon bubble, caused by the financial
exposure from stranded assets, which could be driven by policy,
technological innovation, or investors’ decisions (94). A growing
number of analysts believe a financial bubble is emerging that
could burst when investors’ belief in carbon risk reaches a certain
threshold (95). Simulations show that just 9% of investors could
tip the system, inducing other investors to follow (96). An ex-
ample of an intervention that can lead to a rapid decline in the
control parameter—the value of fossil-fuel assets—is the di-
vestment movement; as it progresses, it results in the reduction
of the value of fossil-fuel assets (97). The movement started with
a student campaign in 2011 and is quickly expanding to other
countries and types of asset owners. The value of investment funds
committed to selling off fossil-fuel assets reached $5.2tn in 2016,
doubling in just over a year and permeating enterprises in every
sector of society, with examples including universities, faith groups,
pension funds, and insurance companies (98). Ritchie and
Dowlatabadi (94) present model scenarios showing that a major
Canadian university could reduce the greenhouse gas emissions
tied to its investments by up to 26% by restructuring its port-
folios, moving investments away from greenhouse gas-intensive
sectors. Many divestment campaigns have an additional “divest
to reinvest” element that advocates using funds invested in fossil-
fuel companies to reinvest in socially and environmentally bene-
ficial projects, such as low-carbon and renewable schemes (99),
creating the positive-feedback interactions with the STE1. An
avalanche effect would be triggered if national banks and in-
surance companies warned against the global risk associated to
stranded assets from fossil-fuel projects. These concerns are
growing in Europe, and there are already signs of a tipping point,
namely cuts in financial and insurance support for coal projects
(100). Norwegian financial authorities might soon be divesting the
country’s sovereign wealth fund. Around 6% (V30bn) of this
fund’s wealth is invested in oil and gas companies (101).
STIs in the system of norms and values. The extraction and use of
fossil fuels out of line with the Paris Climate Agreement targets
is arguably immoral, as it would cause widespread grave and
unnecessary harm (97). The impact of greenhouse gas emissions
disproportionately affects the most vulnerable social groups,
such as women and children (102). It also affects the well-being
of future human generations (103) and causes many direct nega-
tive health effects (104). Historical cases show that social and
moral norms can affect human behavior on a large scale (38). The
abolition of the transatlantic slave trade, for example, showed that
changes in the ethical perception of slave labor at that time were
consciously initiated by a small group of intellectuals (105). Re-
vealing the moral implication of the continued burning of fossil
fuels is an example of an intervention that is likely to induce a
tipping process through changes in the human normative system,
i.e., the system of moral and behavioral norms that influence what
is rewarded and desired in the society. Norms can develop through
social networks in neighborhoods or workplaces and support certain
lifestyles or technology choices (106). A study on the installation of
photovoltaic panels by home owners showed social networks and
dwelling proximity explained the owners’ decision to install photo-
voltaic panels on their homes (107). The control parameter is
represented by the ethical perception of fossil fuels, the environ-
mental externalities they generate, and the broader harm they visit

on societies. The critical condition in the control parameter will be
achieved if the majority of social and public opinion leaders rec-
ognize the ethical implications of fossil fuels and generate pressure
in their peer groups to ostracize the use of products involving fossil
fuel burning. This could be more widespread in religious commu-
nities and be led by spiritual leaders, perhaps following the example
of Pope Francis’s encyclical Laudato si’ (108). It could alternatively
be manifested as a secular trend originating mainly from young,
intellectually and social justice-oriented groups of people who might
actively stand against supporters of fossil fuels—these would include
extraction and utilization companies, governments supporting the
latter, as well as the superrich family clans generating wealth from
fossil fuel extraction and utilization in the last 150 y. The wealth of
about 11% of the world’s billionaires is related to energy production
(excluding solar and wind), mining, and other natural resource
utilization (109). Recent experimental evidence shows that domi-
nant social conventions or established behavior can be changed by
committed minorities of roughly 25% of a group (36). Social norms
are the sources of law (110); therefore, recognizing the immoral
character of fossil fuels can further lead to regulations restricting the
use and extraction of fossil fuels (111).
The time elapsing from the recognition of the activity as a

problem and as a matter of a moral choice by international legal
scholars, religious groups, and other moral entrepreneurs, to
international delegitimization might range from a few decades to
a few centuries. The slavery abolition movement started in 1772
in England and led to the abolition of the slave trade in 1807 and
in the 1833 to the total abolition of slavery in the British Empire.
The historical data show that although the number of slaves traded
in the British Empire dropped to zero by 1826, the number of in-
ternationally traded slaves started to decrease around the mid-19th
century. However, after reaching its peak, the number of slaves
traded internationally decreased exponentially within just a few
years. In the period 1851 to 1860, 71% fewer slaves disembarked
than in the period 1841 to 1850 (https://slavevoyages.org/). A
more recent example of outlawing the use of substances re-
sponsible for ozone depletion showed that such changes might
occur in less than 30 y (112). However, the financial and political
power of the fossil fuel industry suggests the need for much
more substantial political effort to ensure such a change, than
would have been the case for the issue of ozone depletion (99).
There is recent anecdotal evidence that protests, such as the
#FridaysForFuture climate strikes of school students around the
world, the Extinction Rebellion protests in the United Kingdom,
and initiatives such as the Green New Deal in the United States,
might be indicators of this change in norms and values taking
place right now (113).
STIs in the education system.Many examples of research confirm the
role of education in social transformations (114) and tackling
climate change concerns (115, 116). The control parameter that
relates to this intervention is the coverage of climate change is-
sues in school and university teaching programs. While many
teachers include some, often thin, coverage of climate change
(117), comprehensive approaches at all levels of public education
are still rare. Lack of knowledge about the causes, impacts, and
solutions to climate change was the most easily identifiable indi-
vidual barrier to engagement in climate action in the United
Kingdom (118). At the same time, studies show that the divergent
ways of understanding climate change draw on discourses broader
than scientific knowledge; these differences may be blamed for
misinterpretation of scientific notions such as uncertainty (119) as
well as for the tendency to attribute responsibility for causing and
mitigating climate change to others (118). Formal and lifelong
education is traditionally considered a slow and evolving process,
but there are examples of rapid change that can be generated.
Quality education supports and amplifies norms and values and
can quickly inspire behavior change among individuals and their
cohorts. In addition, massive literacy campaigns, such as the one
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that took place in Cuba in the 1950s, where in a less than a year
illiteracy was reduced from 24 to 3.9% (120), demonstrate the
potential for rapid societal transformation. The effects of changes
in educational programs can also lead to a social tipping process as
soon as the new generation enters the job market and public
decision-making bodies. The recent #FridaysForFuture protests
demonstrate the upcoming new generation might radically change
the political scene. It is estimated that within just half a year the
school children movement grew to 1.5 million students in 125
countries. The effects of educational campaigns can be strength-
ened by a supportive family and community context as well as by
media campaigns, advertising bans, higher taxes, use prohibitions,
and lawsuits against producers (121). Warner (122) shows that
combined educational and mass-media campaigns in the 1970s
in the United States led to 4 to 5% annual decrease in cigarette
consumption. In the climate change context, Dietz et al. (123)
show that interventions that combine mass-media messages,
household- and behavior-specific information, and communica-
tion through individuals’ social networks and communities could
lead to reductions of 20% in household direct emissions in less
than 10 y, with little or no reduction in household well-being. An
educational campaign carried out in five Italian cities for 2 y,
involving teachers, pupils, and citizens, resulted in an emission
reduction in a range of 7 to 30% in the 247 families included in
the research (124). That said, education to bolster understanding
of the causes and effects of climate change, however important,
will not be sufficient to transform society alone. Sustainability
cannot be imposed, it has to be learned, so that is endogenously
realized and enacted deliberately by the actors who constitute
the SES (46). Engagement and the fostering of sustainable life-
styles and career pathways by transforming schools into living
laboratories (125) is necessary to counter the often overlooked
shadow side of education, since the secondary and higher levels of
education are currently associated with higher resource use (126).
STIs through information feedbacks. The last tipping intervention is
related to the flow of information and creating positive in-
formation feedbacks. The control parameter is represented by
the transparency of the impact of individual consumer and life-
style choices and carbon emissions. Transparency and disclosure
of information about carbon emissions are needed, for instance,
not just to provide a solid basis for global, regional, and national
policies (127) but also to increase public and consumer aware-
ness and improve labeling programs (128), triggering action and
lifestyle changes to support decarbonization (129). The recent
disclosure of the close ties between RWE, the biggest energy
company in Germany, and regional politicians protecting their
interest in the lignite coal extraction areas in Hessen led to a
nationwide social movement and massive public demonstrations
against plans to clear the Hambach Forest (130). Corporate
disclosure of carbon assets can also help to overcome the short-
term horizons of fund managers (131) and create a positive
feedback in the divestment movement.
Another positive feedback can be identified between the in-

formation system and public education. Enhanced public knowl-
edge and understanding by the broader public of the main variables
and processes in the Earth’s climate system and their linkages with
human activities could increase public sensitivity to emissions-
related information (132). Just as most product packages display
nutritional facts, some authors propose they could display a second
label on “Earth facts” and disclose the information on their carbon
footprint and other emissions (133). In comparison, the global
market for organic products, driven primarily by health concerns
but clearly stimulated by providing clear labeling, increased at rates
above 10% per year (134).

Discussion and Conclusions
Each of the STEs discussed above exists in the real world in
varying degrees, locations, and scales and shows the potential to

boost a decarbonization breakthrough. Since social-ecological
dynamics are subject to complex processes that cannot be fully
anticipated, it is not possible to predict when and where exactly
tipping points will be crossed. However, the system can be im-
perfectly navigated intentionally to achieve certain desirable
conditions and capacities (34). The social tipping dynamics are
likely to spread through adaptive networks of interactions rather
than via straightforward cause–effect systems. The identified
interactions between the various STEs mean that they can po-
tentially reinforce one another, making a transition to decar-
bonization more likely if several are triggered simultaneously
(Fig. 3). In addition, crossing multiple tipping points in diverse
systems of action increases the likelihood of breaking existing
systemic inertia and lock-ins and thereby achieving the climate
policy goals (34, 45). The interactions between the nominated
candidates for STEs could be organized as different possible
transformative pathways leading to crossing tipping points across
scales and regions. These “tipping transformative pathways” can
potentially show the bottom-up emergence of the global sus-
tainability pathway (SSP1) (135).
One possible transformative pathway that has recently started

to materialize has been initiated within the education system by
school children who started the climate strikes #FridaysForFuture.
The movement is causing “irritations” in personal worldviews (136)
and thus might be changing peoples’ norms and values and the
ways of thinking and acting, possibly leading to changes in policies
and regulations, infrastructure development, as well as individual
consumption and lifestyle decisions. For example, as a result of the
massive school student protest in Germany, even the traditionally
climate-conservative parties recently started to address climate
change issues in their programs (137). The increasing awareness of
the seriousness of climate change might drive an increasing de-
mand for greenhouse-gas emission disclosure of various products
and services. It might also drive an increased recognition of the
intergenerationally unethical and immoral character of fossil fuels
that will furthermore strengthen the legitimacy of carbon mitiga-
tion policies, including the removal of fossil-fuel subsidies. Al-
though changes of norms, customs, and beliefs occur very slowly
(138), one should keep mind that now is not year zero of the global
sustainability transformation. It has now been 30 y since the In-
tergovernmental Panel on Climate Change (IPCC) was endorsed
by the United Nations and issued its first report recognizing the
anthropogenic character of climate change, and many important
milestones have been reached since then, including publishing the
subsequent IPCC reports, Pope Francis’s encyclical Laudato si’,
and numerous events led by artists and activists increasing the
concern about climate issues. The example of “flight shaming” that
was initiated by a Swedish Olympic athlete and has been popu-
larized in social media (139), shows that society may now be just at
the edge of tipping in the realm of social norms and beliefs. The
high number of seats that environmentally oriented parities re-
cently won in the European Union (EU) elections (140) shows
that EU policy might potentially undergo a substantial shift
within the next few years, the EU becoming a global leader in
carbon mitigation efforts.
A global breakthrough could also be initiated at the level of

resource allocation by redirecting financial flows in line with the
divestment movement and improving information feedbacks by
disclosing the greenhouse gas emissions of products and services.
At this level, firms take consumption and production decisions
constrained by budget as well as by information and technology
availability (20, 51). Changes at this level occur continuously. Very
rapid changes, at a rate of 50% or more, can occur within a few
months. This is shown by public opinion polls on, for example,
political preferences following information flows, particularly in
online social media (141). Rapid changes in stock markets can occur
within hours (142). Nevertheless, such trends rarely lead to bigger
changes in human societies without simultaneous institutional
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changes. The institutional changes, requiring more time, such as
transforming the public subsidies and taxation systems, are needed
to stabilize the new emerging system. Otherwise the system might
become increasingly unstable, bouncing back and forth between
the old and new social order, delaying the transformation. A well-
documented example of such a phenomenon is the rebound effect
(143, 144). Even the frequently quoted “successful” example of
feed-in tariffs and German energy transition “Energiewende” to
renewables, which used the rapid change in public opinion in the
aftermath of the nuclear catastrophe in Fukushima in Japan in
2011, have recently faded away due to the lack of sufficiently
sustained societal and policy support (145).
Many of the nominated candidates for STEs extend beyond

achieving greenhouse gas reduction and can be potentially
interlinked with achieving other global policy goals, such as the
Sustainable Development Goals. Many of the interventions dis-
cussed above include a range of well-being and public health
cobenefits (68). Solving the climate crisis could be a chance to
redesign the global socioeconomic institutions toward achieving
a more just and equitable future (146). Several authors point out
that environmental catastrophes, including increased severity and
frequency of climatic extremes, might act as “windows of oppor-
tunity” that give rise to uncertainty and confusion, which might in
turn motivate actors to engage in reflective processes and take
sharp breaks from the existing procedures and policies (147) (Fig.
3). However, although the opportunity for a revolutionary change
might emerge due to external or environmental factors (148), it is
important to actively work with the social complexities (Fig. 2) and
the relevant key social actors (Tables 2 and 3), to increase public
acceptance and support for the transformative changes to come.
To ensure that climate-related social learning will take place, it is
necessary to understand how changes of perceptions and aware-
ness, motives, and interests of various actors take place and how
institutional innovations occur (149).
We call on both social and natural sciences to engage more

intensively in collaborative interdisciplinary research to under-
stand rapid social transformations, STEs, and their interactions
with tipping elements in the Earth system. Planetary social-
ecological models and machine-learning techniques can help to

explore the control parameters and critical thresholds in the
trajectory of this World–Earth coevolutionary dynamics (43). We
also encourage studies on the archetypes of social transforma-
tions (150) in different world regions as well as using insights and
methods from the natural sciences to study the complexity of
social systems. Both empirical studies and modeling exercises
could also help to assess the distributional impacts of STIs and
factors influencing their effectiveness. Our study presents a com-
prehensive empirical analysis of social tipping dynamics for global
decarbonization. However, since our results were derived from an
elicitation process involving small and nonrepresentative samples
of experts, more research is needed to verify our findings and to
provide more robust empirical evidence and data. Experts from
the research sector and the Global North were overrepresented
in our sample. Therefore special attention should be given to the
expertise of low-carbon and sustainability practitioners as well as
to providing more empirical material from the Global South.
Finally, the urgency and complex character of climate change
require transdisciplinarity and engagement with social movements,
knowledge brokers, and change leaders (151). More research is
needed on understanding the required social processes and the
drivers and incentives for short-term engagement of diverse co-
alitions of action around concrete solutions and strategies at
various governance levels (152).

Materials and Methods
The primary data collection tool was an online expert survey that was sent to
over 1,000 international experts through a private message or addressed
through mailing lists of organizations in the field of climate change and
sustainability. A full list of all survey questions as well details on the research
organization are provided in SI Appendix. The survey ran for 2.5 mo, and it
was completed by 133 experts. In total, they suggested 207 candidates for
STEs and interventions instrumental for decarbonization by 2050. A selected
group of 17 experts were invited for a workshop that focused on choosing
the top candidates for STEs. Finally, the coauthors carried out a literature
review on the top candidates selected at the workshop, following the
literature review guidelines.

Data Availability Statement. All data discussed in the paper will be made
available to readers upon request.

≈

≈

Fig. 3. Social tipping elements (STEs) and associated social tipping interventions (STIs) with the potential to drive rapid decarbonization in the World–Earth
system. The processes they represent unfold across levels of social structure on widely different timescales, ranging from the fast dynamics of market exchanges
and resource allocation on subannual timescales to the slow decadal- to centennial-scale changes on the level of customs, values, and social norms (51).
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A B S T R A C T

The human species has been recognized as a new force that has pushed the Earth's system into a new geological
epoch referred to as the Anthropocene. This human influence was not conscious, however, but an unintended
effect of the consumption of fossil-fuels over the last 150 years. Do we, humans, have the agency to deliberately
influence the fate of our species and the planet we inhabit? The rational choice paradigm that dominated social
sciences in the 20th Century, and has heavily influenced the conceptualization of human societies in global
human-environmental system modelling in the early 21st Century, suggests a very limited view of human
agency. Humans seen as rational agents, coordinated through market forces, have only a very weak influence on
the system rules. In this article we explore alternative concepts of human agency that emphasize its collective
and strategic dimensions as well as we ask how human agency is distributed within the society. We also explore
the concept of social structure as a manifestation of, and a constraint on, human agency. We discuss the im-
plications for conceptualization of human agency in integrated assessment modelling efforts.

1. Introduction

The Sustainable Development Goals and the Paris Agreement set
very ambitious goals that, if taken seriously, would result in a rapid
transformation of human-environmental interactions and decarboniza-
tion of the global socio-economic system (United Nations, 2015a,
2015b). What the agreements do not specify, however, is how the
transformation should be achieved and who the transformation agents
would be. In most modern scientific assessment of global human-en-
vironmental interactions, including Integrated Assessment Models
(IAMs), alternative futures do not evolve from the behavior of the po-
pulation in the simulated region or market, but are externally chosen by
the research teams (e.g. Moss et al., 2010). The human agency that can
be broadly understood as the capacity of individual and collective ac-
tors to change the course of events or the outcome of processes
(Pattberg and Stripple, 2008) is only weakly represented in the com-
monly used global system models. For example, Integrated Assessment
Models are not capable of modelling abrupt changes and tipping points
in both natural and human systems (e.g. van Vuuren et al., 2012) that
may imply severe and non-linear consequences for the Earth system as a
whole (Lenton et al., 2008). There is, however, a relatively rich body of

literature in social sciences, primarily in political science and institu-
tional theory, that conceptualizes human agency in the governance of
social-ecological systems (e.g. Ostrom, 2005; Kashwan et al., 2018) and
in Earth system governance (e.g. Biermann et al., 2012, 2016). The aim
of this paper is to assess the representation of human agency in Earth
system science and integrated assessment modelling efforts and to ex-
amine how the rich body of literature on human agency in social sci-
ences could be used to improve the modelling efforts.

The cornerstones of social sciences are built on the tension between
agency and structure in social reproduction - the force of self-de-
termination versus the embeddedness of social institutions (Dobres and
Robb, 2000). Just as bio-physical laws determine the coupling between
chemical and mechanical processes, social structures, including norms
and institutions, impose constraints on the shaping of human interac-
tions (North, 1990); they specify what people may, must, or must not do
under particular circumstances and impose costs for non-compliance
(Ostrom, 2005). Social institutions also have a function in expressing
common or social interest and in channeling human behavior into what
is socially desired (Coleman, 1990). Unlike bio-physical laws, however,
social institutions are man-made structures and they are constantly
being transformed by human action. In general, the smaller the social
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entity the less durable it is. The size, scale, and time-frame of the social
entity push it towards a durable structure and stability (Fuchs, 2001).
Numerous authors have contributed to this long and fruitful debate on
micro- and macro-level social structures and interactions within social
sciences. However, very little of that knowledge has so far been applied
by the global environmental change modelling community. To give an
example, the IPCC Report on Mitigation of Climate Change underlines
the role of institutional, legal, and cultural barriers that constrain the
low-carbon technology uptake and behavioral change. However, the
diffusion of alternative values, institutions, and even technologies are
not incorporated in the modelling results (Edenhofer et al., 2014). Little
is known about the potential for scaling-up of social innovations,
let alone the possible carbon emission reductions they could drive if
applied on a larger scale. How quickly would such innovations diffuse
into virtual and face-to-face social networks, and what would the
agency of different actors, and groups of actors, be in such a diffusion
process? The purpose of this work is to analyze how social theory could
be better integrated into the global environmental change assessment
community, and how relevant social theory could be incorporated in
modelling efforts.

The paper is structured as follows. We start by reviewing how
human agency has been incorporated within Earth system science and
integrated modelling efforts so far. We then move to the exploration of
the concept of human agency and social structure and review the re-
levant social stratification theories. We propose how the concept of
human agency could be incorporated in global human-environmental
system models, and finally we conclude.

2. Human agency in Earth system science and integrated
assessment modelling

The recognition of the human species as the driving force of modern
global environmental challenges, occurring at the end of the 20th
Century, brought a new perspective to environmental and Earth system
sciences. Lubchenco (1998) called directly for the integration of the
human dimensions of global environmental changes with the physical-
chemical-biological dimensions. In this context, Crutzen (2006) pro-
posed the distinction of the Anthropocene as a new geological epoch,
where the human species becomes a force outcompeting natural pro-
cesses. As one possible framework to assess human agency in the An-
thropocene, Schellnhuber (1999) developed the notion of “Earth
System” analysis for global environmental management in which the
human force has been conceptualized as a “global subject”. The global
subject is a real but abstract force that represents the collective action of
humanity as a self-conscious force that has conquered the planet. The
global subject manifests itself, for instance, by adopting international
protocols for climate protection.

The conceptualization of the human species as the global subject has
been applied in Integrated Assessment Models (IAMs). IAMs refer to
tools assessing strategies to address climate change and they aim to
describe the complex relations between environmental, social and
economic factors that determine future climate change and the effects
of climate policy (van Vuuren et al., 2011). IAMs have been valuable
means to set out potential pathways to mitigate climate change and,
importantly, have been used in the IPCC's assessments of climate
change mitigation (Clarke et al., 2014). However, the development of
Integrated Assessment Models (IAMs) coincides in time with the su-
premacy of the rational choice paradigm. Rational choice theory em-
phasizes the voluntary nature of human action and the influence of such
actions on decisions, assuming human beings act on the basis of rational
calculations of benefits and costs (Burns, 1994). According to this
paradigm, rationality is a feature of individual actors and the world can
be explained in terms of interactions of atomic entities. Humans are
rational beings motivated by self-interest and consciously evaluate al-
ternative courses of action. Markets are seen as the mechanisms linking
the micro and macro levels and allow the combination of the concrete

actions of individuals, e.g. buyers and sellers (Jaeger et al., 2001). The
rational choice paradigm is reflected in welfare maximization as-
sumptions underpinning the development of computable general
equilibrium (CGE) models that are widespread in IAMs. CGE models are
computer-based simulations which use a system of equations that de-
scribe the whole world economy and their sectoral interactions. The
analysis of scenarios in CGE models compares a business-as-usual
equilibrium with the changes introduced by one or several policies and
environmental shocks — e.g. a carbon tax or emissions trading scheme
under several climate scenarios — which generate a new equilibrium
(Babatunde et al., 2017). It is important to understand that the policy
shock in such models is introduced externally; it does not evolve from
the model and does not consider the dynamics behind the agency of
different actors and groups of actors. In fact, human societies in CGE
models are only reflected in aggregated population numbers by world
region. The institutional settings within the human societies operate are
given and cannot be endogenously changed. CGE models place a strong
emphasis on the market as a solution to all kinds of problems including
environmental and social issues (Scrieciu, 2007). Furthermore, state-of-
the-art IAMs model aggregate datasets of sub-continental size. For in-
stance, the IAM known as REMIND considers just 11 world regions,
while the energy component of IMAGE considers only 26. The order of
magnitude of the population of each of these regions is between 287 M
and 680 M inhabitants (ADVANCE, 2017). Similarly, in the global land
use allocation model MAgPIE, the food energy demand for ten types of
food energy categories (cereals, rice, vegetable oils, pulses, roots and
tubers, sugar, ruminant meat, non-ruminant meat, and milk) in ten
world regions differentiated in the model is determined exogenously by
population size and income growth, assuming that, for example, higher
income is related to a higher demand for meat and milk (Popp et al.,
2010). The impacts of changing lifestyles and the implications of de-
mand-side solutions can be explored only manually by varying the
underlying assumptions.

In context of the definition of human agency used above, IAMs re-
flect an agency of a rational consumer who decides on the choice of an
optimal action having access to perfect information about the alter-
natives. By analyzing energy, land use, and their implications on global
emissions (e.g. van Vuuren et al., 2012; Hibbard et al., 2010) IAMs can
compute an economic setup to maximize welfare functions. Never-
theless, the welfare functions do not cover the diversity of human
preferences. Complex distinctions of qualitative aspects, such as net-
works or influencers that can drive these processes, do not exist.

This drawback has been noted by the IAM community and attempts
have been made to integrate human agency related behavior towards
the political economy, social behavioral and interaction patterns (Riahi
et al., 2017), or regimes of effort sharing (van den Berg et al., 2019)
have been made. Some models also consider inequality and a diversity
of consumption patterns (Hasegawa et al., 2015; McCollum et al. 2018).
However, these approaches are still driven by exogenous quantifica-
tions and are unable to sufficiently inspect dynamics of human agency.
Although IAMs are able to design pathways combining multiple stra-
tegies to achieve the 1.5 °C target of the Paris Agreement, which include
human agency related actions such as lifestyle changes (van Vuuren
et al., 2018), many questions remain. For example, how can human
agency be triggered to achieve the lifestyle changes, at an individual
level, necessary to achieve the 1.5 °C target? Also, how can the neces-
sary institutional dynamics be brought into play? So far, these aspects
are rarely considered in IAMs.

Novel and promising modelling approaches to incorporate human
agency are being developed in complex network science (Borgatti et al.,
2009) and social-ecological system modelling (Pérez et al., 2016).
Complex networks usually consist of a set of nodes representing in-
dividual agents or representative aggregations thereof (such as business
parties, geographical regions or countries) which are connected by
different types of linkages, such as business relations, diplomatic ties, or
even acquaintance and friendship (Newman, 2018). This type of
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framework has been developed in the past, and applied successfully to
describe heterogeneous datasets from the social sciences, and to es-
tablish conceptual models for socio-economic and socio-ecological dy-
namics (Filatova et al., 2013). Nevertheless, most of such models are
still based on theoretical assumptions with weak links to empirical data.
A closer link with empirical data has so far only been achieved at case
study level, focusing on particular local socio-environmental phe-
nomena such as fishery or water management with agents representing
local resource users or managers (e.g. Suwarno et al., 2018; Troost and
Berger, 2015). The questions driving this work are: (i) how can similar
models be conceptualized in order to represent the whole World-Earth
system of human societies and their bio-physical environment (Donges
et al., 2018) and (ii) how can they be linked with empirical data?

3. The concept of human agency in social sciences

Dellas et al. (2011) refer to agency in the governance of the Earth
system as the capacity to act in the face of earth system transformation
or to produce effects that ultimately shape natural processes. Agency in
Earth system governance may be considered as contributing to problem
solving, or alternatively it could include the negative consequences of
the authority to act. Lister (2003) and Coulthard (2012), in their re-
search on agency related to environmental and citizenship problems,
distinguish two dimensions: (i) ‘everyday agency’ being the daily de-
cision-making around how to make ends meet, and ‘strategic agency’
involving long-term planning and strategies; and (ii) ‘personal agency’
which reflects individual choices and ‘political and citizenship agency’
which is related to the capacity of people to affect the wider change
(Lister 2003). Personal agency varies significantly across human in-
dividuals. However, there are powerful examples of social protests and
movements demonstrating that even individually disempowered people
can have a strong voice if they act collectively (Kashwan, 2016). In the
context of natural resources and environmental management, there are
empirical examples of self-organized local and regional communities
and grassroots movements crafting new institutions that limit the
control of national authorities (García-López, 2018; Dang, 2018). To
give an example, civil society groups in Mexico managed to shape the
REDD+ policies to protect the rights of agrarian communities
(Kashwan, 2017a). In this context, Bandura (2006) proposes the dif-
ferentiation of individual, proxy and collective agency (2006: 165).
Individual agency refers to situations in which people bring their in-
fluence to bear through their own actions. This varies substantially
from person to person with respect to individual freedom to act and the
consequences of action. Individual agency is influenced by a whole set
of socio-economic characteristics including gender, age, education, re-
ligion, social, economic and political capital. In many cultures, the in-
dividual agency of women is limited, for example, by inheritance law or
by informal norms restricting their mobility or educational opportu-
nities (Otto et al., 2017). However, individual agency also varies with
an individual's ability to change the system rules. For example, very
wealthy or influential people might find it easier to set new market
trends or influence public decision-making processes than those with
fewer resources (Otto et al., 2019). Proxy, or socially mediated agency
refers to situations in which individuals have no direct control over
conditions that affect their lives, but they influence others who have the
resources, knowledge, and means to act on their behalf to secure the
outcome they desire. Collective agency refers to situations in which
individuals pool their knowledge, skills, and resources, and act in
concert to shape their future (Bandura 2006: 165). These dimensions of
agency are visualized in Fig. 1.

The dominant view of human agency in Earth system science and
integrated modelling approaches has so far focused on the left upper
corner of Fig. 1, i.e. on the everyday agency of individual human
agents. This would correspond to, for example, modelling the effects of
food consumption on land use patterns (e.g. Popp et al., 2010). Inter-
estingly, although opinion formation and election models are well

advanced in game theory (e.g. Penn, 2009; Ding et al., 2010), they have
not yet been applied to the formation of international environmental
policy in IAMs. At the same time the recent so-called protest voting
shows that a small fraction of voters can push public policy down a
radically different pathway. Some studies link the protest voting and
rising populism with increasing inequalities and the political and social
exclusion of the poor and underprivileged (Becker et al., 2017). In some
cases, radical policy changes might also be achieved by individual acts
of civil disobedience and, in a destructive manner, by terrorist attacks.
Civil disobedience represents the peaceful breaking of unjust or un-
ethical laws and is a technique of resistance and protest whose purpose
is to achieve social or political change by drawing attention to problems
and influencing public opinion. Terrorism is defined as an act of vio-
lence for the purpose of intimidating or coercing a government or ci-
vilian population.

Furthermore, radical policy changes and social tipping points can
emerge due to changes in the collective behavior and preferences. The
term ‘tipping point’ “refers to a critical threshold at which a tiny per-
turbation can qualitatively alter the state or development of a system”
(Lenton et al., 2008), hence the mere existence of tipping points implies
that small perturbations created by parts of such a system can push the
whole system into a different development trajectory. Examples of
tipping-like phenomena in socio-economic systems include financial
crises, but could also include the spread of new social values, pro-en-
vironmental behavior, social movements, and technological innova-
tions (Steffen et al., 2018). To give an example, social movements and
grassroots organizations played an important role in the German energy
transition that was initiated in 2011 as a reaction to the nuclear disaster
in Fukushima in Japan. It was, however, preceded by about 30 years of
environmental activism (Hake et al., 2015). Finally, tipping-like phe-
nomena can also be achieved by consumer boycotts and carrotmob
movements. Consumer boycotts coupled with environmental NGO
campaigns led, in Europe, to changes in the animal welfare regulations
and the implementation of fair trade schemes (Belk et al., 2005). Car-
rotmobs refer to consumers collectively swarming a specific store to
purchase its goods in order to reward corporate socially responsible
behavior (Hoffmann and Hutter, 2012).

At the same time, cultural values and the ethical interpretation of
behavior might vary in some respects across different countries and
world regions and will lead to different manifestations of agency.
Cultural values provide a strong filter of the actions perceived as good
or responsible, as well as the consequences of violating norms (Belk
et al., 2005). In the climate change context, some authors link the

Fig. 1. Agency dimensions.
Adapted from Lister (2004) and Coulthard (2012) with empirical examples of
social phenomena.
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public acceptance of climate policy instruments to the belief and value
systems in place, and the perceptions of the environment (Otto-
Banaszak et al., 2011).

4. The manifestation of human agency: the layers of social
structure

Biermann and Siebenhüner (2009) propose a distinction between
actors and agents in Earth system governance. Actors are the in-
dividuals, organizations, and networks that participate in the decision-
making processes. Agents are those actors who have the ability to
prescribe behavior. The collective prescriptions and constraints on
human behavior are usually referred to as the social structure
(Granovetter, 1985; Dobres and Robb, 2000). The social structure is
composed of the rule system that constitutes the “grammar” for social
action that is used by the actors to structure and regulate their trans-
actions with one another in defined situations or spheres of activity.
The complex and multidimensional normative network is not given, but
is a product of human action; “human agents continually form and
reform social rule systems” (Burns and Flam, 1986: 26). The social rule
system can also be framed as social institutions that are involved in
political, economic, and social interactions (North, 1991). Similarly,
Elinor Ostrom defines institutions as “the prescriptions that humans use
to organize all forms of repetitive and structured interactions. In-
dividuals interacting within rule-structured situations face choices re-
garding the actions and strategies they take, leading to consequences
for themselves and for others” (Ostrom, 2005: 3). Social norms are
shared understandings of actions and define which actions are ob-
ligatory, permitted, and forbidden (Crawford and Ostrom, 1995). Social
order is only possible insofar as participants have common values and
they share an understanding of their common interests and goals (King,
2009). Williamson (1998) proposes differentiating different informal
institutions such as norms, beliefs and traditions, and formal institu-
tions that comprise formal and written codes of conduct.

The process of shaping of the social rule system formation is not
always fully conscious and intended. Lloyd (1988: 10) points out that a
social structure is emerging from intended and unintended con-
sequences of individual action and patterned mass behavior over time
“Once such structures emerge, they feedback on the actions”
(Sztompka, 1991: 49). For Giddens (1984) human action occurs as a
continuous flow of conduct and he proposed turning the static notion of
structure into the dynamic category of structuration to describe the
human collective conduct. Human history is created by intentional
activities but it is not an intended project; it persistently eludes efforts
to bring it under conscious direction (Giddens, 1984: 27). As pointed
out by Sztompka (1994), Giddens, embodies human agency in the ev-
eryday conduct of common people who are often distant from reformist
intentions but are still involved in shaping and reshaping human so-
cieties. This process of the formation of social structure takes place over
time; the system which individuals follow today have been produced
and developed over a long period. “Through their transactions social
groups and communities maintain and extend rule systems into the
future” (Burns and Flam 1987: 29).

Another element of the social structure that is identified by several
authors corresponds to the network of human relationships that, just
like the shapes in geometry, can take different forms and configurations
(Simmel, 1971). The network of relationships among the social agents
is also referred to as governance structures, or sometimes as organiza-
tions. North (1990: 73) defines organizations as “purposive entities
designed by their creators to maximize wealth, income, or other ob-
jectives defined by the opportunities afforded by the institutional
structure of the society.” Williamson (1998), focusing on the types of
contracts, distinguishes three basic types of governance structures:
markets, firms, and hybrids. In markets, transaction partners are au-
tonomous; in firms, partners are inter-dependent and integrated into an
internal organization. Hybrids are intermediate forms in which contract

partners are bilaterally dependent but to a large degree maintain au-
tonomy (Williamson 1996: 95–98). Studying communication networks
and social group structures allows us to distinguish more social network
relationship patterns (Sztompka, 2002: 138).

Finally, the social structure is also shaped and influenced by large
material objects such as infrastructure and other technological and in-
dustrial structures, that some authors call the technosphere
(Spaargaren, 1997: 78). Herrmann-Pillath (2018) defines the techno-
sphere as the encompassing aggregate of all artificial objects in oppo-
sition to the natural world, and more specifically, establishes the sys-
temic separateness of the technosphere relative to the biosphere. Just as
social norms impose on one hand certain constrains on human beha-
vior, however, on the other hand, structure the human interactions and
also provide certain opportunities, the technosphere can be viewed as a
humanly designed constructs that provide certain opportunities as well
as they limit certain choices of individuals operating at different geo-
graphical and time scales (Donges et al., 2017a).

The system is fully interconnected, and the social structure layers
are interrelated. The slow changing layers of social structure impose
constraints on the layers that change more quickly. The faster changing
layers of social structure, however, are also able to change the slow
slayers through feedback mechanisms (c.f. Williamson, 2000). Human
agency is manifested through the maintenance, reproduction and
modifications in the social structure layers (Burns, 1994). Interestingly,
infrastructure objects in the technosphere layer show a similar order of
change as the informal and formal institutions, and thus might con-
strain the social change in the faster changing levels. Thus artefacts
become co-carriers of agency (Herrmann-Pillath, 2018). Nevertheless,
sharp brakes from the established procedures rarely happen. Such de-
fining moments are an exception to the rule and usually emerge from
massive discontents such as civil wars, revolutions, or financial crises
(Williamson, 1998). Institutions can also lock the society into a path-
dependence (Beddoe et al., 2009). The capacity to undergo a radical
restructuring, however, is a unique feature distinguishing social systems
from organic or mechanical ones. Restructuring the social structure is a
product of human agency and is grounded in the interaction between
structures and human actions that produces change in a system's given
form, structure or state (Archer, 1988: xxii). However, the transition of
institutions is frequently driven by crises (Beddoe et al., 2009).

Burns (1994: 215-216) introduces the notion of ‘windows of op-
portunity’ that are very relevant for analyzing social transformations.
Interactive situations lacking social equilibria, which typically occur
after catastrophes and other shocks, usually give rise to uncertainty,
unpredictability, and confusion, and motivate actors to try, individually
or collectively, to restructure the situation. In such restructuring ac-
tivities, actors typically engage in reflective processes and make
“choices about choice” and participate in meta-games (Burns 1994:
208). The actors may structure and restructure their preferences, out-
comes, and outcome structures, and occasionally also the entire deci-
sion and game systems in which they participate. Through such struc-
turing activity, human agents also create, maintain and change
institutions and collective or organized agents such as movements, the
state, market and bureaucratic organizations (Burns and Dietz, 1992;
Burns, 1994: 215–216).

Transformations are the moments in history when the meta choices -
“choices about choices” are made. The outcomes of such choices and
the new type of system depend largely on the agents that get involved in
the collective process of designing the new system. This process could
be exclusive and incorporate only a narrow group of decision-makers as
frequently happens in “quiet” transitions to authoritarian regimes.
Alternatively, they can be more open and include representatives of
various social groups, as happened in the political and economic
transformation in Eastern Europe. Taking this example, Burns (1994)
proposes that transformations are a co-evolutionary process sometimes
driven by contradicting actors' interests. Transformations might entail
shifts in core societal organizing principles and systems of rules. As a
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result, agents with vested interests may struggle to maintain established
systems or to limit the changes within them. Other agents act openly or
covertly to modify or transform the system. Table 1 summarizes the
above discussion and tries to link the social structure layers to the
dominant type of human agency that can to be used to transform them.

Even in periods of radical change, however, the actors never start
from scratch. They cannot choose a completely new system and they
always depart from the ongoing social order in which they are em-
bedded. The future evolves from practical activities, experiments,
learning, conflict and struggle (Burns, 1994: 216). A similar point of
view is presented by evolutionary institutional economists, in which
transformations are seen not as a simple replacement of old institutions
by new ones, but as a recombination and reworking of old and new
elements and groups of actors (e.g. Stark, 1996; Bromley, 2000).

5. Distribution of human agency: differentiating socio-metabolic
agent classes

Following the rational choice paradigm could lead us to a conclu-
sion that the society is a sum of individuals (Burns, 1994) and that any
forms of agency should be equally distributed among the individuals in
the society. Such an approach is typical for integrated assessment
models in which human systems are usually separated into population
and economic sectors. The parameters that describe population are
usually mainly population number, and economic production de-
termines the use of resources and pollution emissions in the model (e.g.
van Vuuren et al., 2012).

It is, however, enough to observe the world to know that such as-
sumptions are very simplistic. People's resource use and pollution
emissions differ according to income, place of abode, type of occupa-
tion, and possessions. Moreover, their goals and interests, and the
likelihood of them being fulfilled also differ. There are powerful in-
dividuals and groups in society who successfully strive for their inter-
ests, and there are individuals and groups who, despite struggling,
never achieve their objectives. There are also masses of individuals who
just strive to make ends meet. The questions are what types of agents or
organizations can be incorporated in the models and what sort of
agency do they have? Is there a need for a new social class theory taking
access to energy and related carbon emissions as the base of social
stratification?

Most social differentiation theories follow either the Marxist dis-
tinction between physical and capital endowments or the Weberian
approach which differentiates classes through inequalities in ownership
and income (Kozyr-Kowalski, 1992: 53). Some class theorists also
highlight the development stages and inequalities across different
countries and world-regions (Offe, 1992: 122). One more dimension
that has not been discussed so far by social differentiation theories is
the socio-metabolic profile of social classes, which constitutes the
common ground for social and natural sciences. Social metabolism re-
fers to the material flows in human societies and the way societies or-
ganize their exchanges of energy and materials with the environment
(Fischer-Kowalski, 1997; Martinez-Alier, 2009). Social classes can be
differentiated based on their metabolic profiles (Martinez-Alier, 2009).

The use of energy by human beings can be divided into two main ca-
tegories. The first one refers to the endosomatic use of energy as food,
and the second one refers to the exosomatic use of energy as fuel for
cooking and heating, and as power for the artefacts and machines
produced by human society. Thus one person a day must eat the
equivalent of 1500 to 2500 kcal to sustain their life functions, which is
equivalent to about 10 MJ (megajoules) of energy per day or 3.65 GJ
per year (Martinez-Alier, 2009). This amount varies only slightly
among human beings. A rich person physically cannot eat much more,
and even poorer individuals need the equivalent energy in the form of
food to survive. Dietary composition and the amount of waste pro-
duced, however, will differ across the social strata. Nevertheless, there
are still people suffering from hunger, unable to meet their basic needs.

The exosomatic energy use varies to a greater degree. The poorest
social groups, who have no permanent access to electricity in their
homes, who obtain energy for cooking and heating from the combus-
tion of biomass products, who use overcrowded buses and trains to
travel, use in total about 10 GJ of energy per person per year (Martinez-
Alier, 2009) and constitute the lowest, socio-metabolic underclass. A
more detailed picture can be derived by comparing the carbon footprint
of different socio-economic groups. Personal CO2 emissions are released
directly in fuel combustion processes in vehicles, airplanes, heating and
cooking appliances, and indirectly through electricity use and con-
sumption of products that generated emissions in the upstream pro-
duction processes. The authors include CO2 emissions from energy used
directly in homes (for space heating, lighting, etc.), for personal
transportation (including personal vehicles and passenger aviation),
and from the energy embedded in the production of goods consumed.
Kümmel (2011) proposes the term “energy slaves” to describe the
exosomatic energy use from fossil fuels by modern human society. On
average, the daily energy consumption of a human being is equivalent
to the men power of 15 people. Inhabitants of the most energy intensive
Western Societies (i.e. the U.S.) consume, per person, the equivalent of
the work of 92 people every day.

The results from UK households show that CO2 emissions are
strongly income, but also location, dependent. The highest emissions
can be generated by people living in suburbs, mostly in detached
houses, and having two or more cars. Emissions of such households
equated to about 26 CO2 tonnes in 2004. This amount was 64% higher
than the emissions of the group with lowest emissions of 16 CO2, which
comprised mostly of older and single person urban households as well
as the unemployed living mostly in urban areas (Druckman and
Jackson, 2009). UK household emissions can be compared with emis-
sions from households located in less developed countries. For example,
household emissions in Malaysia, as in the UK, are strongly dependent
on income and location. However, Malaysian households with the
lowest emissions were found in villages as well as in low-income urban
squatter settlements. The urban squatter settlement households emitted
on average 10.18 CO2 tonnes. The village households emitted on
average 9.58 CO2 tonnes per year. Households with the highest CO2

emissions were located in high cost housing areas and they were re-
sponsible on average for 20.14 CO2 tonnes per year (Majid et al., 2014).

On the other end of the social ladder, there are super-rich hyper-

Table 1
The layers of social structure, the dominant type of agency and the order of change.
(Following Williamson, 1998).

Structure layer Sub-components The dominant type of human agency The order of change

Institutional Informal rules: norms, religion, tradition, customs Collective and strategic 30 to over 100 years
Formal rules: constitutions, written codes of conduct, judiciary, property rights Collective and citizenship 10 to 50 years

Organizational Governance structures Proxy and strategic 5 to 10 years
Organizations Proxy, strategic 5 to 10 years
Networks Proxy, individual, everyday Continuous

Technosphere Infrastructure Proxy, strategic 10–50 years
Technology Proxy, individual and everyday Continuous
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mobile individuals with multiple spacious residences, and whose live-
styles are characterized by conspicuous consumption patterns. They are
less than 1% of global population and their consumption related
greenhouse gas emissions could be over 170 times higher than the
world's poorest 10% (Oxfam, 2015). They can be characterized by ex-
tremely high levels of all types of agency. The influence and roles of
many super-rich in the world of politics, media, culture, business and
industry are often inter-related. In contrast to the super-rich in pre-
industrial societies they have almost unlimited mobility, owning
properties in different counties, with their homes being guarded and
fortified. They have the ability to switch countries of residence, taking
the advantage of ‘nondomiciled’ tax status, i.e. being the national of a
certain country while not actually living there (Paris, 2013). Table 2
presents a first attempt to stratify the global population according to
their socio-metabolic profiles that is based on disaggregated data on
consumption related carbon emissions (Oxfam, 2015; Otto et al., 2019).

The proportions in Table 2 are striking. The top 10% of the global
population is responsible for almost 50% of global consumption related
greenhouse gas emissions. The wealthiest 0.54% of the human popu-
lation is responsible for more lifestyle carbon emissions than the
poorest 50% (Otto et al., 2019).

Energy use, as well as carbon dioxide emission, can also be used to
analyze the socio-metabolic profile of economic sectors, companies and
other organizations. From 1854 to 2010 12.5% of all industrial carbon
pollution was produced by just five companies – Chevron, ExxonMobil,
British Petroleum, Shell and Conoco Philipps (Union of Concerned
Scientists, 2018). To give an example from a different sector – in 2015
Saint-Gobain, a French multinational building materials manufacturer
emitted 9.5 million metric tonnes CO2e (Carbon Disclosure Project,
2016: 22). For a comparison, emissions from industrial processes in
France in 2013 equated to 17.6 million tonnes CO2e (General
Directorate for Sustainable Development, 2016: 25) (GTM, 2018).

The socio-metabolic profile of social classes, nations, and organi-
zations can be directly linked with their agency in the Earth system. The
global socio-metabolic underclass is obviously characterized by a very
low degree of agency. There are rare exceptions of mass protests in-
itiated by the poorest social groups that can collectively influence
formal institutions and change their governance (Kashwan, 2017b).
However, these people are mostly occupied with making ends meet and
have low organizational capabilities. In contrast, the global socio-me-
tabolic upper classes are those who are characterized by a high level of
individual agency as well as having the organizational capabilities to
actively exercise their agency. Due to their resource incentive life-style
they also have the moral obligation to be the agents of a transformation
in global sustainability.

6. Improving the representation of human agency in integrated
assessment modelling

In this section we ask how the above conceptual discussion could be
summarized into guidelines improving the operationalization of human
agency in Earth system science and integrated assessment modelling. In
order to incorporate the different aspects of human agency as discussed
in the previous sections, there is a need to introduce agents with

heterogeneous goals, opinions and preferences into the models. The
agents should be able to form networks that represent their mutual
interrelationships and interactions between them. These system inter-
action rules should ideally refer to the social structure layers differ-
entiated in Table 1, forming a nested hierarchical embeddedness of
each agent.

Conceptual models, that incorporate the above requirements have
been successfully developed and studied in the recent past. Their core
properties might thus form a proper basis for extending IAMs to include
heterogeneous agency on the level of (representative) individuals. Such
models have been utilized to study opinion, and the associated con-
sensus-formation specifically under the assumption of heterogeneous
agents. Most of these works are based on the voter model in which
agents exchange discrete (sets of) opinions in order to reach some
consensus on a given (possibly abstract) topic or problem (Clifford and
Sudbury, 1973; Holley and Liggett, 1975). Acknowledging that in its
standard version the voter model considers all agents to have identical
agency, extensions have been based on social impact theory (Latane,
1981) that specifically include heterogeneous relationships between
single actors or groups (Nowak et al., 1990). Such extended models
generally account for proximities between agents in some abstract
space of personal relationships which is commonly modeled by as-
signing agents unique values of persuasiveness and supportiveness,
describing their agency with respect to influencing as well as sup-
porting others. While being of generic nature such classes of models can
be easily modified to account for various kinds of processes related to
social behavior, such as social learning (Kohring, 1996) or leadership
(Holyst et al., 2001), which are again directly related to the notions of
(heterogeneous distributions of) human agency. Certain models include
additional layers of complexity by also accounting for the hetero-
geneous distribution of different group sizes (Sznajd-Weron, 2005) and
certain majorities within those groups (Galam, 2002) when de-
termining criteria for consensus in opinion dynamics.

One particular model of general cultural dynamics that has attracted
great interest in the social science community, and that should be
highlighted here, is the so-called Axelrod model (Axelrod, 1997). In its
core, it accounts for two commonly observed tendencies in large groups
of individuals or aggregations thereof: social influence (i.e. agency) and
homophily (a process that dynamically influences each individual's
agency over time). The Axelrod-model not only specifically accounts for
heterogeneity in the different agents but also (and to some degree un-
intuitively) allows emerging cultural diversity to be modeled in its
convergent state. In general, such flexible approaches allow in-
corporating individual human agency in terms of the different ties an
agent might have with others (Emirbayer and Goodwin, 1994;
Granovetter, 1977). Additionally, each tie can be associated with dif-
ferent strengths, thus also incorporating heterogeneity in the human
agency (Castellano et al., 2009). Network modelling approaches further
allow us to explicitly resolve the associated social structure (as well as
the temporal evolution thereof) through an evaluation of the overall
topology of the network on the meso- or macroscale (Costa et al., 2007).

A necessary step in operationalizing human agency in IAMs includes
differentiating global socio-metabolic agent classes with heterogeneous
metabolic profiles linking them with the material and energy flows in

Table 2
Socio-metabolic class differentiation.
(Based on: Oxfam, 2015; Otto et al., 2019).

Percent of global population Percent of life-style CO2 emissions The level of human agency

Socio-metabolic underclass 20% 2.5% Extremely low
Socio-metabolic energy poor class 30% 7.5% Low
Socio-metabolic lower class 30% 22% Moderate level of collective agency
Socio-metabolic middle class 10% 19% Moderate to high
Socio-metabolic upper class 9.5% 35.4% Very high
Super-rich 0.54% 13.6% Extremely high
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the bio-physical environment as well as heterogeneous social profiles
that specify their preferences, opinions, and positions in social net-
works. Such efforts could be linked to the emerging research on
downscaling planetary boundaries (Häyhä et al., 2016) as well as the
established research on differentiating social milieus (e.g. Bauer and
Gaskell, 1999). Some authors also propose model co-development, to-
gether with citizens and citizen groups (Figueres et al., 2017). Some
authors also recommend abandoning the search for one gold-standard
model, and instead explore future pathways based on a multitude of
different concepts and representations of people and human agency
(Donges et al., 2017b). For example, Donges et al. (2018) propose a
modelling framework allowing incorporation of large sets of different
models and concepts, in a standardized form, in order to assess and
compare different future trajectories.

7. Conclusions

The Anthropocene has emerged unintentionally as a side effect of
the industrialization of human societies (Crutzen, 2006). There are only
a few examples of the human ability to internally interact with plane-
tary geological forces, with the Montreal Protocol being the most often
referred to example (Velders et al., 2007). At the same time historical
examples show that there are instances of rapid transitions in societies
(Bunker and Alban, 1997). Achieving policy challenges as outlined in
the Sustainable Development Goals require a certain degree of societal
transformation. The concept of agency is central to implementing
transformations needed to limit global warming and achieve the SDGs.
Most of the IAMs that dominate the scientific assessments of global
environmental changes do not include a representation of human so-
cieties that would have a capacity to undertake system transformations.
At the same time, there is a relatively rich social science theory that can
be used to improve the operationalization of human agency in in-
tegrated assessment modelling efforts.

In this paper we show that human agency can actively shape the
World-Earth system (c.f. Donges et al., 2018) through interventions at
different layers of social structure. Human agency, however, is not
evenly distributed across all human individuals and social groups. We
postulate a differentiation of socio-metabolic agent classes that could be
integrated into integrated assessment modelling efforts. More socio-
economic sub-national and sub-population group data is needed for this
purpose (c.f. Otto et al., 2015). Social institutions for sustainable
management of global, regional, and local ecosystems, however, do not
generally evolve spontaneously, but have to be consciously designed
and implemented by the resource users (Gatzweiler and Hagedorn,
2002; Kluvankova-Oravska et al., 2009). Each social transformation
contains a disruptive component that implies a destruction of existing
patterns of social interaction and institutional structures, and creation
and emergence of new patterns and structures. Introducing more di-
mensions of human agency into IAMs, and co-creating scenarios and
pathways for modelling exercises together with citizens and institu-
tions, would help break the barriers that disconnect peoples' actuality
and agency with models, a discourse which has been gaining weight
among policy makers (Figures, 2016). This disconnection can be broken
by co-developing with citizens and various resource users the elements
of global human-environmental system models, and by considering the
people behind the numbers and the possible ways of funneling their
agency. We encourage the integrated modelling community to work
more closely with social scientists as well as we encourage social sci-
entists to explore the methods and concepts applied in natural sciences.
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We explore the risk that self-reinforcing feedbacks could push the Earth System toward a planetary
threshold that, if crossed, could prevent stabilization of the climate at intermediate temperature rises and
cause continued warming on a “Hothouse Earth” pathway even as human emissions are reduced. Crossing
the threshold would lead to a much higher global average temperature than any interglacial in the past
1.2 million years and to sea levels significantly higher than at any time in the Holocene. We examine
the evidence that such a threshold might exist and where it might be. If the threshold is crossed, the
resulting trajectory would likely cause serious disruptions to ecosystems, society, and economies. Col-
lective human action is required to steer the Earth System away from a potential threshold and stabilize it in a
habitable interglacial-like state. Such action entails stewardship of the entire Earth System—biosphere,
climate, and societies—and could include decarbonization of the global economy, enhancement of biosphere
carbon sinks, behavioral changes, technological innovations, new governance arrangements, and trans-
formed social values.

Earth System trajectories | climate change | Anthropocene | biosphere feedbacks | tipping elements

The Anthropocene is a proposed new geological ep-
och (1) based on the observation that human impacts
on essential planetary processes have become so pro-
found (2) that they have driven the Earth out of the
Holocene epoch in which agriculture, sedentary com-
munities, and eventually, socially and technologically
complex human societies developed. The formaliza-
tion of the Anthropocene as a new geological epoch is
being considered by the stratigraphic community (3),
but regardless of the outcome of that process, it is
becoming apparent that Anthropocene conditions
transgress Holocene conditions in several respects
(2). The knowledge that human activity now rivals geo-
logical forces in influencing the trajectory of the Earth
System has important implications for both Earth Sys-
tem science and societal decision making. While

recognizing that different societies around the world
have contributed differently and unequally to pres-
sures on the Earth System and will have varied capa-
bilities to alter future trajectories (4), the sum total of
human impacts on the system needs to be taken into
account for analyzing future trajectories of the
Earth System.

Here, we explore potential future trajectories of the
Earth System by addressing the following questions.

Is there a planetary threshold in the trajectory of the
Earth System that, if crossed, could prevent stabili-
zation in a range of intermediate temperature rises?

Given our understanding of geophysical and bio-
sphere feedbacks intrinsic to the Earth System,
where might such a threshold be?
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If a threshold is crossed, what are the implications, especially for
the wellbeing of human societies?

What human actions could create a pathway that would steer
the Earth System away from the potential threshold and toward
the maintenance of interglacial-like conditions?

Addressing these questions requires a deep integration of
knowledge from biogeophysical Earth System science with that
from the social sciences and humanities on the development and
functioning of human societies (5). Integrating the requisite knowl-
edge can be difficult, especially in light of the formidable range of
timescales involved. Increasingly, concepts from complex systems
analysis provide a framework that unites the diverse fields of in-
quiry relevant to the Anthropocene (6). Earth System dynamics
can be described, studied, and understood in terms of trajectories
between alternate states separated by thresholds that are con-
trolled by nonlinear processes, interactions, and feedbacks. Based
on this framework, we argue that social and technological trends
and decisions occurring over the next decade or two could sig-
nificantly influence the trajectory of the Earth System for tens to
hundreds of thousands of years and potentially lead to conditions
that resemble planetary states that were last seen several millions
of years ago, conditions that would be inhospitable to current
human societies and to many other contemporary species.

Risk of a Hothouse Earth Pathway
Limit Cycles and Planetary Thresholds. The trajectory of the
Earth System through the Late Quaternary, particularly the Holo-
cene, provides the context for exploring the human-driven
changes of the Anthropocene and the future trajectories of the
system (SI Appendix has more detail). Fig. 1 shows a simplified
representation of complex Earth System dynamics, where the
physical climate system is subjected to the effects of slow changes
in Earth’s orbit and inclination. Over the Late Quaternary (past
1.2 million years), the system has remained bounded between
glacial and interglacial extremes. Not every glacial–interglacial
cycle of the past million years follows precisely the same trajectory
(7), but the cycles follow the same overall pathway (a term that we
use to refer to a family of broadly similar trajectories). The full glacial
and interglacial states and the ca. 100,000-years oscillations be-
tween them in the Late Quaternary loosely constitute limit cycles
(technically, the asymptotic dynamics of ice ages are best modeled
as pullback attractors in a nonautonomous dynamical system). This
limit cycle is shown in a schematic fashion in blue in Fig. 1, Lower
Left using temperature and sea level as the axes. The Holocene is
represented by the top of the limit cycle loop near the label A.

The current position of the Earth System in the Anthropocene
is shown in Fig. 1, Upper Right by the small ball on the pathway
that leads away from the glacial–interglacial limit cycle. In Fig. 2, a
stability landscape, the current position of the Earth System is
represented by the globe at the end of the solid arrow in the
deepening Anthropocene basin of attraction.

The Anthropocene represents the beginning of a very rapid
human-driven trajectory of the Earth System away from the gla-
cial–interglacial limit cycle toward new, hotter climatic conditions
and a profoundly different biosphere (2, 8, 9) (SI Appendix). The
current position, at over 1 °C above a preindustrial baseline (10), is
nearing the upper envelope of interglacial conditions over the
past 1.2 million years (SI Appendix, Table S1). More importantly,
the rapid trajectory of the climate system over the past half-
century along with technological lock in and socioeconomic

inertia in human systems commit the climate system to conditions
beyond the envelope of past interglacial conditions. We, there-
fore, suggest that the Earth System may already have passed one
“fork in the road” of potential pathways, a bifurcation (near A in
Fig. 1) taking the Earth System out of the next glaciation cycle (11).

In the future, the Earth System could potentially follow many
trajectories (12, 13), often represented by the large range of
global temperature rises simulated by climate models (14). In
most analyses, these trajectories are largely driven by the amount
of greenhouse gases that human activities have already emitted
and will continue to emit into the atmosphere over the rest of this
century and beyond—with a presumed quasilinear relationship
between cumulative carbon dioxide emissions and global tem-
perature rise (14). However, here we suggest that biogeophysical
feedback processes within the Earth System coupled with direct
human degradation of the biosphere may play a more important
role than normally assumed, limiting the range of potential future
trajectories and potentially eliminating the possibility of the in-
termediate trajectories. We argue that there is a significant risk
that these internal dynamics, especially strong nonlinearities in
feedback processes, could become an important or perhaps,
even dominant factor in steering the trajectory that the Earth
System actually follows over coming centuries.

Fig. 1. A schematic illustration of possible future pathways of the
climate against the background of the typical glacial–interglacial
cycles (Lower Left). The interglacial state of the Earth System is at the
top of the glacial–interglacial cycle, while the glacial state is at the
bottom. Sea level follows temperature change relatively slowly
through thermal expansion and the melting of glaciers and ice caps.
The horizontal line in the middle of the figure represents the
preindustrial temperature level, and the current position of the Earth
System is shown by the small sphere on the red line close to the
divergence between the Stabilized Earth and Hothouse Earth
pathways. The proposed planetary threshold at ∼2 °C above the
preindustrial level is also shown. The letters along the Stabilized Earth/
Hothouse Earth pathways represent four time periods in Earth’s recent
past that may give insights into positions along these pathways (SI
Appendix): A, Mid-Holocene; B, Eemian; C, Mid-Pliocene; and D,
Mid-Miocene. Their positions on the pathway are approximate only.
Their temperature ranges relative to preindustrial are given in SI
Appendix, Table S1.
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This risk is represented in Figs. 1 and 2 by a planetary threshold
(horizontal broken line in Fig. 1 on the Hothouse Earth pathway
around 2 °C above preindustrial temperature). Beyond this
threshold, intrinsic biogeophysical feedbacks in the Earth System
(Biogeophysical Feedbacks) could become the dominant pro-
cesses controlling the system’s trajectory. Precisely where a po-
tential planetary threshold might be is uncertain (15, 16). We
suggest 2 °C because of the risk that a 2 °C warming could acti-
vate important tipping elements (12, 17), raising the temperature
further to activate other tipping elements in a domino-like cas-
cade that could take the Earth System to even higher tempera-
tures (Tipping Cascades). Such cascades comprise, in essence, the
dynamical process that leads to thresholds in complex systems
(section 4.2 in ref. 18).

This analysis implies that, even if the Paris Accord target of a
1.5 °C to 2.0 °C rise in temperature is met, we cannot exclude the
risk that a cascade of feedbacks could push the Earth System

irreversibly onto a “Hothouse Earth” pathway. The challenge that
humanity faces is to create a “Stabilized Earth” pathway that steers
the Earth System away from its current trajectory toward the
threshold beyond which is Hothouse Earth (Fig. 2). The human-
created Stabilized Earth pathway leads to a basin of attraction
that is not likely to exist in the Earth System’s stability landscape
without human stewardship to create andmaintain it. Creating such
a pathway and basin of attraction requires a fundamental change in
the role of humans on the planet. This stewardship role requires
deliberate and sustained action to become an integral, adaptive
part of Earth System dynamics, creating feedbacks that keep the
system on a Stabilized Earth pathway (Alternative Stabilized
Earth Pathway).

We now explore this critical question in more detail by con-
sidering the relevant biogeophysical feedbacks (Biogeophysical
Feedbacks) and the risk of tipping cascades (Tipping Cascades).

Biogeophysical Feedbacks. The trajectory of the Earth System is
influenced by biogeophysical feedbacks within the system that
can maintain it in a given state (negative feedbacks) and those that
can amplify a perturbation and drive a transition to a different
state (positive feedbacks). Some of the key negative feedbacks that
could maintain the Earth System in Holocene-like conditions—
notably, carbon uptake by land and ocean systems—are weakening
relative to human forcing (19), increasing the risk that positive
feedbacks could play an important role in determining the Earth
System’s trajectory. Table 1 summarizes carbon cycle feedbacks
that could accelerate warming, while SI Appendix, Table S2 de-
scribes in detail a more complete set of biogeophysical feedbacks
that can be triggered by forcing levels likely to be reached within
the rest of the century.

Most of the feedbacks can show both continuous responses
and tipping point behavior in which the feedback process
becomes self-perpetuating after a critical threshold is crossed;
subsystems exhibiting this behavior are often called “tipping el-
ements” (17). The type of behavior—continuous response or
tipping point/abrupt change—can depend on the magnitude or
the rate of forcing, or both. Many feedbacks will show some
gradual change before the tipping point is reached.

A few of the changes associated with the feedbacks are re-
versible on short timeframes of 50–100 years (e.g., change in
Arctic sea ice extent with a warming or cooling of the climate;
Antarctic sea ice may be less reversible because of heat accu-
mulation in the Southern Ocean), but most changes are largely
irreversible on timeframes that matter to contemporary societies
(e.g., loss of permafrost carbon). A few of the feedbacks do not
have apparent thresholds (e.g., change in the land and ocean
physiological carbon sinks, such as increasing carbon uptake due

Table 1. Carbon cycle feedbacks in the Earth System that could accelerate global warming

Feedback
Strength of feedback

by 2100,* °C
Refs. (SI Appendix, Table

S2 has more details)

Permafrost thawing 0.09 (0.04–0.16) 20–23
Relative weakening of land and ocean physiological C sinks 0.25 (0.13–0.37) 24
Increased bacterial respiration in the ocean 0.02 25, 26
Amazon forest dieback 0.05 (0.03–0.11) 27
Boreal forest dieback 0.06 (0.02–0.10) 28

Total 0.47 (0.24–0.66)

The strength of the feedback is estimated at 2100 for an ∼2 °C warming.
*The additional temperature rise (degrees Celsius) by 2100 arising from the feedback.

Fig. 2. Stability landscape showing the pathway of the Earth System
out of the Holocene and thus, out of the glacial–interglacial limit cycle
to its present position in the hotter Anthropocene. The fork in the
road in Fig. 1 is shown here as the two divergent pathways of the
Earth System in the future (broken arrows). Currently, the Earth
System is on a Hothouse Earth pathway driven by human emissions of
greenhouse gases and biosphere degradation toward a planetary
threshold at∼2 °C (horizontal broken line at 2 °C in Fig. 1), beyondwhich
the system follows an essentially irreversible pathway driven by intrinsic
biogeophysical feedbacks. The other pathway leads to Stabilized Earth, a
pathway of Earth System stewardship guided by human-created
feedbacks to a quasistable, human-maintained basin of attraction.
“Stability” (vertical axis) is defined here as the inverse of the potential
energy of the system. Systems in a highly stable state (deep valley) have
low potential energy, and considerable energy is required to move them
out of this stable state. Systems in an unstable state (top of a hill) have
high potential energy, and they require only a little additional energy to
push themoff the hill anddown toward a valley of lower potential energy.
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to the CO2 fertilization effect or decreasing uptake due to a de-
crease in rainfall). For some of the tipping elements, crossing the
tipping point could trigger an abrupt, nonlinear response (e.g.,
conversion of large areas of the Amazon rainforest to a savanna or
seasonally dry forest), while for others, crossing the tipping point
would lead to a more gradual but self-perpetuating response
(large-scale loss of permafrost). There could also be considerable
lags after the crossing of a threshold, particularly for those tipping
elements that involve the melting of large masses of ice. However,
in some cases, ice loss can be very rapid when occurring as
massive iceberg outbreaks (e.g., Heinrich Events).

For some feedback processes, the magnitude—and even the
direction—depend on the rate of climate change. If the rate of
climate change is small, the shift in biomes can track the change in
temperature/moisture, and the biomes may shift gradually, po-
tentially taking up carbon from the atmosphere as the climate warms
and atmospheric CO2 concentration increases. However, if the rate of
climate change is too large or too fast, a tipping point can be crossed,
and a rapid biome shift may occur via extensive disturbances (e.g.,
wildfires, insect attacks, droughts) that can abruptly remove an
existing biome. In some terrestrial cases, such as widespread wild-
fires, there could be a pulse of carbon to the atmosphere, which if
large enough, could influence the trajectory of the Earth System (29).

Varying response rates to a changing climate could lead to
complex biosphere dynamics with implications for feedback
processes. For example, delays in permafrost thawing would most
likely delay the projected northward migration of boreal forests
(30), while warming of the southern areas of these forests could
result in their conversion to steppe grasslands of significantly
lower carbon storage capacity. The overall result would be a
positive feedback to the climate system.

The so-called “greening” of the planet, caused by enhanced
plant growth due to increasing atmospheric CO2 concentration
(31), has increased the land carbon sink in recent decades (32).
However, increasing atmospheric CO2 raises temperature, and
hotter leaves photosynthesize less well. Other feedbacks are also
involved—for instance, warming the soil increases microbial res-
piration, releasing CO2 back into the atmosphere.

Our analysis focuses on the strength of the feedback between
now and 2100. However, several of the feedbacks that show
negligible or very small magnitude by 2100 could nevertheless be
triggered well before then, and they could eventually generate
significant feedback strength over longer timeframes—centuries
and even millennia—and thus, influence the long-term trajectory
of the Earth System. These feedback processes include perma-
frost thawing, decomposition of ocean methane hydrates, in-
creased marine bacterial respiration, and loss of polar ice sheets
accompanied by a rise in sea levels and potential amplification of
temperature rise through changes in ocean circulation (33).

Tipping Cascades. Fig. 3 shows a global map of some potential
tipping cascades. The tipping elements fall into three clusters
based on their estimated threshold temperature (12, 17, 39).
Cascades could be formed when a rise in global temperature
reaches the level of the lower-temperature cluster, activating
tipping elements, such as loss of the Greenland Ice Sheet or Arctic
sea ice. These tipping elements, along with some of the non-
tipping element feedbacks (e.g., gradual weakening of land and
ocean physiological carbon sinks), could push the global average
temperature even higher, inducing tipping in mid- and higher-
temperature clusters. For example, tipping (loss) of the Green-
land Ice Sheet could trigger a critical transition in the Atlantic
Meridional Ocean Circulation (AMOC), which could together, by
causing sea-level rise and Southern Ocean heat accumulation,
accelerate ice loss from the East Antarctic Ice Sheet (32, 40) on
timescales of centuries (41).

Observations of past behavior support an important contri-
bution of changes in ocean circulation to such feedback cascades.
During previous glaciations, the climate system flickered between
two states that seem to reflect changes in convective activity in the
Nordic seas and changes in the activity of the AMOC. These
variations caused typical temperature response patterns called the
“bipolar seesaw” (42–44). During extremely cold conditions in the
north, heat accumulated in the Southern Ocean, and Antarctica
warmed. Eventually, the heat made its way north and generated
subsurface warming that may have been instrumental in destabi-
lizing the edges of the Northern Hemisphere ice sheets (45).

If Greenland and the West Antarctic Ice Sheet melt in the fu-
ture, the freshening and cooling of nearby surface waters will have
significant effects on the ocean circulation. While the probability
of significant circulation changes is difficult to quantify, climate
model simulations suggest that freshwater inputs compatible with
current rates of Greenland melting are sufficient to have mea-
surable effects on ocean temperature and circulation (46, 47).
Sustained warming of the northern high latitudes as a result of this
process could accelerate feedbacks or activate tipping elements
in that region, such as permafrost degradation, loss of Arctic sea
ice, and boreal forest dieback.

While this may seem to be an extreme scenario, it illustrates
that a warming into the range of even the lower-temperature
cluster (i.e., the Paris targets) could lead to tipping in the mid- and
higher-temperature clusters via cascade effects. Based on this
analysis of tipping cascades and taking a risk-averse approach, we
suggest that a potential planetary threshold could occur at a
temperature rise as low as ∼2.0 °C above preindustrial (Fig. 1).

Alternative Stabilized Earth Pathway
If the world’s societies want to avoid crossing a potential threshold
that locks the Earth System into the Hothouse Earth pathway, then
it is critical that they make deliberate decisions to avoid this risk

Fig. 3. Global map of potential tipping cascades. The individual
tipping elements are color- coded according to estimated thresholds
in global average surface temperature (tipping points) (12, 34).
Arrows show the potential interactions among the tipping elements
based on expert elicitation that could generate cascades. Note that,
although the risk for tipping (loss of) the East Antarctic Ice Sheet is
proposed at>5 °C, somemarine-based sectors in East Antarctica may
be vulnerable at lower temperatures (35–38).
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and maintain the Earth System in Holocene-like conditions. This
human-created pathway is represented in Figs. 1 and 2 by what
we call Stabilized Earth (small loop at the bottom of Fig. 1, Upper
Right), in which the Earth System is maintained in a state with a
temperature rise no greater than 2 °C above preindustrial (a
“super-Holocene” state) (11). Stabilized Earth would require deep
cuts in greenhouse gas emissions, protection and enhancement of
biosphere carbon sinks, efforts to remove CO2 from the atmosphere,
possibly solar radiationmanagement, and adaptation to unavoidable
impacts of the warming already occurring (48). The short broken red
line beyond Stabilized Earth in Fig. 1, Upper Right represents a po-
tential return to interglacial-like conditions in the longer term.

In essence, the Stabilized Earth pathway could be conceptu-
alized as a regime of the Earth System in which humanity plays an
active planetary stewardship role in maintaining a state in-
termediate between the glacial–interglacial limit cycle of the Late
Quaternary and a Hothouse Earth (Fig. 2). We emphasize that
Stabilized Earth is not an intrinsic state of the Earth System but
rather, one in which humanity commits to a pathway of ongoing
management of its relationship with the rest of the Earth System.

A critical issue is that, if a planetary threshold is crossed toward
the Hothouse Earth pathway, accessing the Stabilized Earth
pathway would become very difficult no matter what actions hu-
man societies might take. Beyond the threshold, positive (reinforcing)
feedbacks within the Earth System—outside of human influence or
control—could become the dominant driver of the system’s pathway,
as individual tipping elements create linked cascades through time
and with rising temperature (Fig. 3). In other words, after the Earth
System is committed to the Hothouse Earth pathway, the alternative
Stabilized Earth pathway would very likely become inaccessible as
illustrated in Fig. 2.

What Is at Stake? Hothouse Earth is likely to be uncontrollable
and dangerous to many, particularly if we transition into it in only a
century or two, and it poses severe risks for health, economies, po-
litical stability (12, 39, 49, 50) (especially for the most climate vul-
nerable), and ultimately, the habitability of the planet for humans.

Insights into the risks posed by the rapid climatic changes
emerging in the Anthropocene can be obtained not only from
contemporary observations (51–55) but also, from interactions in
the past between human societies and regional and seasonal
hydroclimate variability. This variability was often much more
pronounced than global, longer-term Holocene variability (SI
Appendix). Agricultural production and water supplies are espe-
cially vulnerable to changes in the hydroclimate, leading to hot/
dry or cool/wet extremes. Societal declines, collapses, migrations/
resettlements, reorganizations, and cultural changes were often
associated with severe regional droughts and with the global
megadrought at 4.2–3.9 thousand years before present, all oc-
curring within the relative stability of the narrow global Holocene
temperature range of approximately ±1 °C (56).

SI Appendix, Table S4 summarizes biomes and regional bio-
sphere–physical climate subsystems critical for human wellbeing
and the resultant risks if the Earth System follows a Hothouse Earth
pathway. While most of these biomes or regional systems may be
retained in a Stabilized Earth pathway, most or all of them would
likely be substantially changed or degraded in a Hothouse Earth
pathway, with serious challenges for the viability of human societies.

For example, agricultural systems are particularly vulnerable,
because they are spatially organized around the relatively stable
Holocene patterns of terrestrial primary productivity, which de-
pend on a well-established and predictable spatial distribution of

temperature and precipitation in relation to the location of fertile
soils as well as on a particular atmospheric CO2 concentration.
Current understanding suggests that, while a Stabilized Earth
pathway could result in an approximate balance between in-
creases and decreases in regional production as human systems
adapt, a Hothouse Earth trajectory will likely exceed the limits of
adaptation and result in a substantial overall decrease in agricul-
tural production, increased prices, and even more disparity be-
tween wealthy and poor countries (57).

The world’s coastal zones, especially low-lying deltas and the
adjacent coastal seas and ecosystems, are particularly important
for human wellbeing. These areas are home to much of the world’s
population, most of the emerging megacities, and a significant
amount of infrastructure vital for both national economies and in-
ternational trade. A Hothouse Earth trajectory would almost cer-
tainly flood deltaic environments, increase the risk of damage from
coastal storms, and eliminate coral reefs (and all of the benefits that
they provide for societies) by the end of this century or earlier (58).

Human Feedbacks in the Earth System. In the dominant climate
change narrative, humans are an external force driving change to the
Earth System in a largely linear, deterministic way; the higher the
forcing in terms of anthropogenic greenhouse gas emissions,
the higher the global average temperature. However, our anal-
ysis argues that human societies and our activities need to be
recast as an integral, interacting component of a complex, adaptive
Earth System. This framing puts the focus not only on human system
dynamics that reduce greenhouse gas emissions but also, on those
that create or enhance negative feedbacks that reduce the risk that
the Earth System will cross a planetary threshold and lock into a
Hothouse Earth pathway.

Humanity’s challenge then is to influence the dynamical
properties of the Earth System in such a way that the emerging
unstable conditions in the zone between the Holocene and a very
hot state become a de facto stable intermediate state (Stabilized
Earth) (Fig. 2). This requires that humans take deliberate, integral,
and adaptive steps to reduce dangerous impacts on the Earth
System, effectively monitoring and changing behavior to form
feedback loops that stabilize this intermediate state.

There is much uncertainty and debate about how this can be
done—technically, ethically, equitably, and economically—and
there is no doubt that the normative, policy, and institutional as-
pects are highly challenging. However, societies could take a wide
range of actions that constitute negative feedbacks, summarized
in SI Appendix, Table S5, to steer the Earth System toward Sta-
bilized Earth. Some of these actions are already altering emission
trajectories. The negative feedback actions fall into three broad
categories: (i) reducing greenhouse gas emissions, (ii) enhancing
or creating carbon sinks (e.g., protecting and enhancing bio-
sphere carbon sinks and creating new types of sinks) (59), and (iii)
modifying Earth’s energy balance (for example, via solar radiation
management, although that particular feedback entails very large risks
of destabilization or degradation of several key processes in the Earth
System) (60, 61). While reducing emissions is a priority, much more
could be done to reduce direct human pressures on critical biomes
that contribute to the regulation of the state of the Earth System
through carbon sinks and moisture feedbacks, such as the Amazon
and boreal forests (Table 1), and to build much more effective stew-
ardship of the marine and terrestrial biospheres in general.

The present dominant socioeconomic system, however, is
based on high-carbon economic growth and exploitative resource
use (9). Attempts to modify this system have met with some
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success locally but little success globally in reducing greenhouse
gas emissions or building more effective stewardship of the bio-
sphere. Incremental linear changes to the present socioeconomic
system are not enough to stabilize the Earth System. Widespread,
rapid, and fundamental transformations will likely be required to
reduce the risk of crossing the threshold and locking in the Hot-
house Earth pathway; these include changes in behavior, tech-
nology and innovation, governance, and values (48, 62, 63).

International efforts to reduce human impacts on the Earth
System while improving wellbeing include the United Nations
Sustainable Development Goals and the commitment in the Paris
agreement to keep warming below 2 °C. These international
governance initiatives are matched by carbon reduction com-
mitments by countries, cities, businesses, and individuals (64–66) ,
but as yet, these are not enough to meet the Paris target. En-
hanced ambition will need new collectively shared values, prin-
ciples, and frameworks as well as education to support such
changes (67, 68). In essence, effective Earth System stewardship is
an essential precondition for the prosperous development of
human societies in a Stabilized Earth pathway (69, 70).

In addition to institutional and social innovation at the global
governance level, changes in demographics, consumption, be-
havior, attitudes, education, institutions, and socially embedded
technologies are all important to maximize the chances of
achieving a Stabilized Earth pathway (71). Many of the needed
shifts may take decades to have a globally aggregated impact (SI
Appendix, Table S5), but there are indications that society may be
reaching some important societal tipping points. For example,
there has been relatively rapid progress toward slowing or re-
versing population growth through declining fertility resulting
from the empowerment of women, access to birth control tech-
nologies, expansion of educational opportunities, and rising in-
come levels (72, 73). These demographic changes must be
complemented by sustainable per capita consumption patterns,
especially among the higher per capita consumers. Some changes
in consumer behavior have been observed (74, 75), and oppor-
tunities for consequent major transitions in social norms over
broad scales may arise (76). Technological innovation is contrib-
uting to more rapid decarbonization and the possibility for re-
moving CO2 from the atmosphere (48).

Ultimately, the transformations necessary to achieve the Sta-
bilized Earth pathway require a fundamental reorientation and
restructuring of national and international institutions toward
more effective governance at the Earth System level (77), with a
much stronger emphasis on planetary concerns in economic
governance, global trade, investments and finance, and techno-
logical development (78).

Building Resilience in a Rapidly Changing Earth System. Even if
a Stabilized Earth pathway is achieved, humanity will face a tur-
bulent road of rapid and profound changes and uncertainties on
route to it—politically, socially, and environmentally—that chal-
lenge the resilience of human societies (79–82). Stabilized Earth
will likely be warmer than any other time over the last 800,000 years
at least (83) (that is, warmer than at any other time in which fully
modern humans have existed).

In addition, the Stabilized Earth trajectory will almost surely be
characterized by the activation of some tipping elements (Tipping
Cascades and Fig. 3) and by nonlinear dynamics and abrupt
shifts at the level of critical biomes that support humanity (SI
Appendix, Table S4). Current rates of change of important fea-
tures of the Earth System already match or exceed those of abrupt

geophysical events in the past (SI Appendix). With these trends
likely to continue for the next several decades at least, the con-
temporary way of guiding development founded on theories,
tools, and beliefs of gradual or incremental change, with a focus
on economy efficiency, will likely not be adequate to cope with
this trajectory. Thus, in addition to adaptation, increasing resil-
ience will become a key strategy for navigating the future.

Generic resilience-building strategies include developing in-
surance, buffers, redundancy, diversity, and other features of
resilience that are critical for transforming human systems in the
face of warming and possible surprise associated with tipping
points (84). Features of such a strategy include (i) maintenance of
diversity, modularity, and redundancy; (ii) management of con-
nectivity, openness, slow variables, and feedbacks; (iii) un-
derstanding social–ecological systems as complex adaptive
systems, especially at the level of the Earth System as a whole (85);
(iv) encouraging learning and experimentation; and (v) broaden-
ing of participation and building of trust to promote polycentric
governance systems (86, 87).

Conclusions
Our systems approach, focusing on feedbacks, tipping points,
and nonlinear dynamics, has addressed the four questions posed
in the Introduction.

Our analysis suggests that the Earth System may be approaching
a planetary threshold that could lock in a continuing rapid pathway
toward much hotter conditions—Hothouse Earth. This pathway
would be propelled by strong, intrinsic, biogeophysical feedbacks
difficult to influence by human actions, a pathway that could not be
reversed, steered, or substantially slowed.

Where such a threshold might be is uncertain, but it could be
only decades ahead at a temperature rise of ∼2.0 °C above pre-
industrial, and thus, it could be within the range of the Paris Ac-
cord temperature targets.

The impacts of aHothouseEarth pathwayonhuman societieswould
likely be massive, sometimes abrupt, and undoubtedly disruptive.

Avoiding this threshold by creating a Stabilized Earth pathway
can only be achieved and maintained by a coordinated, de-
liberate effort by human societies to manage our relationship with
the rest of the Earth System, recognizing that humanity is an in-
tegral, interacting component of the system. Humanity is now
facing the need for critical decisions and actions that could in-
fluence our future for centuries, if not millennia (88).

How credible is this analysis? There is significant evidence from
a number of sources that the risk of a planetary threshold and thus,
the need to create a divergent pathway should be taken seriously:

First, the complex system behavior of the Earth System in the
Late Quaternary is well-documented and understood. The two
bounding states of the system—glacial and interglacial—are
reasonably well-defined, the ca. 100,000-years periodicity of the
limit cycle is established, and internal (carbon cycle and ice albedo
feedbacks) and external (changes in insolation caused by changes
in Earth’s orbital parameters) driving processes are generally well-
known. Furthermore, we know with high confidence that the
progressive disintegration of ice sheets and the transgression of
other tipping elements are difficult to reverse after critical levels of
warming are reached.

Second, insights from Earth’s recent geological past (SI Ap-
pendix) suggest that conditions consistent with the Hothouse
Earth pathway are accessible with levels of atmospheric CO2

concentration and temperature rise either already realized or
projected for this century (SI Appendix, Table S1).
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Third, the tipping elements and feedback processes that
operated over Quaternary glacial– interglacial cycles are
the same as several of those proposed as critical for the fu-
ture trajectory of the Earth System (Biogeophysical Feed-
backs, Tipping Cascades, Fig. 3, Table 1, and SI Appendix,
Table S2).

Fourth, contemporary observations (29, 38) (SI Appendix) of
tipping element behavior at an observed temperature anomaly of
about 1 °C above preindustrial suggest that some of these ele-
ments are vulnerable to tipping within just a 1 °C to 3 °C increase
in global temperature, with many more of them vulnerable at
higher temperatures (Biogeophysical Feedbacks and Tipping
Cascades) (12, 17, 39). This suggests that the risk of tipping cas-
cades could be significant at a 2 °C temperature rise and could
increase sharply beyond that point. We argue that a planetary
threshold in the Earth System could exist at a temperature rise as
low as 2 °C above preindustrial.

The Stabilized Earth trajectory requires deliberate manage-
ment of humanity’s relationship with the rest of the Earth System if
the world is to avoid crossing a planetary threshold. We suggest
that a deep transformation based on a fundamental reorientation
of human values, equity, behavior, institutions, economies, and
technologies is required. Even so, the pathway toward Stabilized
Earth will involve considerable changes to the structure and func-
tioning of the Earth System, suggesting that resilience-building
strategies be given much higher priority than at present in decision
making. Some signs are emerging that societies are initiating someof
the necessary transformations. However, these transformations are
still in initial stages, and the social/political tipping points that

definitively move the current trajectory away from Hothouse Earth
have not yet been crossed, while the door to the Stabilized Earth
pathway may be rapidly closing.

Our initial analysis here needs to be underpinned by more in-
depth, quantitative Earth System analysis and modeling studies to
address three critical questions. (i) Is humanity at risk for pushing
the system across a planetary threshold and irreversibly down a
Hothouse Earth pathway? (ii) What other pathways might be pos-
sible in the complex stability landscape of the Earth System, and
what risks might they entail? (iii) What planetary stewardship strat-
egies are required to maintain the Earth System in a manageable
Stabilized Earth state?
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Abstract. Human societies depend on the resources ecosystems provide. Particularly since the last century,
human activities have transformed the relationship between nature and society at a global scale. We study this
coevolutionary relationship by utilizing a stylized model of private resource use and social learning on an adap-
tive network. The latter process is based on two social key dynamics beyond economic paradigms: boundedly
rational imitation of resource use strategies and homophily in the formation of social network ties. The private
and logistically growing resources are harvested with either a sustainable (small) or non-sustainable (large) ef-
fort. We show that these social processes can have a profound influence on the environmental state, such as
determining whether the private renewable resources collapse from overuse or not. Additionally, we demon-
strate that heterogeneously distributed regional resource capacities shift the critical social parameters where this
resource extraction system collapses. We make these points to argue that, in more advanced coevolutionary
models of the planetary social–ecological system, such socio-cultural phenomena as well as regional resource
heterogeneities should receive attention in addition to the processes represented in established Earth system and
integrated assessment models.

1 Resource use in social–ecological systems

Whether, when and how human usage of biophysical re-
sources meets limits that produce feedbacks onto social
functioning has a long history of controversial discussion
(Malthus, 1798; Meadows et al., 1972; Rockström et al.,
2009). Especially in the last century, human activities have
changed the relationship between nature and society at the
global scale (Crutzen, 2002; Steffen et al., 2007, 2015a),
making them mutually interdependent in an unprecedented

manner and the question of their joint dynamics urgent. So-
cial and ecological systems should therefore be studied not
only in isolation but also as interlinked social–ecological
systems (Berkes and Folke, 1998). Here, we contribute to
this debate by investigating properties of a stylized social
system that cause the linked resource use system to either
collapse or remain viable. Such a perspective also has im-
portant implications for the mathematical modeling of inter-
dependent, global human–environment interactions (Verburg
et al., 2016; van Vuuren et al., 2016). Typically, in present-
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day analysis the Earth system is either modeled from a purely
biophysical point of view (Claussen et al., 2002) or from
a biophysical–economic one (van Vuuren et al., 2012), de-
pending on the scope of the research question. However, both
approaches do not take into account social dynamics beyond
macroeconomic paradigms.

Here, we conceptually explore avenues for a third strand
of global modeling, next to the biophysical and biophysical–
economic one, also incorporating socio-cultural dynamics.
Founded on a genuinely social–ecological perspective, we
term these “World–Earth” system models to emphasize the
free coevolution of the social and ecological components
(Schellnhuber, 1998, 1999). While sophisticated models of
this type are not yet available, the literature contains vari-
ous modeling studies that incorporate potentially important
features such as static interaction networks (Chung et al.,
2013; Sugiarto et al., 2015) to depict stylized social dynamics
(Holme and Newman, 2006; Auer et al., 2015), tele-coupling
effects in a globalized society interacting through social net-
works (Janssen et al., 2006; Bodin and Tengö, 2012), social–
ecological regime shifts (Scheffer et al., 2001; Lade et al.,
2013) and (social) tipping elements (Schellnhuber, 2009;
Bentley et al., 2014), structural reorganization occurring on
adaptive social networks (Gross and Blasius, 2008; Snijders
et al., 2010; Sayama et al., 2013; Schleussner et al., 2016)
or structural transformations (Lade et al., 2017) and cultural
preference dynamics due to traits such as imitation (Traulsen
et al., 2010) or homophily (McPherson et al., 2001; Centola
et al., 2007).

We set out a simple model (see Sect. 2) to demonstrate that
social network interactions, imitation and homophily may
have a profound influence on the environmental state, such
as determining whether a collection of private renewable re-
sources collapses from overuse or not. We argue that more
elaborate and sophisticated implementations of such social
phenomena should receive attention in the future develop-
ment of global system models, supplementing already estab-
lished Earth system and integrated assessment models, nei-
ther of which at present include them.

As a particular case study for our model we examine the
effect of heterogeneously distributed resources. This is im-
portant since in the real-world agents do have access to dif-
ferent amounts of biophysical resources. Our study exam-
ines under which combinations of parameters characterizing
a social learning network process does the model converge
to a sustainable regime for different degrees of resource ac-
cess heterogeneity. Parameters governing social learning dy-
namics are, on the one hand, a homophily parameter φ, ad-
dressing the propensity of nodes to establish interactions with
nodes of the same kind (see Sect. 2 for a detailed model de-
scription). On the other hand, the timescale of social interac-
tion τ quantifies the average time for social updates on the
network. We purposely do not model any form of individ-
ual learning of the agents with regard to the best harvest-
ing strategy to emphasize the effects of the described social

learning process. For homogeneous resource access (Wieder-
mann et al., 2015), one already observes a threshold in the
parameter space of the model from non-sustainable to sus-
tainable regimes at certain critical values φc and τc. Since
the concrete heterogeneous resource distribution is often un-
known, we show systematically how an increasing hetero-
geneity – starting from an almost homogeneous distribution
– affects the critical transition parameters φc and τc. Addi-
tionally we show that in our stylized model a heavy-tailed re-
source distribution in comparison to a non-heavy-tailed dis-
tribution changes the model’s behavior considerably. This is
important as real-world resource data suggest that access to
biophysical resources may indeed be distributed with heavy
tails.

2 Model description

The intention behind our model design is not to closely fol-
low any specific real-world setting but to explore the coevo-
lution of socio-cultural dynamics with ecological dynamics.
On a conceptual level, human–environment interactions are
happening either in a common-pool or private-pool setting.
Common-pool dilemmas have been studied extensively in
the past (Hardin, 1968; Tavoni et al., 2012; Ostrom, 2015).
Here, agents can retrieve information on another agent’s har-
vesting strategy either via the ecological subsystem, i.e., the
common pool, itself or via purely social interactions. In order
to specifically focus on the latter of the two as an important
domain of processes, we eliminate any transfer of informa-
tion via the ecological system and discard a common-pool
setting in favor of individual and private resource stocks per
agent. Wiedermann et al. (2015) introduced a model for such
a setting for the special case of homogeneously distributed
private resources, revealed transitions and distinct regimes in
its parameter space, and provided analytical approximations
of its dynamics. Here, we adjust this setting for the more
general case of an inhomogeneous resource distribution. An
overview of the model is provided in Fig. 1.

2.1 A stylized anthroposphere

The social learning (Bandura, 1977) process takes place in a
network initialized as a random graph G (Erdös and Rényi,
1960) with nodes labeled by integer number i = 1, . . .,N
that represent social agents. It is based on two theoretical
paradigms: (i) agents either change their strategy through
boundedly rational imitation (Traulsen et al., 2010; Bahar
et al., 2014) or (ii) adapt their local network structure by
rewiring to other nodes with similar behavior (homophily,
McPherson et al., 2001; Centola et al., 2007). In order to
integrate this discrete update process (Holme and Newman,
2006; Zanette and Gil, 2006) with the continuous evolution
of the resource stocks, social update times ti are assigned to
the agents as generated by a Poisson process with an expo-
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Figure 1. Illustration of our stylized social–ecological model. As the ecological subprocess the agents harvest their private logistically
growing renewable resource with either a sustainable (blue) or non-sustainable (red) strategy. The social subprocess follows the logics of
strategy imitation due to comparisons of harvest rates and of social network adaptation due to homophily. The social update times are
generated by a Poisson process with average inter-event time τ .

nential distribution,

p(1ti;τ )=
1
τ

exp
(
−1ti

τ

)
, (1)

of waiting times 1ti , where the parameter τ gives the ex-
pected waiting time.

Thus, agent vi with the lowest update time in the queue
performs the social update process accordingly:

– (1) If the degree of agent vi is zero (i.e., vi has no neigh-
bors), move to (3); otherwise choose a neighbor vj of vi
at random.

– (2) If vj and vi employ the same harvesting strategy
Si = Sj (either sustainable or non-sustainable; see be-
low), move to (3). Otherwise, move to (2.1).

– (2.1) With rewiring probability φ disconnect vj from
vi and connect vi to a randomly chosen agent vk that
employs the same strategy.

– (2.2) If (2.1) was not chosen, change the strategy of vi
to the one of vj according to the sigmoidal imitation
probability function

P (Si→ Sj )=
1
2

(
tanh

(
γ
[
hj (t)−hi(t)

])
+ 1

)
. (2)

Hence, the greater the harvest rate hj (see below) of vj
with respect to the harvest rate hi of vi , the more likely

agent vi is to change its strategy to the one of agent
vj . Agents only consider their current yields when for-
mulating their next harvesting strategy. This assumption
reflects boundedly rational behavior in the form of the
agent’s limited knowledge of their own and their neigh-
bors’ ecosystems. The parameter γ controls the slope
of the imitation probability function (Eq. 2) – i.e., for
γ →∞ node vi would always imitate agent vj ’s strat-
egy if hj (t)> hi(t), while for γ → 0 the imitation prob-
ability tends to 1/2 and is independent of the agents’
harvest rates. Therefore, one can interpret γ as an imi-
tation tendency parameter. In fact, Traulsen et al. (2010)
found this sigmoidal shape of imitation probability in a
behavioral experiment.

– (3) For the next update, another waiting time is drawn
from the exponential distribution (Eq. 1) and added to
the update time of node vi .

2.2 A stylized ecosphere

2.2.1 Private resource dynamics

The ecological module of our model consists of private re-
newable resources each following a logistic growth func-
tion, which is chosen as one of the simplest and most com-
monly used models of renewable resource dynamics in a
constrained environment (Brander and Taylor, 1998; Keel-
ing, 2000; Perman et al., 2003). Additionally, a harvest rate
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hi = Eisi is subtracted from the rate of change of the re-
source stock si . Ei denotes the effort of agent vi . Thus, the
dynamics of the ith resource are given by

dsi
dt
= gi

(
1−

si

Ci

)
si −Eisi . (3)

Here, gi denotes the growth rate and Ci the carrying capacity
of the ith resource stock. The strategy Si of agent vi can ei-
ther be sustainable (Si = 1), resulting in an effort Ei,s =

gi
2 ,

or non-sustainable (Si = 0) with an effort Ei,n =
3gi
2 . These

efforts have been chosen such that the sustainable strategy
coincides with the maximum sustainable yield, whereas the
non-sustainable strategy leads to the full depletion of the
resource stock and, consequently, no harvest at all in the
long term. Note that Ei,n and Ei,s are symmetrically sep-
arated from the critical effort Ei,c = gi . The latter is de-
fined such that, for positive efforts below Ei,c, the resource
stock converges to a non-zero stationary state, whereas for
efforts above Ei,c the resource stock collapses and converges
to zero. When in interplay with the social update process,
Eq. (3) is used as its analytically derived definite integral,
which circumvents the need for any numerical integration
methods.

2.2.2 Resource heterogeneity

Heterogeneous access to resources is operationalized by ran-
domly distributing the resource capacities Ci according to a
prescribed probability density function. For this purpose, we
examine the lognormal distribution

lnN (C;µ,σ )=
1

Cσ
√

2π
exp

[
−

(lnC−µ)2

2σ 2

]
, C > 0, (4)

with parameters µ and σ (not to be confused with the stan-
dard deviation of C). It is derived from the normal distribu-
tion: a positive random variable is lognormally distributed if
its logarithm is normally distributed. The lognormal distri-
bution is therefore applicable for positive valued quantities
and has a heavy tail. σ and µ are the standard deviation and
the mean of the logarithmic variable lnC, respectively. The
lognormal distribution occurs in variables from many fields,
including biological and economic attributes (Sachs, 1984).

Figure 2 shows exemplary empirical distributions of three
different types of resources to illustrate that real-world re-
source data can be qualitatively described by a lognormal
distribution with least-squares fits revealing different σ pa-
rameters: (i) forested land area per country σ = 3.83 for the
year 1991; (ii) biocapacity per country σ = 1.42 computed
from the Ecological Footprint Network (Ewing et al., 2008),
representing the capacity of ecosystems to regenerate what
people extract; and (iii) total renewable water resources data
σ = 1.98 characterizing the maximum yearly amount of wa-
ter available to each country for the year 2012. Although the
agreement between the lognormal distribution and the data
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Figure 2. Empirical resource data per country normalized to the re-
spective average (dots) together with least-squares-fitted lognormal
distributions (lines): biocapacity (σ = 1.42, for the year 2007) com-
puted from the Ecological Footprint Network (Ewing et al., 2008)
represents the capacity of ecosystems to regenerate what people de-
mand from them; total renewable water resources (σ = 1.98, for the
year 2012) corresponds to the maximum theoretical yearly amount
of water actually available for a country; forest land area per country
(σ = 3.83, for the year 1991). The data are normalized to yield the
same parameter µ= 0 of the lognormal distribution and are shifted
along the y axis for the sake of visibility. Note that the data qual-
itatively fit the lognormal distribution and that they give different
values for the σ parameters of the lognormal distribution.

is far from perfect, Fig. 2 supports the use of a lognormal
model for resource heterogeneity in modeling our stylized
social–ecological system.

We utilize this distribution to investigate how resource het-
erogeneity affects the behavior of the model in comparison to
the frequently studied homogeneous case. We systematically
increase parameter σ of the lognormal distribution, which
can be interpreted as a resource heterogeneity parameter, and
study the resulting behavior of the model. This is done while
keeping the mean of C and, consequently, the cumulative
carrying capacity of all resource stocks constant – i.e., the
parameter µ was adjusted according to µ(σ )=−σ 2/2, re-
sulting in a fixed value of one for the mean of C. Hence, we
only ask for the effect of different resource distributions and
keep the total amount of available resource stock constant.

For comparison we also present results for non-heavy-
tailed resource capacities

C = |Ctmp
|, where Ctmp

∼N (Ctmp
;µN ,σN )

=
1

σN
√

2π
exp

[
−

(Ctmp
−µN )2

2σ 2
N

]
, (5)

where µN now denotes the mean and σN the standard de-
viation of the underlying normal distribution. We also keep
the mean fixed (µN = 1) and systematically increase the re-
source heterogeneity σN on comparable ranges of variances
for both – normal and lognormal – distributions. Since the
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normal distribution is not bounded to positive values, we use
the absolute value of the drawn random variable as the re-
source’s carrying capacity C.

2.3 Model parameterization and simulation protocol

A model run starts with an initial condition of stocks si(0)
uniformly distributed between 0 andCi and harvesting strate-
gies Si(0) drawn with a probability of 0.5 for a sustainable
strategy Si = 1 or a non-sustainable strategy Si = 0. From
the initial conditions, the model will converge to the steady
state at tf , where no further updates of strategy can oc-
cur. This is the case because the social network will consist
solely of disconnected components with only one harvesting
strategy (including the case of one single component) (Wie-
dermann et al., 2015). The remaining model parameters are
the number of nodes N = 500, mean degree k̄ = 20, imita-
tion tendency γ = 1, and ecological growth rate gi = 1 for
i = 1, . . .N , which are kept fixed throughout the analysis. To
account for the stochasticity inherent in the model, we per-
form R = 250 runs for each parameter setting of interest. We
are interested in the fraction of sustainable harvesting nodes
at the steady state,

〈S(tf )〉N,R =

〈
1
N

N∑

i=1
Si(tf )

〉

R

, (6)

averaged over all ensemble runs R. 〈S(tf )〉N,R is bounded
between one and zero, where 〈S(tf )〉N,R = 1(0) denotes a
completely (non-)sustainable regime.

3 Results and discussion

3.1 Social interaction timescale–homophily parameter
space

First, we study how the fraction of sustainable harvesting
nodes at the steady state 〈S(tf )〉N,R (Eq. 6) behaves in the
parameter subspace spanned by the rewiring probability φ
(as a measure of the degree of homophily) and the average
social interaction timescale τ for vanishing resource hetero-
geneity (σ = 0.01) (Fig. 3a).

Four qualitatively different regimes can be observed: the
sustainable regime in blue, the non-sustainable or collapse
regime in red, and the transition regime in white between
these, as well as, for sufficiently large φ, the network frag-
mentation regime. The latter occurs since for large φ, social
dynamics are dominated by homophily and, hence, by the
process of social network rewiring, and thus negligibly few
changes in strategy occur. The steady state is reached by a
fragmentation of the network into at least one purely sustain-
able and at least one purely non-sustainable component of
comparable size.

In turn, for smaller φ the effect of homophily is suffi-
ciently weak such that most agents remain connected to a

single component in the social network. The steady state is
reached with a large connected network component. Here,
large interaction timescales τ lead to a sustainable regime.
This is because the comparisons of harvest rates typically
happen when the logistic resource has been harvested for a
sufficiently long time to reveal that the harvest rate converges
to a positive value for a sustainable strategy, whereas for a
non-sustainable strategy it converges to zero.

Our main focus lies on the emergent properties of our
model from a complex system’s perspective. Hence, we do
not claim that any quantitative choice of parameters is based
on real-world assumptions. Rather, we focus here on qual-
itative observations in terms of general parameter regimes
which in correspondence with the arbitrarily chosen eco-
logical timescale cause a certain differential outcome of
the model. However, in order to qualitatively compare our
model with some real-world observations, we first look at
the timescale of social updates τ . It has been suggested
than modern lifestyles are dominated by a social acceler-
ation (Rosa, 2013). Simultaneously, the pressure humanity
is putting on the planet (Steffen et al., 2004) has experi-
enced a great acceleration (Steffen et al., 2015a). This can
be interpreted such that faster social timescales τ lead to
a non-sustainable regime, as observed in our model (see
Fig. 3). Viewed with caution, the mechanisms in our model
might be a possible explanation of this phenomenon. In any
case, it highlights the importance of well-interacting social
timescales with ecological ones. Since ecological timescales
(e.g., the seasonal cycle) are difficult to influence, this sug-
gests to take social timescales (e.g., election cycles, fashion
trends, product launches) into account for possible policy in-
terventions. Therefore, it might be worthwhile to study the
relationship between social and ecological timescales more
intensively to identify suitable policy actions for the benefit
of a sustainable system.

We furthermore observe a linear relationship between crit-
ical parameters φc and τc where the transition between col-
lapse and sustainable regimes occurs (Fig. 3). This result can
be explained by the rate at which strategy changes happen.
For φ = 0, the transition occurs at 1/τ ≈ 1, i.e., the ecolog-
ical growth rate. For φ > 0, imitation interactions happen at
a rate (1−φ)/τ (Wiedermann et al., 2015) since the net-
work rewires with probability φ and, hence, imitation takes
place with probability 1−φ. Hence, the effective imitation
rate (1−φ)/τ equals approximately 1 (the ecological growth
rate) in the transition regime, which explains the linear de-
pendence between the two social parameters.

In other words, the homophily process in our model is
beneficial for reaching the sustainable regime, where all
agents harvest their resource gaining the maximum sustain-
able yield. All stochasticity and inherent shocks towards this
sustainable steady state are absorbed and not affecting the
final outcome. In this sense the sustainable regime can be de-
scribed as resilient. This aligns with the findings of Newig
et al. (2010), who (although from a different perspective)
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Figure 3. Social interaction timescale–homophily parameter space. Average fraction of sustainable harvesting agents in the steady state
depending on the social network rewiring probability φ (measuring the degree of homophily) and the social interaction timescale τ for
four distinct levels of resource heterogeneity (a: σ = 0.01; b: σ = 0.6; c: σ = 0.9; d: σ = 1.2). One observes four qualitatively different
regimes: (i) the sustainable regime for φ . 0.8 and sufficiently large (slow) τ in blue, (ii) the non-sustainable or collapse regime for φ . 0.8
and sufficiently small (fast) τ in red, and (iii) in between both the transition regime in white and (iv) the network fragmentation regime for
φ & 0.8, also in white.

hypothesize that homophily has a beneficial effect on the
resilience of a social–ecological network. Furthermore, one
can interpret a large homophily parameter φ as the agents’
means to protect themselves against the fast and free ex-
change of harvesting strategies. Along similar lines, it has
been found that individuals with more environmental con-
cerns also hold more protectionist policy preferences (Bech-
tel et al., 2012). Our model suggests one possible mechanism
for how these relationships might come into place. How-
ever, it needs to be stated that too high a rewiring probability
leads to a fragmentation of the social network into smaller
groups of disjoint strategies, preventing the opportunity of a
completely sustainable outcome. Thus, network adaptation at
very high rates should be avoided for the sake of knowledge
exchange and consensus formation.

Overall, these results demonstrate that immaterial pro-
cesses distinct from macroeconomic optimization paradigms
and residing exclusively in the social sphere, such as ho-
mophily and imitation, are capable of determining the even-
tual state of a material renewable resource. Thereby, these
processes are able to govern a coupled social–ecological
system such that full sustainability and total collapse are
possible outcomes within the investigated social parameter
space. Additionally, they show how the interaction of differ-
ent social processes such as strategy imitation and homophily
is able to shape the sustainable regime. This suggests that
socio-cultural processes should be considered as a potentially
important part of feedback loops also in more elaborate mod-
els of the “World–Earth” system.

3.2 Systematic analysis of resource heterogeneity

We next investigate how the transition between sustainable
and non-sustainable steady states depends on the parameter σ

governing resource heterogeneity. We observe a qualitatively
similar structure of parameter space for varying degrees of
resource heterogeneity, but observe a decreasing extent of the
non-sustainable regime for increasing σ (Fig. 3a–d).

A more systematic analysis examines the average frac-
tion of sustainable harvesting nodes at the consensus state
〈S(tf )〉N,R for several segments of the parameter space
spanned by τ , φ and the resource heterogeneity parameters σ
(σN ) – i.e., results are shown for both lognormally and nor-
mally distributed resource carrying capacities (Fig. 4). The
ranges of σ for the lognormal and σN for the normal distri-
bution are chosen such that they correspond to comparable
standard deviations.

This analysis allows for explicitly showing the effect of re-
source heterogeneity on the critical values τc (Fig. 4a, c) and
φc (Fig. 4b, d), where the transition from the non-sustainable
to the sustainable regime occurs. In general, the larger the σ
(σN ), the smaller the τc and φc. In other words, a sustainable
steady state can be achieved for faster social interactions and
smaller degrees of homophily the larger the resource hetero-

geneity is. The critical effective update timescale τ/(1−φ) !=
τeff,crit decreases to faster update times. This behavior is more
pronounced for the lognormal distribution (Fig. 4a, b) than
for the normal one (Fig. 4c, d) and can be explained by the
heavy tails of the lognormal distribution. For a sufficiently
large resource heterogeneity σ there is a sufficiently high
probability that some agents will be assigned a comparably
large resource capacity. Non-sustainable harvesting agents
exploit their resources exponentially fast in time, whereas
sustainable harvesting agents with comparably large resource
capacity can retain their resource stock at a level that is still
sufficiently large to convince other agents to become sustain-
able as well.
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Figure 4. Effects of resource heterogeneity. Average fraction of sustainable harvesting nodes at the steady state for several segments of
parameter space: (a, b) for (heavy-tailed) lognormally distributed capacities and (c, d) for (non-heavy-tailed) normally distributed capacities.
Parameter spaces spanned by (a, c) social interaction timescale τ and resource heterogeneity σ (σN ) for rewiring probability φ = 0, and (b,
d) by φ and σ (σN ) for τ = 0.5. The ranges of σ and σN were chosen such that the standard deviations of both distributions are comparable.
For both distributions, the mean was fixed to 1. The dashed black lines indicate the linearly interpolated 50 % average fraction of sustainable
nodes. Note the considerable effect the lognormal resource capacity distribution (in comparison to the normal distribution) has on the critical
values of τ and φ, where the transition between the sustainable and the non-sustainable regime occurs.

At first, the observation that heterogeneity in access to pri-
vate resources is enlarging the sustainable regime might be
contradictory to reasonable assumptions. However, it demon-
strates the value of a thorough system’s analysis and being
critical about one’s own perception of what is reasonable.
Cautiously comparing this phenomenon with the real world
one can interpret the size of the resource capacity as the ef-
fective economic power of international macro-agents, such
as world regions or nation states. This is justified, since we do
not model any other economic processes but resource extrac-
tion – for example, trade, innovation and labor. The agents
with comparably large economic power that employ a sus-
tainable strategy have greater persuasive power than sustain-
able agents with smaller economic power. The German en-
ergy transition and its perceived impact on other countries
regarding the transition towards a sustainable energy supply
might be a real-world example where a country that is com-
parably strong economically also exerts comparably large
persuasive power over other countries to move forward to-
wards sustainable energy supply.

Overall, heterogeneity to resource access in our model
demonstrates how comparably few sustainable first movers
with a large resource capacity are also able to shift the over-

all system toward a sustainable state at fast social interaction
rates.

4 Conclusions

In this paper, we have studied how social–ecological thresh-
olds between sustainable and non-sustainable resource-use
regimes depend on networked social interactions (related to
imitation of harvesting strategies and homophily) under con-
ditions of resource heterogeneity. We have employed a styl-
ized model of networked agents harvesting private renew-
able resources with either a sustainable or non-sustainable
strategy. The strategies employed by the agents are updated
through a social learning process on an adaptive social net-
work reflecting an interconnected society. Resource hetero-
geneity is operationalized by lognormally and normally dis-
tributed carrying capacities of the resources.

We have shown that the properties of social processes such
as strategy formation by bounded rational imitation and ho-
mophilic social network adaptation alone can precondition
the long-term state of renewable resources with outcomes
ranging from environmental collapse to sustainability. This
observation is important because it shows that following a
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purely economic rationale may lead to neglecting decisive
processes when modeling coupled social–ecological systems
and suggests that more sophisticated models of global cou-
pled human–environment systems need to consider socio-
cultural feedbacks as well. Furthermore, we have shown that
resource heterogeneities are important model ingredients that
must not be neglected, especially when resource distributions
possess heavy tails. This is relevant because our findings sug-
gest that accessible biophysical resources may indeed fol-
low heavy-tailed distributions, and therefore the resulting re-
source heterogeneities may also have significant effects in
more sophisticated modeling frameworks.

In the context of the ongoing debate on global change
(Steffen et al., 2004) and the Anthropocene (Crutzen, 2002;
Steffen et al., 2007, 2015a), such more advanced models
of planetary social–ecological systems (“World–Earth” mod-
els) are needed for developing a deeper understanding of
the dynamics and interrelations between planetary bound-
aries (Rockström et al., 2009; Steffen et al., 2015b) and so-
cial foundations (Raworth, 2012) for guiding humanity to a
desirable safe and just operating space. Overall, our study
highlights how socio-cultural (i.e., immaterial) dynamics and
interactions can have a profound qualitative effect on phys-
ical (i.e., material) states of the environment and, conse-
quently, that neither social processes nor resource hetero-
geneities should be neglected a priori in more sophisticated
modeling of the “World–Earth” system.

Code availability. The code of our model (named EXPLOIT) in
Cython, including a script to produce the results and related fig-
ures presented in this paper, is available at GitHub https://github.
com/wbarfuss/cyexploit. For illustrative purposes, a netlogo
version can be downloaded as well: https://github.com/wbarfuss/
netlogo-exploit.

Data availability. Biocapacity data were downloaded from http://
www.footprintnetwork.org/images/uploads/NFA_2010_Results.xls
on 14 October 2014. Forested land area data were downloaded
from http://faostat3.fao.org/download/R/RL/E on 24 Novem-
ber 2015. Water resources data were downloaded from http:
//www.fao.org/nr/water/aquastat/data/query/index.html?lang=en on
25 November 2015.
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Abstract
The Anthropocene is characterized by close interdependencies between the natural Earth system
and the global human society, posing novel challenges to model development. Here we present a
conceptual model describing the long-term co-evolution of natural and socio-economic
subsystems of Earth. While the climate is represented via a global carbon cycle, we use economic
concepts to model socio-metabolic flows of biomass and fossil fuels between nature and society.
A well-being-dependent parametrization of fertility and mortality governs human population
dynamics.

Our analysis focuses on assessing possible asymptotic states of the Earth system for a
qualitative understanding of its complex dynamics rather than quantitative predictions. Low
dimension and simple equations enable a parameter-space analysis allowing us to identify
preconditions of several asymptotic states and hence fates of humanity and planet. These include
a sustainable co-evolution of nature and society, a global collapse and everlasting oscillations.

We consider different scenarios corresponding to different socio-cultural stages of human
history. The necessity of accounting for the ‘human factor’ in Earth system models is highlighted
by the finding that carbon stocks during the past centuries evolved opposing to what would
‘naturally’ be expected on a planet without humans. The intensity of biomass use and the
contribution of ecosystem services to human well-being are found to be crucial determinants of
the asymptotic state in a (pre-industrial) biomass-only scenario without capital accumulation.
The capitalistic, fossil-based scenario reveals that trajectories with fundamentally different
asymptotic states might still be almost indistinguishable during even a centuries-long transient
phase. Given current human population levels, our study also supports the claim that besides
reducing the global demand for energy, only the extensive use of renewable energies may pave
the way into a sustainable future.

1. Introduction

The impacts humankind exerts on nature on a
planetary scale have become so grave that an entirely
new geological epoch—the Anthropocene—has been
proclaimed [1], characterized by strong nature-society
interrelations. Independent of whether the Anthro-
pocene indeed depicts a novel geological epoch or not

[2–5], predicting Earth’s future with models neces-
sitates recognizing the influences humans exert on it
and vice versa. This qualitatively new relation between
humans and nature poses a huge challenge for the
development of suitable models, demanding a
balanced representation of both the natural sphere
(ecosphere, ‘Earth’) and the human sphere (anthropo-
sphere, ‘World’) and a holistic system’s perspective
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[6–9]. Many models of the natural Earth system (e.g.
general circulation models (GCMs) or Earth system
models of intermediate complexity (EMICs)) include
human impacts only as an exogenous driver, e.g. in the
form of emission scenarios [10]. Integrated assessment
models (IAMs) on the other hand try to simulate and/
or optimize the future economic evolution under
changing environmental conditions on multiple
decades [11]. However, only few modelling attempts
aim at a balanced representation of natural and socio-
economic dynamics on centennial to millennial time
scales [12–16]. Conceptual World-Earth models like
the one presented here try to fill this gap in the model
landscape and thereby contribute to modelling the
Anthrophocene.

Complementary to the development of useful
models of World-Earth dynamics stands the challenge
to identify a desirable condition of the World-Earth
system. The concept of Planetary Boundaries is a
major advance in this direction regarding the natural
dimension [17–19]. It states that during the holocene
several aggregate indicators of the Earth’s state stayed
within certain limits which define a kind of ‘safe
operating space’ to which humanity is adapted and
which should not be transgressed. Within the
framework of the ‘Oxfam doughnut’ these bounds
are supplemented by quantitative indicators of socio-
economic aspects of the world, called ‘social founda-
tions’, which together are thus interpreted to define a
‘safe and just operating space’ [20], see also the
Sustainable Development Goals [21, 22]. The state
space topology and dilemmas resulting from such
boundaries can be analysed if the models are not too
complex [23]. Hence, while models with dozens of
state variables (e.g. World3 [13], GUMBO [14]) might
allow answering rather quantitative questions, they
preclude analytical analyses that provide a deeper
qualitative understanding of the World-Earth system.
Examples for rather simple, conceptual approaches
comprise the studies of local models of natural
resources co-evolving with social or population
dynamics [24–27], but also models which address
social stratification [15] and conceptual models on a
global scale [28, 29].

Our goal here is to contribute to the latter strand of
literature a simple conceptual model focussing on a
few globally aggregated quantities of the natural and
socio-economic subsystems that appear most essential
to assess the desirability of the system state in terms of
population, well-being, and biosphere integrity. As
well-being and biosphere integrity depend crucially on
climate and natural resource use, our World-Earth
model describes the temporal evolution of the global
carbon cycle, human population, and the competition
between the major energy sources, biomass and fossil
fuels, on centennial to millennial time-scales. A
particular objective of this study is to characterize
the possible asymptotic paths the world could have

taken, and to identify model parameters crucial for
switching between these qualitatively different dy-
namic regimes. To be able to apply the necessary
techniques from dynamical systems theory, e.g.
bifurcation analysis, we keep the dimension low,
using only five dynamic variables, and the equations
simple.

Despite this simplicity, the model is capable of
qualitatively reflecting the actual dynamics seen
during different stages in human history, in
particular the Holocene and the Anthropocene.
For a pre-industrial society, for instance, our model
saturates at a stable global population of about
200 mn, similar to the actual global population in
medieval times. The model can also produce stable
cycles of population growth and decline similar to
the secular cycles studied by the literature reviewed in
[30]. However, while that strand of research finds
centennial, domestic cycles and explains them by
means of socio-cultural dynamics, we rather find
millenial, global cycles which are a consequence of
the carbon cycle with which population dynamics
interact. Thus our model can be interpreted as
adding a time-delay effect to Malthusian theory, as
requested in [30].

To be more precise, we combine a carbon cycle in
a novel way with well-being-driven population
dynamics and economic production based on energy
and accumulated capital. We model the global carbon
cycle similar to [31], thereby facilitating the study of
carbon-related planetary boundaries [32]. While
models of comparable complexity (e.g. World2
[33] or Wonderland [29]) employ rather simple
parametrizations of the economic output, our
approach is founded on well established concepts
from economic theory. In combination with a
suitable description of population dynamics we show
that without an anthroposphere component the
model behaviour would deviate drastically from
what is observed.

The paper is structured as follows: After introduc-
ing the full model in section 2, we analyse special cases
of growing complexity that roughly relate to different
eras in human history in section 3 before concluding
in section 4. The appendix contains details regarding
the derivation of the model, the estimation of its
parameters, its bifurcation analysis, and conditions for
phases of superexponential growth.

2. Model

Similar to [31], our conceptual model describes the
global carbon cycle via three carbon reservoirs—the
terrestrial (L, plants and soils), atmospheric (A), and
geological (G) carbon stocks, and describes the global
population and economy via just two additional
stocks, human population P and physical capital K
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(see figure 1). Their dynamics is governed by five
ordinary differential equations

_L ¼ ðl0 # lTTÞ
ffiffiffiffiffiffiffiffiffi
A=S

p
L # ða0 þ aTTÞL # B; ð2:1Þ

_A ¼ # _L þ dðM #mAÞ; ð2:2Þ

_G ¼ #F; ð2:3Þ

_P ¼ P
2WWP

W 2 þW 2
P

p # q
W

" #
; ð2:4Þ

_K ¼ iY # kK : ð2:5Þ
The derived quantities of maritime carbon stock M,
global mean temperature T, biomass use B, fossil fuel
use F, economic production Y, and well-being W are
governed by the algebraic equations

M ¼ C& # L # A# G; ð2:6Þ

T ¼ A=S; ð2:7Þ

B ¼ aB
eB

L2ðPKÞ2=5

ðaBL2 þ aFG2Þ4=5
; ð2:8Þ

F ¼ aF
eF

G2ðPKÞ2=5

ðaBL2 þ aFG2Þ4=5
; ð2:9Þ

Y ¼ yEðeBB þ eFFÞ; ð2:10Þ

W ¼ ð1# iÞY
P

þ wL
L
S
: ð2:11Þ

See table 1 and appendix B for parameter meanings
and estimates on the basis of available real-world data.
The three terms in _L represent temperature-dependent
photosynthesis (with atmospheric carbon fertiliza-
tion) and respiration, and biomass extraction. The
second term in _A is diffusion at the oceans’ surface.
The terms in _P represent well-being-dependent
fertility and mortality, where fertility reaches a
maximum of p at W ¼ WP and then declines again.
Finally, the terms in _K are investment at a fixed savings
rate and capital depreciation. Temperature T is
assumed to relax instantaneously to its equilibrium
value depending on A, using a nonlinear temperature
scale so it is simply proportional to A. The
denominator in B and F represents substitution effects
in the energy sector. Economic production Y in the
remaining sectors is proportional to energy input.
Well-being W derives from per-capita consumption
and ecosystem services assumed proportional to L.
The latter comprise provisional (e.g. water, raw
materials), regulating (e.g. waste decomposition)
and cultural (e.g. recreational) services [34, 35].
appendix A contains a detailed motivation and
derivation of the model from physical and economic
principles.

3. Results

3.1. How recent centuries’ carbon cycle trends
oppose purely natural dynamics
We first consider the natural carbon cycle without
human interference by setting P ¼ K ¼ 0. Figure 2

Y

B

F

E

M

W

T

A

L P

KG

Figure 1. Overview of the model structure with five state variables (colored boxes) and several derived variables (white boxes). Arrows
represent coupling processes between the variables. The left part represents the natural subsystem of the Earth (Ecosphere) via the
global carbon cycle, while the right part represents socio-economic entities related to human activities in theWorld (Anthroposphere).
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shows the state space of the remaining two-
dimensional system given by terrestrial (L) and
atmospheric (A) carbon stocks. As _G ¼ 0, the
geological carbon stock G is ignored and L and A

are normalized by the pre-industrial carbon amount of
the (short-term) carbon cycle, C&

PI.
Equilibrium states of the system require

_L ¼ _A ¼ 0 so that, according to equation (2.2), net
diffusion between the atmosphere and the upper ocean
vanishes (M ¼ mA). Solving (2.1) using the parame-
ter values from table 1 gives three equilibria: (i) a stable
desert state located at L&D ¼ 0, (ii) an intermediate
unstable equilibrium at L&I ≈ 0:54 C&

PI, and (iii) a
stable forest state at L&F ≈ 0:72 C&

PI. Hence, our carbon
cycle component features bistability between a
desirable (forest) and an undesirable (desert) state,
to one of which the system will converge, depending
on initial conditions.

The forest equilibrium represents the Holocene
carbon cycle until pre-industrial times, neglecting
changes in external solar forcing. During this period
the exchange of carbon between the terrestrial,
maritime, and atmospheric reservoirs were roughly
in balance [36]. The temporal permanence during the
Holocene is reflected in the model by the forest
equilibrium’s stability. The model will return to the
forest state after small perturbations which might for
instance occur via Volcanic eruptions or other (small)
external forcing.

In contrast, the affection of the carbon cycle
through human activities like land use (change) and
GHG emissions constitutes a large perturbation of its
natural dynamics. To illustrate this, the red arrow
depicted in figure 2 points from the pre-industrial to
the current state, far from the forest state and already
in the basin of attraction of the desert state.

0.0
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0.4

A/
C

∗ PI

0.6

0.8

1.0
diffusion equilibrium (M=mA)
stable equilibrium
unstable equilibrium
pre-industrial to present

0.20.0 0.4
L/C∗

PI

0.6 0.8 1.0

Figure 2. State space representation of the purely natural
carbon cycle dynamics given by equations (2.1) and (2.2) and
setting P ¼ K ¼ 0. Grey arrows show the direction of the
system’s evolution, thicker lines correspond to faster flow. On
the black dashed line diffusion is in equilibrium. There are
three equilibria of which the ‘desert’ state at LD ¼ 0 and the
‘forest’ state at LF ≈ 0:72C&

PI are stable. The red arrow reflects
the actual evolution of the carbon pools from pre-industrial
times until today. It opposes the natural direction of the flow,
indicating the necessity of incorporating human activities into
Earth systemmodels. The upper right corner is not part of the
state space due to the mass constraint L þ A ' C&

PI .
Parameters are set to the default values given in table 1.

Table 1. Overview of the model parameters, their physical dimensions and the best estimate based on real-world data.

Symbol Description Unit (H = humans) Estimate

S available Earth surface area km2 1.5·108

C& total available carbon stock GtC 5500
a0 respiration baseline coefficient a−1 0.0298
aT respiration sensitivity to temperature km2 a−1 GtC−1 3200

l0 photosynthesis baseline coefficient km a−1 GtC−1/2 26.4
lT photosynthesis sensitivity to temperature km3 a#1 GtC#3=2 1.1·106

d diffusion rate a#1 0:01
m solubility coefficient 1 1:5

p fertility maximum a#1 0:04
WP fertility saturation well-being $ a#1 H#1 2000
q mortality baseline coefficient $ a#2 H#1 20

i investment ratio 1 0:25
k capital depreciation rate a#1 0:1

aB biomass sector productivity GJ5 a#5 GtC#2 $#2 H#2 varied
aF fossil fuel sector productivity GJ5 a#5 GtC#2 $#2 H#2 varied
eB biomass energy density GJ GtC#1 4·1010

eF fossil fuel energy density GJ GtC#1 4·1010

yE economic output per energy input $ GJ#1 147
wL well-being sensitivity to land carbon $ km2 GtC#1 a#1 H#1 varied

C&
PI total pre-industrial carbon stock GtC 4000

b biomass harvesting rate GtC3=5 a#1 H#3=5 5.4·10−7

yB economic output per biomass input $ GtC−1 2.47·1011 (varied)

Environ. Res. Lett. 12 (2017) 074020

4

conceptual foundations and making the case 71

Reproduced from: J. Nitzbon et al., Sustainability, collapse and oscillations in a simple World-Earth model, Environ. Res. Lett., vol. 12, no. 7, 2017,
doi: 10.1088/1748-9326/aa7581. Published under Creative Commons Attribution License 3.0 (CC BY).

https://doi.org/10.1088/1748-9326/aa7581


Hence, this simplistic model suggests that the
carbon cycle might already be in a regime where it
would collapse in the future even without further
human influence. On the other hand, the model does
not reproduce well the actual past evolution of the
carbon cycle since the advent of the industrialization,
which clearly opposes the shown ‘natural’ direction of
the flow. For a more reliable analysis, it is thus
necessary to explicitly include the human factor into
our model, as demanded by [6].6

3.2. How oscillations may emerge in a non-fossil,
pre-capitalistic global society
We thus add a dynamic human population P,
interfering with the biosphere. Its only energy source
is biomass, no fossil fuels (aF ¼ 0) are used yet. The
global society in this scenario is assumed not to
accumulate physical capital but to operate with a
constant amount of capital per capita (K∝P).
Introducing the new parameters b and yB, the
expressions for B (2.8) and Y (2.10) read

BPI ¼ bL
2
5P

3
5; ð3:1Þ

Y PI ¼ yBBPI: ð3:2Þ

In order to reduce the dimension of the model system
without altering the qualitative (asymptotic) behav-
iour, the diffusion equilibrium is assumed to establish
instantaneously (d→∞), implying fixed relations
between the carbon stocks, A ¼ ðC&

PI # LÞ=ð1þmÞ
and M ¼ mA. We thus get a two-dimensional system
with just L and P as dynamical variables.

In this pre-industrial scenario one can ask what
will ultimately happen to a global society which solely
harvests biomass. The answer strongly depends on
the choice of the parameters. Consider an initial
situation with P0 ¼ 500 000 on a forested planet
(L0 ¼ 0:72C&

PI ¼ 2880 GtC); furthermore all param-
eters are set to the default values (see table 1) and
ecosystem services are neglected (wL ¼ 0) (figure 3,
upper right panel). Due to the abundance of resources,
the population initially prospers and grows (exponen-
tially) fast. Biomass use also increases but slower than
population (equation (3.1)), so that well-being
decreases as a consequence (equation 2.11); this in
turn lets the population growth rate decrease. After
about 600 years a maximum population of about one
billion humans is reached while the terrestrial carbon
stock is considerably lower than initially. Despite the
following decrease in population, the pressure on
the ecosphere by humans pushes the carbon cycle into
the basin of attraction of the (undesirable) desert
state and an unpopulated planet prevails after about

1200 years.When regarding the state space of the system
(figure 3, upper left panel) it becomes clear why this
collapse was inevitable. There simply is no coexistence
equilibrium with L > 0 and P > 0, and even the two
unpopulated forest equilibria with L > 0 and P ¼ 0 are
unstable (one in the L-, the other in the P-direction) so
that only the desert state equilibrium at L ¼ P ¼ 0 is an
attractor. Hence independent of the initial conditions
the system will ultimately evolve to the desert state.

While such collapse has been observed historically
for local agricultural civilizations [24], a global
collapse of the terrestrial ecosystems did not occur
so far. For slightly altered parameter values, an
evolution of the model system occurs which matches
the historic one better, until the onset of the
industrialization. However, if the value of yB (whose
estimate has a high uncertainty) is halved, a sustained
coexistence between the terrestrial ecosystems and the
human population becomes possible (figure 3 middle
panels). In addition to the three equilibria at the P-axis
(P= 0), there exist two equilibria with L > 0 and
P > 0 of which one is stable. Starting from the same
initial state as above the system initially behaves
similar, but the population rise is less extreme and
humans exert less pressure on the terrestrial carbon
stock. After about 400 years an equilibrium with
constant carbon stocks, population and well-being is
reached. The asymptotic population of about 200 mn
compares nicely with actual estimates of the global
population in medieval times [37], for which the non-
fossil, pre-capitalistic model scenario seems adequate.
A long period of stagnating socio-economic observ-
ables is also in line with the Malthusian population
model [38].

Like Malthus, we identified well-being (which
determines fertility and mortality, see (2.4)) with per-
capita consumption so far. It is, however, reasonable to
assume that the integrity of nature also contributes to
human well-being via ecosystem services (e.g. the
provision of forage to hunter-gatherer communities).
Hence we consider a third setting in which well-being
is dominated by ecosystem services by choosing
wL > 0 and a low value for yB (figure 3, lower panels).
The phase portrait qualitatively differs from both
previous cases as it features an attracting limit-cycle
but no stable coexistence equilibrium. Hence there are
trajectories—such as the shown one—which are
characterized by sustained oscillations of all variables.
As before, population rises until it reaches a maximum
of about 500 mn humans after about 1500 years. The
growing biomass consumption is accompanied by
decreasing well-being and—with a short delay—
decreasing population. P declines until it reaches a
minimum after another approximately 800 years, now
taking pressure from the terrestrial carbon stock,
which is thus able to recover. This in turn directly
increases well-being via the contribution of ecosystem
services, allowing population to recover as well. These
feedbacks lead to oscillations with a period of about

6 Note that the subsequent analyses focus on the parametrization of
the socio-economic model components while the in-depth study
and advancement of its natural component (e.g. representation of
the global water cycle) is not within the scope of this study.
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2000 years. Qualitatively, the observed patterns are
very similar to those described in classical models of
predator-prey ecosystems [39]. In contrast to the
latter, however, our model is still multistable in this
regime since the ‘desert’ equilibrium is still also stable
due to the functional forms for fertility and economic
production. Other models of human-nature coevolu-
tion feature oscillations [15, 24, 28] which may be
sustained or dampened but typically have shorter
periods. The same is true for models of secular cycles
[30, 40–42] which describe the emergence of
oscillatory patterns due to internal socio-economic
mechanisms of states or world regions.

The presented parameter settings and trajectories
are of course just exemplary and hence their
quantitative implications should not be overrated.
There are also intermediate cases for which dampened
oscillations occur, not shown here since the asymptotic
states are unchanged.

The qualitative changes of the asymptotic behav-
iour of the system under variation of parameters can
be analysed mathematically using bifurcation theory
[43]. A more rigorous study reveals that there are
indeed five different regimes in the ðyB;wLÞ parameter
space, with qualitatively different asymptotic states.
However, there are only three different regimes
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Figure 3. State space representations (left) and exemplary trajectories (right) of the non-fossil, pre-capitalistic model scenario for
parameter choices giving rise to qualitatively different asymptotics of the system. In the upper panels the desert state is the only
attractor, so that the population overuses natural resources and experiences a global collapse. For a lower economic productivity,
shown in the middle panel, the system allows a sustainable coexistence between humans and nature, reflected by the additional
attracting equilibrium in the state space. If ecosystem services are considered, an attracting limit cycle can emerge, implying sustained
oscillations in all variables with a period of about 2000 years. Note the different scale of the time axis in the lower panel.
All parameters but the following are set to the default values from table 1; upper panel: yB ¼ 2:47·1011 $GtC#1,wL ¼ 0; middle panel:
yB ¼ 1:235·1011 $ GtC#1, wL ¼ 0; lower panel: yB ¼ 2:47·109 $ GtC#1, wL ¼ 4:425·107 $ km2 GtC#1a#1 H#1. Initial conditions:
L0 ¼ 2880 GtC, P0 ¼ 500000 H.
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(sustainability, collapse, oscillations) for which there
are different attracting asymptotic states, as discussed
above. The bifurcation diagram is shown in figure 4,
the full bifurcation analysis is in appendix C.

3.3. Possible collapse of a fossil-based, capitalistic
global society
We finally consider a scenario which extends the
previous one in two ways. First, in addition to biomass
use (B) now also fossil fuel extraction (F) from the
geological pool G is enabled, where the relative shares
of the two energy sources is determined by a price
equilibrium. Second, physical capital K is now a stock
variable with a standard growth dynamics decoupled
from population growth. Altogether, this scenario
applies to the era since the onset of the industrializa-
tion until recent times during which biomass and fossil
fuels are the dominant energy sources and physical
capital became a major factor of production.
Moreover, we drop the assumption of the diffusion
equilibrium from the previous scenario, giving a less
stylized and more realistic representation of the global
carbon cycle. Thus we have the full five-dimensional
dynamical system (L,A,G, P,K) given by (2.1) to (2.5).

The availability of two different energy forms gives
rise to the following question which connects closely
to the introductory question of the previous section:
What is the ultimate fate of the human population for
different usage patterns of biomass and fossil fuels?

The proneness to use a certain form of energy is
determined by various factors (see (2.8), (2.9)). It
increases with the size of the associated stock variable
(L for biomass, G for fossil fuels) and with the

respective productivities (aB, aF), but decreases
because of substitution effects the cheaper the other
energy form is. While the stock sizes L and G are
prescribed by the natural Earth system, aB and aF are
rather abstract economical parameters which are hard
to estimate from real-world data. The choice of their
absolute and relative values hence facilitates an
investigation of different energy usage scenarios.
The oscillatory asymptotic regime discussed in section
3.2 emerged when well-being was dominated by
ecosystem services. For the industrial societies
considered here we assume that well-being is
dominated by per-capita consumption (see the upper
part in figure 4). In this part of the parameter space a
variation of wL has the same qualitative effect on the
asymptotics as a variation of the economic productiv-
ity via yB or aB, respectively. For simplicity we
subsequently choose wL ¼ 0.

To isolate the effect of emissions caused by fossil
fuels, we regard a reference setting in which biomass use
is disabled (aB ¼ 0) and the fossil fuel sector productiv-
ity is set to avalue forwhich theextraction speedof fossils
roughly coincides with observed values over the past
250 years (aF ¼ 24:9 GJ5a#5 GtC#2 $#2 H#2). The
abundance of resources causes population and
physical capital to grow fast initially until they reach
a maximum after about 300 years (figure 5, upper
panel). After this initial boom, well-being saturates,
then both P and K slowly decrease and the economic
production Y is reduced accordingly. This slow
perishing of the economy and population is due to
the dependence on fossil fuels from the non-
renewable geological carbon stock G. After 2000
years the population is close to extinction and fossil
fuels are almost depleted. Notably, for this choice of
parameters, the emissions of fossil carbon only lead to
a slight increase of the atmospheric carbon content
(and the associated global mean temperature), while
most of the carbon is captured in biomass and soils.
Also for other values of aF , a collapse of the terrestrial
system to a desert state due to emissions of fossil fuels
is not observable in the model. However, the fate of a
population in this purely fossil-based scenario is slow
extinction on a well-forested planet, but now with an
almost unchanged level of well-being until the end.

Obviously, this scenario is not very realistic since
humans would certainly start to (and historically
always did) harvest biomass in order to satisfy their
need for energy. By choosing a rather low biomass
sector productivity of aB ¼ 0:05 aF the initial share of
biomass in total energy use amount to about 15%
(figure 5, middle panel). The behaviour of the system
during the first 500 years of simulation time is very
similar to the reference setting with the only difference
that, due to the additional use of biomass, P, K and
thus Y reach higher absolute levels. Due to the
depletion of the geological carbon stock and the
increase in terrestrial carbon, the share of biomass is
constantly increasing and overtakes the fossil share
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Figure 4. Bifurcation diagram in the ðyB;wLÞ parameter
space, showing five qualitatively different dynamic regimes.
While within the two greenish regimes a sustainable (stable)
coexistence of nature and society is possible for some initial
conditions, both will collapse in the two reddish parameter
regimes. Only the very small regime indicated in yellow
features sustained oscillations in the dynamic variables.
Borders between the regimes correspond to different local or
global bifurcation curves. For details and differences within
the greenish and reddish regimes, see appendix C.
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after about 500 years. In contrast to the previous
setting the global society has an alternative to fossil
fuels and is not doomed to go extinct. Instead, the
population decrease slows down and a sustained
coexistence between humans and nature emerges.
Note that humans still continue to use fossil fuels
until ultimately the geological carbon stock is
completely depleted, which follows from the eco-
nomical model of the energy sector (F ¼ 0 neces-

sitates G ¼ 0 as long as P;K > 0, see (2.9)). An
abandoning of fossil fuel use can thus not be achieved
by the economic forces assumed in the model; instead
this would necessitate other economical mechanisms,
e.g. banning or taxing of fossils through policies. In
the asymptotic state about 10 bn humans inhabit
Earth, the average per-capita capital amounts to
about 2500 $ which we regard as realistic orders of
magnitude.
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Figure 5. Exemplary trajectories of the fossil-based, capitalistic model scenario for different usage of biomass and fossil fuels reflected
by different combinations of the sector productivities aB and aF . In the fossil-only reference setting (upper panel) the global will go
extinct after several millennia with the depletion of the geological carbon stock while the emitted carbon is mainly stored in the
terrestrial stock. Moderate usage of biomass allows a sustained coexistence of humans and nature in the long run (middle panel) but
fossil resources will still be completely depleted. When humans exert too much pressure on the terrestrial system through biomass use
(land use) these can ultimately collapse, thereby ruining the preconditions for life on Earth (lower panel). The socio-economic
development is indistinguishable in the scenarios with enabled biomass use until about 800 years of simulation time. Only changing
the continued changes in the natural subsystem of Earth indicate the prolonged transient towards an undesirable desert state.
All parameters but the following are set to the default values from table 1; upper panel: aF ¼ 24:9 GJ5a#5 GtC#2 $−2 H#2, aB ¼ 0;
middle panel: aF ¼ 24:9 GJ5a#5 GtC#2 $−2 H#2, aB ¼ 1:25 GJ5a#5 GtC#2 $−2 H#2; lower panel: aF ¼ 24:9 GJ5a#5 GtC#2 $−2 H#2,
aB ¼ 2:8 GJ5a#5 GtC#2 $−2 H#2. Initial conditions: L0 ¼ 2915 GtC, P0 ¼ 162·106 H, K 0 ¼ 323·109 $.
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So can we conclude that biomass use can save
humankind when fossils are abandoned for whatever
reason? This must clearly be denied as our last
parameter setting shows, in which assume a larger
biomass sector productivity (aB ¼ 0:1125 aF). Now
biomass initially makes up about a third of the total
energy used and becomes the dominant form of
energy after about 350 years. Again the socio-
economic observables (P, K, Y) behave qualitatively
very similar to the previous settings (fast increase to a
maximum, followed by slowing decrease) until about
800 years of simulation time. About this time their
speed of decrease accelerates again and they drop to
very low values within about 200 years. This
breakdown of the socio-economic system is caused
by overuse of natural resources which triggered a
collapse of the biosphere (represented by the terrestrial
carbon stock L) to the desert state, just as observed in
the non-fossil, pre-capitalistic scenario discussed in
section 3.2. After the collapse humans can only
‘survive’ until the remaining fossil fuel resources are
completely depleted, so that ultimately, an unpopu-
lated desert planet prevails. This is, of course, not
realistic for several reasons: the life-enabling capacity
of the biosphere (e.g. through oxygen production) is
not accounted for and renewable energy is not
available in the model. We thus learn that the intensity
of biomass and land use, reflected by the parameter aB
are of crucial importance for a sustainable global
coevolution of humans and nature which should
always be considered besides the necessity for reducing
emissions from fossil fuels. While the parameter value
is fixed in the model simulation, in reality, the socio-
economic conditions it reflects can be subject to
change, e.g. through policy instruments.

It should be pointed out that the collapse of the
system in the third setting could not have been
predicted by looking solely at socio-economic
observables, as these evolve analogously in the
previous settings for roughly the first 800 years of
simulation time. Merely the changing environmental
conditions, as indicated by the continued increase in
global mean temperature and decrease of the
vegetation from year 300 to 800, qualitatively
differentiate this setting from the previous ones and
thus hint at the fact that the system actually undergoes
a long transient period towards an undesirable final
state. Note that we do not even need to model direct
climate damages on, say, mortality and capital
depreciation, to cause the extinction.

A second question posed by the industrialization
scenario is: What is the effect of the dynamic physical
capital stock K, compared to the non-capitalistic
societies discussed above? For all regarded parameter
settings population and capital evolve alike, meaning
a constant capital per capita just as it was assumed in
the previous, non-capitalistic scenario. This observa-
tion can be explained with the rate of capital
depreciation (k) which is comparable to the

reproduction rates of humans. A considerably lower
depreciation rate would instead introduce a time lag
between the trajectories of P and K. The estimated
parameters, however, indicate rather short time scales
for the changes of the factors of production,
compared to the rather slow evolution of the carbon
stocks (apart from collapses).

4. Conclusions

We presented a flexible conceptual World-Earth model
which is—through an appropriate choice of variables
and parameters—able to qualitatively represent the
global coevolutionary dynamics of humans and nature
for different socio-cultural stages of human history on
Earth, particularly during the Holocence and Anthro-
pocene epochs. The actual evolution of global carbon
stocks was found to oppose the dynamics to be
expected from the topology of the natural carbon
cycle, which is mainly due to human interference with
natural dynamics through land use (change) and
emissions of carbon into the atmosphere. Due to
various nonlinearities in natural and social dynamics,
an accurate description of the mid and long-term
evolution of the Earth system thus necessitates an
explicit modelling of the ‘human factor’ with a
balanced representation of natural and socio-econom-
ic subsystems. Our conceptual model (framework)
thus contributes to the challenge of ‘Modelling the
Anthropocene’.

For each model scenario we identified the
characteristics of possible asymptotic states of the
system which comprise a sustainable coexistence of
humans and nature, a collapse of both natural and
socio-economic subsystems and even persistent
oscillatory dynamics with multi-millennial periods.
By systematic variation of those parameters whose
estimates from real-world data are particularly
uncertain, we found the preconditions of the different
asymptotic patterns. It is especially those parameters
related to the appraisal (wL) or the intensity of use (yB,
aB) of the biosphere, which make a crucial difference
for the fate of the planet and humankind.

The overall picture of our results supports the
insight that neither fossil fuels nor biomass use are
likely to facilitate a sustainable coexistence of several
billion humans on a planet with limited natural
resources. We conclude that besides reducing the
global demand for energy, merely the extensive use of
renewable energy forms may pave the way into a
sustainable future of a well-developed global society.
Extending the current framework by enabling the use
of renewables is thus a priority for the future model
development.

In our model analysis we focussed mainly on
understanding the asymptotic behaviour of the
coevolutionary Earth system and hence regarded
rather long time scales of several centuries to
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millennia. A lot of interesting dynamics like growth
phases or collapses, can, however, happen on quite
short time scales from decades to centuries. These
transient phases could reveal interesting insights,
particularly regarding the evolution of the socio-
economic subsystem of the Earth. We believe that
historically observed phenomena like the ‘Great
Acceleration’ [44] could, in principle, be reproduced
with our model, given appropriate parameter values
and initial conditions. To show this, in appendix D we
derive conditions under which the socio-economic
observables of the model (K, Y, P) feature super-
exponentially fast growth. An interesting extension
would be to replace the global society of our model by
a number of interacting regional societies. One could
then also add socio-cultural model components
describing warfare, internal conflicts, or the level of
social and political order ([30]) and thus study the
interaction between slower global cycles and faster
domestic cycles.

Beyond the implications for global sustainability
our simple model studies emphasize the subtleties
resulting from the nonlinear characteristics of the
Earth system, e.g. depicted by very long-lasting
transients towards undesirable attractors. Realizing
that such dynamical features can even emerge in
simple conceptual models like the presented ones,
should raise the awareness and caution also for the
analysis of more comprehensive models of the Earth
system.
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Appendix A: Derivation of the model

Variables
The two main variables of interest for this model are
human well-being W (representing the most impor-
tant aspect of the anthroposphere or socio-economic
subsystem of Earth) and terrestrial carbon stock L
(representing the most important aspect of the
ecosphere or biophysical subsystem of Earth). We try
to restrict the model to those further variables and
processes that seem indispensable in order to assess
the qualitative features of the possible coevolutionary
pathways of L and W on a time-scale of hundreds to
thousands of years, hence we include the following
quantities needed to represent a carbon cycle and

resource-dependent economic and population
growth:

( Time t [standard unit: years, a].

( Terrestrial (‘land’) carbon stock L ∈ ½0;C&* [GtC]
(including soil and plants).

( Atmospheric carbon stock A ∈ ½0;C&* [gigatons
carbon, GtC].

( Accessible geological carbon stock (serving as
fossil fuel reserves) G ∈ ½0;C&* [GtC].

( Maritime carbon stock M ¼ C & # A# G # L ∈
½0;C&* [GtC] (including only the upper part of
the oceans which exchanges carbon comparatively
fast with air).

( Human population stock P + 0 [number of
humans, H].

( Physical capital stock K + 0 [time-independent
(e.g. 2011) US dollars, $].

( Global mean surface air temperature T + 0
(representing ‘climate’), measured not in Kelvin
but for simplicity in ‘carbon-equivalent degrees’
[Ced=GtC], using an atmospheric carbon-equiv-
alent scale. i.e. T ¼ x Ced is the equilibrium
temperature of an atmosphere containing x GtC).

( Biomass extraction flow B + 0 [GtC/a] and
biomass energy flow EB + 0 [GJ/a].

( Fossil carbon extraction flow F + 0 [GtC/a] and
fossil energy flow EF + 0 [GJ/a].

( Total energy input flow E + 0 [GJ/a].

( Economic output flow Y + 0 [$/a].

( Investment flow I + 0 [$/a].

( Well-being W in per-capita consumption-equiva-
lent units [$/a H] (including economic welfare
and environmental effects, e.g. health and ecosys-
tem services).

We follow the predominant economic convention
of measuring capital, production, and consumption in
monetary units. A, B, E, F, G, I, K, L, M, P, Y are
extensive quantities in the sense that the would double
if the Earth System was replaced by two identical
copies of itself, while T and W are intensive quantities
which would not double. The only conserved quantity
in the model is carbon, as expressed by the equation
Aþ G þ L þM , C&.

Processes, generic interaction terms and equations
The following processes and dependencies are
considered to be the main drivers of the carbon cycle,
economic and population growth:

( Ocean to air diffusion f diff :ðA;MÞ [GtC/a] (ignor-
ing pressure and temperature dependency).
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( Greenhouse effect on temperature7 T ¼ TðAÞ
[GtC] (ignoring other GHG).

( Land to air respiration f resp:ðL;TÞ + 0 [GtC/a]
(ignoring other dependencies).

( Photosynthesis f photos:ðA; L;TÞ + 0 [GtC/a] (ig-
noring nitrogen and other dependencies).

( Biomass extraction B ¼ BðG;K ; L; PÞ + 0 and
combustion EB ¼ EBðBÞ (ignoring other econom-
ic dependencies, and afforestation, carbon storage
and other policy dependencies, and assuming
almost all extracted land carbon ends up in the
atmosphere after a negligible time; ignoring
carbon stored in human bodies and physical
capital).

( Fossil fuel extraction F ¼ FðG;K ; L; PÞ + 0 and
combustion EF ¼ EFðGÞ.

( Total energy usage from these energy sources
E ¼ EB þ EF .

( Economic production of output Y ¼ Y ðE;K ; PÞ
(assuming the two energy sources are perfect
substitutes).

( Capital growth through investment I ¼ iY .

( Capital depreciation f deprec:ðKÞ + 0 [$/a].

( Consumption of all non-invested economic output
and emergence of well-being W ¼ W ðL; P;Y Þ.

( Population fertility and mortality f fert:=mort:ðW Þ
[1/a].

This leads to the following generic equations:

dL=dt ¼ f photos:ðA; L;TÞ # f resp:ðL;TÞ # B; ðA:1Þ

dA=dt ¼ #dL=dt þ F þ f diff :ðA;MÞ; ðA:2Þ

dG=dt ¼ #F; ðA:3Þ

dK=dt ¼ iY # f deprec:ðKÞ; ðA:4Þ

dP=dt ¼ ðf fert: # f mort:ÞðW ÞP ðA:5Þ
with

T ¼ TðAÞ; ðA:6Þ

B ¼ BðG;K ; L; PÞ; ðA:7Þ

F ¼ FðG;K ; L;PÞ; ðA:8Þ

E ¼ EBðBÞ þ EFðFÞ ðA:9Þ

Y ¼ Y ðE;K ; PÞ; ðA:10Þ

W ¼ W ðL; P;Y Þ: ðA:11Þ

Choice of functional forms
Since our aim is a mainly qualitative analysis rather
than quantitative prediction, we aim at choosing
simple functional forms that fulfil at least the following
qualitative properties:

( f diff : is increasing in M and decreasing in A.

( T is increasing in A.

( f resp: is roughly proportional to L and is increas-
ing but concave in T (over the range of temper-
atures experienced in the holocene).

( f photos: is roughly proportional to L, is increasing
and concave in A (due to diminishing marginal
crabon fertilization), and is decreasing in T (over
the range of temperatures experienced in the
holocene).

( f deprec: is roughly proportional in K.

( f fert: is zero for vanishing W, grows roughly
proportionally with W for small values of W
(representing basic nutritional needs for repro-
duction as in ecological models), grows more
concavely when W grows further until W reaches
some value WP > 0 (representing saturation of
fertility due to biological limits) and finally
declines again towards zero when W grows even
further (due to education- and social security-
related effects).

( f mort: is infinite for vanishing W and declines
towards zero with growing W.

( EB; EF + 0 are roughly proportional to B or F,
respectively.

( B is increasing in K, L due to lower costs,
increasing in P due to higher demand, and
convexly decreasing in G due to substitution by
fossil fuel. Analogously, F is increasing in G, K, P
and convexly decreasing in L.

( Y is increasing and concave in all of E, K, P.

We fulfil most of these by the following simple
choices:

( f diff :ðA;MÞ ¼ dðM #mAÞ.

( T ¼ A=S (T is measured in carbon-equivalent
degrees and an intensive quantity).

( f photos:ðA; L;TÞ ¼ ðl0 # lTTÞ
ffiffiffiffiffiffiffiffiffi
A=S

p
L8.

( f resp:ðL;TÞ ¼ ða0 þ aTTÞL.

( f deprec:ðKÞ ¼ kK .

7 A model version in which T is a state variable with a transient
response to atmospheric carbon A has been studied. As it reveals the
same asymptotic behaviour and the estimated timescale of the
response is rather fast, we assume for this study the greenhouse
effect to be instantaneous.

8 The exponent 1/2 for A in the fertilization term is larger but
simpler than the choice of 0.3 in [31].
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( W ðL; P;Y Þ ¼ ð1# iÞY=P þ wLL with ecosystem
services coefficient wL.

( f fert:ðW Þ ¼ 2pWPW=ðW 2
P þW 2Þ with a maxi-

mum fertility of p > 0 reached at the saturation
well-being level WP > 0.

( f mort:ðW Þ ¼ q=W with mortality coefficient
q > 0.

( EB ¼ eBB and EF ¼ eFF with combustion effi-
ciencies eB; eF > 0.

The formulae for B; F;Y are derived from the
following economic submodel.

Two-sector economic submodel
We assume the global economy produces output using
a global production function

Y ¼ f ðP;K ; L;GÞ;

using P as a source of labour and L;G as sources of
energy. In the full model, we assume larger population
numbers lead to increasing globalization with overall
positive effects on productivity, hence we will aim
at choosing an f that has increasing returns to scale,
i.e. f ðaP; aK ; aL; aGÞ > af ðP;K ; L;GÞ for all a > 1.
In the reduced model for pre-capitalistic societies,
we will keep the more traditional assumption of
constant returns to scale, i.e. f ðaP; aK ; aL; aGÞ ¼
af ðP;K ; L;GÞ for all a > 1. This will influence our
choice of elasticities (see below). In order to be able to
model substitution effects between the two different
resource use flows B and F, we need to distinguish the
energy sector(s) from the rest of the economy (which
we call the ‘final’ sector). A quite general modelling
approach for doing this is to assume nested
production functions

Y ¼ f ðP;K ; L;GÞ ¼ f Y ðPY ;KY ;EB; EFÞ;

EB ¼ f BðPB;KB; LÞ;

EF ¼ f FðPF ;KF ;GÞ

and determine the unknown labour and capital shares
P_;K_ by some form of social optimization or market
mechanism. Since this will in general lead to quite
complicated expressions for Y ; EB; EF, we make a
number of strong simplifying and symmetry assump-
tions here in order to get manageably simple formulae.

To reduce the number of independent factors in f,
we treat the two energy forms as perfect substitutes, so
that Y ¼ f Y ðPY ;KY ; EÞ with total energy input
E ¼ EB þ EF . Since energy is generally considered
an input that cannot be substituted well by other
factors, the natural candidate to model the dependen-
cy of Y on E is not a CES production function but
either a Cobb-Douglas or a Leontieff production
function. We choose the simpler, a Leontieff form,

which amounts to prescribing a fixed ratio of energy
need per output that is independent of the other
factors:

Y ¼ yE min fE; gY ðKY ; PY Þg;

where yE > 0 is an energy productivity factor (the
inverse of the final sector’s energy intensity). We
assume the standard Cobb-Douglas form for the
relative substitutability of labour and capital:

gY ðKY ; PY Þ ¼ bYK
kY
Y PpY

Y

with productivity bY > 0 and elasticities 0 < kY ;
pY < 1. In each of the two forms of energy, we also
assume the Cobb-Douglas form,

EB ¼ bBK
kB
B PpB

B Lλ;

EF ¼ bFK
kF
F PpF

F Gg ;

with sectoral productivities bB; bF > 0 and further
elasticities k·;p·; λ; g.

Although the simplest assumption about the
allocation of labour and capital to the three production
processes f Y ; f B; f F would be to assume fixed shares,
this would ignore the strong incentive to allocate the
resources to the production of the more productive
energy form, and to allocate the more resources to
energy production the more productive the energy
sector is compared to the final sector. The next-best
simple assumption is a social planner perspective that
allocates resources so as to maximize final output Y.
We prefer this to the alternative view of a competitive
allocation via factor markets for two reasons: (i) the
latter view is more closely tied to the assumption of a
specific economic system, which is less plausible for
the long time horizons we aim at, and (ii) if markets
are approximately perfect, they would lead to
maximizing final output anyway.

To get this solution, we first assume the energy
sector’s inputs KE ; PE were known and solve the intra-
energy-sector allocation problem via the first-order
conditions

@EB=@KB ¼ @EF=@KF ; @EB=@PB ¼ @EF=@PF

under the constraints

KB þ KF þ KR ¼ KE ; PB þ PF þ PR ¼ PE :

It turns out that this only leads to sufficiently simple
expressions if we assume that the labour elasticities
pB;pF of the two energy forms are equal, and similarly
for capital, hence we put kB;F , kE and pB;F , pE

and get

KB ¼ XBKE=XE ;KF ¼ XFKE=XE ;

PB ¼ XBPE=XE ; PF ¼ XFPE=XE ;

EB ¼ XBZE ; EF ¼ XFZE ;
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where

XB ¼ baEB LaEλ;XF ¼ baEF GaEg ;

XE ¼ XB þ XF ;

ZE ¼ KkE
E PpE

E =XkEþpE
E ;

aE ¼ 1=ð1# kE # pEÞ:

Given KE ; PE , we thus have

E ¼ XEZE ¼ KkE
E PpE

E X1=aE
E :

Since neither the energy nor the final sector are to have
idle resources, we must also have

E ¼ gY ðKY ; PY Þ ¼ bYK
kY
Y PpY

Y :

An optimal allocation between energy and final sector
then requires that no ‘trade’ in capital or labour is
profitable beween the two sectors, which in view of the
constraint E ¼ gY leads to the additional equation

@gY=@KY

@E=@KE
¼ @gY=@PY

@E=@PE
;

i.e.

kY gY=KY

kEE=KE
¼ pY gY=PY

pEE=PE

which implies

kYKE

kEKY
¼ pYPE

pEPY
¼: b:

To find b, we solve

0 ¼ E # gY

¼ bkEKY

kY

" #kE bpEPY

pY

" #pE

X1=aE
E # bYK

kY
Y PpY

Y

and get

bkEþpE ¼ bY
kY
kE

" #kE pY

pE

" #pE

K kY#kE
Y PpY#pE

Y X#1=aE
E :

We note that this simplifies considerably if for each of
the factors capital and labour, either only one of the
sectors requires it or both sectors have the same
elasticity for it. Since clearly a considerable amount of
capital and labour are needed in both sectors, we hence
assume kE ¼ kY ¼: k and pE ¼ pY ¼: p. We can now
solve

KE

K # KE
¼ PE

P # PE
¼ b ¼ ðbYX#1=aE

E Þ1=ðkþpÞ;

KE ¼ b

1þ b
K ; PE ¼ b

1þ b
P;

KY ¼ 1
1þ b

K ; PY ¼ 1
1þ b

P:

Putting all of the above together, using
h ¼ 1=ð1þ 1=bÞ (the share of the energy sector)
instead of b, and introducing a ¼ 1=ð1# k# pÞ,
aB ¼ baB and aF ¼ baF , we get

XB ¼ aBL
aλ;KB ¼ XB

X
KE ; PB ¼ XB

X
PE ;

XF ¼ aFG
ag ;KF ¼ XF

X
KE ; PF ¼ XF

X
PE ;

X ¼ XB þ XF ; h ¼ 1

1þ ðX1=a=bY Þ1=ðkþpÞ
;

Z ¼ K k
EP

p
E=X

kþp ¼ hkþpK kPp=Xkþp;

E ¼ XZ ;KE ¼ hK ; PE ¼ hP;

Y ¼ yEE;KY ¼ ð1# hÞK ; PY ¼ ð1# hÞP;

Z 0 ¼ 1þ ðaBLaλ þ aFGagÞ
1#k#p
kþp

b1=ðkþpÞ
Y

 !#k#p

;

EB ¼ XBZ ¼ aBLaλKkPp

ðaBLaλ þ aFGagÞkþp Z
0;

EF ¼ XFZ ¼ aFGagK kPp

ðaBLaλ þ aFGagÞkþp Z
0:

For the economy to have increasing returns to scale, we
choose elasticities that fulfil kþ pþminðλ; gÞ > 1.
A simple choice which is roughly in line with estimates
of labour and capital elasticities in the agricultural
sector of many countries is k ¼ p ¼ λ ¼ g ¼ 2=5.
Then kþ p ¼ 4=5, a ¼ 5, aλ ¼ ag ¼ 2, and hence

EB ¼ aBL2ðPKÞ2=5

ðaBL2 þ aFG2Þ4=5
1þ ðaBL2 þ aFG2Þ1=4

b5=4Y

 !#4=5

;

EF ¼ aFG2ðPKÞ2=5

ðaBL2 þ aFG2Þ4=5
1þ ðaBL2 þ aFG2Þ1=4

b5=4Y

 !#4=5

:

Finally, we assume that b5Y ≫ aBL2 þ aFG2 so that the
share of the energy sector h (the large bracket) is ≈ 1.
Note that as the ‘energy’ sector in our model includes
all of agriculture, a very large share of this sector is not
too implausible. We thus arrive at the simple
approximation used in the model,

B ¼ aB
eB

L2ðPKÞ2=5

ðaBL2 þ aFG2Þ4=5
;

F ¼ aF
eF

G2ðPKÞ2=5

ðaBL2 þ aFG2Þ4=5
;

Y ¼ yEðeBB þ eFFÞ:
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For the pre-capitalistic variant of the model, we choose
k ¼ λ ¼ 3=10 instead to get constant returns to scale.
Together with a fixed per capita capital of K∝P, this
gives equations (3.1) and (3.2).

Appendix B: Parameter estimation

The available Earth surface area (S) has been identified
with the Earth’s current land surface area. The
parametrization of the carbon cycle parameters (C&,
C&
PI, a0, aT , l0, lT , d, m) occurred on the basis of the

recent estimated of carbon stocks and flows by the
International Panel on Climate Change [36]. The
estimates of the demographic parameters (p, WP , q)
result from separately performed weighted least
squares regressions of the modelled dependencies of
fertility and mortality on well-being (equation (2.4)),
respectively. As input data we used estimates of various
World Development Indicators for which country-
wise, yearly data are available from the World Bank
[45]. The investment rate (i) has been estimated by
averaging the global times series on ‘gross capital
formation’ by theWorld Bank [45]. A reasonable value
for the capital depreciation rate (k) can be found in
[46]. Typical energy densities of biomass (eB) and
fossil fuels (eF) are of comparable size [47]. The
economic output per (primary) energy input has been
estimated as the average of the inverse of the time
series on ‘energy intensity level of primary energy’
available from the World Bank [45].

The subsequently introduced parameters yB and b
in the non-fossil scenario (section 3.2) have been
estimated using data on global population level,
agricultural sector’s value added to the gross world
product and the contribution of harvesting to the
‘Human Appropriation of Net Primary Production’
(HANPP) [45, 48].

Appendix C: Bifurcation analysis

The rather low-dimensional complexity and the
simple functional relationships (see equations (2.1)
to (2.5)) of the presented model facilitate the
application of analysis techniques from dynamical
systems theory, e.g. bifurcation analysis [43]. Bifurca-
tion analysis aims at a partition of a dynamical system’s
parameter space into regimes, such that within
different regimes the system’s state spaces are
topologically non-equivalent, meaning different num-
bers or stabilities of the system’s equilibria or limit
cycles and hence a different asymptotic behaviour.

For this work we conducted a bifurcation analysis
of the ðyB;wLÞ-parameter-subspace of the two-
dimensional ðL; PÞ submodel discussed in section
3.2. The bifurcation diagram in figure 4) shows a
partition of the parameter space into five regimes for
which the corresponding state spaces are topologically

non-equivalent. The borders between the regimes
correspond to codimension-1-bifurcations, while the
blue points at their intersections indicate bifurcations
of codimension 2.

Suppose the parameter values lie within the large
reddish region in figure 4 for which the ‘desert’ state is
the only attractor of the system. When crossing the red
curve above the blue square, the system undergoes a
(local) fold (or saddle-node) bifurcation leading to the
existence of an unstable (saddle) equilibrium and a
stable (node) equilibrium in the dark green regime
which hence facilitates a sustainable coexistence of
humans with nature. Crossing the green curve gives
rise to a (global) homoclinic bifurcation through
which an unstable limit-cycle is created. However, this
does not alter the set of attractors, hence the qualitative
asymptotics remain unchanged. If the orange curve is
transgressed from within the light green region, an
Andronov-Hopf bifurcation occurs. It is sub-critical
when the curve is crossed above the blue circle. In this
case the unstable limit-cycle coalesces with the stable
node, leaving an unstable node in the orange region.
When the orange curve is crossed below the blue circle,
the Andronov-Hopf bifurcation is super-critical,
meaning that a stable limit-cycle is born around the
stable coexistence equilibrium which in turn becomes
unstable. The yellow region hence features an
attracting limit-cycle besides the stable desert state.
The yellow bifurcation curve corresponds to a fold
bifurcation of cycles in which the two limit-cycles
coalesce and vanish, leaving an unstable node in the
orange region. Hence, in the orange regime the
systems features a saddle point and an unstable node
with P > 0, which undergo a fold bifurcation when
the red line is crossed from left to right below the blue
square. In the orange and red regions the desert state is
the only attractor, meaning that ultimately nature and
society are doomed to collapse.

At the point marked by the blue square at which
the fold, Andronov-Hopf and homoclinic bifurcation
curves intersect, a so-called Bogdanov-Takens bifurca-
tion occurs. The point marked by the blue square at
which the fold-of-cycles curve connects to the two
branches of the Andronov-Hopf curve is referred to as
a Bautin (or generalized Hopf) bifurcation.

Note that in figure 4 only the fold and Andronov-
Hopf curves which correspond to local bifurcations
have been computed numerically, using the software
PyDSTool [49]. As the tool is not able to detect global
bifurcations, the homoclinic and fold-of-cycles curves,
whose existence is known from theory, are indicated
only schematically.

Appendix D: Conditions for
superexponential growth

Due to several nonlinearities in our model, most
quantities can show both sub- and superexponential
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growth or decay, in contrast to most basic purely
economic growth models.

A quantity x has a phase of superexponential
growth whenever 0 < d2ðlnxÞ=dt2 ¼ ð€xx # _x2Þ=x2.

For population P, we have dðlnPÞ=dt ¼
_P=P ¼ f ðW Þ :¼ 2WWP

W 2þW 2
P
p # q

W and f is negative if
0 < W < W 0 (for some constant W 0), positive and
increasing if W 0 < W < W &, and positive and
decreasing if W & < W , where 0 < W 0 < WP < W &.
Hence P has superexponential growth iff either (i)
W 0 < W < W & and _W > 0, or (ii) W & < W and
_W < 0, i.e. when well-being is moving towards the
point where net reproduction is maximal.

For capital K, the condition is

0 < €K K# _K
2

¼K
d
dt
ðiyBðaBL

2þaFG
2Þ1=5ðPKÞ2=5#kKÞ# _K

2

¼KðiyEðaBL
2þaFG

2Þ1=5ðPKÞ2=5

- 2aBL _Lþ2aFG _G

5ðaBL2þaFG2Þ
þ2 _P
5P

þ2 _K
5K

" #
#k _KÞ# _K

2

¼K ð _KþkKÞ2
5

aBL _LþaFG _G

aBL2þaFG2 þ
_P
P
þ

_K
K

" #"

#k _KÞ# _K
2
:

If _K > 0, this condition is the more likely fulfilled the
smaller _K, L, G, and P, and the larger K, _L, _G, _P, and k.
Hence a small lT , a0, aT , i, yE , aB, aF , q, and qP , a large
A, l0, eB, eF , and p, and a W ≈WP tend to make a
superexponential growth of K more likely.
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2
Towards a unified analytical framework

In this second section, we present current approaches to model
up-to-planetary-scale social-ecological dynamics and introduce a
framework to unify the existing models.

The integration of human behaviour into formal Earth system
models requires crucial assumptions about actors and their goals,
behavioural options, and decision rules, as well as modelling deci-
sions regarding human social interactions and the aggregation of
individuals’ behaviour.

In the first paper in this section, “Towards representing human
behavior and decision-making in Earth system models” [Müller-
Hansen et al., 2017b], we reviewed existing modeling approaches
and techniques from various disciplines and found a very heteroge-
neous and diverse modeling landscape.

In order to structure future approaches, we proposed in “Tax-
onomies for structuring models for World-Earth system analysis
of the Anthropocene: subsystems, their interactions and social-
ecological feedback loops” [Donges et al., 2018] three taxa for
modelled subsystems: (i) biophysical, (ii) socio-cultural, and (iii)
socio-metabolic. Furthermore, we introduced the model category
of ‘World-Earth models’ (WEMs), i.e., models of social-ecological
coevolution on up to planetary scales.

For the specific case of social tipping systems, we present in “So-
cial tipping processes for sustainability: An analytical framework”
[Winkelmann, R. and Donges, J. F. and Smith, E. K. and Milkoreit,
M. et al., 2020] an analytical framework including a formal defi-
nition for social tipping processes and filtering criteria for those
processes that could be decisive for future trajectories to global
sustainability in the Anthropocene.

Building on these works, in “Earth system modeling with en-
dogenous and dynamic human societies: the copan:CORE open
World–Earth modeling framework” [Donges, J. F. and Heitzig, J.
et al., 2020] we introduced design principles for constructing World-
Earth models and presented an open-source software that teams
of researchers with different backgrounds can use for implement-
ing such models in a highly modular way, using a combination of
equation-based and agent-based model components.
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Abstract. Today, humans have a critical impact on the Earth system and vice versa, which can generate com-
plex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth
system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behav-
ioral options, and decision rules, as well as modeling decisions regarding human social interactions and the
aggregation of individuals’ behavior. Here, we review existing modeling approaches and techniques from vari-
ous disciplines and schools of thought dealing with human behavior at different levels of decision making. We
demonstrate modelers’ often vast degrees of freedom but also seek to make modelers aware of the often crucial
consequences of seemingly innocent modeling assumptions.

After discussing which socioeconomic units are potentially important for ESMs, we compare models of in-
dividual decision making that correspond to alternative behavioral theories and that make diverse modeling as-
sumptions about individuals’ preferences, beliefs, decision rules, and foresight. We review approaches to model
social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally,
we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to
complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and eco-
nomic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use
dynamics as one of the main drivers of environmental change bridging local to global scales.

1 Introduction

Even though Earth system models (ESMs) are used to study
human impacts on the complex interdependencies between
various compartments of the Earth, humans are not repre-
sented explicitly in these models. ESMs usually consider hu-
man influence in terms of scenarios for comparison of the
impacts of alternative narratives about the future develop-
ment of key socioeconomic characteristics. For instance, the

IPCC process uses integrated assessment models to compute
plausible future emission pathways from energy and land use
for different scenarios of climate mitigation. These projec-
tions determine the radiative forcing used as external input
in ESMs to study its natural impacts (Moss et al., 2010;
IPCC, 2014). The latter can, however, have socioeconomic
consequences that may be fed back into the scenario pro-
cess. However, the complex interplay of the dynamics of the
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natural Earth system and the social, cultural, and economic
responses to them are not captured.

The concept of the Anthropocene epoch implies that hu-
mans have become a dominant geological force interfer-
ing with biophysical Earth system processes (Crutzen, 2002;
Maslin and Lewis, 2015). However, a changing environment
also alters human behavior (Palmer and Smith, 2014). For
example, climate change will affect land use and energy con-
sumption. Likewise, perceived environmental risks modify
consumption and mobility patterns. Therefore, with increas-
ing human impact on the Earth system, feedbacks between
shifts in the biophysical Earth system and human responses
will gain importance (Donges et al., 2017c, b; Thornton et al.,
2017). Donges et al. (2017a) provide a classification of these
feedbacks in this Special Issue.

Studying feedback loops between human behavior and the
Earth system, projecting its consequences, and developing
interventions to manage the human impact on the Earth sys-
tem requires a suitable dynamic representation of human be-
havior and decision making. In fact, even a very accurate sta-
tistical description of human behavior may be insufficient for
several reasons. First, in a closed loop, humans constantly
respond to changes in the Earth system, facing novel envi-
ronmental conditions and decision problems. Hence, their
response cannot be predicted with a statistical model. Sec-
ond, for a correct assessment of different policy options (e.g.,
command and control policy vs. market-based solutions), a
sound theoretical and empirical account of the principles un-
derlying decision making in the relevant context is needed
because they guide the development of intervention pro-
grams, such as incentives schemes, social institutions, and
nudges (Ostrom, 1990; Schelling, 1978; Thaler and Sunstein,
2009). A statistical model could mislead decision makers that
want to design policy interventions to induce changes in hu-
man behavior.

Incorporating human behavior in ESMs is challenging. In
contrast to physical laws that traditional ESMs can use as a
basis, there is no single theory of human behavior that can be
taken as a general law (Rosenberg, 2012). The understanding
of human behavior is limited by its determinants often being
contingent and socially formed by norms and institutions.
This allows for a view on social systems as socially con-
structed realities, which is in stark contrast to the positivist
epistemology of one objective reality prevalent in the natu-
ral sciences. In fact, past attempts to develop grand theories
have been criticized for being too remote from reality and,
as a consequence, hard if not impossible to test empirically
(Boudon, 1981; Hedström and Udehn, 2009; Hedström and
Ylikoski, 2010; Merton, 1957). Accordingly, many social
scientists favor a so-called “middle-range approach”, trying
to tailor theoretical models to specific contexts rather than
developing overarching general theories. This acknowledges,
for instance, that individuals act in some contexts egoisti-
cally and based on rational calculus, while in other contexts
they may act altruistically and according to simple heuris-

tics. The principles that determine human decisions depend
on, for example, whether the decision maker has faced the
decision problem before, the complexity of the decision, the
amount of time and information available to the individual,
and whether the decision affects others or is framed in a spe-
cific social situation. Likewise, different actor types might
apply different decision principles. Furthermore, the deci-
sion determinants of agents can be affected by others through
social interactions or aggregate outcomes of collective pro-
cesses.

Here, we give an overview of existing approaches to model
human behavior and decision making to provide readers with
a toolbox of model ingredients. Rather than promoting one
theory and dismissing another, we list decisions that model-
ers face when modeling humans, point to important model-
ing options, and discuss methodological principles that help
in developing the best model for a given purpose.

We define decision making as the cognitive process of de-
liberately choosing between alternative actions, which may
involve analytic and intuitive modes of thinking. Actions are
intentional and subjectively meaningful activities of an agent.
Behavior, in contrast, is a broader concept that also includes
unconscious and automatic activities, such as habits and re-
flexes. The outcome of a decision is therefore a certain type
of behavior, which might be explained by a decision-making
theory.

In ESMs, only those human decisions and behaviors that
have a considerable impact on the Earth system are relevant,
i.e., primarily behavior towards the environment of a large
number of individuals or decisions amplified through the so-
cial position of the decision maker or technology. Therefore,
this paper also covers techniques to model interactions be-
tween agents and to aggregate behavior and interactions to
a macrolevel. On the microlevel, relevant decisions include
the reproduction, consumption, and production of energy-
and material-intensive products, place of living, and land use.
These decisions lead to aggregate and long-term dynamics of
populations, production and consumption patterns, and mi-
gration.

There are diverse social science theories explaining human
behavior and decision making in environmental and ecologi-
cal contexts, for example in environmental economics, soci-
ology, and psychology. In this paper, we focus on mathemat-
ical and computational models of human decision making
and behavior. Here, we understand the terms “modeling ap-
proach” and “modeling technique” as a class of mathematical
or computational structures that can be interpreted as a sim-
plified representation of physical objects and actors or col-
lections thereof, events and processes, causal relations, or in-
formation flows. Modeling approaches draw on theories of
human behavior that make – often contested – assumptions
about the structure of decision processes. Furthermore, mod-
eling approaches can have different purposes: the objective
of descriptive models is to explore empirical questions (e.g.,
which components and processes can explain the system’s
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dynamics), while normative models aim at answering ethi-
cal questions (e.g., which policy we should choose to reach a
certain goal).

Recent reviews focus on existing modeling approaches
and theories that are applied in the context of environmental
management and change. For example, Verburg et al. (2016)
assess existing modeling approaches and identify challenges
for improving these models in order to better understand
Anthropocene dynamics. An (2012), Meyfroidt (2013), and
Schlüter et al. (2017) focus on cognitive and behavioral theo-
ries in ecological contexts, providing an overview for devel-
opers of agent-based, land-use, and social–ecological mod-
els. Cooke et al. (2009) and Balint et al. (2017) review differ-
ent micro- and macro-approaches with applications to agro-
ecology and the economics of climate change, respectively.
The present paper complements this literature by review-
ing modeling approaches of (1) individual agent behavior,
(2) agent interactions, and (3) the aggregation of individual
behaviors with the aim of supporting the integration of hu-
man decision making and behavior into Earth system models.
The combination of these three different categories is cru-
cial to describe human behavior at scales relevant for Earth
system dynamics. Furthermore, this review highlights the
strengths and limitations of different approaches by connect-
ing the modeling techniques and their underlying assump-
tions about human behavior and discusses criteria to guide
modeling choices.

Our survey of techniques has a bias towards economic
modeling techniques for two simple reasons. First, eco-
nomics is the social science discipline that has the longest
and strongest tradition in the formal modeling of human deci-
sion making. Second, economics focuses on the study of pro-
duction and consumption as well as the allocation of scarce
resources. In most industrialized countries today, a major
part of human interactions with the environment is medi-
ated through markets, which are central in economic analy-
ses. This review aims to go beyond the often narrow framing
of economic approaches while at the same time not ignor-
ing important economic insights. For instance, consumption
and production decisions not only follow purely economic
calculations, but are also deeply influenced, for instance, by
behavioral patterns, traditions, and social norms (The World
Bank, 2015).

Because we discuss different approaches to model deci-
sion making and behavior from various disciplinary or sub-
disciplinary scientific fields, there are considerable differ-
ences in terminology that make a harmonized presentation
of the material challenging. For example, the same terms are
used to describe quite separate varieties of an approach in
different fields, and different terms from separate fields may
refer to very similar approaches. We adopt a terminology that
aims for a better interdisciplinary understanding and point
out different understandings of contested terms where we are
aware of them.

This paper works with land-use change as a guiding and
illustrative example. Land-cover change and land use make
up the second-largest source of greenhouse gases – besides
the burning of fossil fuels – and thus contribute strongly to
climate change. Behavioral responses related to land use will
play a crucial role for successful mitigation and adaptation
to projected climatic changes, thereby challenging modelers
to represent decision making in models of land-use change
(Brown et al., 2017). The complexity of land-use change pro-
vides various examples of how collective and individual de-
cision making interacts with the environment across spatial
scales and organizational levels. Land-use models consider
environmental conditions as important factors in decision-
making processes, giving rise to feedbacks between environ-
mental and socioeconomic dynamics (Brown et al., 2016).
However, this paper does not provide an exhaustive overview
of existing land-use models. For this purpose, the reader is
referred to the various reviews in the literature (e.g., Baker,
1989; Brown et al., 2004; Michetti, 2012; Groeneveld et al.,
2017).

The remainder of the paper is organized as follows. In
Sect. 2, we give an overview of different levels of descrip-
tion of social systems and the socioeconomic units or agents
associated with them. Sections 3–5 form the main part of the
paper, presenting different modeling techniques and their un-
derlying assumptions about human decision making and be-
havior. First, Sect. 3 introduces approaches to model indi-
vidual decisions and behavior from rational choice to learn-
ing theories. Many of these techniques can be used to also
model higher-level social entities. Second, Sect. 4 puts the fo-
cus on techniques for modeling interactions between agents.
Strategic interactions and social influence are significant de-
terminants of individual decisions and therefore important
for long-term changes in collective behavior, i.e., the group
outcome of mutually dependent individual decisions. Third,
Sect. 5 reviews different aggregation techniques that allow
for a description of human activities at the level of social col-
lectives or systems. These approaches make use of simplifi-
cations to scale up theories about individual decision mak-
ing. Figure 1 summarizes these main parts of the paper, the
corresponding modeling approaches, and important consid-
erations for model selection, which we discuss in detail in
Sect. 6. The discussion also reflects on important distinctions
between models of natural and social systems that are crucial
to consider when including human behavior into ESMs. The
paper concludes with remarks on the remaining challenges
for this endeavor.

2 The challenge: modeling decision making and
behavior across different levels of organization

The decision making and behavior of humans can be de-
scribed and analyzed at different levels of social systems.
While decisions are made and behavior is performed by in-
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Figure 1. Overview of modeling categories, corresponding modeling approaches, and techniques discussed in this paper and important
considerations for model choice and assumptions about human behavior and decision making.

dividual humans, it is often useful to not represent individ-
ual humans in a model but to treat social collectives, such
as households, neighborhoods, cities, political and economic
organizations, and states, as decision makers or agents.

Figure 2 shows a hierarchy of socioeconomic units, i.e.,
the groups, organizations, and structures of individuals that
play a crucial role in human interactions with the Earth sys-
tem. We consider a broad scheme of levels ranging from the
microlevel across intermediate levels to the global level. This
hierarchy of socioeconomic units is not only distinguish-
able by level of complexity but also by the different spatial
scales involved. However, there is no one-to-one correspon-
dence. For instance, some individuals have impacts at the
global level, while many transnational organizations operate
at specific local levels. Especially in the context of human–
environment interactions in ESMs, scaling and spatial extent
are therefore important issues (Gibson et al., 2000). Further-
more, we note that the strict separation between a microlevel
and macrolevel may result in treating very different phenom-
ena alike. For instance, many economic models describe both
small businesses and transnational corporations as actors on
the microlevel and model their decision processes with the
same set of assumptions, even though they operate very dif-
ferently.

One major challenge for modeling humans in the Earth
system is therefore to bridge the diverse levels between in-
dividuals and the global scale, thereby integrating different
levels of social organization and spatial and temporal scales.

The relation between individual agents and social collec-
tives and structures has been the subject of considerable de-
bate in the social sciences. In the social scientific tradition
of methodological individualism1, the analysis aims to ex-
plain social macro-phenomena, for example phenomena at
the level of groups, organizations, or societies, with theories

1We note that there are different accounts of methodological in-
dividualism, and it often remains unclear to what extent structural
and interactionist elements can be part of an explanation (see Hodg-
son, 2007; Udehn, 2002).

of individual behavior. This approach deviates from struc-
turalist traditions, which claim that collective phenomena are
of their own kind and thus cannot be traced back to the behav-
ior of individuals (Durkheim, 2014). Positions between these
two extremes emphasize the interdependency of individual
agents and social structure, which is understood as an emerg-
ing phenomenon that stabilizes particular behaviors (Cole-
man, 1994; Homans, 1950). While it very much depends
on the purpose of the given modeling exercise whether the
model should represent individuals or collectives, we mainly
focus here on the research tradition that acknowledges the
fact that complex and unexpected collective phenomena can
arise from the interplay of individual behavior.

In Table 1, we provide an overview of socioeconomic units
at different levels that are potentially important for Earth sys-
tem modeling. We list common theories, frameworks and
assumptions made about decision making and behavior for
these socioeconomic units and link them to scientific fields
that focus on them.

At the microlevel, models consider individuals, house-
holds, families, and small businesses. For instance, individ-
uals can make decisions as policy makers, investors, busi-
ness managers, consumers, or resource users. At this level,
decisions about lifestyle, consumption, individual natural re-
source use, migration, and reproduction are particularly rele-
vant in the environmental context. Individual decisions have
to be made by a large number of individuals or have to be re-
inforced by organizations, institutions, or technology to be-
come relevant at the level of the Earth system. Individuals’
participation in collective decision processes, such as voting,
may also have consequences for the environment at a global
level.

At various intermediate levels, communities and organi-
zations like firms, political parties, labor unions, educational
institutions, and nongovernmental and lobby organizations
play a crucial role in shaping economic and political deci-
sions and therefore have a huge impact on aggregate behav-
ior. Governments at different levels representing different ter-
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Table 1. Overview of particular levels of description of socioeconomic units, associated scientific fields and communities, and some common
approaches and assumptions about decisions and behavior. The list gives a broad overview but is far from being exhaustive.

Level Socioeconomic units Fields/communities Common approaches and theo-
ries

Common assumptions about
decision making

Micro
Individual humans Psychology, neuro-

science, sociology,
economics, anthropol-
ogy

Rational choice, bounded ratio-
nality, heuristics, learning the-
ory, cognitive architectures

[All assumptions presented in
this column]

Households, families,
small businesses

Economics, anthropol-
ogy

Rational choice, heuristics, so-
cial influence

Maximization of consumption,
leisure, profits

Intermediate Communities (villages,
neighborhoods), cities

Sociology, anthropol-
ogy, urban studies

Social influence, networks Transmission and evolution of
cultural traits and traditions

Political parties, NGOs,
lobby organizations,
educational institutions

Political science, soci-
ology

Strategic decision making, pub-
lic/social choice, social influ-
ence and evolutionary interac-
tions

Agents form coalitions and co-
operate to achieve goals, influ-
enced by beliefs and opinions
of others

Governments Political science, opera-
tions research

Strategic decision making,
cost–benefit and welfare anal-
ysis, multi-criteria decision
making,

Agents choose for the common
good

Nation states, societies Economics, political
science, sociology

welfare maximization, social
choice

Majority vote

Global Multinational firms,
trade networks

Economics, manage-
ment science

Rational choice Maximization of profits or
shareholder value

Intergovernmental
organizations

Political science (inter-
national relations)

Strategic decision making,
cost–benefit analysis

Coalition formation

Figure 2. Socioeconomic units and their corresponding level and scales.

ritories, from cities to nation states, enact laws that strongly
frame the economic and social activities of their citizens. Im-
portant decisions for the Earth system context include envi-
ronmental regulations and standards, the production and dis-
tribution of commodities and assets, trade, the extraction and
use of natural resources, and the development and building
of physical infrastructures.

At the global level, multinational companies and intergov-
ernmental organizations negotiate decisions. This level has
considerable impacts on policy and business decisions even

though it is remote from the daily life of most individuals.
Often this level provides framing for activities on lower or-
ganizational levels and thus strongly influences the problem
statements and perceived solutions, for instance regarding
environmental issues. Decisions important for the Earth sys-
tem at this level include international climate and trade agree-
ments, the decisions of internationally operating corporations
and financial institutions, and the adoption of global frame-
works like the UN Sustainable Development Goals (United
Nations General Assembly, 2015).
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An overarching question that has triggered considerable
debate between different disciplines is the allocation of
agency at different levels of description. Even if individu-
als can decide between numerous options, the perception of
options and decisions between them are shaped by social
context and institutional embedding. Institutions2 and orga-
nizations can display their own dynamics and lead to out-
comes unintended by the individuals. On the other hand,
social movements can initiate disruptive changes in institu-
tional development. The attribution and perception of agency
for a specific problem is therefore important for the choice of
a suitable level of model description. The following section
starts our discussion of different modeling techniques at the
level of individual decision making and behavior.

3 Modeling individual behavior and decision making

In a nutshell, models of individual decision making and be-
havior differ with regard to their assumptions about three cru-
cial determinants of human choices: goals, restrictions, and
decision rules (Hedström, 2005; Lindenberg, 2001, 1990,
1985). First, the models assume that individuals have mo-
tives, goals, or preferences. That is, agents rank goods or
outcomes in terms of their desirability and seek to realize
highly ranked outcomes. A prominent but debated assump-
tion of many models is that preferences or goals are assumed
to be stable over time. Stable preferences are included to pre-
vent researchers from developing trivial explanations, as a
theory that models a given change in behavior only based on
changed preferences does not have explanatory power. How-
ever, empirical research shows that preferences can change
even in relatively short time frames (Ackermann et al., 2016).
Changing individuals’ goals or preferences is an important
mechanism to affect their behavior, for example through poli-
cies, making flexible preferences particularly interesting for
Earth system modelers.

Second, decision models make assumptions about restric-
tions and opportunities that constrain or help agents pursue
their goals. For instance, each behavioral option comes with
certain costs (e.g., money and time), and decision makers
form more or less accurate beliefs about these costs and how
likely they are to occur depending on the information avail-
able to the agent.

2The notion of institution is used in the literature with slightly
different meanings: (1) formal and informal rules that shape behav-
ior, (2) informal social order, i.e., regular patterns of behavior, and
(3) organizations. Here, we adopt an understanding of institutions
as formal (e.g., law, property rights) or informal rules (e.g., norms,
religion). However, formal rules often manifest in social, political,
and economic organizations and informal rules may be shaped by
them.

Third, models assume that agents apply some decision rule
that translates their preferences and restrictions into a choice.
Although decision rules differ very much in their complex-
ity, they can be categorized into three types. First, there are
decision rules that are forward looking. Rational choice the-
ory, for instance, assumes that individuals list all positive and
negative future consequences of a decision and choose the
optimal option. Alternatively, backward-looking approaches,
such as classical reinforcement learning, assume that actors
remember the satisfaction experienced when they chose a
given behavior in the past and tend to choose a behavior with
a high satisfaction again. Finally, there are sideward-looking
decision rules, which assume that actors adopt the behavior
of others, for instance because they imitate successful others
(Kandori et al., 1993). Theories assume different degrees of
the context dependency of rules and make different implicit
assumptions about the underlying cognitive capabilities of
agents.

In the remainder of this section, we describe in more de-
tail three important approaches to individual decision making
and point out typical assumptions about motives, restrictions,
and decision rules.

3.1 Optimal decisions and utility theory in rational
choice models

Rational choice theory, a standard model in many social sci-
ences (especially in economics) that is widely studied in
mathematics, assumes that decision making is goal oriented:
rational agents have preferences and choose the strategy with
the expected outcome that is most preferred, given some ex-
ternal constraints and potentially based on their beliefs (rep-
resented by subjective probability distributions; see the be-
liefs, preferences, and constraints model in Gintis, 2009). It
can either be used to represent actual behavior or serve as a
normative benchmark for other theories of behavior.

How to judge the “rationality” of individual decisions is
subject to ongoing debates. Opp (1999) distinguishes be-
tween strong rationality (“homo economicus”), assuming
purely self-interested agents with unlimited cognitive capac-
ities knowing all possible actions and probabilities of con-
sequences, and weak rationality that makes less strong as-
sumptions. Rabin (2002) distinguishes between standard and
nonstandard assumptions regarding preferences, beliefs, and
decision-making rules. Before discussing nonoptimal deci-
sion making in Sect. 3.2, we review here common assump-
tions on preferences and beliefs.

Usually, agents are assumed to be mainly self-interested,
having fixed preferences regarding their personal conse-
quences in possible futures and being indifferent to how a de-
cision was made and to consequences for others. Exceptions
are procedural (Hansson, 1996; Fehr and Schmidt, 1999) and
other-regarding preferences (Mueller, 2003; Fehr and Fis-
chbacher, 2003).
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Preferences can be modeled as binary preference relations,
x Pi y, denoting that individual i prefers situation or out-
come x to y. Most authors assume that Pi is complete (for
every pair (x,y) either xPiy or yPix) and transitive (if xPiy
and yPiz then xPiz), which allows for the representation
of the preferences with a utility function ui (Von Neumann
and Morgenstern, 1953).3 Some authors also allow for in-
complete or cyclic preferences (Fishburn, 1968; Heitzig and
Simmons, 2012). In the land-use context, i could be a farmer,
x might denote growing some traditional crops generating a
moderate profit, and y growing hybrid seeds for more profit
but making i dependent on the seed supplier. If i considers in-
dependence valuable enough to make up for the lower profit,
x Pi y would denote i’s preference of x over y.

In decision making under uncertainty, agents have to
choose between different risky prospects modeled as prob-
ability distributions p(x) over outcomes x. In expected util-
ity theory, p is preferred to p′ if and only if

∑
xp(x)ui(x)>∑

xp
′(x)ui(x). Empirical research shows that only a minor-

ity of people evaluate uncertainty in this risk-neutral way
(Kahneman and Tversky, 1979). Prospect theory therefore
models agents that overestimate small probabilities and eval-
uate outcomes relative to a reference point, which leads
to risk-averse or risk-seeking behavior regarding losses or
gains, respectively. (Kahneman and Tversky, 1979; Bruhin
et al., 2010). A conceptual example from the land-use con-
text illustrates decision making under risk. A farmer i might
face the choice of whether to stick to her current crop x or
switch to a new crop y. She may think that with 20 % proba-
bility the switch will result in a 50 % reduction in her profits,
while with 80 % probability the profits would double. If her
utility is proportional to the profits and she evaluates this un-
certain prospect as described by expected utility theory, her
gain from switching to y would be positive. If, however, she
is averse to losses and thus conforms to prospect theory, she
might evaluate the switch as negative and prefer to stick to x.

If several time points t are involved in a decision, agents
are typically assumed to discount future consequences by us-
ing utility weights that decay in time and reflect the agent’s
time preferences. Discounted utility quantifies the present
desirability of some utility obtained in the future. Most au-
thors use exponentially decaying weights of the form e−rt

with a discounting rate r > 0 because this makes the evalua-
tion independent of its time point. However, empirical stud-
ies suggest that people often use slower decaying weights
(e.g., hyperbolic discounting), especially in the presence of
uncertainty (Ainslie and Haslam, 1992; Jamison and Jami-
son, 2011), although this might lead to time-inconsistent
choices that appear suboptimal at a later time. A farmer i
may compare different crops not only by next year’s expected
profit ui(x,1) but, due to the various crops’ different effects
on future soil quality, also by future years’ profits ui(x, t) for

3ui (x)> ui (y) implies x Pi y, where ui is only defined up to
positive linear (affine) transformations.

t > 1. Crop y might promise higher yields than x in the short
run but lower ones in the long run due to faster soil depletion.
If i is “patient”, having small r , she might prefer y Pi x even
though ui(x,1)> ui(y,1).

Preferences can be aggregated not only in time but also
across several interrelated issues or consequences. For exam-
ple, consumer theory (Varian, 2010) models preferences over
consumption bundles by combining the utility derived from
consuming different products into a total consumption util-
ity and simply adding up these utilities or combining them in
some nonlinear way with imperfect substitutability of goods
(Leontief, Cobb–Douglas, or CES utility functions). A farm-
ers’ utility from leisure time and crop yield y(l) depending
on working time l might, for example, be combined using the
Cobb–Douglas utility function ui = yα(12− l)1−α for some
elasticity α ∈ (0,1).

Complex optimization problems arising from rational
choice theory can be solved by mathematical programming,
calculus of variations, and similar methods (see, e.g., Kamien
and Schwartz, 2012; Chong and Zak, 2013). Optimal deci-
sions under constraints are not only discussed as a descrip-
tion of human behavior, but are also often taken as the nor-
mative benchmark for comparison with other nonoptimal ap-
proaches that we discuss in Sect. 3.2.

Regarding decision modeling in ESMs, rational choice
theory is useful when agents have clear goals and possess
enough information and cognitive resources to assess the op-
timality of strategies. For instance, individuals’ decisions re-
garding long-term investments or the decisions of organiza-
tions, such as firms or governments, in competitive situations
can often be assumed to follow a rational choice model rea-
sonably well. It can also be useful when actors make repeated
similar decisions and can learn optimal strategies from fast
feedback, making them behave “as if” they were rational.

3.2 Bounded rationality and heuristic decision making

Empirical research on human decision making finds that in-
dividual behavior depends on the framing and context of
the decision (Tversky and Kahneman, 1974). Human deci-
sion making is characterized by deviations from the norma-
tive standards of the rational choice model, so-called cogni-
tive biases, challenging the assumption that rational choice
theory serves not only as a normative benchmark, but also
as a descriptive model of individual decision making. Bi-
ases can be the result of time-limited information processing
(Hilbert, 2012), heuristic decision making (Simon, 1956), or
emotional influences (e.g., wishful thinking, Babad and Katz,
1991; Loewenstein and Lerner, 2003). Bounded rationality
theory assumes that human decision making is constrained
by the cognitive capabilities of the agents in addition to the
constraints imposed by the environment and the available
information about it (Simon, 1956, 1997). In the economic
literature, non-transitive preferences, time-inconsistent dis-
counting, and deviations from expected utility that we al-
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ready introduced in the previous subsection are also often
considered as boundedly rational (Gintis, 2009). Boundedly
rational agents can be considered as satisficers that try to
find a satisfying action in a situation given their available in-
formation and cognitive capabilities (Gigerenzer and Selten,
2002).

Constraints on information processing imply that agents
do not integrate all the available information to compute the
utility of every possible option in complex decision situations
and choose an action with maximal utility. Instead, agents
use heuristics to judge the available information and choose
actions that lead to the more preferred outcome over less pre-
ferred ones. Gigerenzer and Gaissmaier (2011) define heuris-
tics in decision making as a “strategy that ignores part of the
information, with the goal of making decisions more quickly,
frugally, and/or accurately than more complex methods.” It
is argued that instead of an all-purpose tool, the mind carries
an “adaptive toolbox” of different heuristic decision schemes
applicable in particular environments (Gigerenzer and Sel-
ten, 2002; Todd and Gigerenzer, 2007).

In general, heuristic rules are formalized either as deci-
sion trees or flowcharts and consist of three building blocks:
one for information search, one for stopping the information
search, and one to derive a decision from the information
found. They evaluate a number of pieces of information – so-
called cues – to either categorize a certain object or to choose
between several options. Many heuristics evaluate these cues
in a certain order and make a decision as soon as a cue value
allows for classification or discriminates between options.

This is illustrated by means of the take-the-best heuristic:
pieces of information (cues) are compared between alterna-
tives according to a prescribed order, which is crucial for the
decision process. At each step in the cue order, some infor-
mation is searched for and evaluated. If the information does
not allow for discrimination between the options, the pro-
cess moves on to the next cue. This repeats as the process
moves down the cue order until a cue is reached for which
the differentiation between options is possible and the option
with the higher cue value is chosen. Another notable example
is the satisficing heuristic that evaluates information sequen-
tially and chooses the first option satisfying certain criteria.
Heuristics, especially cue orders, can be interpreted as en-
coding norms and preferences in individual decision making
as they prioritize features of different options over others and
hierarchically structure the evaluation of available informa-
tion. An overview and explanation of numerous other deci-
sion heuristics can be found in the recent review paper by
Gigerenzer and Gaissmaier (2011).

Gigerenzer and Todd (1999) question the usefulness of ra-
tional choice theory as the normative benchmark because it
is not designed for so-called “large worlds” where informa-
tion relevant for the decision process is either unknown or
has to be estimated from small samples. Instead, they want
to relieve heuristic decision making of its stigma of cogni-
tive laziness, bias, and irrationality. With their account of

ecological rationality, they suggest that heuristics can also
serve as a normative choice model providing context-specific
rules for normative questions. This is motivated by the ob-
servation that in many real-world situations, especially when
high uncertainties are involved, some decision heuristics per-
form equally good or even better than more elaborated deci-
sion strategies (Dhami and Ayton, 2001; Dhami and Harries,
2001; Keller et al., 2014).

So far, heuristics have been used to describe decisions,
for instance in consumer choice (Hauser et al., 2009), voter
behavior (Lau and Redlawsk, 2006), and organizational be-
havior (Loock and Hinnen, 2015; Simon, 1997). However,
fast and frugal decision heuristics are not yet commonly ap-
plied in dynamic modeling of human–nature interactions.
One exception is the description of farmer and pastoralist
behavior in a study of the origins of conflict in East Africa
(Kennedy and Bassett, 2011). However, as the following
example shows, similar decision trees have been used to
model decision making in agent-based simulations of land-
use change. The model by Deadman et al. (2004) describes
colonist household decisions in the Amazon rainforest. Each
household is a potential farmer who first checks whether a
subsistence requirement is met. If this is not the case, the
household farms annual crops. If the subsistence requirement
is met, the household eventually plants perennials or breeds
livestock depending on the soil quality. The model shows
how heuristic decision trees can be used to simplify com-
plex decision processes and represent them in an intelligible
way. However, the example also shows the many degrees of
freedom in the construction of heuristics, pointing at the dif-
ficulty to obtain these structures from empirical research.

Heuristics are a promising tool for including individual hu-
man decision making into ESMs because they can capture
crucial choices in a computationally efficient way. In order to
describe the long-term evolution of preferences, norms, and
values relevant for human interactions with the Earth sys-
tem, heuristics could also be used to model meta-decisions
of preference or value adoption. Recent findings suggest that
cue orders can spread via social learning and social influence
(Gigerenzer et al., 2008; Hertwig and Herzog, 2009) anal-
ogously to norm and opinion spreading in social networks
(see Sects. 4.3 and 4.4), which could be a promising ap-
proach to model social change. However, in contrast to fully
rational decision making, it can be very challenging to ag-
gregate heuristic decision making analytically to higher or-
ganizational levels. Therefore, approaches like agent-based
modeling are suitable to explore the aggregate outcomes of
many agents with such decision rules (see Sect. 5.5).

3.3 Learning theory

The approaches discussed in the previous two subsections
mainly took the perspective of a forward-looking agent. Ra-
tional or boundedly rational actors optimize future payoffs
based on information or beliefs about how their behavior af-
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fects future payoffs, while the procedures to optimize may
be more or less bounded. However, these techniques do not
specify how the information is acquired and how the beliefs
are formed. Computational learning theory focuses on behav-
ior from a backward-looking perspective: an agent learned in
the past that a certain action gives a reward that feels good
or is satisfying and is therefore more likely to repeat this be-
havior. It can describe the adaptivity of agent behavior to a
changing environment and is particularly suited for modeling
behavior under limited information. To model the learning of
agents, unsupervised learning techniques are mostly used be-
cause they do not require training with an external correction.

Reinforcement learning is such a technique that models
how an agent maps environmental conditions to desirable ac-
tions in a way that optimizes a stream of rewards (and/or pun-
ishments). The obtained reward depends on the state of the
environment and the chosen action, but may also be influ-
enced by chosen actions and environmental conditions in the
past. According to Macy et al. (2013), reinforcement learning
differs from forward-looking behavioral models regarding
three key aspects. (1) Because agents explore the likely con-
sequences and learn from outcomes that actually occurred
rather than those which are intended to occur but may only
be obtained with a certain probability, reinforcement learn-
ing does not need to assume that the consequences are in-
tended. (2) Decisions are guided by rewards or punishments
that lead to approach or avoidance rather than by static util-
ities. (3) Learning is characterized by stepwise melioration
and models the dynamic search for an optimum rather than
assuming that the optimal strategy can be determined right
away.

The learning process is modeled via a learning algorithm
(e.g., Q-learning, SARSA learning, actor-critic learning)
based on iteratively evaluating the current value of the en-
vironmental state utilizing a temporal difference error of ex-
pected value and experience value (Sutton and Barto, 1998).
Artificial neural network algorithms can explore very high
dimensional state and action spaces. Genetic algorithms,
which are inspired by evolutionary mechanisms such as mu-
tation and selection, are also applied to learning problems.
The learning algorithm has to balance a trade-off between
the exploration of actions with unknown consequences and
the exploitation of current knowledge. In order to not exploit
only the currently learned strategy, many algorithms use ran-
domness to induce deviations from already learned behavior.

The environment in reinforcement learning problems is
often modeled with Markovian transition probabilities. The
special case of a single agent is called a Markov decision
process (Bellman, 1957). In each of the discrete states of the
environment the agent can choose from a set of possible ac-
tions. The choice then influences the transition probabilities
to the next state and the reward. As an illustration, consider a
farmer adapting her planting and irrigation practices to new
climatic conditions. The environment could be modeled by
a Markov process with different states of soil fertility and

moisture, in which transitions between states reflect the in-
fluence of stochastic weather events. Without the possibility
to acquire knowledge through other channels, she would ex-
plore different possible actions and evaluate how they change
the yield (her reward). Eventually, through a trial-and-error
process, her yield would increase on average.

A common approach to model the acquisition of subjective
probabilities associated with the consequences of actions is
Bayesian learning, which has also been applied to reinforce-
ment learning problems (Vlassis et al., 2012). Starting with
some prior probability (e.g., from some high-entropy “unin-
formative” distribution) P (hi) that some hypothesis hi about
the relation of actions and outcomes is true, new information
or evidence P (E) is used to update the subjective probabil-
ity with the posterior P (E|hi) calculated with Bayes’ the-
orem: P (hi |E)= P (E|hi)P (hi)/P (E) (Puga et al., 2015).
The most probable hypothesis can then be chosen to deter-
mine further action.

By combining various approaches to model the acquisi-
tion of beliefs through learning, the formation of preferences
and different decision rules discussed in the previous sections
with further insights from psychology and neuroscience has
led to the development of very diverse and detailed behav-
ioral theories which are often formalized in cognitive archi-
tectures (Balke and Gilbert, 2014). These approaches can be
used to describe human behavior in computational models,
but are too complex and diverse to discuss them here in de-
tail.

Learning and related theories that emphasize the adapt-
ability of human behavior might be important building
blocks to model the long-term evolution of human interac-
tions with the Earth system from an individual perspective.
On the other hand, they can capture short-term responses to
drastically changing natural environments that are relevant,
for instance, in the context of tipping elements in the Earth
system.

Table 2 summarizes the approaches that focus on indi-
vidual human behavior. Besides the forward- and backward-
looking behavior that we introduced in this section, agents
may exhibit sideways-looking behavior: agents can copy the
behavior of successful others, thereby contributing to a so-
cial learning process. For this kind of behavior, interactions
between different agents are crucial. This will be the focus of
the next section.

4 Modeling interactions between agents

In the previous section, we discussed modeling approaches
that focus on the choices of individuals that are confronted
with a decision in a specified situation. In contrast, this sec-
tion reviews techniques to model how actors interact with
each other and influence or respond to each other’s deci-
sions. Interactions at the system level that are also aggrega-
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Table 2. Summary table for individual behavior and decision making.

Theories Key considerations Strengths Limitations

Optimal decisions in ratio-
nal choice: individuals make
the decision that maximizes
their expected utility given eco-
nomic, social, and environmen-
tal constraints.

What are the agent’s prefer-
ences? What information (and
beliefs) do they have?

Highly researched theory with
strong theoretical foundation
and many applications

Individuals assumed to have
strong capabilities for informa-
tion processing and perfect self-
control

Bounded rationality and heuris-
tic decision making: individuals
have biases and heuristic deci-
sion rules that help them navi-
gate complex environments ef-
fectively.

Which cue order is used to
gather and evaluate informa-
tion? When do agents stop gath-
ering more information and de-
cide?

Simple decision processes that
capture observed biases in deci-
sion making

Suitable decision rules highly
context dependent

Learning: agents explore pos-
sible actions through repeated
learning from past experience.

How do agents interact with
their environment? What is the
trade-off between exploitation
of knowledge and exploration
of new options?

Captures information and belief
acquisition processes

High degree of randomness in
behavioral changes

tion mechanisms (e.g., voting procedures and markets) will
be discussed in Sect. 5.

The section starts with a review of strategic interactions
as modeled in classical game theory and dynamic interac-
tions in evolutionary approaches. Then, we address models
of social influence that are used to study opinion and pref-
erence formation or the transmission of cultural traits, i.e.,
culturally significant behaviors. Finally, we discuss how in-
teraction structures can be modeled as dynamic networks.

4.1 Strategic interactions between rational agents:
classical game theory

Game theory focuses on decision problems of “strategic in-
terdependence”, in which the utility that a decision maker
(called the player) gets depends not only on her own decision,
but also on the choices of others. These are often situations of
conflict or cooperation. Players choose an action (behavioral
option, control) based on a strategy, i.e., a rule specifying
which action to take in a given situation. Classical game the-
ory explores how rational actors identify strategies, usually
assuming the rationality of other players. However, rational
players can also base their choices on beliefs about others
players’ decisions, which can lead to an infinite regress of
mutual beliefs about each other’s decisions.

Formally, a game is described by what game theorists
call a game form or mechanism. The game form specifies
the actions ai(t) that agents can choose at well-defined time
points t from an action set Ai(t) that may vary over time,
having to respect all kinds of situation-dependent rules. The
game form may furthermore allow for communication with
the other agent(s) (signaling) or binding agreements (com-
mitment power). Simple social situations are formalized in

so-called normal-form games represented by a payoff ma-
trix specifying the individual utilities4 for all possible action
combinations, while more complex situations are modeled as
a stepwise movement through the nodes of a decision tree or
game tree (Gintis, 2009).

Classical game theory assumes that players form consis-
tent beliefs about each other’s unobservable strategies, in par-
ticular that the other’s behavior results from an optimal strat-
egy. However, multiplayer interaction and optimization often
leads to recursive relationships between beliefs and strate-
gies, which makes solving complex classical games often
very difficult. Many problems have several solutions, called
equilibria (not to be confused with the steady-state meaning
of the word), and call for sophisticated nonlinear fixed-point
solvers (Harsanyi and Selten, 1988). Only in special cases,
for example in which players have complete information and
moves are not simultaneous but alternating, game-theoretic
equilibria can easily be predicted by simple solution concepts
such as backwards induction (Gintis, 2009). In other cases,
one can identify strategies and belief combinations consis-
tent with the following two assumptions. First, each player
eventually chooses a strategy that is optimal given her be-
liefs about all other players’ strategies (rational behavior).
Second, each player’s eventual beliefs about other players’
strategies are correct (rational expectations). The solutions
are called Nash equilibria. However, many games have mul-
tiple Nash equilibria, and the question of which equilibrium
will be selected arises.

4Note that despite the term “payoff matrix”, these utilities are
unexplained attributes of the agents and need not have a relation to
monetary quantities.
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Therefore, game theorists try to narrow down the likely
strategy combinations by assuming additional forms of con-
sistency and rationality (Aumann, 2006), such as consistency
over time (sequential and subgame perfect equilibria), sta-
bility against small deviations (stable equilibria, Foster and
Young, 1990), or small random mistakes (trembling hand
perfect equilibria, Harsanyi and Selten, 1988). After a plau-
sible strategic equilibrium has been identified, it can be used
in a simulation of the actual behavior resulting from these
strategies over time, possibly including noise and mistakes.

As an example from the land-use context, consider two
farmers living on the same road. They get their irrigation wa-
ter from the same stream. A dispute over the use of water
emerges. Both may react to the actions of the other in sev-
eral turns. The upstream farmer located at the end of the road
may increase or decrease her water use and/or pay compensa-
tion for using too much water to the other. The downstream
farmer at the entrance of the road may demand compensa-
tion or block the road and thereby cut the access of the up-
stream farmer to other supplies. A complex game tree en-
codes which actions are feasible at which moment and what
are the consequences on players’ utilities. If it is possible to
specify the information and options available to the players
at each time point, then a classical game theoretical analy-
sis allows for the determination of the rational equilibrium
strategies that the farmers would follow.

Classical game theory is widely applied to interactions in
market settings in economics (see also Sect. 5.2), but in-
creasingly also in the social and political sciences to polit-
ical and voting behavior in public and social choice theory
(see, e.g., Ordeshook, 1986; Mueller, 2003, and Sect. 5.1).
For example, public choice theory studies strategic interac-
tions between groups of politicians, bureaucrats, and voters
with potentially completely different preferences and action
sets.

While many simple models of strategic interactions be-
tween rational and selfish agents will predict only low levels
of cooperation, more complex models can well explain how
bilateral and multilateral cooperation, consensus, and stable
social structure emerges (Kurths et al., 2015). This has been
shown in contexts such as multiplayer public goods problems
and international climate policy (e.g., Heitzig et al., 2011;
Heitzig, 2013).

To model relevant decision processes in the Earth system,
classical game-theoretic analysis could be used for describ-
ing strategic interactions between agents that could be as-
sumed as highly rational and well informed, i.e., interna-
tional negotiations of climate agreements between govern-
ments, bargaining between social partners, or monopolistic
competition between firms. Similarly, international negotia-
tions and their interactions with domestic policy can also be
framed as two-level or multilevel games (as in some mod-
els of political science, e.g., Putnam, 1988; Lisowski, 2002).
Furthermore, social choice theory could be used to simulate

simple voting procedures that (to a certain extent) determine
the goals of regional or national governments.

4.2 Interactions with dynamic strategies: evolutionary
approaches and learning in game theory

In game-theoretic settings, complex individual behavioral
rules are typically modeled as strategies specifying an action
for each node in the game tree. Consider as an example the
repeated version of the prisoners’ dilemma in which each of
two players can either “cooperate” or “defect” in each period
(Aumann, 2006). A typical complex strategy in this game
could involve reciprocity (defect temporarily after a defec-
tion of your opponent), forgiveness (every so often not re-
ciprocate), and making up (do not defect again after being
punished by a defection of your opponent after your own de-
fection).

Many or even most nodes of a game tree will not be visited
in the eventual realization of the game, and strategies may
involve the deliberate randomization of actions. Therefore,
strategies, unlike actual behavior, are principally unobserv-
able, and assumptions about them are hard to validate. For
this and other reasons, several kinds of additional assump-
tions are often made that constrain the set of strategies further
that a player can choose, e.g., assuming only very short mem-
ory or low farsightedness (myopic behavior) and disallowing
randomization, or allowing only strategies of a specific for-
mal structure such as heuristics (see Sect. 3.2).

The water conflict example from Sect. 4.1 bears some sim-
ilarity to the repeated prisoners’ dilemma in that the farmers’
possible actions can be interpreted as either defective (using
too much water, blocking the road) or cooperative (not do-
ing any of this, compensating for past defections). Assuming
different levels of farsightedness may thus lead to radically
different actions because myopic players would much more
likely get trapped in a cycle of alternating defections than
farsighted players. The latter would recognize some degree
of forgiveness because that maximizes long-term payoff and
would thus desist from defection with some probability. In
any case, both farmers’ choices can be modeled as depend-
ing on what they believe the other will likely do or how she
will react to the last action.

Evolutionary approaches in game theory study the interac-
tion of different strategies and analyze which strategies pre-
vail on a population level as a result of selection mechanisms.
Thus, in contrast to classical game theory, evolutionary ap-
proaches focus on the dynamics of strategy selection in pop-
ulations. The agent’s strategies may be hardwired, acquired,
or adapted by learning (Fudenberg and Levine, 1998; Macy
and Flache, 2002). Although many evolutionary techniques
in game theory are used in biology to study biological evo-
lution (variation through mutation, selection by fitness, and
reproduction with inheritance), evolutionary game theory can
be used to study all kinds of strategy changes in game-
theoretic settings, for instance cultural evolution (transmis-
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sion of memes), social learning through the imitation of suc-
cessful strategies, or the emergence of cooperation (Axelrod,
1984, 1997).

In an evolutionary game, a population of agents is di-
vided into factions with different strategies. They interact
in a formal game (given by a payoff matrix or game tree,
see Sect. 4.1), in which their strategy results in a fitness (or
payoff). The factions change according to some replicator
rules that depend on the acquired fitness. This can be mod-
eled using different techniques. Simple evolutionary games
in well-mixed large populations can be described with repli-
cator equations. The dynamics describing the relative change
in the factions with a particular strategy is proportional to the
deviation of the fitness of this faction from the average fitness
(Nowak, 2006).

Alternatively, the behavior resulting from evolutionary in-
teractions is often easy to simulate numerically as a discrete-
time dynamical system even for large numbers of players
if the individual action sets are finite or low-dimensional
and only certain simple types of strategies are considered.
This type of agent-based model (see Sect. 5.5) simply im-
plements features such as mutation or experimentation and
replication via strategy transfer (e.g., imitation and inheri-
tance) at the microlevel. Combined with network approaches
(see Sect. 4.4), the influence of interaction structure can also
be studied (Szabó and Fáth, 2007; Perc and Szolnoki, 2010).
Strategies can be characterized as evolutionary stable if a
population with this strategy cannot be invaded by another,
initially rare strategy. If a strategy is furthermore stable for
finite populations or noisy dynamics, it is called stochasti-
cally stable.

In our water conflict example, the farmers could use a
heuristic strategy (see Sect. 3.2) that determines how much
water they extract given the actions of the other. The evolu-
tion of the strategies could either be modeled with a learn-
ing algorithm, repeating the game again and again. Alterna-
tively, to determine feasible strategies in an evolutionary set-
ting, a meta-model could consider an ensemble of similar vil-
lages consisting of two farmers. The strategies of the farmers
would then be the result of either an imitation process be-
tween the villages or of an evolutionary process, assuming
that less successful villages die out over time.

Evolutionary approaches to game theory are a promising
framework to better understand the prevalence of certain hu-
man behaviors regarding interaction with the Earth system.
This is especially interesting regarding the modeling of long-
term cultural evolution and changes in individuals’ goals, be-
liefs, and decision strategies or the transmission of endoge-
nous preferences (Bowles, 1998).

4.3 Modeling social influence

Human behavior and its determinants (beliefs, goals, and
preferences) are strongly shaped by social influence, which
can result from various cognitive processes. Individuals may

be convinced by persuasive arguments (Myers, 1982), aim
to be similar to esteemed others (Akers et al., 1979), be
unsure about what is the best behavior in a given situation
(Bikhchandani et al., 1992), or perceive social pressure to
conform with others (Wood, 2000; Festinger et al., 1950;
Homans, 1950).

Models of social influence allow for the study of the out-
comes of repeated influence in social networks and have been
used to explain the formation of consensus, the development
of monoculture, the emergence of clustered opinion distri-
butions, and the emergence of opinion polarization, for in-
stance. Models of social influence are very general and can be
applied to any setting in which individuals exert some form
of influence on each other. However, seemingly innocent dif-
ferences in the formal implementation of social influence can
have decisive effects on the model outcomes, as the follow-
ing list of important modeling decisions documents.

A first question is how social influence changes individ-
ual attributes. For example, a farmer deciding when to till
his field might either choose the date that most of his neigh-
bors think is best, take the average of the proposed dates, or
even try to counter coordinate with disliked farmers. Clas-
sical models incorporate influence as averaging, which im-
plies that interacting individuals always grow more similar
over time (Friedkin and Johnsen, 2011). Averaging is an ac-
cepted and empirically supported model of influence result-
ing, for instance, from the social pressure that an actor exerts
on someone else (Takács et al., 2016). Models assume differ-
ent forms of averaging. Rather than following the arithmetic
average of all opinions, actors might only consider the major-
ity view (Nowak et al., 1990). In other models, social influ-
ence can lead to polarization (Myers, 1982). For instance, in
models of argument communication, actor opinions can turn
more extreme when the interaction partners provide them
with new arguments that support their own opinion (Mäs and
Flache, 2013; Mäs et al., 2013).

Second, modelers need to decide whether there is just one
or multiple dimensions of influence. For instance, it is of-
ten argued that political opinions are multidimensional and
cannot be captured by the one-dimensional left–right spec-
trum. Explaining the dynamics of opinion polarization and
clustering is often more difficult when multiple dimensions
are taken into account (Axelrod, 1997). Additionally, model
predictions often depend on whether the influence dimen-
sion is a discrete or a continuous variable. Models of indi-
viduals’ decisions about certain policies often model the de-
cisions as binary choices (Sznajd-Weron and Sznajd, 2000;
Martins, 2008). However, binary scales fail to capture the
fact that many opinions vary on a continuous scale and that
differences between individuals can therefore also increase
in a single dimension (Feldman, 2011; Jones, 2002; Stroud,
2010). Therefore, models that describe opinion polarization
usually treat opinions as continuous attributes.

A third critical question is how the interaction process is
modeled. In models of opinion dynamics, for example, influ-
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ence is bidirectional in that an actor who exerts influence on
someone else can also be influenced by the other (Macy et al.,
2013; Mäs et al., 2010). In diffusion models, in contrast, the
effective influence is directed. For instance, information can
spread only from informed to uninformed individuals, but not
the other way around. Furthermore, actors may be influenced
dyadically or multilaterally. Model outcomes often depend
on whether the influence that a group exerts on an actor is
modeled as a sequence of events involving dyads of actors
or as a single opinion update in which the actor considers all
contacts’ influences at once (Flache and Macy, 2011; Lorenz,
2005; Huckfeldt et al., 2004). In models that assume binary
influence dimensions, for instance, dyadic influence implies
that an agent copies a trait from her interaction partner. When
influence is multilateral, agents aggregate the influence ex-
erted by multiple interaction partners (using, e.g., the mode
of the neighbors’ opinions), which can imply that agents with
rare traits are not considered even though they would have
an influence in the case of dyadic influence events. For ex-
ample, a farmer seeking advice on whether to adopt a new
technology can either consult his friends one after another or
all together, likely leading to different outcomes if they have
different opinions on the matter.

Fourth, agents may slightly deviate from the influence
of their contacts. The exact type of these deviations affects
model outcomes and can introduce a source of diversity into
models of social influence (Mäs et al., 2010; Pineda et al.,
2009; Kurahashi-Nakamura et al., 2016). For instance, some
models of continuous opinion dynamics include deviations
as Gaussian noise, i.e., random values drawn from a nor-
mal distribution. In such a model, opinions in homogeneous
subgroups will fluctuate randomly and subgroups with sim-
ilar opinions can merge that would have remained split in a
model without deviations (Mäs et al., 2010). In other con-
texts, deviations are better modeled by uniformly distributed
noise, assuming that big deviations are as likely as small
ones. This can help to explain, for instance, the emergence
and stability of subgroups with different opinions that do not
emerge in settings with Gaussian noise5 (Pineda et al., 2009).

Finally, the effects of social influence depend on the struc-
ture of the network that determines who influences whom.
Complex dynamics can arise when this interaction network
is dynamic and depends on the attributes of the agents, as we
discuss in the following section.

Models of social influence are a promising approach to
explore how social transitions interact with the Earth sys-
tem, for example transitions of norms regarding admissible
resource use and emissions, lifestyle changes, and adoption
of new technology. They can be used to explore the condi-
tions under which social learning enables groups of agents to
adopt sustainable management practices.

5Gaussian noise needs to be very strong to generate enough
diversity for the emergence of subgroups with different opinions.
However, when noise is strong, subgroups will not be stable.

4.4 Modeling the interaction structure: (adaptive)
network approaches

In most of the models discussed in the previous section, the
social network is formally modeled as a graph (the mathe-
matical notion for a network): a collection of nodes that are
connected by links. In this mathematical framework, nodes
(vertices) represent agents and links (edges) indicate inter-
action, communication, or a social relationship. Agents can
only interact and thus influence each other if they are con-
nected by a link in the underlying network.

Classical social influence models study the dynamics of
influence on static networks, assuming that agents are al-
ways affected by the same subset of interaction partners (e.g.,
DeGroot, 1974; French, 1956; Friedkin and Johnsen, 2011).
These networks can be undirected or directed, possibly re-
stricting the direction of influence, but their structure does
not change over time. Furthermore, the topology of the net-
work, i.e., the arrangement of links, can be more or less ran-
dom or regular, clustered, and hierarchical. In social influ-
ence models on static networks, connected populations will
usually reach consensus in the long run.

Especially when modeling social processes over longer
timescales, it is reasonable to assume that the social network
is dynamic, i.e., that its structure evolves over time. This time
evolution can be independent of the dynamics on the network
and encoded in a temporal network (Holme and Saramäki,
2012). However, for many social processes, the structure of
the social network and the dynamics on the network (e.g., so-
cial influence) interact. Adaptive network models make the
removal of existing and the formation of new links between
agents dependent on attributes of the agents by building on
the insight that the social structure influences the behavior,
opinions, or beliefs of individual actors, which in turn drives
changes in social structure (Gross and Blasius, 2008).

Local update rules for the social network structure and
the agent behavior can be chosen very flexibly. Changes in
agent behaviors may be governed by rules such as random
or boundedly rational imitation of the behavior of network
neighbors (see above). Update rules for the network struc-
ture are often based on the insight that agents tend to be in-
fluenced by similar others and ignore those who hold too-
distant views (Wimmer and Lewis, 2010; McPherson et al.,
2001; Lazarsfeld and Merton, 1954). Many models assume
that agents with similar characteristics tend to form new
links between each other (homophily) while breaking links
with agents having diverging characteristics (Axelrod, 1997;
Hegselmann and Krause, 2002; Deffuant et al., 2005). In
adaptive network models, homophily in combination with
social influence generates a positive feedback loop: influ-
ence increases similarity, which leads to more influence and
so on. Such models can explain, for instance, the emergence
and stability of multiple internally homogeneous but mutu-
ally different subgroups. Other applications of coevolution-
ary network models allow us to understand the presence
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of social tipping points in opinion formation (Holme and
Newman, 2006), epidemic spreading (Gross et al., 2006),
the emergence of cooperation in social dilemmas (Perc and
Szolnoki, 2010), and the interdependence of coalition for-
mation with social networks (Auer et al., 2015). Such adap-
tive network models exhibit complex and nonlinear dynam-
ics such as phase transitions (Holme and Newman, 2006),
multi-stability (Wiedermann et al., 2015), oscillations in both
agent states and network structure (Gross et al., 2006), and
structural changes in network properties (Schleussner et al.,
2016).

While adaptive networks have so far mostly been applied
to networks of agents representing individuals, the frame-
work can in principle be used to model coevolutionary dy-
namics on various levels of social interaction as introduced
in Table 1. For instance, global complex network structures
such as financial risk networks between banks, trade net-
works between countries, transportation networks between
cities and other communication, organizational, and infras-
tructure networks can be modeled (Currarini et al., 2016).
Furthermore, approaches such as multi-layer and hierarchi-
cal networks or networks of networks allow for the modeling
of the interactions between different levels of a system (Boc-
caletti et al., 2014).

As an illustration, consider a community of agents each
harvesting a renewable resource, for example wood from a
forest. The agents interact on a social network, imitating the
harvesting effort of neighbors that harvest more and may
drop links to neighbors that use another effort. The interac-
tion of the resource dynamics with the network dynamics ei-
ther leads to a convergence of harvest efforts or a segregation
of the community into groups with higher or lower effort de-
pending on the model parameters (Wiedermann et al., 2015;
Barfuss et al., 2017).

In the context of long timescales in the Earth system, the
time evolution of social structures that determine interactions
with the environment are particularly important. Adaptive
networks offer a promising approach to modeling the struc-
tural change of the internal connectivity of a complex system
(Lade et al., 2017). For example, this could be applied to
explore mechanisms behind transitions between centralized
and decentralized infrastructure and organizational networks.

Table 3 summarizes the different modeling approaches
that focus on agent interactions in human decision making
and behavior. These interactions occur between two or sev-
eral agents. For including the effect of these interactions
into ESMs, their aggregate effects need to be taken into ac-
count as well. Therefore, we introduce in the next section ap-
proaches that allow us to aggregate individual behavior and
local interactions and to study the resulting macrolevel dy-
namics.

5 Aggregating behavior and decision making and
modeling dynamics at the system level

So far, we focused on theories and modeling techniques that
describe the decision processes and behavior of single actors,
their interactions, and the interaction structure. This section
builds on the previously discussed approaches and highlights
different aggregation methods for the behavior of an ensem-
ble or group of agents. This is an important step if models
shall describe system-level outcomes or collective decision
making and behavior in the context of Earth system mod-
eling. Aggregation techniques link modeling assumptions at
one level (often called the microlevel) to a higher level (the
macrolevel). They enable the analysis of macrolevel out-
comes and help to transfer models from one scale to another.
In general, this could link all levels introduced in Sect. 2.

In this section, we describe different approaches that are
used to make this connection. Analytical approaches gen-
erally represent groups of individual agents through some
macrolevel or average characteristic, often using simplifying
assumptions regarding the range of individual agents’ char-
acteristics. Simulation approaches describe individual behav-
ior and interactions and then compute the resulting aggregate
macroscopic dynamics.

The question of how to aggregate micro-processes to
macro-phenomena is not specific to modeling human deci-
sion making and behavior. The aggregation of individual be-
havior and the resulting description of collective action, such
as collective motion, is also an ongoing challenge in the nat-
ural sciences (Couzin, 2009). Specific assumptions about in-
dividual behavior and agent interactions have consequences
for the degree of complexity of the macrolevel description.
For instance, if agent goals and means do not interact, the
properties of single agents can often be added up. If, on the
contrary, agents influence each other’s goals or interact via
the environment, complex aggregate dynamics can arise.

The following sections discuss different aggregation tech-
niques, their underlying assumptions, and how these reflect
specific aggregation mechanisms. They are summarized in
Table 4.

5.1 Aggregation of preferences: social welfare and
voting

Rational choice approaches can also be used to model deci-
sion making by agents on higher levels from Table 1, for ex-
ample firms or countries. The “preferences” of such groups
of individuals are often represented by using as the opti-
mization target a social welfare function, which aggregates
the members’ utility functions either additively (“utilitarian”
welfare) or in some nonlinear way to represent inequality
aversion (e.g., the Gini–Sen, Atkinson–Theil–Foster, or egal-
itarian welfare functions; Dagum, 1990). To do so, a com-
mon scale of utility must be assumed. For example, individ-
ual utility in many economic models equals the logarithm
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Table 3. Summary table for agent interactions.

Approaches and frame-
works

Key considerations Strengths Limitations

Classical game theory:
strategic interactions
between rational agents

What is the game structure (op-
tions, possible outcomes, tim-
ing, information flow) and what
are the players’ preferences?

Elegant solutions for low-
complexity problems

Difficult to solve for complex
games, agents cannot change
the rules of the game

Evolutionary game the-
ory: competition and
selection between hard-
wired strategies

What competition and selection
mechanisms are there?

Can explain how dominant
strategies come about

Agent strategies are modeled as
hardwired (no conscious strat-
egy change)

Social influence: agents
influence each other’s
beliefs, preferences, or
behaviors

How do influence mechanisms
change agent attributes? Is the
influence multilateral, dyadic,
or directed? How large are de-
viations?

Allows for the modeling of so-
cial learning, preference forma-
tion, and herding behavior

Local dynamics are often styl-
ized

Network theory: chang-
ing social interaction
structures

Is the social network static or
adaptive? How much random-
ness and hierarchy is in the
structure? How do agents form
new links?

Mathematical formalization to
model coevolution of social
structure with agent attributes

Micro-interactions mostly
dyadic and schematic

of the total monetary value of the individual’s consumption.
Social welfare functions are indeed used to find optimal pol-
icy, for example in cost–benefit analysis (Feldman and Ser-
rano, 2006). Consider a village of farmers growing crops that
need different amounts of water so that water management
policies affect farmer incomes. The effects of a water policy
could then be evaluated using the average, minimal, or av-
erage logarithmic income of farmers as a measure of social
welfare. The policy option maximizing the chosen indicator
should be implemented.

However, it is highly debated whether the utilities of dif-
ferent individuals can really be compared and substituted in
the sense that a drop in collective welfare resulting from an
actor’s decrease in utility can be compensated for by increas-
ing the utility of another actor. Defining suitable group pref-
erences is especially hard when group composition or size
changes over time as in intergenerational models (Millner,
2013). Also, in complex organizations, real decisions might
be nonoptimal for the group and more explicit models of ac-
tual decision procedures may be needed. Models in subfields
of game theory (bargaining, voting, or social choice theory)
explore the outcomes of formal protocols that are designed
to aggregate the group member’s heterogeneous preferences.
Under different voting or bargaining protocols, subgroups
may dominate the decision or the group may be able to reach
a compromise (Heitzig and Simmons, 2012). In the above ex-
ample, the farmers may not agree on a social welfare measure
that a policy should optimize but instead on a formal protocol
that would allow them to determine a policy for water usage
that is acceptable for all.

5.2 Aggregation via markets: economic models and
representative agents

A major part of the relevant interaction of contemporary
societies with the Earth system is related to the organiza-
tion of production and consumption on markets. Markets
not only mediate between the spheres of production and
consumption, but they can also be seen as a mechanism
to aggregate agents’ decisions and behavior. Economic the-
ory explores how goods and services are allocated and dis-
tributed among the various activities (sectors of production)
and agents (firms, households, governments) in an economy.
Goods and services may be consumed or can be the input
factors to economic production. Input factors for production
are usually labor and physical capital but can also include
financial capital, land, energy, natural resources, and inter-
mediate goods. In markets, the coordination between the de-
mand and supply of goods is mediated through prices that are
assumed to reflect information about the scarcity and produc-
tion costs of goods. Economics compares different kinds of
market settings (e.g., auctions, stock exchanges, international
trade) with respect to different criteria such as allocative ef-
ficiency.

Building on rational choice theory for modeling the de-
cisions of individual agents, microeconomic models in the
tradition of neoclassical economics analyze the conditions
for an equilibrium between supply and demand on single
markets (partial equilibrium theory) and between all mar-
kets (general equilibrium theory). The behavior of house-
holds and firms is usually modeled as utility maximization
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Table 4. Summary table for aggregation and system-level descriptions.

Approaches and frameworks Key considerations Strengths Limitations

Social utility and welfare: ag-
gregate individual utility, possi-
bly taking inequalities into ac-
count

How is inequality evaluated?
How is welfare compared be-
tween societies and genera-
tions?

Basis for cost–benefit analy-
sis, a widely applied decision
model for policy evaluation

Assumes that individual utility
can be compared on a common
scale

Aggregation via markets: rep-
resentative agents in economic
models

What goals or preferences do
representative agents have?
How efficient do market mech-
anisms allocate on which
spatial and temporal scales?
What market imperfections are
there?

Well-developed formalism
that makes the connection
between microeconomics and
macroeconomics analytically
traceable

Assumes that aggregated agent
properties are similar to indi-
vidual ones to derive economic
equilibrium, coordination effort
between agents neglected

Social planner and economic
policy in integrated assessment
models: model ways to internal-
ize environmental externalities

Which economic policy in-
struments internalize environ-
mental externalities best? What
are plausible scenarios for pol-
icy implementation? How do
agents react to changes in pol-
icy?

Allows for the determination of
optimal paths for reaching soci-
etal goals

Models focus on production
and investment in the economy

Distributions and moments:
model heterogeneous agent at-
tributes via statistical properties
of distributions

Which heterogeneities are
most important for the macro-
outcome?

Systematic way to analytically
treat heterogeneities

Only applicable for rather sim-
ple behaviors and interactions

Agent-based models: simulate
agent behavior and interactions
explicitly to study emergent
macro-dynamics computation-
ally

What kind of agent types are
important? How do they make
decisions? How do the agents
interact with each other and the
environment?

Very flexible framework re-
garding assumptions about de-
cision rules and interactions

Models often with many un-
known parameters, difficult to
analyze mathematically

Dynamics at the system level Which crucial parameters in the
model can be influenced by de-
cision makers?

Allows for the exploration of
possible dynamical properties
of the system based on macro-
mechanisms

No explicit micro-foundation

under budget constraints and profit maximization under tech-
nological constraints in production, respectively. A central
assumption is that an economy is characterized by decreas-
ing marginal utility and diminishing returns: the additional
individual utility derived from the consumption of one ad-
ditional unit of some good is declining. Similarly, the addi-
tional production derived from an additional unit of a sin-
gle input factor is declining with its absolute amount when
holding other input factors fixed. Accordingly, the output of
the production process is described as a production function,
which is concave in its input factor arguments.

Assuming that there is perfect competition between pro-
ducers, resources and goods are allocated in a Pareto efficient
way so that no further redistribution is possible that benefits
somebody without making somebody else worse off (Varian,
2010). It has been shown that this leads to the emergence of
an equilibrium price for each good as the market is cleared
and supply meets demand (Arrow and Debreu, 1954). The
idea of this market equilibrium can be understood by the as-

sociated prices. The rational market participants trade goods
as long as there is somebody who is willing to offer some
good at a lower price than somebody else is willing to pay for
it. However, in markets dominated by a few or very hetero-
geneous agents, perfect competition cannot be assumed, and
price wars, hoarding, and cartel formation can occur. Such
situations can be described in models of oligopoly, bargain-
ing, or monopolistic competition but are sometimes difficult
to integrate into macroeconomic frameworks.

Macroeconomic models build on this microeconomic the-
ory by modeling the decision making of firms and house-
holds with the representative agent approach. A representa-
tive agent stands for an ensemble of agents or an average
agent of a population. An underlying assumption is that het-
erogeneities and local interactions cancel out for large num-
bers of agents. While representative firms model the sup-
ply of different sectors, the demand is determined by one or
several representative households. Representative firms and
households are assumed to act as if there were perfect compe-
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tition and they had no market power, i.e., that they optimize
their production or consumption taking the prices of goods
and production factors as given. The prices of production fac-
tors are assumed to equal the value of what they are able to
produce additionally by using one additional unit, i.e., their
marginal product. In simple macroeconomic models, repre-
sentative agents interact on perfect markets for all production
factors and goods. The solution of the associated optimiza-
tion problem (with constraints given by a system of nonlin-
ear algebraic equations) specifies the quantity and allocation
of input factors, their prices (wages and interest rates), and
the production and allocation of consumer goods. A change
in one constraint can therefore lead to adjustments in all sec-
tors and new equilibrium prices. For example, in an economy
with only two sectors, industry and agriculture, modeled by
two representative firms and a representative household, in-
creases in agricultural productivity may lead to the realloca-
tion of labor into the industrial sector and changes in wages.

In reality, prices can undergo rapid fluctuations, which
challenges the validity of equilibrium assumptions at least
in the short run. Furthermore, production factors may not
be fully employed as general equilibrium considerations sug-
gest. Other deviations from efficient equilibria are discussed
as market imperfections such as transaction costs, asymme-
tries in available information, and noncompetitive market
structures. Dynamic stochastic general equilibrium (DSGE)
models account for the consumption and investment deci-
sions of economic agents under uncertainty and explore the
consequences of stochastic shocks on public information
or technology for macroeconomic indicators. Many mod-
ern DSGE models also incorporate short-term market fric-
tions such as barriers to nominal price adjustments (“sticky”
prices) or other market imperfections (Wickens, 2008). How-
ever, these models still build on the key concept of general
equilibrium because they assume that the state of the econ-
omy is always near such an equilibrium and market clearance
is fast.

Economic growth models are used to study the long-term
dynamics of production and consumption and are therefore
an important approach for Earth system modeling. In sim-
ple growth models, a homogeneous product is produced per
time according to an aggregate production function. A part
of the output can be saved as new capital, while the remain-
ing output is consumed. The evolution of the capital stock
is given by a differential equation taking into account in-
vestments and capital depreciation. In the standard neoclassi-
cal growth model, the savings are endogenously determined
by the inter-temporal optimization of a representative house-
hold and equal investments. The household maximizes an
exponentially discounted utility stream (compare Sect. 3.1),
which is a function of consumption (Acemoglu, 2009). The
central decision of the representative household is how much
of the produced output it saves to increase production in the
future and therefore cannot consume and enjoy directly. Such
inter-temporal optimization problems can be solved either

computationally by discretization in time or analytically by
applying techniques from optimal control theory6. Besides
population growth, the only long-term drivers of growth in
the standard neoclassical model are exogenously modeled
increases in productivity through technological change. In
contrast, so-called endogenous growth models exhibit long-
run growth and endogenously account for increases in pro-
ductivity, for example through innovation, human capital, or
knowledge accumulation (Romer, 1986; Aghion and Howitt,
1998).

The use of representative agents in macroeconomic mod-
els has implications that stem from the implicit assumption
that the representative agent has the same properties as an
individual of the underlying group (Kirman, 1992; Rizvi,
1994). First, the approach neglects the fact that single agents
in the represented group have to coordinate themselves, leav-
ing out problems that arise due to incomplete and asymmetric
information. Second, a group of individual maximizers does
not necessarily imply collective maximization, challenging
the equivalence of the equilibrium outcome. Finally, the rep-
resentative agent approach may neglect emergent phenomena
from heterogeneous micro-interactions (Kirman, 2011).

In spite of the deficiencies of the representative agent ap-
proach, its application to markets allows for the aggregation
of behavior in simple and analytically tractable forms. Mod-
elers who wish to describe economic dynamics at an aggre-
gate level can rely on a well-developed theory that describes
many economic phenomena in a good approximation. In the
following section, we will discuss how this approach is used
to analyze the impacts of economic activities on the environ-
ment.

5.3 Modeling of decisions in integrated assessment
models: social planner and economic policy

Integrated assessment models (IAMs) comprise a large mod-
eling family that combine economic with environmental dy-
namics. However, the majority of currently used IAMs draws
on ideas from environmental economics. Using the concept
of environmental externality, they evaluate the extraction of
exhaustible resources, environmental pollution, and overex-
ploitation of ecosystems economically. Externalities are ben-
efits from or damages to the environment that are not re-
flected in prices and affect other agents in the economy (see,
e.g., Perman et al., 2003). These models therefore help to as-
sess economic policies that tackle environmental problems.

State-of-the-art global IAMs combine macroeconomic
representations of sectors like the energy and land systems
with models of the biophysical bases and environmental im-
pacts of these sectors. For example, CO2 emitted from burn-

6Optimal control theory deals with finding an optimal choice for
some control variables (often called policy) of a dynamical system
that optimizes a certain objective function using, for example, vari-
ational calculus (Kamien and Schwartz, 2012).
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ing fossil fuels is linked to economic production by car-
bon intensities and energy efficiencies in different production
technologies. IAMs often model technological change en-
dogenously, for example with investments in R&D or learn-
ing by doing (i.e., decreasing costs with increasing utilization
of a technology). Because of the possibility to induce tech-
nological change, the models capture the path dependencies
of investment decisions. Many IAMs take the perspective of
a social planner who makes decisions on behalf of society
by optimizing a social welfare function (see Sect. 5.1). It is
assumed that the social optimum equals the perfect market
outcome with economic regulations that internalize all exter-
nal effects (e.g., emission trading schemes).7

IAMs are mostly computational general or partial equi-
librium models describing market clearing between all sec-
tors or using exogenous projections of macroeconomic vari-
ables (see Sect. 5.2). They also differ with respect to inter-
temporal allocation. While inter-temporal optimization mod-
els use discounted social welfare functions to allocate in-
vestments and consumption optimally over time, recursive
dynamic models solve an equilibrium for every time step
(Babiker et al., 2009). Furthermore, IAMs are either designed
for (1) determining the optimal environmental outcomes of
a policy by making a complete welfare analysis between
different policy options or (2) evaluating different paths to
reach a political target with respect to their cost effectiveness
(Weyant et al., 1996). In the context of climate change, for
example, many IAMs have emission targets as constraints in
their optimization procedure and determine the best way to
reach them (Clarke et al., 2014).

For the analysis of global land use, IAMs combine
geographical and economic modeling frameworks (Lotze-
Campen et al., 2008; Hertel et al., 2009; Havlík et al., 2011).
These models are used, for example, to investigate the com-
petition between different land uses and trade-offs between
agricultural expansion and intensification. With the optimiza-
tion, land uses are instantaneously and globally allocated and
only constrained by environmental factors such as soil qual-
ity, water availability, and climate and protection policies.

IAMs differ from ESMs not only regarding their model-
ing technique (mostly optimization) but also regarding their
purpose: they help policy advisors to assess normative paths
that the economy could take to reach environmental policy
goals. While the decision about the policy is exogenous to the
model, the investment decisions within and between sectors
are modeled as a reaction to the political constraints. How-
ever, most IAMs do not account for possible changes on the
demand side, for example through changes in consumer pref-
erences for green products. A better cooperation between the
IAM and ESM communities, as called for by van Vuuren
et al. (2016) in this Special Issue, is certainly desirable be-

7This argument is based on the second fundamental theorem of
welfare economics; see, for example, Feldman and Serrano, 2006,
63–70.

cause some of the problems that arise when including human
decision making into ESMs have already been dealt with in
IAMs. However, when considering the coupling of IAMs and
ESMs with different methods (van Vuuren et al., 2012), mod-
elers have to keep in mind not only technical compatibility
(e.g., regarding the treatment of time in inter-temporal opti-
mization models) but also the possibly conflicting modeling
purposes.

5.4 Modeling agent heterogeneity via distributions and
moments

As discussed in Sect. 5.2, the representative agent approach
can hardly capture heterogeneity in human behavior and in-
teraction. In this section we describe analytical techniques
that allow for the representation of at least some forms of
agent heterogeneity.

An ensemble of similar agents can be modeled via sta-
tistical distributions if the agents are heterogeneous regard-
ing only some quantitative characteristics, for example pa-
rameters in utility functions or endowments such as income
and wealth. In simple models, techniques from statistical
physics and theoretical ecology can be used to derive a
macro-description from micro-decision processes and inter-
actions. For instance, the distribution of agent properties rep-
resenting an ensemble of agents can be described via a small
number of statistics such as mean, variance, and other mo-
ments or cumulants. The dynamics in the form of the dif-
ference or differential equations of such statistical parame-
ters can be derived by different kinds of approximations. A
common technique is moment closure that expresses the dy-
namics of lower moments in terms of higher-order moments.
At some order, the approximation is made by neglecting all
higher-order moments or approximating them by using func-
tions of lower-order ones (see, e.g., Goodman, 1953; Keel-
ing, 2000; Gillespie, 2009).

To aggregate simple interactions between single nodes in
network models, similar techniques can be used to describe
with differential equations how the occurrence of simple
subgraphs (motifs) changes with the dynamics on and of
the network. In network theory, these approaches are also
called moment closure, although the closure refers here to
neglecting more complicated subgraphs (e.g., Do and Gross,
2009; Rogers et al., 2012; Demirel et al., 2014). For ex-
ample, the simple pair approximation only considers differ-
ent subgraphs consisting of two vertices (agents) and one
link. To abstract from the finite-size effects of fluctuations
at the microlevel in stochastic modeling approaches and ar-
rive at deterministic equations, analytical calculations often
take the limit of the agent number going to infinity (in sta-
tistical physics called the thermodynamic limit; Reif, 1965;
Castellano et al., 2009).

Techniques based on moment closure and network approx-
imations are used to aggregate the dynamics of processes like
opinion formation on networks. This might be especially use-
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ful in reducing computational complexity when modeling so-
cial processes at intermediate levels of aggregation and could
allow for the investigation of the interplay of mesoscale so-
cial processes with the natural dynamics of the Earth system.

5.5 Aggregation in agent-based models

Agent-based modeling is a computational approach to mod-
eling the emergence of macrolevel or system-level out-
comes from microlevel interactions between individual, au-
tonomous agents and between agents and their social and/or
biophysical environments (Epstein, 1999; Gilbert, 2008; Ed-
monds and Meyer, 2013). In agent-based models (ABMs),
human behavior is not aggregated to the system level a pri-
ori, nor is it assumed that individual behavioral diversity can
be represented by a single representative agent as in many
macroeconomic models (see Sect. 5.2). Instead, the behav-
ior of heterogeneous agents or groups of agents is explic-
itly simulated to study the resulting aggregate outcomes. As
each action of an individual agent is interdependent, i.e., it
depends on the decisions or actions of other agents within
structures such as networks or space, local interactions can
give rise to complex, emergent patterns of aggregate behav-
ior at the macrolevel (Page, 2015). ABMs allow for the ex-
ploration of such nonlinear behavior in order to understand
possible future developments of the system or assess possible
unexpected outcomes of disturbances or policy interventions.
Agent-based modeling is widely used to study complex sys-
tems in computational social science (Conte and Paolucci,
2014), land-use science (Matthews et al., 2007), political sci-
ence (de Marchi and Page, 2014), computational economics
(Tesfatsion, 2006; Heckbert et al., 2010; Hamill and Gilbert,
2016), social–ecological systems research (Schlüter et al.,
2012; An, 2012), and ecology (Grimm and Railsback, 2005),
among others.8

Agents in ABMs can be individuals, households, firms, or
other collective actors, as well as other entities or groups
thereof, such as fish, fish populations, or plant functional
types. Agents are assumed to be diverse and heterogeneous;
i.e., they can belong to different types and can vary within
one type, respectively. Agent types can be characterized by
different attributes and decision-making models (e.g., large
and commercial versus small and traditional farms). Hetero-
geneity within a type is often represented through quantita-
tive differences in the values of these attributes (e.g., regard-
ing market access, social, or financial capital). The decision
making and behavior of the agents can be modeled with any
of the approaches introduced in Sect. 3 or can be based on
data or observations that are formalized in equations, deci-
sion trees, or other formal rules. In empirical ABMs, agents

8Note that in some scientific communities, this class of modeling
approaches is also known as multi-agent simulation (MAS; Bous-
quet and Le Page, 2004) or individual-based modeling (Grimm and
Railsback, 2005).

are often classified into empirically based agent types, which
are characterized by attributes and decision heuristics derived
from empirical data obtained through interviews or surveys
(Smajgl and Barreteau, 2014). Increasingly, social science
theories of human behavior beyond the rational actor are be-
ing used in ABMs to represent more realistic human decision
making. However, many challenges remain to translate these
theories for usage in ABMs (Schlüter et al., 2017).

Probabilistic and stochastic processes are often used to
capture uncertainty in and the impact of random events on
human decision making and assess the consequences for
macrolevel outcomes. For example, random events at the lo-
cal level, such as a random encounter between two agents
that results in a strategy change of one agent or a system-level
environmental variation, can give rise to nonlinear macro-
dynamics such as a sudden shift into a different system state
(Schlüter et al., 2016).

In addition to the behavior of the agents, ABMs of human–
environment systems incorporate the dynamics of the bio-
physical environment resulting from natural processes and
human actions insofar as it is relevant for the agents’ be-
havior and to understand feedbacks between human behav-
ior and environmental processes. For example, in an ABM
by Martin et al. (2016), a number of cattle ranchers can
move their livestock between grassland patches in a land-
scape. Overgrazing in one year decreases feed availability
in the following year because of the underlying biomass re-
growth dynamics. Agents decide how many cattle to graze
on a particular land patch based on their individual goals
or needs, information on the state of the grassland, beliefs
about the future, and interactions with other ranchers. The
model can reveal the interplay and success of different land-
use strategies on common land and assess their vulnerability
to shocks such as droughts. Most ABMs in the context of
land-use science have so far been developed for local or re-
gional study areas, taking into account local specificities and
fitting behavioral patterns to data acquired in the field (Parker
et al., 2003; Matthews et al., 2007; Groeneveld et al., 2017).
They are often combined with cellular automaton models that
describe the dynamics and state of the physical land system
(e.g., Heckbert, 2013). In these ABMs, the spatial embedding
of agents usually plays an important role (Stanilov, 2012).

Because ABMs can integrate a diversity of individual de-
cision making, heterogeneity of actors, and interactions be-
tween agents constrained by social networks or space and so-
cial and environmental processes, they are particularly suit-
able to study feedbacks between human action and biophys-
ical processes. In the context of ESM these may include hu-
man adaptive responses to environmental change, such as the
effects of climate change on agriculture and water availabil-
ity, to policies such as bioenergy production or the global
consequences of shifts in diets in particular regions. Agent-
based modeling is also a useful tool to unravel the causal
mechanisms underlying system-level phenomena (Epstein,
1999; Hedström and Ylikoski, 2010) and thus enhance the
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understanding of key human–environment interactions that
may give rise to observed Earth system dynamics. However,
because of their potentially high complexity and dimension-
ality in state and parameter space, ABMs are often difficult to
analyze and may require high computational capacities and
sophisticated model analysis techniques to understand their
dynamics beyond single trajectories.

Agent-based approaches can be applied without modeling
each individual agent explicitly. It suffices to model a repre-
sentative statistical sample of agents that depicts the impor-
tant heterogeneities of the underlying population. To capture
major types of human behavior, a recent proposal involves
agent functional types based on a theoretically derived typol-
ogy of agent attributes, interactions, and roles (Arneth et al.,
2014). This proposal is explored for modeling the adapta-
tion of land-use practices to climate change impacts (Murray-
Rust et al., 2014). Agent functional types represent a typol-
ogy that is theoretically constructed instead of data driven,
which is common in empirically based ABMs. Agent-based
approaches are promising for Earth system modeling be-
cause they allow modelers to address questions of interac-
tions across levels, for instance how global patterns of land
use emerge from interdependent regional and local land-use
decisions, which are in turn constrained by the emerging
global patterns. Furthermore, they would allow for the in-
tegration of uncertainty, agent heterogeneity, and the aggre-
gation of detailed technological and environmental changes
(Farmer et al., 2015).

5.6 Dynamics at the system level: system dynamics,
stock-flow consistent, and input–output models

This final subsection discusses modeling approaches with-
out explicit micro-foundations. Decisions in such models are
not modeled explicitly with one of the options discussed in
Sect. 3 but, as policy decisions in integrated assessment mod-
els, through the construction of different scenarios for the
evolution of crucial exogenous parameters in the model.

Global system dynamics models describe the economy,
population, and crucial parts of the Earth system and their
dynamic interactions at the level of aggregate dynamic vari-
ables, usually modeling the dynamics as ordinary differential
equations or difference equations to project future develop-
ments. The equations are often built on stylized facts about
the dynamics of the underlying subsystems and are linked
by functions with typically many parameters. Modelers em-
ploy system dynamics models to develop scenarios based on
different sets of model parameters and assess the system sta-
bility and transient dynamics. In comparison to equilibrium
approaches, system dynamics models capture the inertia of
socioeconomic systems at the cost of a higher dimensional
parameter space. This can lead to more complex dynamics
like oscillations or overshooting. System dynamics models
can be very detailed, like the World3 model commissioned by
the Club of Rome for their famous report “Limits to Growth”

(Meadows et al., 1972, 2004), the GUMBO model (Boumans
et al., 2002), or the International Futures model (Hughes,
1999). Subsystems of such models comprise the human pop-
ulation (sometimes disaggregated between regions and age
groups), the agricultural and industrial sector, and the state
of the environment (pollution and resource availability). Sim-
pler models describe the dynamics of only a few aggregated
variables at the global level (Kellie-Smith and Cox, 2011) or
confined to a region (Brander and Taylor, 1998).

Other system-level approaches to macroeconomic model-
ing emphasize self-reinforcing processes in the economy and
point at positive feedback mechanisms, resulting in multi-
stability or even instability (e.g., increasing returns to scale in
production and self-amplification of expectations during eco-
nomic bubbles). For example, post-Keynesian economists
use stock-flow consistent models to track the complete mone-
tary flows in an economy in which low aggregate demand can
lead to underutilization of production factors and the state
plays an active role to stabilize the economy. In these mod-
els, a social accounting matrix provides a detailed framework
of transactions (e.g., monetary flows) between households,
firms, and the government, which hold stocks of assets and
commodities (Godley and Lavoie, 2007).

Input–output models track flows to much more detail be-
tween different industries or sectors of production (Leontief,
1986; Ten Raa, 2005; Miller and Blair, 2009). Each industry
or production process is modeled by a “Leontief” production
function, which is characterized by fixed proportions of input
factors that depend on the available technology. For exam-
ple, an input–output model can describe which input factors,
such as land, fertilizer, machinery, irrigation water, and la-
bor, are required for satisfying the demand of an agricultural
commodity with a mix of production techniques. The model
would consider that some of these inputs have to be pro-
duced themselves using other types of inputs. Outputs also
include unwanted side products, such as manure in cattle pro-
duction. Such models are used, for instance, to explore how
changes in demand would lead to higher-order effects along
the supply chain. Regional input–output models also account
for spatial heterogeneity and are used, for example, to eval-
uate the possible impacts of extreme climate events on the
global supply chain (Bierkandt et al., 2014).

While the approaches discussed above focus on the mon-
etary dimension of capital and goods, models from ecolog-
ical economics (van den Bergh, 2001) track material flows
or integrate material with financial accounting. For exam-
ple, input–output modeling has been extended to analyze
industrial metabolism, i.e., material and energy flows and
their environmental impacts in modern economies (Fischer-
Kowalski and Haberl, 1997; Ayres and Ayres, 2002; Suh,
2009). Regionalized versions of such models can, for in-
stance, be used to estimate the environmental footprint that
industrialized countries have in other regions (Wiedmann,
2009). In the emerging field of ecological macroeconomics
(see Hardt and O’Neill, 2017, for a detailed review of mod-
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eling approaches), stock-flow consistent and input–output
models have been combined into one framework for tracking
financial and material flows (Berg et al., 2015). Other eco-
logical models use the flow–fund approach by Georgescu-
Roegen (1971) or combine it with stock-flow consistent mod-
eling approaches (Dafermos et al., 2017). While the flow
concept refers to a stock per time, a fund is the potential-
ity of a system to provide a service. The important difference
lies in the observation that a stock can be depleted or accu-
mulated in one time step, while a fund can provide its ser-
vice only once per time step. This distinction reflects phys-
ical constraints on the production process that have impor-
tant consequences for modeling the social metabolism. Gar-
rett (2015) and Jarvis et al. (2015) in this Special Issue pro-
vide an extreme view on the dynamics of social metabolism
based only on thermodynamic considerations without taking
human decision making or agency into account.

In order to make approaches that only consider the sys-
tem level useful for modeling the impact of humans on the
Earth system, they could be combined with approaches that
model the development of new production technologies and
how the deployment of new technologies is affected by deci-
sions at different levels (consumers, firms, and governments).
Even if this integration with decision models proves difficult,
the approaches discussed in this section can help link social
and environmental dynamics in new ways, providing an im-
portant methodology to include humans into ESMs.

6 Discussion

In the previous three sections, we showed that there is a diver-
sity of approaches to model individual human decision mak-
ing and behavior, to describe interactions between agents,
and to aggregate these processes. The discussion of strengths
and limitations of the modeling approaches showed possible
underlying assumptions and connections to theories of hu-
man behavior. While some modeling techniques are compat-
ible with many theories of human behavior or decision mak-
ing and can thus be used with a variety of assumptions, other
techniques significantly constrain possible assumptions.

For many relevant questions in global environmental
change research, a dynamical representation of humans in
ESMs may not be necessary. If behavioral patterns are not
expected to change over the relevant timescales or feedbacks
between natural and social dynamics are sufficiently weak,
modelers can simply use conventional scenario approaches.

However, if behavioral patterns are expected to change
over time and give rise to strong feedbacks with the envi-
ronment, then an explicit representation of human decision
making will provide new insights into the joint dynamics. In
this case, modelers have to carefully choose which assump-
tions about human behavior and decision making are plau-
sible for their specific modeling purpose. Modeling choices

require a constant interplay between model development and
the research questions that drive it.

Because there is no general theory of human decision
making and behavior, especially not for social collectives,
we cannot provide a specific recipe for including humans
into ESMs. In Table 5, we summarize the approaches we
discussed in this paper and collect important questions to
guide the choice of appropriate model assumptions and ap-
proaches. To find the right assumptions for a specific context,
modelers can further build on and consult existing social sci-
entific research, even though ambiguities due to a fragmen-
tation of the literature between opposing schools of thought
and difficulties in generalizing single case studies from their
local or cultural specificities can make some of the research
difficult to access. In case of doubt, modelers can team up
with social scientists to conduct empirical research in the
specific context needed to select the appropriate approach.
The selection of a modeling technique compatible with the
chosen assumptions also has to consider its limitations for
meaningfully answerable research questions and the analy-
ses that it can provide. In the following, we discuss some im-
portant considerations regarding individual decision making,
interactions, and aggregation.

Concerning individual agents, we identified three impor-
tant determinants in decision models: motives, restrictions,
and decision rules. Modelers need to take the many factors
into account that influence which assumptions about each
of these three determinants are applicable in a given con-
text. For instance, modelers can make different assumptions
about whether agents only consider financial incentives or
also take into account other criteria, such as a desire for fair
outcome distributions (Opp, 1999), depending on whether a
situation is more or less competitive or cooperative. Research
shows that the relevance of motives and goals can vary over
time and that surprisingly subtle cues can change their im-
portance (Lindenberg, 1990; Tversky and Kahneman, 1985).
Likewise, the choice of a plausible decision rule depends on
the studied context. For instance, a decision rule that requires
complex computations may be relatively plausible in con-
texts in which agents make decisions with important conse-
quences and in which they have the information and time
needed to compare alternatives. When stakes are low and
time to decide is limited, however, more simple decision
rules are certainly more plausible. Cognitively demanding
decision rules are also more plausible when decision makers
are collectives, such as companies and governments. Some-
times, it may even be reasonable to assume that agents use
combinations of different decision models (Camerer and Ho,
1999).

Important criteria for choosing an appropriate model of
agent interactions are the type and setting of interactions,
the assumptions that agents make about each other, the in-
fluence they may exert on each other, and the structure of
interactions. For example, interactions in competitive envi-
ronments will only lead to cooperation if this is individually
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beneficial. In such environments, agents may assume that the
others form their strategies rationally. In less competitive set-
tings in which social norms and traditions play a crucial role,
however, behavior may not be strategically chosen but rather
adaptively, for example by imitating other agents. This might
also be important on timescales at which cultural evolution
happens. Furthermore, social settings might favor interac-
tions in which agents primarily exchange opinions or share
beliefs and influence each other’s decisions in this way.

Crucial criteria for the choice of an appropriate aggrega-
tion technique for behavior and interactions are the prop-
erties of relevant economic and political institutions (e.g.,
market mechanisms or voting procedures), decision criteria
for collective agents, heterogeneity of modeled agents, avail-
ability of data to evaluate the model, and relevant time and
spatial scales of macro-descriptions. Depending on the spe-
cific research questions, modelers have to choose the aggre-
gation method that fits the real-world systems of interest and
describes their aggregation mechanisms and aggregate be-
havior reasonably. Whether the aggregate behavior of many
agents is better represented by a representative agent as in
macroeconomic models, a distribution of agent characteris-
tics, or many diverse individuals as in ABMs depends on the
importance of agent heterogeneity and interaction structures
such as networks or spatial embeddedness. The choice of an
aggregation technique then determines which characteristics
and processes of the system are modeled explicitly and which
assumptions influence the form of the model only implicitly.

If the local structure of interaction matters, this would re-
quire a gridded or networked approach; otherwise a mean
field approximation is justified. Similar choices have to be
made in classical ESMs. For example, the interaction of
ocean and atmosphere temperature near the surface on a spa-
tial grid could be modeled either by only taking interactions
between neighboring grid points into account or by coupling
the ocean temperature to the atmospheric mean field. Anal-
ogously, the interactions between groups of two types of
agents may be modeled explicitly on a social network. How-
ever, it might also suffice to only consider interactions be-
tween two agents representing the mean of each group. The
question of whether the interaction structure matters often
cannot be answered a priori but may be the result of a com-
parison between an approximation and an explicit simula-
tion.

For the choice of an appropriate aggregation technique,
modelers also have to decide on the level of detail to describe
the system and whether the modeling of individuals or in-
termediate levels of the system is necessary or an aggregate
description suffices. This choice depends on the expected im-
portance of interactions and heterogeneity in an assumed set
of agents. As an example from classical Earth system model-
ing, consider vegetation models in which modelers choose
between the simulation of representative plant functional
types or ensembles of individual adaptive plants depending
on whether they consider the interaction and heterogeneity

important for the macro-dynamics. Analogously, a model of
social dynamics may use a representative agent approach
or model heterogeneous agents explicitly in an agent-based
model depending on the research question. The choice be-
tween a detailed and aggregated description depends strongly
on the model purpose. For example, if the goal is to predict
the future development of a system, a system-level descrip-
tion could suffice, while a more detailed model (e.g., ABM)
would be needed for understanding the mechanisms that ex-
plain these outcomes in terms of the underlying heteroge-
neous responses of individuals. Likewise, for a normative
model aiming to identify the action that maximizes social
welfare, an intermediate level of detail could suffice, taking
only specific agent heterogeneities into account.

In general, the evaluation of timescales can help in many
of the abovementioned modeling choices to decide whether
the social processes and properties of socioeconomic units
should be represented as evolving over time, can be fixed, or
need not be modeled explicitly at all for a macrolevel descrip-
tion of the system. For example, CO2 concentration in global
circulation models can be assumed to be well mixed for the
atmosphere, while assuming this for the ocean with its slow
convection would considerably distort results on politically
relevant timescales (Mathesius et al., 2015). Similarly, gen-
eral equilibrium models can provide a good description if the
convergence of prices happens on fast timescales and market
imperfections are negligible. Dynamical system models, on
the contrary, may be more appropriate to describe systems
with a high inertia that operate far from equilibrium due to
continuous changes in system parameters and slow conver-
gence. A decisive question is therefore if the timescales of
processes in the system allow for a separation of scales. For
instance, this is possible if the micro-interactions are some
orders of magnitude faster than changes in system parame-
ters or boundary conditions. Similar considerations apply for
spatial scales.

As we have shown in the examples above, there are many
similarities regarding the choice of modeling techniques and
assumptions in ESMs and models of socioeconomic systems.
However, fundamental differences between the modeled sys-
tems pose a big challenge for an informed choice of modeling
techniques. ESMs can often build on physical laws describ-
ing micro-interactions that can be tested and scrutinized. Of
course this can result in very complex macroscopic system
behavior with high uncertainties, but models including hu-
man behavior have to draw on a variety of accounts of basic
motivations in human decision making. These motivations
may change over time while societies evolve and humans
change their actions because of new available knowledge.

This can lead to a crucial feedback between the real world
and models. Agents (e.g., policy makers) may decide differ-
ently when they take the information provided by model pro-
jections into account. Therefore, modeling choices regard-
ing human behavior might change this behavior. This as-
pect of human reflexivity makes models of human societies
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Table 5. Collection of questions that may guide the choice of modeling approaches and assumptions.

Category Important modeling questions

Modeling individual decision
making and behavior

What goals do agents pursue? What constraints do they have? What decision rules do agents
use? How do agents acquire information and beliefs about their environment?

Modeling interactions between
agents

Do agents interact in a competitive environment, or are interactions primarily governed by so-
cial norms? What do agents assume about each other’s rationality? Do agents choose actions
strategically or adaptively? How are agents influenced by others regarding their beliefs and
norms? What structure do the interactions have, and how does the structure evolve?

Aggregating behavior and mod-
eling dynamics at the system
level

Are decisions aggregated through political institutions (e.g., voting procedures) or markets?
According to what criteria do policy makers decide, and what controls do they have? Is the
heterogeneity of agent characteristics and interactions important? Which macrolevel measures
are dynamic and which can be assumed to be fixed?

fundamentally different from natural science models and is
closely linked to the important difference in social model-
ing between normative and descriptive model purposes. For
example, models that optimize social welfare usually reflect
the goal that a government should pursue and therefore have
a normative purpose. However, if this model is used to guide
policy making while taking into account the actual and per-
ceived controls of policy makers and considers the effect of
compromises between different interest groups, it could also
describe its behavior. This example shows the often intricate
interconnections between normative and descriptive assump-
tions in decision modeling that modelers should be aware of.

This is further complicated by the observation that the
same assumption may be understood in one model as a de-
scriptive (positive) statement, whereas in another model it
may be meant as a prescriptive (normative) one. For exam-
ple, in a model of agricultural markets, the assumption that
big commercial farms maximize their profits might be a rea-
sonable descriptive approximation. In contrast, in a model
that asks how smallholder farms could survive under com-
petitive market conditions, the same assumption gets a strong
normative content.

Another difficulty is that model choices are often not only
based on the most plausible assumptions about human de-
cision making but are also strongly influenced by consid-
erations about the assumption’s mathematical convenience.
Choosing assumptions for technical reasons, for example
mathematical simplicity and tractability, may be problematic
because it remains unexplained how they are related to the
real world. Because not all assumptions can be easily imple-
mented in formal models, a trade-off often has to be found
between the plausibility and technical practicality of the as-
sumptions.

Most of the global models reviewed here that describe hu-
man interactions with the Earth system are based on eco-
nomic assumptions about the behavior of humans and so-
cieties. They are often only linked in a one-way fashion to
the biogeophysical part of the Earth system. Including closed
feedback loops between social and environmental dynamics
into ESMs is still a big challenge. To advance this endeavor,

more work is needed to synthesize modeling approaches that
can represent various aspects of human behavior in the con-
text of global modeling, even if the need for generaliza-
tions and the formalization of human behavior is sometimes
met with skepticism or rejection by social scientists who
emphasize the context dependence and idiosyncrasy of hu-
man behavior. Of course, models that use simple theories
of human decision making and behavior to describe human–
environment interactions in the global context cannot claim
to capture all real-world social interactions. If models consid-
ered the heterogeneity of agents in all relevant aspects, they
would have to be much more complex than all models that
have been developed to date. However, in many real-life set-
tings, even simple conceptual models of social mechanisms
are good descriptions of the key features of the dynamics at
work, as we have highlighted throughout this review. Includ-
ing such formal descriptions of idealized social mechanisms
can therefore be a good starting point for understanding feed-
backs in the Earth system and their qualitative consequences,
which have so far not been considered explicitly in global
models.

7 Summary and conclusion

In this review, we discussed common modeling techniques
and theories that could be potentially used to include hu-
man decision making and the resulting feedbacks with envi-
ronmental dynamics into Earth system models (ESMs). Al-
though we could only discuss the basic aspects of the pre-
sented modeling techniques, it is apparent that modelers who
want to include humans into ESMs are confronted with cru-
cial choices of which assumptions to make about human be-
havior and which appropriate techniques to use.

As Table 5 summarizes, we discussed techniques and
modeling assumptions in three different categories. First, in-
dividual decision modeling focuses on decision processes
and the resulting behavior of single agents and therefore has
to make assumptions about the determinants of choices be-
tween behavioral options. Second, models of interactions be-
tween agents capture how decisions depend upon each other

www.earth-syst-dynam.net/8/977/2017/ Earth Syst. Dynam., 8, 977–1007, 2017

106 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reproduced from: F. Müller-Hansen et al., Towards representing human behavior and decision making in Earth system models - An overview of
techniques and approaches, Earth Syst. Dyn., vol. 8, no. 4, pp. 977-1007, 2017, doi: 10.5194/esd-8-977-2017. Published under Creative Commons

Attribution License 3.0 (CC BY).

https://doi.org/10.5194/esd-8-977-2017


1000 F. Müller-Hansen et al.: Approaches to represent human behavior in ESMs

and how agents influence each other regarding different deci-
sion criteria. Third, modeling techniques that aggregate agent
behavior and interactions to a system-level description are
crucial for modeling human behavior at scales relevant for
the Earth system and require ingredients from the first and
second categories. To include human decision making into
ESMs, techniques and assumptions from these three cate-
gories have to be combined. Finally, we discussed important
questions regarding the choice of modeling approaches and
their interrelation with assumptions about human behavior
and decision making, for example regarding the level of de-
scription and the relevant timescales but also the difficulties
that can arise due to human reflexivity and the amalgamation
of normative and descriptive assumptions in models.

Most formal models that describe human behavior in
global environmental contexts are based on economic ap-
proaches. This is not surprising because many human inter-
actions with the environment are driven by economic forces,
and economics has a stronger focus on formal models than
other social sciences. However, we think that it is necessary
to advance research that builds on insights from other so-
cial sciences and applies social modeling and simulation in
the context of global environmental change. One important
aim of such research would be to provide a theoretical basis
for including processes of social evolution and institutional
development into ESMs. If we want to explore the possible
futures of the Earth, we need to get a better understanding of
how the long-term dynamics of the Earth system are shaped
by these cultural and social processes.

A new generation of ESMs can build on various ap-
proaches, some of which we reviewed here, to include hu-
man decision making and behavior explicitly into Earth sys-
tem dynamics. However, ambitious endeavors like this have
to take into account that the modeling of human behavior and
social processes is a contested topic, and the assumptions and
corresponding modeling techniques need to be chosen care-
fully with an awareness of their strengths and limitations for
the specific modeling purpose.
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Abstract.

In the Anthropocene, the social dynamics of human societies have become critical to understanding planetary-scale Earth

system dynamics. The conceptual foundations of Earth system modelling have externalised social processes in ways that now

hinder progress in understanding Earth resilience and informing governance of global environmental change. New approaches

to global modelling of the human World are needed to address these challenges. The current modelling landscape is highly5

diverse and heterogeneous, ranging from purely biophysical Earth System Models, to hybrid macro-economic Integrated As-

sessments Models, to a plethora of models of socio-cultural dynamics. World-Earth models capable of simulating complex and

entangled human-Earth system processes of the Anthropocene are currently not available. They will need to draw on and selec-

tively integrate elements from the diverse range of fields and approaches, so future World-Earth modellers require a structured

approach to identify, classify, select, combine and critique model components from multiple modeling traditions. Here, we10

develop taxonomies for ordering the multitude of societal and biophysical subsystems and their interactions. We suggest three

taxa for modelled subsystems: (i) biophysical, where dynamics is usually represented by “natural laws" of physics, chemistry or

ecology (i.e., the usual components of Earth system models), (ii) socio-cultural, dominated by processes of human behaviour,

decision making and collective social dynamics (e.g., politics, institutions, social networks, and even science itself), and (iii)

socio-metabolic, dealing with the material interactions of social and biophysical subsystems (e.g., human bodies, natural re-15

sources and agriculture). We show how higher-order taxonomies can be derived for classifying and describing the interactions

between two or more subsystems. This then allows us to highlight the kinds of social-ecological feedback loops where new
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modelling efforts need to be directed. As an example, we apply the taxonomy to a stylised World-Earth system model that

endogenises socially transmitted choice of discount rates in a greenhouse gas emissions game to illustrate the effects of social-

ecological feedback loops that are usually not considered in current modelling efforts. The proposed taxonomy can contribute

to guiding the design and operational development of more comprehensive World-Earth models for understanding Earth re-

silience and charting sustainability transitions within planetary boundaries and other future trajectories in the Anthropocene.5

1 Introduction

1.1 Revisiting Earth system analysis for the Anthropocene

In the age of the Anthropocene, human societies have emerged as a planetary-scale geological force shaping the future trajec-

tory of the whole Earth system (Crutzen, 2002; Steffen et al., 2007; Lewis and Maslin, 2015; Waters et al., 2016; Lenton and

Latour, 2018; Steffen et al., 2018). Cumulative greenhouse gas emissions and extensive modifications of the biosphere have10

accelerated since the neolithic and industrial revolutions, especially through the rapid globalisation of social-economic systems

during the 20th century, threatening the stability of the interglacial state (Lenton et al., 2016) that has enabled the development

and wellbeing of human societies (Rockström et al., 2009a; Steffen et al., 2015). Political and societal developments during

the 21st century and their feedback interactions with the planetary climate and biophysical environment will be decisive for the

future trajectory of the Earth system (Lenton and Latour, 2018; Steffen et al., 2018). Business-as-usual is taking the planet into15

a ‘hothouse Earth’ state unprecedented for millions of years in geological history (Winkelmann et al., 2015; Ganopolski et al.,

2016), while calls for rapid decarbonisation of the global economic system to meet the Paris climate agreement (Rockström

et al., 2017) will also have complex consequences involving an intensified entanglement of social, economic and biophysical

processes and their resulting feedback dynamics, up to the planetary scale (Mengel et al., 2018). Despite extensive debate about

the Anthropocene (Lewis and Maslin, 2015; Hamilton, 2015; Brondizio et al., 2016; Zalasiewicz et al., 2017), and growing20

recognition of the limitations of current Earth system models for analysis and policy advice in the context of these shifting

dynamics (van Vuuren et al., 2012, 2016; Verburg et al., 2016; Donges et al., 2017a, b; Calvin and Bond-Lamberty, 2018), little

has been done to address the fundamental challenge of systematically reviewing the conceptual foundations of Earth system

modelling to include dynamic social processes, rather than externalising them (Bretherton et al., 1986, 1988).

To understand planetary-scale social-ecological dynamics, models of World-Earth systems are urgently needed (Schellnhu-25

ber, 1998, 1999; Rounsevell et al., 2014; van Vuuren et al., 2016; Verburg et al., 2016; Donges et al., 2017a, b, 2020; Calvin

and Bond-Lamberty, 2018). Epistemologically, we conceptualise World-Earth systems as planetary-scale systems consisting

of the interacting biophysical subsystems of the Earth, and the social, cultural, economic, and technological subsystems of the

World of human societies. It should be noted here that in the context of global change analysis and modelling, the term ‘Earth

system’ was intended to include human societies and their activities and artefacts (Bretherton et al., 1988; Schellnhuber, 1998,30

1999). However, in currently influential science and policy contexts, notably the Intergovernmental Panel on Climate Change

(IPCC) (Flato, 2011; Flato et al., 2013), ‘Earth system models’ deal only with the physical dynamics of the atmosphere, ocean,

land surface and cryosphere, and a limited set of interactions with the biosphere. While some might see tautology in the term

2

116 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reproduced from: J. F. Donges et al., Taxonomies for structuring models for World-Earth system analysis of the Anthropocene: subsystems, their
interactions and social-ecological feedback loops, Earth Syst. Dyn. Discuss., vol. 2018, pp. 1-30, 2018, doi: 10.5194/esd-2018-27. Published under

Creative Commons Attribution License 4.0 (CC BY).

https://doi.org/10.5194/esd-2018-27


‘World-Earth systems’, we use it to highlight that human societies, their cultures, knowledge and artefacts (the ‘World’) should

now be included on equal terms in a new family of models to conduct systematic global analyses of the Anthropocene. A fully

co-evolutionary approach is needed, in the sense of representing social-ecological feedback dynamics across scales.

Future World-Earth modelling efforts will largely be pieced together from existing conceptualisations and modelling tools

and traditions of social and biophysical subsystems, which encode the state of the art in our understanding of the Anthropocene.5

Current efforts in World-Earth systems modelling are highly stylised (e.g. Kellie-Smith and Cox (2011); Garrett (2015); Jarvis

et al. (2015); Heck et al. (2016); Nitzbon et al. (2017); Strnad et al. (2019)), or tend to be proof-of-concept prototypes (Beckage

et al., 2018; Donges et al., 2020). None operate yet in a process-detailed, well-validated and data-driven mode. To serve these

nascent efforts in enabling World-Earth systems analysis of the Anthropocene, this article addresses the core question of which

are the relevant categories within which World-Earth models, as essential scientific macroscopes (Schellnhuber, 1999), should10

operate. The problem for both scientific integration and real-world application is that the characteristic basis of the interactions

of social and biophysical subsystems is often not explicit in current models. Often, the interactions between these subsystems

are not recognised at all. By framing a taxonomy around the current dominant distinctions – and disciplinary divides – we can

begin to explore links and feedback mechanisms between taxa in more structured, systematic and transdisciplinary ways. With

this taxonomy, we develop initial tools and terminologies that enable model builders and model users to be clear about their15

social, cultural, epistemological and perhaps also axiological standpoints.

We want to emphasise that this taxonomic approach does not presuppose that there is “one world” (an ontological position)

when models of different worlds are combined, nor do we intend it to serve as a universal blueprint for models of essentially

everything. Instead, we argue that a taxonomy can help to focus modellers’ attention better on the ontological and epistemic

commitments within their models. This approach opens Earth system analysis to deeper dialogues with proponents of non-20

human actors as shapers of the world (Latour, 2017; Morton, 2013), or even the possibility of no world at all (Gabriel, 2013).

While the present article proposes a conceptual basis for World-Earth modelling, the proposed taxonomy is employed in the

companion paper by Donges et al. (2020) to develop the operational World-Earth modelling framework copan:CORE. Here,

this framework is cast into software and applied to construct and study an example of a novel World-Earth model that seeks to

overcome the long-standing challenge of endogenising the choice of discount factors (describing how much societies value the25

present relative to the future) in climate mitigation studies.

1.2 Structuring the landscape of global environmental change models

Diverse scientific modelling communities aim to capture different aspects of social-ecological dynamics embedded in the

Earth system up to planetary scales. Some processes operating in the Earth system are commonly described as being governed

by the "natural laws" and generalizable principles of physics, chemistry and (to some extent at least) ecology (for example,30

atmosphere and ocean circulation as governed by the physical laws of fluid and thermodynamics), while others are thought to

be dominated by human behaviour, decision making and collective social dynamics (e.g., the regularities underlying individual

and social learning). This tendency for separate treatment of these different kinds of process in the natural and social sciences

gives rise to problems when dealing with the many real-world subsystems that operate in both domains simultaneously. What
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is more, different scientific communities use different methods and adhere to different viewpoints as to the nature and character

of such subsystems and their interactions. There is now a number of conceptualisations of social-ecological or coupled human-

environment systems in environmental, sustainability and Earth system science (e.g. Vernadsky (1929/1986); Schellnhuber

(1998); Fischer-Kowalski and Erb (2006); Jentoft et al. (2007); Biggs et al. (2012)) but we see a pressing need to structure

modelling efforts across communities, providing a joint framework while maintaining the conceptual flexibility required for5

successful cross-disciplinary collaboration.

Here, we propose a taxonomic framework for structuring the multitude of subsystems that are represented in current mathe-

matical and computer simulation models. The motivation for proposing such an ordering scheme is:

1. to provide the means for collecting and structuring information on what components of social-ecological systems relevant

to global change challenges are already present in models in different disciplines,10

2. to point out uncharted terrain in the Earth system modelling landscape, and

3. to provide the foundations for a systematic approach to constructing future co-evolutionary World-Earth models, where

feedback mechanisms between components can be traced and studied. This conceptual work aims to contribute to a

central quest of sustainability science (Mooney et al., 2013) that “seeks to understand the fundamental character of

interactions between nature and society.” (Kates et al., 2001).15

1.3 Definitions and explanations of key terms

In this article, we use the term subsystem to refer to any dynamic component in models of World-Earth systems. In this broad

category, we can include both the kinds of subsystems that are governed mainly by “natural laws" of physics, chemistry or

ecology (e.g., seasonal precipitation, ocean nutrient upwelling) and those that are governed mainly by human behaviour, deci-

sion making and collective social dynamics (e.g., international food trade, carbon taxes). Many scientific communities similarly20

make this distinction between biophysical (“natural", ecological, environmental) subsystems and socio-cultural (social, human,

“anthroposphere") subsystems. We also highlight socio-metabolic subsystems at the overlap of societal and natural “spheres"

of the Earth system (Fig. 1). We suggest that explicit attention to these subsystems and their interactions is needed in order

to deepen the understanding of transformative change in the planetary social-ecological system, making a valuable contribu-

tion to the design and operational development of future, more comprehensive World-Earth models for charting sustainability25

transitions into a safe and just operating space for humanity (Rockström et al., 2009a; Raworth, 2012; Dearing et al., 2014).

A further note on the term biophysical: here, we use this word as a shorthand term to refer to Earth’s interacting living

and non-living components, encompassing geophysical (climatic, tectonic, etc.), biogeophysical, biogeochemical and ecolog-

ical processes. These categories are significant in Earth system science because feedbacks involving these processes tend to

have different dynamic characteristics. Accordingly, they have been dealt with very differently in Earth system analysis and30

modelling (Charney et al., 1977; Gregory et al., 2009; Stocker et al., 2013).

The co-evolution of Earth’s geosphere and biosphere is a central concept in Earth system science (Lovelock and Margulis,

1974; Budyko et al., 1987; Lovelock, 1989; Schneider et al., 2004; Lenton et al., 2004; Watson, 2008), but the global models
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that currently dominate the field represent just a snapshot of the system, focused on the biophysical dynamics that play out

over decades to centuries. We use the term co-evolution to describe the complex dynamics that arise from the reciprocal

interactions of subsystems, each of which changes the conditions for the future time evolution of the other (not excluding,

but not limited to processes of Darwinian co-evolution involving natural selection). Earth system models (ESMs) include

key physical feedbacks, and increasingly permit the investigation of biophysical feedbacks, but as we have indicated, they5

lack socio-metabolic and socio-cultural subsystems, relying on narrative-based inputs for dealing with anthropogenic changes.

Integrated assessment models (IAMs) used in the global change context (Edenhofer et al., 2014; van Vuuren et al., 2016)

include some interactions of social and biophysical subsystems in order, say, to assess potential economic consequences of

climate change and alternative climate policy responses. But they lack the kinds of interactions and feedback mechanisms

(e.g., by impacts of climatic changes on socio-metabolic subsystems, or by the effects of socio-cultural formation of public10

opinion and coalitions in political negotiations on environmental policies) that societies throughout history have shown to be

important which is revealed, e.g., by studies of social-ecological collapse and its connection to past climate changes (Weiss

and Bradley, 2001; Ostrom, 2009; Donges et al., 2015; Cumming and Peterson, 2017; Barfuss et al., 2020). To explore and

illustrate the consequences of these typically neglected interactions and feedbacks, we have studied a conceptual model that

gives rise to complex co-evolutionary dynamics and bifurcations between qualitatively different system dynamics: a model of15

socially transmitted discount rates in a greenhouse gas emissions game, discussed in Section 4.

For completeness, we also provide brief definitions of our working terminology: a “link” or “interaction” is a causal influence

of one subsystem on another that is operationally non-decomposable into smaller links; a “mechanism” is a micro-description

of how exactly this causal influence is exerted; a “process” is a set of links that “belong together” from some suitable theoretical

point of view; a “loop” is a closed path in the network of links; and an “impact” of a link is the change in the target system20

attributable to this link.

We should note here that this taxonomy is dealing with causal narratives from different scientific disciplines that are encoded

in models, and as such, it does not require any a priori theories and hypotheses about causality. Causal narratives are our

starting point because they are necessary for and are explicitly encoded in simulation modelling - and our classification lets us

interrogate them more systematically and exposes them explicitly.25

2 A taxonomy of subsystems in World-Earth systems models

In this section, we introduce the biophysical (ENV), socio-metabolic (MET), and socio-cultural (CUL) taxa for classifying

subsystems in models of World-Earth systems (Fig. 1). For each taxon, we give examples of corresponding subsystems from

different modelling fields. We also discuss how the suggested taxonomy relates to earlier conceptualisations of human societies

embedded in and interacting with environmental systems (Sect. 2.4).30

We have followed three guidelines in constructing this taxonomy for models of World-Earth systems:

1. Compactness, because we aim at a “top-level" framework that is useful and tangible, with as few classifications as

possible, covering the scope of co-evolutionary modelling research parsimoniously and in a self-containing way.
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Human societies

Nature

Socio-cultural taxon (CUL)

Socio-metabolic taxon (MET)

Biophysical taxon (ENV)

Models of behaviour and 
interactions of human minds and 
their immaterial legacies
(e.g., behavioural change, decision
making, opinion formation, social
network dynamics, policies, values)

Models of human-environment 
interactions for social reproduction, 
maintenance and growth
(e.g., infrastructure, demograph-
ics and agriculture)

Models of natural Earth system 
processes 
(e.g., atmosphere and ocean 
dynamics, biogeochemistry,
ecology)

Figure 1. Proposed taxonomy of subsystems in World-Earth systems models. The blue and green overlapping discs represent the current

discipline-based domains in which the subsystems and processes of nature, human societies, and their interactions are modelled. Our scheme

structures this continuum into three taxa (light grey layers) for model subsystems (dark grey discs): (i) a biophysical taxon (ENV), (ii) a

socio-metabolic taxon (MET), and a socio-cultural taxon (CUL). Links within and between these modelled subsystems (shown as black

arrows in the figure) can further be classified using a 3 × 3 taxonomy of interactions (Fig. 2, Sect. 3).

2. Compatibility with existing disciplines and research fields within, between and beyond the persistent natural/social sci-

ences divide, because we view the scientific endeavour of understanding links and feedbacks in co-evolutionary World-

Earth systems as an integrative and transdisciplinary opportunity.

3. Operative capacity for model classification and construction, because we want to advance efforts rapidly in World-Earth

modelling. This guideline differs from the previous two in that it deals with practical aspects of modeling. We include it5

because it flags the need for critical reflection on the suitability of combined models for the tasks at hand. We want to be

able to expand the scope of modelling to be more inclusive, allowing more differentiation and well-founded permutations

of approaches.
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Models encode knowledge outside of the mind of the modeller, so these guiding principles are intended to ensure that

bridging across currently very distinct modelling approaches still permits tracing back how the techniques relate to the theories,

assumptions, and framings of the contributory disciplines.

The proposed taxonomy reflects the longstanding structure – and the underlying divides – of the scientific disciplines deal-

ing with the respective subsystems. We argue that it also provides a blueprint for navigating the fragmented modelling land-5

scape and bringing new opportunities for cross-disciplinary bridging. The anthropocentric and dialectic distinction between

the realms of nature or “the environment” and of human societies has a long intellectual history. Deep philosophical and scien-

tific puzzles are connected with the attempts to draw a sharp distinction between these domains, and to satisfactorily integrate

properties such as mental states, intentions, and life itself.

With the progressive improvements in biophysical Earth system modelling (Reichler and Kim, 2008; Steffen et al., 2020)10

and the concomitantly growing reliance on model-based insights for global decision-making over a wider range of urgent

sustainability issue (National Research Council, 2007; Rounsevell et al., 2014; Calder et al., 2018), as is the case for example

for the Paris climate agreement (UNFCCC, 2015) informed by the IPCC (Stocker et al., 2013; Barros et al., 2014; Edenhofer

et al., 2014) and the policy processes derived from it, these conceptually challenging issues can now have direct practical

implications. Illustration such different conceptions of Earth system processes, in models of the contemporary Earth system,15

land vegetation can be treated as inanimate carbon, a transpiration “pump” affecting precipitation and soil moisture patterns

(e.g. Sitch et al. (2003)), or as the animate matter of biodiverse ecosystems that sustain human communities (e.g. (Purves

et al., 2013)). Similarly, different assumptions in models about non-material factors such as human rationality, cognition,

motivations, institutions and social connections lead to very different likelihoods for alternative sustainability pathways for the

world’s economies and material resource use (Donges et al., 2017b; Müller-Hansen et al., 2017; Beckage et al., 2018; Otto20

et al., 2020b).

For these reasons, we follow a pragmatic approach in proposing a taxonomic framework that draws upon examples and

allows for overlap between the domains of nature and human societies, where materiality meets intention (noting that in

complex social-ecological systems, purposeful intervention will be accompanied by unintended or unanticipated side effects).

Following this approach, modelled subsystems in the biophysical taxon are situated in the material domain of nature, those in25

the socio-metabolic taxon lie in the overlap domain, and those in the socio-cultural taxon reside in the immaterial domain of

human cultures (Fig. 1).

2.1 Biophysical taxon

The biophysical taxon (ENV) contains the processes and subsystems that are typically included in current comprehensive

Earth system models, but views them from the perspective of the Anthropocene shift to human “co-control”. These subsystem30

models are governed by deterministic and stochastic mathematical equations, often developed from first principles about the

physical relationships involved. There is a case for subdividing the biophysical taxon into an ecological subtaxon (subsystems

associated with life) and a geophysical subtaxon (subsystems not associated with life), since they have distinct, albeit co-

evolving dynamics (Vernadsky, 1929/1986; Lenton et al., 2004), and this subdivision would correspond to widely accepted
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geosphere/biosphere conceptualisations of the Earth system (Bretherton et al., 1986, 1988; Seitzinger et al., 2015). However, we

apply our principle of compactness, because geosphere-biosphere links and processes have been comprehensively documented

over the past few decades, as they underpin current Earth system and global integrated assessment modelling. Rather than

retracing these links (after all, the existing models are not going to be completely reconfigured in light of the issues we explore

in this paper), we have opted to take today’s state of the art in biophysical global modelling as our main point of departure,5

following the principle of compatibility introduced above.

Earth system models have developed from coupled atmosphere-ocean general circulation models, progressively coupling

in components describing biogeochemical and biogeophysical dynamics. On decade-to-millennium time scales relevant for

the analysis of anthropogenic climate change and its medium-term consequences, examples of these modelled subsystems

where human-controlled dynamics are prominent concerns include atmospheric chemistry, ocean productivity, sea ice, land10

vegetation, and major elemental cycles such as those of nitrogen, phosphorus, and sulfur (Bretherton et al., 1986, 1988).

Furthermore, as it becomes clearer that palaeoclimate models can play a vital role in “deep future” studies of human-controlled

processes in the Anthropocene, Earth system dynamics operating on longer time-scales are relevant (Zeebe and Zachos, 2013;

Steffen et al., 2018). So for these purposes, the biophysical taxon would include subsystems involving the lithosphere (e.g.,

rock weathering, isostatic depression and rebound associated with the advance and retreat of ice sheets on land) and even15

external drivers such as large-body impacts (Brugger et al., 2017), if these provide “natural experiments” or analogues for

future change.

Research fields dealing with models of subsystems belonging to the biophysical taxon include, among others, geophysics,

meteorology, oceanography, biology, ecology, biogeochemistry, and geology. Few of these sciences have yet grasped the

methodological and theoretical tools for dealing with the human dimensions of anthropogenic change. From our planetary-20

scale perspective, the ENV taxon exhibits a substantial overlap with categories such as models of “the environment”, “nature”

or “ecology”, with their specific disciplinary connotations, although many of these models have tended to be small-scale,

context-specific and idiographic. An exception from this are global dynamic vegetation models such as LPJ (Sitch et al., 2003),

which focus, however, on representing the physical dynamics of ecological processes and structures in an Earth system con-

text and not on ecological dynamics as such (i.e., interactions between living organisms). We note a current drive for further25

refinements of ecological dynamic network processes in large-scale modelling (Purves et al., 2013; Harfoot et al., 2014) within

the ENV taxon that may improve global-scale conceptualisations of ecosystems in ways compatible with both Earth system

modelling and socio-ecological systems research and resilience thinking.

2.2 Socio-metabolic taxon

The socio-metabolic taxon contains processes and subsystems that form the material basis and products of societies, making30

direct interconnections between human societies and the biophysical environment that sustains them. This taxon comprises

models of demographics and social structure (e.g., population size, age/sex distribution, health parameters; and social cate-

gories with material or resource-use consequences, such as class, clan, caste, ethnicity). It also includes “the technosphere”:

society’s artefacts, factors of production and technologies (e.g. labour, land, capital, natural resources, raw material, energy;
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tools, machines, infrastructure; cultivated landscapes, domesticated animals and plants), and economic systems (manufactur-

ing, distribution and consumption of goods and services) (Haff, 2012, 2014; Mooney et al., 2013; Herrmann-Pillath, 2018).

The broad field of economics currently dominates descriptions of parts of the socio-metabolic taxon in quantitative models,

but many other disciplines such as geography, industrial metabolism, social ecology, and science and technology studies also

play a role. In modelling terms, this taxon typically involves representations of both the biophysical planet Earth and the socio-5

cultural World of human societies. This implies hybrid models of the type that are currently included in Integrated Assessment

Models of global change, and entails strong simplifying assumptions. We suggest that our approach can bring much-needed

clarity and transparency about the role of such models in understanding World-Earth systems (c.f. van Vuuren et al. (2016)).

One should note that IAMs and economic models are typically expressed in terms of financial value and not material flows that

directly interact with subsystems in ENV (mostly empirical input-output theories of economics being an exception, Leontief10

(1936)).

2.3 Socio-cultural taxon

The socio-cultural taxon contains processes and subsystems that are described in models of the behaviour of human minds and

their immaterial legacies, abstracted from their biophysical foundations and often described as lying in the realm of human

agency (Otto et al., 2020b). Of the three taxa proposed, processes and subsystems in the socio-cultural taxon are the least15

formalised in mathematical and computer simulation models so far, despite substantial efforts in this direction in many fields of

the social sciences (e.g. Farmer and Foley (2009)) and a likelihood that they may be only partly formalizable. Research fields

dealing with models of processes and subsystems in the socio-cultural taxon include sociology, anthropology, behavioural

economics, political science and social ecology. Our taxonomic approach can enable the diverse modelling activities now

underway to engage more directly with the incipient World-Earth modelling effort.20

Examples of modelled subsystems in this taxon include individual and collective opinions, behaviours, preferences, and

expectations and their social network dynamics; information and communication networks; institutions and organisations; fi-

nancial markets and trade; political processes; social norms and value systems (Mooney et al., 2013). Notably, the CUL taxon

can also include processes of digital transformation and artificial intelligence that increasingly restructure and shape the socio-

cultural sphere of human societies. It also provides a locus for debating the challenge of reflexiveness in science, especially in25

fields where modelling plays a vital role in shaping knowledge and action (Yearworth and Cornell, 2016). For instance, future

World-Earth modelling will have to grapple with ways to recognize Earth system science as an endogenous generator of scien-

tific conceptions of ‘Earth’. Relevant for modelling efforts, socio-cultural subsystems can vary on substantially different time

scales. Near instantaneous information exchanges are possible on online social networks and within and between increasingly

advanced algorithms (e.g. algorithmic trading systems on financial markets), while elections and governance processes act30

on the order of years. Formal institutions (e.g. laws) change on the order of decades and informal institutions (e.g. religions)

develop over time frames on the order of centuries to millennia (Williamson, 1998; Otto et al., 2020a).
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2.4 Relations to other conceptualisations of social-ecological systems

Our model-centred taxonomy is inspired by previous systemic conceptualisations of human societies embedded in the Earth

system, building upon them in a way that may help to bridge across diverse disciplines and theoretic traditions.

In one of the earliest Earth system conceptualisations, Vernadsky (1929/1986) distinguishes the inanimate matter of the

geosphere, the living biosphere, and the noosphere of networked consciousness, the latter reverberating in recent conceptu-5

alisations of the technosphere and planetary human-Earth system interactions (Herrmann-Pillath, 2018; Lenton and Latour,

2018). Along these lines, Schellnhuber (1998, Fig. 34) introduced the ecosphere (directly corresponding to our ENV taxon,

entailing geophysical and ecological interactions), the anthroposphere (broadly related to MET, but with some socio-cultural

features), and the global subject (closely related to CUL).

Conceptualisations in resilience theory, ecological economics and sustainability science emphasise the interactions and inter-10

dependence of biosphere and society (Brundtland, 1987; Folke, 2006; Folke et al., 2011), with many sustainability practitioners

adding the economy to make “three pillars” or a “pie of sustainability" consisting of economy embedded in society embedded

in biosphere (Folke et al., 2016). These fields have typically focused on local to regional geographic scales or specific sectors,

and have not placed much emphasis on global modelling, but in general terms, their view of society contains aspects of our

MET taxon, while “the economy” is more restricted than MET. Herrmann-Pillath (2020) argues that the field of ecological15

economics would benefit from more attention to the creative processes of ‘art’, which we would frame as CUL aspects that

are largely absent from current conceptualisations in that field and also more broadly (as also argued by Jax et al. (2013);

Woroniecki et al. (2020)).

Fischer-Kowalski and Erb (2006) explicitly develop the concept of social metabolism, in terms of the set of flows between

nature and culture, in order to describe deliberate global sustainability transitions. Governance-centred classification schemes20

in social-ecological systems research (Jentoft et al., 2007; Biggs et al., 2012), in the tradition of Ostrom (Ostrom, 2009), can

also be brought into our taxonomy. Categories of the governance (sub)system link CUL and MET, and the (sub)system to be

governed (ENV and MET) links the biophysical resources to be used with the social agents who will use them.

The taxonomy approach means that things that were previously included in models as opaque and unquestioned systems can

be unpacked and critically examined. This would be of particular benefit to model users who were not the model builders. For25

example, education may be explicitly linked to demography (as in various integrated assessment models), so typically would

be treated as a quantifiable and accumulable process in the MET taxon: i.e., investment in women’s education results in a lower

birth rate and therefore less future land use. In CUL, education would perhaps be treated in a more relational way - dealing

with the spread of ideas, development of communities, changes in power structures etc.

3 Taxonomy of subsystem interactions in World-Earth systems models30

In this section, we describe a taxonomy of modelled interactions between subsystems that builds upon the taxonomy of sub-

systems. The three taxonomic classes for World-Earth subsystems give rise to nine taxa for directed interactions connecting

these subsystems. Given a pair of taxonomic classes of subsystems A and B, the taxonomic class for directed interactions
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between A and B is denoted as A→B. Here, a directed interaction is understood in the sense of a modelled subsystem in

A exerting a causal influence on another modelled subsystem in B. For example, greenhouse gas emissions produced by an

industrial subsystem in MET that exert an influence on the Earth’s radiative budget in ENV would belong to the interaction

taxon MET→ ENV. Three of the nine interaction taxa correspond to self-interactions within taxa, while six interaction taxa

connect distinct subsystem taxa (Fig. 2).5

In the following, we focus on describing examples of such modelled interactions between pairs of subsystems that are

potentially relevant for future trajectories of World-Earth systems in the Anthropocene and give examples of published models

containing them. The content presented in the subsections necessarily differs in scope and depth reflecting today’s dominant

modelling priorities, but we have aimed to ensure the information is comparable. All subsections below provide (i) a general

description of the interaction taxa with some examples, and (ii) a summary of how these interactions are represented in current10

models.

Furthermore, possible extensions of our taxonomic approach to classify feedback loops and more complex interaction net-

works between subsystems are discussed (Sect. 3.10). We acknowledge that finding a conceptualisation that is satisfactory for

all purposes is unlikely, but our particular pragmatic taxonomy can be useful for constructing models of World-Earth systems.

It has already proven fruitful in the development of the copan:CORE open World-Earth modelling framework (Donges et al.,15

2020) by guiding the choice of process classes and entities that can be described in the framework as well by defining the

coupling interfaces of model components that can be integrated using copan:CORE.

3.1 ENV → ENV: Biophysical Earth system self-interactions

This taxon encompasses interactions between biophysical subsystems of the type studied in current process-detailed Earth

system models such as those in the CMIP5 model ensemble (Taylor et al., 2012) used in the IPCC reports (Stocker et al.,20

2013). For example, this includes modelled geophysical fluxes of energy and momentum between atmosphere and ocean,

interactions between land vegetation, atmospheric dynamics and the hydrological cycle, or, more generally, exchanges of

organic compounds between different compartments of biogeochemical cycles (excluding human activities here).

A detailed representation of these biophysical interactions is largely missing so far in current first attempts at modelling

social-ecological dynamics at the planetary scale (e.g. Kellie-Smith and Cox (2011); Heck et al. (2016)). However, emerging25

socio-hydrological (Di Baldassarre et al., 2017; Keys and Wang-Erlandsson, 2017) and agent-based land-use dynamics models

at regional scales (Arneth et al., 2014; Rounsevell et al., 2014; Robinson et al., 2017) include some processes involving

interactions between biophysical subsystems such as the atmosphere, hydrological cycles and land vegetation.

3.2 ENV → MET: Climate impacts, provisioning and regulating ecosystem services, etc.

This taxon describes modelled interactions through which biophysical subsystems exert an influence on socio-metabolic sub-30

systems. Relevant examples in the context of global change in the Anthropocene include the impacts of climate change on hu-

man societies (Barros et al., 2014) such as damages to settlements, production sites and infrastructures and supply chains (Otto
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CUL→ CUL:

social networking,
individual and social
learning, behavioural
and value changes,
institutional and policy 
dynamics

CUL→ MET:

socio-economic gover-
nance, demand, value-
driven consumption,
expressions of 
culture in required
infrastructure

CUL→ ENV:

environmental gover-
nance, nature conser-
vation areas, cultural 
landscapes, parks, 
sacred places 

MET→ MET:

interlinkage of systems 
of infrastructure, supply
chains, demographic
change, agriculture, 
material economics

MET→ ENV:

Greenhouse gas
emissions, land-use
change, extraction
of resources, chemical 
pollution and wastes,
footprints

ENV→ MET:

Climate impacts, 
resource flows,
provisioning and 
regulating ecosystem
services

ENV→ ENV:

atmosphere-ocean-land 
couplings, geophysics, 
biogeochemistry, eco-
logical networks, 
supporting ecosystem 
services

MET→ CUL:

needs, constraints,
supply of valued goods,
effects of technological
innovations, monitoring, 
observation

ENV→ CUL:

Environmental em-
bedding and founda-
tions of culture,
observation, monitoring,
cultural ecosystem
services

CUL

CUL

MET

MET ENV

ENV

Figure 2. Taxonomic matrix for classifying directed interactions between subsystems in World-Earth systems models. This 3×3 classification

system builds upon the taxonomy of three classes for subsystems introduced in Sect. 2. The unshaded matrix elements (here containing

examples of interactions) correspond to the interaction arrows drawn between the three subsystem taxa shown in Fig. 1. Shaded elements

correspond to self-interactions. The examples for directed interaction mechanisms given in the matrix elements are indicative and based on

our particular areas of research.
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et al., 2017), impacts on agriculture or human health, but also provisioning and regulating ecosystem services such as resource

flows (Millennium Ecosystem Assessment, 2005).

Some of these interactions such as climate change impacts are now being included in IAMs (a prominent example being

the DICE model, Nordhaus (1992)) and stylised models (for example Kellie-Smith and Cox (2011) and Sect. 4), but there

remain challenges, e.g. in estimating damage functions and the social cost of carbon (Nordhaus, 2017). Influence from weather5

and climate on agriculture are studied on a global scale using model chains involving terrestrial vegetation models such as

LPJ (Sitch et al., 2003) and agricultural economics models such as MAgPIE (Nelson et al., 2014). As another example, models

of the distribution of vector-born diseases such as Malaria are employed to assess the impacts of climate change on human

health (Caminade et al., 2014).

3.3 ENV → CUL: observation, monitoring, cultural ecosystem services, etc.10

This taxon contains modelled interactions through which the state of the biophysical environment directly influences socio-

cultural subsystems. These links can be mediated through the observation, monitoring and assessment of environmental change

from local to global scales (e.g., chemical pollution, deforestation or rising greenhouse gas concentrations in the atmosphere)

by social actors that in turn are processed by public opinion formation and policy making in socio-cultural subsystems (Mooney

et al., 2013). The links described by the ENV→ CUL taxon also relate to cultural identity connected to the environment, sense15

of place (Masterson et al., 2017), and more generally what has been described as cultural ecosystem services (Millennium

Ecosystem Assessment, 2005). For example, Beckage et al. (2018) have modelled the effect of changes in extreme events

resulting from climate change on risk perception of individuals. Changes in risk perception may result in changes in emission

behaviour given the perceived behaviour of others (social norms) and structural conditions in society, thus feeding back on

future climate change.20

ENV→ CUL also play a role in regional-scale models of poverty traps where decline in natural capital reduces traditional

ecological knowledge as a form of cultural capital (Lade et al., 2017b), or in models of human perceptions of local scenic

beauty in policy contexts (Bienabe and Hearne, 2006). At the moment, most models deal with these interactions only at a

sub-global level. But there is increasing recognition of the need for the more dynamic understanding that formal modelling

can provide of such complex psychologically and culturally mediated aspects of human behavior in the Anthropocene (Schill25

et al., 2019).

3.4 MET → MET: economic and socio-metabolic self-interactions

This taxon describes modelled interactions between MET subsystems that connect the material manifestations and artefacts

of human societies. Examples include the energy system driving factories, supply chains connecting resource extractors to

complex networked production sites or machines constructing infrastructures such as power grids, airports and roads.30

Certain processes involving such interactions, e.g. links between the energy system and other sectors such as industrial

production, are represented in IAMs in an abstracted, macroeconomic fashion. There exist also agent-based models resolving

the dynamics of supply chains that allow to describe the impacts of climate shocks on the global economy in much more detail
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(e.g. Otto et al. (2017)). Another class of examples are population models that may include factors such as the influence of

income on fertility (Lutz and Skirbekk, 2008). However, to our best knowledge, process-detailed models of the socio-industrial

metabolism (Fischer-Kowalski and Hüttler, 1998; Fischer-Kowalski, 2003) or the technosphere (Haff, 2012, 2014) comparable

in complexity to biophysical Earth system models have not been published so far.

3.5 MET → ENV: greenhouse gas emissions, land-use change and biodiversity loss, impacts on other planetary5

boundary processes, etc.

This taxon encompasses modelled influences exerted by socio-metabolic subsystems on the biophysical environment including

various forms of the “colonisation of nature” (Fischer-Kowalski and Haberl, 1993). Prominent examples in the context of global

change and sustainability transformation include human impacts on the environment addressed by the planetary boundaries

framework (Rockström et al., 2009a, b; Steffen et al., 2015) such as anthropogenic emissions of greenhouse gases (Stocker10

et al., 2013), nitrogen and phosphorous, other forms of chemical pollution and novel entities (e.g., nano particles, genetically

engineered organisms), land-use change and induced biodiversity loss, exploitation and use of natural resources (Perman,

2003). This taxon also includes various forms of the conversion of energy and entropy fluxes in the biophysical Earth system

by human technologies such as harvesting of renewable energy by wind turbines and photovoltaic cells (Kleidon, 2016) or

different approaches to geoengineering (Vaughan and Lenton, 2011).15

The interactions described by the MET→ ENV are central in IAM and ESM studies of the global environmental impacts

of human activities in the Anthropocene such as anthropogenic climate change as driven by greenhouse gas emissions and

land-use change (Barros et al., 2014; Edenhofer et al., 2014). The latter two key processes are also frequently included in

emerging studies of planetary social-ecological dynamics using stylised models (Kellie-Smith and Cox, 2011; Anderies et al.,

2013; Heck et al., 2016; Heitzig et al., 2016; Lade et al., 2017a; Nitzbon et al., 2017).20

3.6 MET → CUL: needs, constraints, etc.

This taxon describes modelled influences and constraints imposed upon socio-cultural dynamics by the material basis of hu-

man societies (socio-metabolic subsystems). These include, for example, the effects, needs and constraints induced by the

biophysical “hardware” that runs socio-cultural processes: infrastructures, machines, computers, human bodies and brains, and

associated availability of energy and other resources. It also includes the effects of technological evolution, revenues gener-25

ated from economic activity, supply of valued goods, e.g. on opinion formation and behavioural change in the socio-cultural

domain, or the consequences of change in demographic distribution of pressure groups on political systems and institutions.

As a recent example, the Beckage et al. (2018) model mentioned above (Sect. 3.3) has one parameter to reflect structural con-

straints in society that affects the degree to which emission behaviour can be changed. MET→CUL links also appear in models

of resource use in social-ecological systems, where social learning of harvesting effort depends on the harvest rate (Wiedermann30

et al., 2015; Barfuss et al., 2017; Geier et al., 2019) and fish catches influence perceptions about the state of the fishery (Martin

and Schlüter, 2015; Lade et al., 2015), or in models of economic impacts on individual voting behaviour (Lewis-Beck and

Ratto, 2013).
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3.7 CUL → CUL: socio-cultural self-interactions

This taxon contains modelled self-interactions between subsystems in the socio-cultural domain that have been described

as parts of the noosphere (Vernadsky, 1929/1986), the global subject (Schellnhuber, 1998), or the mental component of the

Earth system (Lucht and Pachauri, 2004). Examples include the interaction of processes of opinion dynamics and preference

formation on social networks, governance systems and underlying value systems (Gerten et al., 2018) as well as interactions5

between different institutional layers such as governance systems, formal and informal institutions (Williamson, 1998; Otto

et al., 2020a).

Some of these processes related to human behaviour and decision making (Müller-Hansen et al., 2017) have already been

studied in models of social-ecological systems on local and regional scales (Schlueter et al., 2012; Schlüter et al., 2017) and

have been modelled in various fields ranging from social simulation to the physics of social dynamics (Castellano et al., 2009).10

However, they are so far largely not included in IAMs of global change or stylised models of planetary social-ecological

systems (Verburg et al., 2016; Donges et al., 2017a, b).

3.8 CUL → ENV: environmental governance, nature conservation areas, social taboos, sacred places etc.

This taxon encompasses modelled influences that socio-cultural subsystems exert on the biophysical environment. An example

for such a class of interactions is environmental governance realized through formal institutions (Ostrom et al., 2007; Folke15

et al., 2011), where a piece of land is declared as a nature protection area excluding certain forms of land-use which has a direct

impact on environmental processes there. Similarly, nature protection areas for biodiversity conservation have been represented

in marine reserve models (Gaines et al., 2010). Another related example for CUL → ENV links are nature-related values

and informal institutions such as respecting sacred places in the landscape and following social taboos regarding resource

use (Colding and Folke, 2001). Different forms of environmental governance have been modelled via so-called decision or20

sustainability paradigms (Schellnhuber, 1998; Barfuss et al., 2018; Heitzig et al., 2018).

Direct CUL → ENV links arguably cannot be found in the real world, in that socio-cultural influences on environmental

processes must be mediated by their physical manifestations in the socio-metabolic domain (e.g. in the case of nature protection

areas through the constrained actions of resource users, government enforcement efforts and infrastructures such as fences).

However, such direct CUL → ENV links may be implemented in models, even on the global scale, such as in trade-off25

assessments of multiple land-uses (e.g. Boysen et al. (2017); Phalan (2018)).

3.9 CUL → MET: socio-economic policies and governance choices, value-driven consumption, etc.

Finally, this taxon contains modelled links pointing from socio-cultural to socio-metabolic subsystems. Examples include

socio-economic policies and governance choices such as taxes, regulations or caps that influence the economy (e.g. carbon

caps or taxes in the climate change mitigation context) or demographics (e.g. family planning and immigration policies)30

as well as the physical manifestations of financial market dynamics such as real estate bubbles. CUL → MET interactions
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also encompass the influence of cultural values, norms and lifestyles on economic demand and consumption and consequent

changes in industrial production, building, transportation and other sectors.

Policy measures such as taxes, regulations or caps are much studied by IAMs of anthropogenic climate change (Edenhofer

et al., 2014), while influences of value and norm change on economic activities such as general resource use (Wiedermann

et al., 2015; Barfuss et al., 2017; Geier et al., 2019) and fishing (Martin and Schlüter, 2015; Lade et al., 2015) has been studied5

in the social-ecological modelling literature, but at a mostly local to regional level.

3.10 Higher-order taxonomies of feedback loops and more complex interaction networks

Beyond the taxonomy of interactions introduced above, higher-order taxonomies could also be derived. For example, a taxon-

omy of feedback loops can be derived from the 3×3 taxonomy of links, leading to six taxa for feedback loops of length two in

models of World-Earth systems: given a pair of interaction taxa A→B and B→A, the resulting taxon for loops between A10

andB may be denoted asA�B. Many such feedback loops relevant for sustainability are not or only rigidly treated in current

ESMs and IAMs. For example, the ENV�MET feedback loop is typically not sufficiently represented in IPCC-style analyses,

because the impacts of climate change on human societies are not explicitly modelled or ill-constrained in IAMs (Sect. 3.5).

Furthermore, feedback loops of the type CUL � X, where X may be subsystems from ENV, MET or CUL are mostly missing

altogether, not the least because CUL is not represented, or only fragmentarily included, in current ESMs and IAMs.15

Longer and more complex paths and subgraphs of causal interactions between subsystems could be classified by further

higher-order taxonomies (e.g. inspired by the study of motifs, small subgraphs, in complex network theory, Milo et al. (2002)).

This approach quickly leads to a combinatorial explosion, e.g. for 3-loops of the type A→B→ C→A involving three

modelled subsystems A,B,C and their interactions enumeration and counting of all possible combinations shows that there

are already 11 distinct taxa for feedback loops of this kind. However, there are systematic methods available for classifying20

and clustering causal loop diagrams that could be leveraged to bring order into more complex models of World-Earth systems

(Van Dijk and Breedveld, 1991; Rocha et al., 2015). Overall, such higher-order taxonomies could help in the design of models

or model suites that can deal with different aspects of (nonlinear) interactions between World-Earth subsystems and serve as

tools for understanding the emergent co-evolutionary macrodynamics.

4 An exemplary model showing complex co-evolutionary dynamics in a World-Earth system25

At present, to our best knowledge, process-detailed World-Earth models that are comprehensive in the sense of the proposed

taxonomies are not available. Therefore, in this section, we give an illustrative example of a stylised World-Earth system model

that covers all classes of real-world processes that appear relevant in major global feedbacks. Even such a very simple World-

Earth system model can contain a social-ecological feedback loop involving subsystem interactions introduced above (Sect. 3),

and leading to a biophysical Earth system dynamics that depends crucially on a social-cultural evolution and vice versa. We30

also demonstrate how the taxonomies described above can be applied to classify model components and reveal the interaction
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structures that are implicit in the model equations. The companion paper of this article applies the taxonomies to develop a

more complex illustrative World-Earth model using the copan:CORE framework (Donges et al., 2020).

The example model studied here, copan:DISCOUNT, describes a world where climate change drives a change of countries’

value systems, represented here just by the long-term discount factors their governments use in policy-making, which can be

interpreted as their relative interest in future welfare as opposed to current welfare. These discount factors drive countries’5

emissions and thus in turn drive climate change, represented by a global atmospheric carbon stock. While the detailed descrip-

tion of the model’s assumptions below will make clear that this causal loop involves eight of the nine interaction taxa shown

in Fig. 2, the model is so designed that the description of the resulting dynamics from all these interactions can be reduced to

just two ordinary differential equations, one for the fraction of “patient” countries and one for atmospheric carbon stock. The

novelty of this model is that it endogenises socially transmitted choice of discount rates in a greenhouse gas emissions game to10

illustrate the effects of social-ecological feedback loops that are so far typically not considered in current climate economics

and IAM modelling efforts.

The aim of this particular model design is to show clearly that while the taxonomy developed in this paper aims at being

helpful in designing and analysing World-Earth models, this does not mean the different taxa need always be easily identifiable

from the final model equations.15

Before relating its ingredients to the introduced taxa, let us describe the model without referring to that classification. In our

model, we assume that each country’s metabolic activities are guided by a trade-off between the undesired future impacts of

climate change caused by global carbon emissions, and the present costs of avoiding these emissions domestically. Similar to

the literature on international environmental agreements and integrated assessment modelling, this tradeoff is modelled as a

non-cooperative game between countries applying cost-benefit optimisation. The tradeoff and hence the evolution of the carbon20

stock is strongly influenced by the discount factor δ that measures the relative importance a country assigns to future welfare

as compared to present welfare. The higher δ, the more a country cares about the future and the more they will reduce their

emissions in order to avoid future climate impacts. While the economic literature treats δ as an exogenous parameter that has

to be chosen by society (e.g., Arrow et al. (2013)), our model treats δ as a social trait that changes in individual countries over

time because countries observe each other’s welfare and value of δ and may learn what a useful δ is by imitating successful25

countries and adopting their value of δ. Because of the existence of climatic tipping points, this social dynamics does not only

influence the state of the climate system but is in turn strongly influenced by it. Depending on whether the system is far from

or close to tipping points, the trade-off between emissions reduction costs and additional climate damages can turn out quite

differently and different values of δ will be successful.

Let us now present and decompose the model’s basic causal loop in terms of the above introduced taxonomy, as shown in30

Fig. 3, starting in the central box. The countries’ metabolisms (MET) combust carbon (MET → MET), leading to emissions

(MET → ENV) that increase the global atmospheric carbon stock C (ENV), part of which is then taken up by other carbon

reservoirs (ENV→ ENV). C increases global mean temperature, leading to climate change (ENV→ ENV) and thus to future

climate impacts (i) on the countries’ metabolisms (ENV → MET) and (ii) on aspects of the environment people care about,

such as biodiversity (ENV → ENV → CUL). Countries evaluate these expected damages (MET → CUL; ENV → CUL)35
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Figure 3. Planetary social-ecological processes and interactions represented in the copan:DISCOUNT model displayed in matrix form

following Fig. 2. The co-evolutionary cycle of dynamic interdependencies implemented in the model is indicated by the grey arrow.

and the costs of avoiding emissions (MET→ CUL), use their respective discount factors (CUL), which they learn by imitation

(CUL→ CUL), to assess possible domestic emissions constraints, then reach a strategic equilibrium with other countries (CUL

→ CUL) and implement the chosen emissions constraints (CUL→MET), this closing the long loop.

In the statistical limit of this model for a large number of countries, derived in detail in the Appendix A, this complex

feedback dynamics is nicely reduced to just two equations,5

Ċ = E0− cs(C)φ(F )− rC, (1)

Ḟ = `F (1−F )[P (D(C,F ))−P (−D(C,F ))], (2)

where C is excess atmospheric carbon stock and F the fraction of “patient” countries (those that apply a large value of δ),

and where s(C) is a damage factor, φ(F ) is a certain linear transformation of F , D(C,F ) is the utility difference between a

country using discount factor α and a country using β, and P (D) is a resulting imitation probability, all these derived in detail10

in the Appendix A. Some of the various terms in these formulas can be classified clearly as belonging to one taxon, e.g., BAU

emissions E0 belong to MET→ ENV, carbon-uptake −rC to ENV→ ENV, and the imitation probability P (D) to CUL→
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CUL. But others cannot, e.g., certain terms occurring in the formula for D combine climate damages s(C) (ENV→MET→
CUL) with countries’ values systems, represented by φ(F ) (CUL). The dynamics are governed by about a dozen parameters

controlling the relative speeds and intensities of subprocesses, costs and benefits of emissions reductions, and details of the

learning-by-imitation process, as described in the Appendix (Sect. A).

Let us analyse a typical dynamics of the model, shown in Fig. 4, and relate it again to our taxonomy of subsystem interactions.5

Consider the middle green trajectories in the lower panel starting at a low atmospheric carbon stock of C = 1 (fictitious units)

and a medium fraction of patient countries of F = 0.5 (green dot). At this point, both patient and impatient countries evaluate

the state of the world very similarly, hence not much imitation of discount factors happens (weak CUL→ CUL dynamics), so

that F may fluctuate somewhat but is not expected to change much. At the same time, as the climate damage curve (middle

panel) is still relatively flat, global emissions are higher than the natural uptake rate (strong MET→ ENV influence), and C10

is likely to increase to about 1.7 without F changing much. During this initial pollution phase, climate damages increase (the

ENV→ MET/CUL links becomes stronger) and the slope of the damage curve increases as more climatic tipping points are

neared or crossed. This decreases the patient countries’ evaluations faster than the impatient countries’, hence patience becomes

less attractive and countries fatalistically decrease their discount factor, so that F declines to almost or even exactly zero (the

CUL→ CUL dynamics becoming first stronger then weaker again) while C grows to about 3.0. In that region, most tipping15

points are crossed and the damage curve flattens again, causing the opposite effect, i.e., making patience more attractive. If the

idea of patience has not “died-out” at that point (i.e., F is still > 0), discount factors now swing to the other extreme with F

approaching unity (CUL→ CUL dynamics becoming temporarily very strong), shown by one green trajectory, while emissions

are first almost in equilibrium with natural carbon uptake at about C = 3.2 (weak MET→ ENV effect) and then decline ever

faster once the vast majority of countries got patient (stronger MET → ENV). This trajectory finally converges to the stable20

steady state at a low carbon stock of about C = 1.5 and F = 1. Note that there is also some small probability that this point

is reached much faster without the long detour if the stochastic social dynamics at the starting point give patience a random

advantage, as on two of the plotted trajectories.

As is typical in models with various interactions, changes in their relative interaction rates can cause highly nonlinear and

even qualitative changes in model behaviour. A comparison of the top and bottom panels in Fig. 4 (see also its caption) shows25

that this is in particular true for World-Earth models when the rates of socio-cultural processes of the CUL→ CUL type are

changed (as can be claimed is indeed happening in reality since the middle of the 20th century). It should be emphasised

again that these socio-cultural processes are specifically those that are least or not at all represented in current models of

global change, pointing to the necessity and expected progress in understanding when including them in more comprehensive

World-Earth models.30

Overall, the DISCOUNT model provides a first test of the taxonomy’s guiding principles. It demonstrates the taxonomy’s

operative capacity to trace links between established dynamical systems methodology and macro behaviour; it is compatible

with diverse research fields, here linking, among others, carbon cycles and social learning; and it has appropriate compactness,

since tracing the loops and flows between taxa in this World-Earth model do not make us need to rethink the whole structure

of the taxonomy.35
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Figure 4. Typical dynamics of the copan:DISCOUNT model of the co-evolution of the global atmospheric carbon stock C and the time

preferences of countries, represented by the fraction F of patient countries. Of five simulated stochastic trajectories (top and bottom panel,

green lines) starting at the same initial state (green dot), some will converge fast to the more desirable stable steady state at C ≈ 1.5, F = 1

where climate damages (middle panel) are still relatively low, while other trajectories will approach the less desirable focus point (spiralling

steady state) at C ≈ 2.8, F = 0.35 where climate damages are relatively high. Depending on whether countries adjust their time preferences

slowly (top panel) or fast (bottom), that focus point is either a stable attractor catching most trajectories that come near it (top) or an unstable

repeller which many trajectories have to compass to approach the desirable state after a long transient detour of high damages (bottom).

Blue lines show the average development represented by two ordinary differential equations (see Appendix A for details), red lines are the

corresponding nullclines (thin: Ḟ = 0, thick: Ċ = 0), and their other intersection at C ≈ 2, F ≈ 0.6 is a saddle point. Parameters: E0 = 1.6,

c= 1, r = 0.45, l = 0.2 (top) or 1.3 (bottom), γ = 1.1, µ= 2, σ = 1, β = 0.1, α= 0.5, G= 2, N = 50, p0 = 0.5, q = 3.
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5 Conclusions

In this article, we have presented a taxonomy of processes and co-evolutionary interactions in models of World-Earth systems

(i.e. planetary-scale social-ecological systems). For reasons of compactness and compatibility with existing research fields and

methodologies we have proposed three taxa for modelled subsystems, and furthermore described a classification of modelled

interactions between subsystems into nine taxa. We have illustrated the clarity that this taxonomic framework confers, using5

a stylised model of social-ecological co-evolutionary dynamics on a planetary scale that includes explicitly socio-cultural

processes and feedbacks.

We argue that a relatively simple taxonomy is important for stimulating the discourse on conceptualisations of World-Earth

systems. It can help with operational model development as is illustrated by the work reported in the companion paper (Donges

et al., 2020). The proposed taxonomy can also help in interdisciplinary communication, model critique, and potentially even10

participatory modelling processes by providing an organisational scheme and a shared vocabulary to refer to the different

components that need to be brought together. However, we acknowledge that alternative, more detailed taxonomies can be

beneficial in more specialised settings, e.g. ecological processes are now subsumed in the biophysical taxon, but it may be

useful to distinguish them from the geophysical for a clearer understanding of interactions with the socio-metabolic taxon.

In other contexts, it may be useful to establish a socio-epistemic taxon separate from the socio-cultural taxon for describing15

subsystems, processes and interactions involving, for example, symbolic representations and transformations of knowledge

through science and technology (Renn, 2018). Along these lines, our framework may be helpful as a blueprint for constructing

such alternative, possibly more detailed taxonomies.

Throughout the paper, we have illustrated the taxonomic framework using examples of subsystems, processes and inter-

actions that are already represented in mathematical and computer simulation models in various disciplines. We have not20

attempted to provide a comprehensive classification of all such modelling components that would be relevant for capturing

future trajectories of World-Earth systems in the Anthropocene. Neither have we addressed dynamics beyond the reach of

current modelling capabilities, such as long-term evolutionary processes acting within the biophysical taxon or broad patterns

and singularities in the dynamics of technology, science, art and history (Turchin, 2008). But we have shown the merits of

epistemological pluralism, to enable productive dialogue and interaction between the diversity of World modelling approaches25

and the biophysical Earth representations that exist and that have agency in a Latourian sense, e.g. through the IPCC processes.

Applying the proposed taxonomy reveals relevant directions in the future development of models of global change to appro-

priately represent the dynamics of up to planetary-scale social-ecological systems in the Anthropocene. Regarding the sticky

problem of representing causality in such a complex system, every possible contributory model is a Pandora’s box out of which

theoretical controversies and cross-disciplinary battles emerge. The taxonomy outlined here at least partly illuminates what30

is in this box, making it easier to have more open discussions among modellers about their theories and hypotheses about

causality.

While current Earth System Models focus exclusively on representing biophysical subsystems and their interactions and

Integrated Assessment Models capitalise on those in the socio-metabolic taxon, socio-cultural subsystems and processes such
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as the dynamics of opinions and social networks, behaviours, values and institutions and their feedbacks to biophysical and

socio-metabolic subsystems remain largely uncovered in planetary-scale models of global change. Integrating these decisive

dynamics in World-Earth Models is a challenging, but highly promising research programme (Schellnhuber, 1998, 1999;

Steffen et al., 2020) comparable to the development of biophysical Earth system science in the past decades following the

foundational blueprints of Bretherton et al. (1986, 1988). We use the copan:DISCOUNT model to demonstrate the value of5

the taxonomy for tracing how dynamics and feedbacks loop through different taxa, enabling better model design and com-

munication about path-breaking approaches to World-Earth modelling. Following this track will help to develop models that

go beyond a climate-driven view of global change and to bridge the “divide" that keeps being spotlighted as the problematic

hyphen in prevalent social-ecological/human-nature/etc system concepts. It will also contribute to a deeper understanding of

the functioning of complex World-Earth systems machinery in the Anthropocene. By supporting the development and discus-10

sion of new family of models, and not by pushing for a rigid and universalising model of everything, applying the taxonomy

promises to yield important insights on well-designed policy interventions to foster global sustainability transformation, build

World-Earth resilience and avoid social-ecological collapse.
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Appendix A: The copan:DISCOUNT model

The illustrative model copan:DISCOUNT simulates the co-evolution of C > 0, the excess global atmospheric carbon stock

above an equilibrium value that would be attained for zero GHG emissions, and the fraction F ∈ [0,1] of the world’s countries20

that care strongly about their future welfare. While C represents the macroscopic state of nature, F represents the macroscopic

state of the global human society.

As the derivation of the model below will show, the time evolution of C and F is eventually given by Eqs. 1 and 2. Their

governing parameters are business-as-usual emissions E0 > 0, an abatement cost factor c > 0, a carbon uptake rate r > 0, a

learning rate ` > 0, a damage coefficient γ > 0, a mean tipping point location µ > 0 and spread σ > 0 , two candidate discount25

rates 0< β < α < 1, an economic growth factorG> 1, the total number of countriesN > 0, a curiosity parameter 0< p0 < 1,

and a myopic rationality parameter q > 0. The equations are derived by combining a standard emissions game model from the

literature on international environmental agreements (Barrett, 1994) with a social imitation dynamics that governs the evolution

of the countries’ time discounting factors as follows.

A1 Countries, welfare30

At each point in continuous time, t, a number of N > 1 similar countries, i, choose their individual abatement levels (carbon

equivalents per time), ai(t)> 0. Global abatement and carbon emissions per time (an interaction of type MET → ENV) are
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then

A(t) =

N∑

i=1

ai(t), E(t) = E0−A(t), (A1)

where E0 > 0 are global “business-as-usual” emissions.

Country i chooses ai(t) rationally but myopically, only taking into account its own welfare in the present and in “the

future” (after a fixed time interval of, say, fifty years). Its present welfare, W 0
i (t), is given by some business as usual welfare,5

normalised to unity, minus the costs of emissions reductions (MET→ CUL), which are a quadratic function of ai(t) as usual

in stylised models of international environmental agreements (Barrett, 1994),

W 0
i (t) = 1− ai(t)

2

2c/N
, (A2)

where c/N > 0 is a cost parameter that is normalised with N to make the Nash equilibrium outcome (see below) independent

of N .10

Country i’s “future” welfare (belonging to MET), W 1
i (t), is a higher business-as-usual welfare given by a growth parameter

G> 1, minus the value of additional damages from climate change caused by the present emissions, which are a linear function

of E(t):

W 1
i (t) =G− s(C(t))E(t), (A3)

where s(C(t))> 0 is a damage factor that depends on the current carbon stock (see below). Note that while these additional15

damages s(C)E(t) caused by the present emissions, total damages will still be a nonlinear function of stock C since the factor

s(C) changes with C, representing the presence of tipping points (see below).

A2 Discounting, emissions

SinceW 1
i increases in ai whileW 0

i decreases, choosing an optimal value for ai involves a trade-off between present and future

welfare, which we assume is done in the usual way by using some current discount factor 0< δi(t)< 1 (an element of taxon20

CUL) that measures the relative weight of future welfare in country i’s optimisation target (“utility”) at time t, Ui(t):

Ui(t) = (1− δi(t))W 0
i (t)+ δi(t)W

1
i (t). (A4)

For simplicity, we assume that only two different discount factors are possible, 0< β < α < 1, and call a country with δi(t) = α

“patient”, so that the state of global society at time t can be summarised by the fraction F (t) of patient countries:

F (t) = |{i : δi(t) = α}|/N. (A5)25
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Given carbon stockC(t) (ENV) and discount factors δi(t), the countries thus face a simultaneous multi-agent multi-objective

optimisation problem, each i trying to optimise their utility

Ui(t) =
(
1− δi(t)

)(
1− ai(t)

2

2c/N

)

+ δi(t)
(
G− s

(
C(t)

))

E0−

N∑

j=1

aj(t)


 . (A6)

by choosing ai(t). As in the literature on international environmental agreements, e.g., Barrett (1994), we assume this is solved5

by making the choices independently and non-cooperatively, i.e., putting ∂Ui(t)/∂ai(t) = 0 for all i simultaneously, leading

to a system of N equations whose solutions ai(t) form the Nash equilibrium choices (CUL→ CUL),

ai(t) =
c

N

δi(t)

1− δi(t)
s(C(t)), (A7)

Ui(t) = 1+ δi(t)(G−E0 s(C(t))+ cs(C(t))2φ(F (t))− 1)

− c

2N

δi(t)
2

1− δi(t)
s(C(t))2 (A8)10

and the aggregate abatement (CUL→MET) and emissions

A(t) = s(C(t))cφ(F (t)), E(t) = E0−A(t), (A9)

where

φ(F (t)) = F (t)
α

1−α +(1−F (t)) β

1−β . (A10)

A3 Evolution of discount factors15

While economic models treat the discount factor of a country as an exogenous parameter, we assume that the value of δi is a

social trait that may be changed over time due to the observation of other countries’ discount factors and their resulting utility

(CUL→ CUL). As in many models of the spread of social traits (e.g., Traulsen et al. (2010); Wiedermann et al. (2015)), we

assume that each country i may adopt another country j’s value of δ (social learning by imitation) and that the probability P

for doing so depends on the difference between i and j’s current utility,Dij(t) = Uj(t)−Ui(t), in a nonlinear, sigmoid-shaped20

fashion, with P (D)→ 0 for D→−∞ and P (D)→ 1 for D→∞. The utility difference between a country using α and a

country using β is

D(t) = [α−β](G−E0s(C(t))+ cs(C(t))2φ(F (t))− 1)

−
[
α2

1−α −
β2

1−β

]
cs(C(t))2

2N
. (A11)

This difference is zero iff the discounting summary statistics φ(F (t)) equals25

φF (C(t)) :=

α2

1−α −
β2

1−β
2N [α−β] +

E0

cs(C(t))
− G− 1

cs(C(t))2
(A12)
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Since α > β, we have D(t)> 0 iff φ(F (t))< φF (C(t)), meaning that depending on the stock and the fraction of patient

countries, either patience or impatience might be more attractive, so that one can expect interesting learning dynamics.

We assume that at each point in time, each country i independently has a probability rate ` > 0 to perform a “learning step”.

If i does perform a learning step at time t, it compares its current utility Ui(t) with that of a randomly drawn country j and sets

its discount factor δi(t) to the value of δj(t) with a probability given by the generalised logistic function,5

P (Dij(t)) =
1

1+ 1−p0
p0

exp(− q
p0(1−p0)Dij(t))

, (A13)

where 0< p0 < 1 and q > 0 are parameters so that P (0) = p0 and P ′(0) = q.

The “curiosity” parameter p0 can be interpreted as a measure of a country’s curiosity-driven exploration of a different

discount factor without expecting a welfare increase. The larger p0, the more frequent switches will occur, but in both directions

between the two candidate discount rates, mainly generating more variance and fluctuations that can be seen as a form of10

“noise”. The “myopic rationality” parameter q can be interpreted as a measure of a country’s rationality, because the probability

of switching to the other country’s discount rate is higher if the other country has higher welfare (and zero if that is not the

case) – but it is a myopic rationality, because the agent only takes its present welfare into account. The larger q, the faster

discount factors will converge to the one currently generating the largest welfare.

To get a deterministic evolution that can be represented by an ordinary differential equation, we only track the expected15

fraction F (t) of patient countries, which evolves as

Ḟ (t) = `F (t)(1−F (t))[P (D(t))−P (−D(t))], (A14)

while the actual number of patient countries would follow a stochastic dynamics involving binomial distributions that converges

to the above in the statistical limit N →∞. Note that Ḟ (t) = 0 iff F (t) ∈ {0,1} or φ(F (t)) = φF (C(t)).

A4 Carbon stock, damage factor20

For ease of presentation, we drop the denotation of time dependence from here on. We assume that the atmospheric carbon

stock evolves according to a simplistic dynamics involving only emissions and carbon uptake by other carbon stocks,

Ċ = E− rC = E0− cs(C)φ(F )− rC (A15)

with a constant carbon uptake rate r > 0 (ENV→ ENV). Note that Ċ = 0 iff φ(F ) equals

φC(C) =
E0− rC
cs(C)

. (A16)25

In order that C > 0 for all times, we require that Ċ > 0 whenever C = 0, which is ensured by assuming that the parameters

fulfil E0 > cγ exp(−µ2/2σ2)φ1 where φ1 = α/(1−α).
We further assume that s(C), the value (MET→ CUL; ENV→ CUL) of the additional damages from climate change (ENV

→ MET; ENV→ CUL) due to a marginal increase in emissions at an existing carbon stock C (ENV→ ENV), is a positive
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function of C that has a unique maximum at some critical stock µ at which small changes in stock lead to large changes in

damages due to the presence of tipping points. To approximate a damage function that is a sum of a number of sigmoid-shaped

functions representing individual tipping points whose locations and amplitudes are roughly normally distributed, we take s(C)

to be Gaussian,

s(C) = γ exp(−(C −µ)2/2σ2), (A17)5

with parameters γ > 0, µ > 0, σ > 0. This completes our derivation of the two ordinary differential equations for C and F .

A5 Steady states, stability

We can distinguish three types of steady states where Ċ = Ḟ = 0.

(1) All countries are impatient, F = 0 (which implies φ(F ) = φ0 := β/(1−β)), and (E0− rC)/cs(C) = φ0. The latter is

equivalent to cφ0γ exp(−(C−µ)2/2σ2) = E0−rC which has generically one or three solutions in C with C > 0. If there are10

three, the middle one is always unstable. The others are stable iff D < 0.

(2) All countries are patient, F = 1 (which implies φ(F ) = φ1) and (E0− rC)/cs(C) = φ1. The latter is equivalent to

cφ1γ exp(−(C−µ)2/2σ2) = E0−rC which again has generically one or three solutions in C with C > 0. Again, if there are

three, the middle one is always unstable. Again, the others are stable iff D < 0. The possibility of two stable states with F = 1,

one with a small and one with a large C, indicates that even if all countries eventually become patient, this may happen too15

slowly to prevent a level of climate change (large A) that makes ambitious mitigation even for patient countries too costly in

view of the small amount of climate damages that could then still be avoided.

(3) 0< F < 1 and φ(F ) = φF (C) = φC(C). This has at most four different solutions in C with C > 0, to each of which

corresponds at most one solution in F . We know of no simple conditions for assessing their stability but from our numerical

experiments we conjecture that (i) at most one of them is stable, namely the one with the largest C, (ii) its stability depends20

only on the learning rate `, being stable up to a critical value `∗, then unstable; (iii) For ` < `∗, it is a stable focus and the

leftmost steady state with F = 0 is unstable. Hence at most four stable steady states can exist: at most two with F = 1, and

either at most two with F = 0 or at most one with F = 0 plus the stable focus with 0< F < 1.
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Abstract 

Societal transformations are necessary to address critical global challenges, such as mitigation of 
anthropogenic climate change and reaching UN sustainable development goals. Recently, social 
tipping processes have received increased attention, as they present a form of social change whereby 
a small change can shift a sensitive social system into a qualitatively different state due to strongly 
self-amplifying (mathematically positive) feedback mechanisms. Social tipping processes have 
been suggested as key drivers of sustainability transitions emerging in the fields of technological 
and energy systems, political mobilization, financial markets and sociocultural norms and 
behaviors. 
 
Drawing from expert elicitation and comprehensive literature review, we develop a framework to 
identify and characterize social tipping processes critical to facilitating rapid social transformations. 
We find that social tipping processes are distinguishable from those of already more widely studied 
climate and ecological tipping dynamics. In particular, we identify human agency, social-
institutional network structures, different spatial and temporal scales and increased complexity as 
key distinctive features underlying social tipping processes. Building on these characteristics, we 
propose a formal definition for social tipping processes and filtering criteria for those processes that 
could be decisive for future trajectories to global sustainability in the Anthropocene. We illustrate 
this definition with the European political system as an example of potential social tipping 
processes, highlighting the potential role of the FridaysForFuture movement. 
 
Accordingly, this analytical framework for social tipping processes can be utilized to illuminate 
mechanisms for necessary transformative climate change mitigation policies and actions. 

 
Keywords 
 Social tipping dynamics, social change, sustainability, critical states, network structures, 

FridaysForFuture 
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MAIN TEXT 
 

1. Introduction 
 

There is growing concern that global climate change is reaching a point where parts of the Earth 
System are starting to pass damaging climate tipping points (1): In particular, part of the West 
Antarctic Ice Sheet (WAIS) appears to already be collapsing because of irreversible retreat of 
grounding lines (2, 3) which in turn is expected to trigger loss of the rest of the WAIS (4). Other 
tipping points may be close: A recent systematic scan of Earth system model projections has 
detected a cluster of abrupt shifts between 1.5 and 2.0°C of global warming (5), including a collapse 
of Labrador Sea convection with far-reaching impacts on human societies. The abrupt degradation 
of tropical coral reefs is projected to be almost complete if warming reaches 2.0°C (6, 7). The 
possibility of the global climate tipping to a ‘hothouse Earth’ state has even been posited (8). 
 
Against this backdrop, there is a growing consensus that avoiding crossing undesired climate tipping 
points requires rapid transformational social change, which may be propelled (intentionally or 
unintentionally) by triggering social tipping processes (9, 10) or “sensitive intervention points” (11, 
12). Examples for such proposed social tipping dynamics include divestment from fossil fuels in 
financial markets, political mobilization and social norm change, socio-technical innovation  (9–11, 
13, 14).  Equally, if human societies do not act collectively and decisively, climate change could 
conceivably trigger undesirable social tipping processes, such as international migration bursts, 
food system collapse or political revolutions (15). Social tipping processes have received recent 
attention, as they encompass this sort of rapid, transformational system change (9, 10, 13, 15). 
 
Here we develop an analytical framework for social tipping processes. Drawing upon expert 
elicitation and a comprehensive literature review, we find that the mechanisms underlying social 
tipping processes are categorically different from other forms of tipping, as they uniquely have the 
capacity for agency, they operate on networked social structures, have different spatial and temporal 
scales, and a higher degree of complexity. Following these distinctions, we present a definitional 
framework for identifying social tipping processes for sustainability, where under critical 
conditions, a small perturbation can induce non-linear systemic change, driven by positive feedback 
mechanisms and cascading network effects. We adopt this framework to understand potential social 
tipping dynamics in the European political system, where the FridaysForFuture movement (16) 
pushes the system towards criticality, generating the conditions for shifting climate policy regimes 
into a qualitatively different state. 

 
The proposed framework aims to establish a common terminology to avoid misconceptions, 
including the notions of agency, criticality as well as the manifestation and intervention time 
horizons in the context of social tipping. In this way, the framework can serve to connect literatures 
and science communities working on social tipping, social change, complex contagion dynamics 
and evidence from behavioral experiments (e.g. 14, 17).  

 
2. Background 

 
2.1. Tipping points as social-ecological systems features 

 
We start by reviewing the characterization of tipping points across the natural and social sciences. 
Over the last 150 years, a suite of concepts and theories describing small changes with large 
systemic effects has been developed at the intersection of natural and social sciences. More recently, 
the concepts of tipping points and tipping elements have been broadly adopted by both natural and 
social scientists working within the field of climate change. 
 
While the concept of ‘tipping’ originated in the natural sciences (18, 19), social scientists made 
extensive use of the idea in the 20th century, often without using the terminology of tipping. 
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Famously, Schelling (20), following Grodzins (21), developed a theory of tipping processes to 
explain racial segregation in US neighbourhoods. Granovetter (22) modeled collective behavior as 
a tipping process that depends on passing individual thresholds for participation in riots or strikes. 
Kuran (23) described political revolution in terms of tipping dynamics, while Gould and Eldridge 
(24) distinguish phases of policy change and stability in terms of ‘punctuated equilibrium’. Gladwell 
(25) popularised the concept of ‘tipping points’, exploring contagion effects (“fads and fashions”), 
sometimes triggered by specific events. 
 
Several recent studies have examined tipping processes within contemporary social systems. 
Homer-Dixon (26) and Battison (27) explored the 2008 financial crisis as a tipping phenomenon. 
Nyborg (14, 28) discussed shifts in norms and attitudes, for example regarding smoking behaviors. 
Centola (17) associated tipping points with the “critical mass phenomenon”, wherein 20–30% of a 
population becoming engaged in an activity can be sufficient to tip the whole society. Similarly, 
Rockström et al. (29) highlighted this so-called Pareto effect in the context of decarbonization 
transitions. Kopp et al. (15) distinguished different social tipping elements within the realm of 
policy, new technologies, migration and civil conflict that are sensitive to “climate-economic 
shocks”. Here, a tipping element is a system or subsystem that may undergo a tipping process. 
 
Since the mid 1990s, ecologists and social-ecological systems (SES) researchers have also 
developed an extensive body of research on tipping processes using the terminology of ‘regime 
shifts’ and ‘critical transitions’ (e.g. 30–32). Recognizing the impacts of human development on 
various ecosystems, this body of work often models ecological regime shifts as a consequence of 
social drivers. Less attention, however, has been paid to sudden changes in social systems triggered 
by ecosystem changes.  
 
There is a rich literature on the collapse of past civilizations (e.g. 33, 34) and the potential role of 
tipping points in that (35). Recently, Cumming and Peterson (36) brought this together with work 
on ecological regime shifts, proposing a “unifying social-ecological framework” for understanding 
resilience and collapse. Further, Rocha et al. (37) noted that tipping dynamics can be produced by 
the interactions between climatic, ecological and social regime shifts. 
 
The concept of climate tipping elements introduced by Lenton et al. (1) and Schellnhuber (38), has 
been increasingly adopted within Earth and climate sciences. Climate tipping elements are defined 
as at least sub-continental-scale components of the climate system that can undergo a qualitative 
change once a critical threshold in a control variable, e.g., global mean temperature, is crossed. 
Positive feedback mechanisms at the critical threshold drive the system’s transition from a 
previously stable to a qualitatively different state (1). Other scholars, e.g., Levermann et al. (39), 
suggest a somewhat narrower definition of climate tipping elements by introducing additional 
characteristics, such as (limited) reversibility or abruptness. The tipping elements identified so far 
include biosphere components such as the Amazon rainforest (40–42) and coral reefs (6, 7), 
cryosphere components such as the ice-sheets on Greenland and Antarctica (43), and large-scale 
atmospheric or oceanic circulation systems including the Atlantic meridional overturning 
circulation (44, 45). Their tipping would have far-reaching impacts on the global climate, 
ecosystems and human societies (e.g. 8, 46). 
 

2.2. Social Tipping  
 

In response to the concept of climate tipping points, social scientists are re-engaging with this 
concept yet again, creating an additional layer of tipping scholarship with an emphasis on the need 
for and possibility of deliberate tipping of social systems onto novel development pathways towards 
sustainability (e.g. 11, 47). Scholars argue in particular that the rapid, non-linear change of social 
tipping dynamics might be necessary to speed up societies’ responses to climate change, and to 
achieve the goals of the Paris Agreement. It is this element of acceleration, propelled by positive 
feedbacks, that makes the concept of tipping particularly interesting.  For example, Otto and Donges 
et al. (9) reported expert elicitations identifying social tipping elements relevant for driving rapid 
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decarbonization by 2050. Rapid-paced changes are a distinctive feature potentially differentiating 
tipping dynamics from many other forms of social change, including incremental (policy or 
institutional) changes, or more radical (socio-technical) transitions or societal transformations.  
 
Over the last decade, the literature on deliberate transitions and transformations towards 
sustainability has expanded significantly, exploring the dynamics that lead to the reorganization of 
social, economic or political systems (e.g. 48, 49). In many ways, this literature and the emerging 
work on social tipping are interested in very similar phenomena: fundamental shifts in the 
organization of social or social-ecological systems - a movement from one stable state to another - 
including a change in power relations, resource flows, as well as actor identities, norms and other 
meanings (48). Transformations can be fast, but speed is generally not one of their defining 
characteristics. 
 
This temporal feature of social tipping points - rapidity of change compared to the system’s normal 
background rate of change - combined with the fact that tipping processes can be triggered by a 
relatively small disturbance of the system is motivating scholarship on leverage or ‘sensitive 
intervention points’, e.g. Farmer et al. (12), who identified such potentially high-impact intervention 
opportunities, e.g., financial disclosure, choosing investments in technology and political 
mobilization that may be key for triggering decarbonization transitions. 
 
Based on a bibliometric and qualitative review of these various bodies of literature across the natural 
and social sciences, Milkoreit et al. (10) proposed the following general definition of (social) 
tipping: “the point or threshold at which small quantitative changes in the system trigger a non-
linear change process that is driven by system-internal feedback mechanisms and inevitably leads 
to a qualitatively different state of the system, which is often irreversible.” Milkoreit et al. (10) 
further noted there is a need to recognize and identify potential differences between climatic (or 
ecological) and social tipping processes to gain a deeper understanding of these phenomena.  

 
3. Methods and analytical structure  

 
Given this diverse and nascent field, there is a clear need for consensus as to what defines social 
tipping processes, as well as an understanding of how these processes are similar and diverge from 
dynamics in other non-social systems. Further, there are currently limited examples of social tipping 
elements in the context of sustainability transitions presented within the broader literature (9, 12, 
13, 15). 
 
Here we explore the characterization of tipping processes within the natural and social sciences, 
examining how social and climate tipping processes are differently conceptualized. We draw upon 
a mixed qualitative methodological approach to illuminate these differences and key distinctions.  
Initially, core differences were identified and discussed via expert elicitation (50).  A selected group 
of 25 experts from across the climate and social sciences were invited to take part in an expert 
elicitation workshop, that focused on identifying a common definition for social tipping processes, 
as well as the characterization of their dynamics.  This workshop was convened in June 2018 in 
Cologne, Germany.  The workshop participants were split into cross-disciplinary breakout groups, 
to independently identify the dynamics of social tipping processes.  Then, each of these groups 
reported their findings to the broader plenary, for discussion, consolidation, reconciliation and 
clarification.  The process was then repeated for further clarification within the breakout groups. 
Through this iterative inductive and deductive process, several unique themes and characteristics 
were identified from the broader set of codes, resulting in the key differences in and definition of 
social tipping processes presented below. 

 
Drawing upon the differences identified in the expert elicitation workshop, we then review and 
synthesize the emerging field of social tipping processes, particularly in comparison to the related 
climate and ecological tipping dynamics. We then draw upon these unique characteristics to develop 
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a common definition for social tipping processes, which we explore using the example of the 
FridaysForFuture student movement.  
 

4. Results  
 

4.1. Key differences between social and climate tipping processes 
 

Social and climate systems’ tipping processes exhibit several broad, fundamental differences in 
their structure and underlying mechanisms: (i) agency is a main causal driver of social tipping 
processes, (ii) the quality of social networks and associated information exchange provides for 
specific social change mechanisms not available in non-human systems, (iii) climate and social 
tipping processes occur at different spatial and temporal scales, and (iv) social tipping dynamics 
exhibit significantly more complexity than climatic ones.  
 
Agency: The most important characteristic differentiating social from climate tipping processes is 
the presence of agency. While a significant body of work (e.g. 51), including Latour’s actor-network 
theory (52), addresses different forms and effects of non-human or more-than-human agency, here, 
we focus on a more narrow understanding of agency that is based on consciousness and cognitive 
processes such as foresight, planning, normative-principled and strategic thinking, that allow human 
beings to purposefully affect their environment on multiple temporal and spatial scales. While 
humans have a generally poor track record of utilizing their agentic capacities especially with regard 
to shaping the future (e.g. 53–55), they appear unique in their capacity to transcend current realities 
with their decisions.   
 
Agency in this more narrow sense can be understood as the human capacity to exercise free will, to 
make decisions and consciously chart a path of action (individually or collectively) that shapes 
future life events and the environment (56). The notion of intentionality inherent in the idea of 
agency implies that human actors are not only able to adapt to changes in their environment, but 
also deliberately create such changes. Non-human life forms can also be engaged in deliberate 
changes of their environment (e.g., beavers building dams), but the cognitive quality of these actions 
differs from those of humans, which can be based on different forms of knowledge and meaning 
about the world, moral norms and principles, or ideas about desirable futures. Agency allows 
individuals and societies to be proactive rather than merely responsive in their relationships with 
other humans or the environment through planning, goal setting and strategic decision-making, 
which links decisions and behaviors in the present with consequences and realities in the (distant) 
future (57). 
 
Governance scholars address this social-cognitive capacity for forethought and goal-pursuit in terms 
of anticipation (58) and imagination (10), which can be tied to a set of futuring methods (59, 60). 
The ability to anticipate and imagine futures enables humans and their societies (53, 54)  – as 
opposed to animal communities or ecosystems – to transcend the present and shape the future 
according to our values and goals (61), possibly increasing the prospects for human survival in times 
of fast and significant environmental change (56, 62). Although this ability has been underutilized 
in the past, especially in the context of responding to climate change (63), it is a crucial dimension 
of the human repertoire of tools to create change and to ensure its long-term well-being. 

 
Agency interacts with many of the additional differentiating characteristics we identify below in 
important ways. For example, agency plays a role in the creation of social networks, institutions 
and meaning, i.e., the production of the structures of social systems. These network structures in 
turn enable and constrain agency (e.g. 64, 65). 
 
Physical climate tipping elements, such as ice sheets or ocean circulations, lack that ability to 
intentionally act and adapt. However, the adaptive capacity of ecosystems can be interpreted as a 
form of non-human agency and learning mechanism (66), see also Supplementary Information S2. 
While scholarship on non-human agency, including that of animals, inanimate objects, landscape 
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features or ecosystems (e.g. 67, 68) might expand our understanding of agency, the cognitive 
abilities that characterize human agency, especially long-term and strategic thinking, do not exist 
in the non-human or inanimate worlds. 
 
Social networks: Understanding the nature of social networks is crucial for studying social tipping. 
While both natural (including physical and ecological) and social systems can be structurally 
characterized as networks and studied using a network science approach (69), social systems differ 
from natural systems in the quality of the networks’ nodes and interconnections and the processes 
and dynamics facilitated and impacted by these particular network characteristics. Social systems 
feature additional network levels of information transmission (cultural and symbolic) that are 
largely restricted to human societies compared to natural systems (70). 
 
Network qualities unique to social systems:  
Networks in social and natural systems share various commonalities such as the existence of 
fundamental nodes and links (69). In contrast to most natural systems, however, social networks 
have the capacity to intentionally generate new nodes, which include socially constructed entities 
such as organizations and movements (71). New nodes can be created through cultural, political or 
legal means, as can the rules for their interactions with other existing nodes. Social system nodes 
are unique in that they have richer cognitive realities, particularly agency and forethought.  These 
nodes often have conflicting vested interests, which may be more short-sighted than future oriented. 
 
Relationships in social networks can consist of shared meanings – especially norms, identities and 
other ideas – and a vast variety of cultural, economic and political relationships (e.g., employment, 
citizenship), all of which are not as pronounced or non-existent in less complex human societies 
and nature. Hence, social network links are more diverse than links in natural systems and enable 
different kinds of network processes. For example, links between nodes in social networks are not 
necessarily dependent on physical co-presence, due to technologically enabled connections or the 
presence of more abstract interrelations such as shared norms, values or interpersonal relationships.  
 
Network processes: 
Social network dynamics can be of a purely ideational nature (e.g., the subject of the study of 
opinion and belief dynamics), but also involve material changes (e.g., resource extraction, 
movement and transformation for economic purpose). Markets are unique social networks, 
involving both ideational and material network processes. In the Anthropocene, the intensity and 
speed of socially networked interaction has increased dramatically, largely due to new media, 
digitalization, more efficient means of transportation, lower travel costs, and overall increased 
mobility, which is likely to increase spreading rates, while at the same time affecting the stability 
of the network itself (72–74).  
 
Generally, social tipping can either occur on a given network (e.g., through spreading dynamics 
changing the state of nodes (75) or change the network structure itself (see Figure 1). The structural 
network changes generated by social tipping processes include transitions from centralistic or 
hierarchical to more polycentric (neuromorphic) structures in urban systems, energy distribution 
and generation networks (76, 77). Structural changes can manifest on large and small-scale spatial 
networks across multiple social structure levels. In order to capture these network tipping processes, 
quantifiers from complex network theory such as modularity, degree distribution, centrality or 
clustering can be used (69). 
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Figure 1: Two types of social tipping in a complex network. (A) Social tipping can on the one hand 
be characterized by a contagion process where initially only a few nodes exhibit a certain property 
that then spreads through a large portion of the network. (B) On the other hand social tipping may 
also qualitatively alter the entire network structure from, e.g., a state with closely entangled nodes 
of different states to an almost or full disintegration of the network in smaller disjoint groups. The 
example in (A) shows the spread of an avatar among users in an online virtual world over the course 
of one week after it was first introduced by a small number of users (78). Nodes represent users and 
links represent the imitation of the avatar from one user to another. Yellow nodes denote users that 
have not picked up the avatar, while black nodes indicate those that did. (B) The upper network 
shows the members of the House of Representatives in the 94th United States Congress (January 3, 
1975 to January 3, 1977). Node colors indicate different party membership and links between nodes 
are drawn if the corresponding members agree on 66% of all votes in the considered two-year 
period. The lower network shows the same for the 110th United States Congress (January 3, 2007, 
to January 3, 2009). The transition from a closely entangled to an almost fragmented topology 
indicates a polarisation between Democratic and Republican Party members over time (16).  
 
 
 
Temporal and spatial scales: Scales can differ greatly between social tipping and climate tipping 
processes and are more ephemeral for social tipping than for climate tipping. 
 
Temporally, tipping in social systems manifests more commonly on the scale of months to decades, 
while for the climate tipping elements range from years to millennia. Human actors tend to focus 
on more short-term consequences or outcomes, as complex issues (such as climate change) with 
longer timeframes are often harder to assess (79). Within social systems, fund manager performance 
is evaluated quarterly, politicians often think in electoral cycles, business operates with annual or 
five-year forecasts, while individual practices and dispositions are constantly evaluated and 
reevaluated (80–82). In natural systems, however, it might take decades, centuries or even millennia 
for outcomes of change processes to become detectable (see Figure 2). 
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Both social and climate tipping elements can be ordered spatially (1, 39, 83), although social tipping 
elements cannot always be precisely located geographically. Social scientists and economists have 
long grouped systems and processes as existing on the macro-, meso- and micro-levels (or some 
variation thereof), whereby some social systems (e.g., financial markets, political systems, 
technologies) consist of interdependent subsystems existing on multiple spatial levels. 
 
Social tipping processes can also display spatial-temporal ephemerality. While climate tipping 
elements have a known spatial extent and dimensionality (with often a comparable extent in latitude 
and longitude and a generally much smaller extent in altitude) and have persisted in their current 
stable state for thousands (if not millions) of years, social tipping processes do not have a spatial 
extent or effective dimensionality that is known ex-ante and they can emerge (move into a critical 
state) and disappear (move out of a critical state) over time. 
 
 

 
Figure 2: Examples of spatial and temporal scales for climate and social tipping elements. 

Example climate tipping elements are broadly compiled from Lenton et al. (1), 
Levermann et al. (39), and Schellnhuber et al. (83). Social tipping elements are broadly 
compiled from Kopp et al. (15), Farmer et al. (12), Otto and Donges et al. (9), Hsiang 
(84), Tabara (11) and Lenton (13). 

 
 

Complexity: Social tipping processes occur in complex adaptive systems (85–87) as opposed to 
the complex but non-adaptive physical climate system. As such they can exhibit comparatively 
greater complexity in the (i) drivers, (ii) mechanisms and (iii) resulting pathways of social tipping 
processes, as well as the aforementioned ephemerality in their spatial-temporal manifestations, 
including a potentially fractal and varying dimensionality and a more complex interaction topology 
(88, 89). 
 
Social tipping processes can rarely be linked to a single common control parameter, such as is the 
case with global mean temperature in climate tipping dynamics. For most of the climate tipping 
elements like the ice sheets or the Atlantic meridional overturning circulation, the control variables 
such as local air temperature, precipitation or ocean heat transport, can often be translated or 
downscaled into changes in global mean temperature as one common driver (1, 38). However, for 
social tipping processes, multiple, interrelated factors are often identified as forcing the critical 
transition. For example, shifts in social norms regarding smoking (14) can be linked to several, 
entwined factors, such as policies, taxation, advertising and communication, social feedbacks (e.g., 
via normative conformity), or individual preference changes. Centola et al. (17) show that tipping 
in social convention is possibly explained by a single parameter: the size of the committed 
minority). At larger scales, the collapse of complex civilizations has been linked to multiple 
interacting causes, and whilst disagreement abounds over the balance of causes in particular cases, 
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there is general agreement that multiple factors were at play (33). This kind of causality – multiple 
interacting, distributed causes across varying scales – are a key characteristic of complex systems 
(90), contrasting starkly with conventional notions of causality involving bivariate relationships 
(one cause and one effect). 
 
Further, due to their potential for agency and adaptive plasticity, social systems are open to a larger 
number of mechanisms that could cause a tipping process and various pathways of change that a 
tipping process could follow towards a greater number of potentially stable post-tipping states (91). 
Climate tipping processes are often modeled as bi- or multistable, where the directional outcomes 
of forcing are to some extent known or knowable, e.g., based on paleoclimatic data and process-
based Earth system modelling. Given a specific forcing change, one can predict in what state the 
element will restabilize as well as the “net” effects of the tipping process on larger Earth systems. 
Based on this understanding, the tipping of climate system elements is generally perceived as 
undesirable and often as part of pushing the Earth system out of the “safe operating space for 
humanity” (92, 93). 
 
In contrast, for social systems, it is often unclear what a final stable state of the system will look 
like, or even whether the changes resulting from a tipping process will be normatively considered 
“positive” or “negative”. As Clark and Harley (94) point out, the characteristics of complex-
adaptive social systems, including the diversity of actors and elements and the different outcomes 
generated by local and global interactions, imply that the development pathways of these systems 
are less predictable. Further, a social tipping process can generate new and destroy existing actor 
types (e.g., identities, institutions) and their behaviors. Cross-scale dynamics and local differences 
are important to understand the emergent system structure and change dynamics, but predictive 
capacities, e.g., regarding the timing of a social tipping point or the boundaries between different 
stable states, do not yet exist (94). Hence, the term ‘managing transitions’ is less useful than the 
idea of navigating a transformation pathway. 
 
The political nature of social change processes (95) – different actors within a social community 
pursuing different, sometimes opposing, interests and visions for a reorganization of a social system 
while bringing to bear different resources and strategies – further exacerbate this situation. Actors 
can deliberately generate new feedback dynamics that support or slow change, even after a tipping 
point has been passed, and they can actively work to adjust the direction of change. 

  
 

4.2. Proposed definition of social tipping processes 
 

From the discussion above, it follows that a definition of social tipping process should take a micro-
perspective and incorporate network effects and agency in addition to common tipping 
characteristics already explored in the review by Milkoreit et al. (10). It should also describe the 
timing aspects sufficiently well to understand possibilities for intervention, similar to what Lenton 
et al. (1) suggested for climate tipping elements. Hence we propose the following definition of the 
various terms relevant for studying social tipping processes (see Supplementary Material S1 for a 
more formal mathematical definition suggested for use in simulation modelling and data analysis 
that is consistent with what we put forward here): 
 

Definitions: A ‘social system’ can be described as a network consisting of social agents (or 
subsystems) embedded within a social-ecological ‘environment’. Such a social system is 
called a ‘social tipping element’ if under certain (‘critical’) conditions, small changes in the 
system or its environment can lead to a qualitative (macroscopic) change, typically via 
cascading network effects such as complex contagion and positive feedback mechanisms. 
Agency is involved in moving the system towards criticality, creating small disturbances and 
generating network effects. By this definition, near the critical condition the stability of the 
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social tipping element is low. The resulting change process is called the ‘tipping process. 
The time it takes for this change to manifest is the ‘manifestation time’.1 

 
If a tipping element is already in a critical condition, where the stability of its current state is low, 
there may be a time window during which an agential intervention might prevent an unwanted 
tipping process by moving the system into an uncritical condition (see also SI text S1). Alternatively, 
if a tipping element is not already in a critical condition, there may be a time window during which 
some intervention might move it into a critical condition in order to bring about a desired tipping 
process. 
 
The small change triggering the tipping process could be either (i) a localized modification of the 
network structure (e.g., a change on the level of single nodes, small groups of nodes or links) or of 
the state of agents or subsystems, (ii) small changes of macroscopic parameters or properties, or (iii) 
small external perturbations or shocks. We deliberately do not require the trigger to be a single 
driving parameter. This is because we expect that a social tipping process could be triggered by a 
combination of causes rather than a single cause. Furthermore, a social tipping element may be 
tipped by several different combinations of causes. Consequently, for social tipping elements we 
cannot always expect at this point to identify a common aggregate indicator (such as global mean 
temperature in the case of climatic tipping elements) and a well-defined ‘threshold’ for this indicator 
at which the system will tip (see also the discussion on complexity above). 

 
Note that social tipping as defined here is a unique form of social change, e.g., distinct from climate 
economic shocks (15) and more specific than socio-technical transitions (96, 97). Further, social 
tipping also denotes a shift to a qualitatively different state, and such, is different from standard 
business cycles or causes of seasonality. As such, social tipping presents a particular process of 
social change, where a system undergoes a transformation from one qualitatively different state to 
another, after being in a more critical state and affected by a potentially small triggering event. 

 
4.3. Filtering criteria  

 
We propose several filtering criteria to focus on social tipping processes (i) that have the potential 
to be relevant to global sustainability in future Earth system tractories and (ii) where human 
interventions can occur within a pertinent intervention time horizon on the order of decades and will 
have consequences within a political/ethical time horizon on the order of hundreds of years. 

(i) Relevance of social tipping for global sustainability 
 
The social tipping process can impact a wide array of social systems, such as technological or energy 
systems, political mobilization, financial markets and sociocultural norms. We consider social 
tipping processes to be relevant here that have an impact on the biophysical Earth system or on 
macro-scale social systems. The qualitative change in a ‘relevant’ social tipping process 
significantly affects the future state of the Earth system in the Anthropocene directly or indirectly 
through interactions with other social tipping processes. Relevance can hence be defined in terms 
of impacts on biophysical Earth system properties such as global mean temperature, biosphere 
integrity or other planetary boundary dimensions. For example, tipping dynamics to a political 
system could result in policy regime changes, affecting substantial reductions in greenhouse gas 
emissions (9, 12). Furthermore, we consider social tipping processes that have relevant impacts on 
macro-social systems and can be triggered by changes in the same biophysical Earth systems, for 
example, mass migration due to climate impacts (84, 98). 

                                                             
1 This is analogous to the ‘transition time’ in Lenton et al. (1) . We avoid the term ‘tipping point’ in this definition 
since some of the literature uses it to refer to a point in time while some of the literature uses it to refer to a certain 
state of the system or its environment. 
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(ii) Intervention and ethical time horizons 
We are interested in potential social tipping processes in which humans have the agency to 
substantively intervene. For example, such interventions could be via technological or physical 
capacities of agential or structural actors. This therefore places emphasis on human intervention, 
such as decreasing the likelihood of extreme weather events via mitigation efforts, or triggering 
socio-technological changes towards decarbonization. We define intervention and ethical time 
horizons as follows: 

 
Intervention time horizon  
Human agency interferes with a social tipping element, such that decisions and actions taken 
between now and an ‘intervention time horizon’ could influence whether (or not) the system tips. 
We suggest to consider only social tipping processes with an intervention time on the order of 10 
years (9), which arguably presents a practical limit of human forethought (99) and of future-oriented 
political agency. For example, international governance efforts for global sustainability challenges, 
such as the ozone regime or the Sustainable Development Goals, tend to work with similar time 
horizons. Similarly, social tipping processes for rapid decarbonization to meet the Paris climate 
agreement would have to be triggered within the next few years (9), with ambitious emissions 
reduction roadmaps aiming for peak greenhouse gas emissions in 2020 (29, 100). The intervention 
time horizon is analogous to the ‘political time horizon’ defined for climate tipping elements in 
Lenton et al. (1). 

 
Ethical time horizon 
The time to observe these relevant consequences should lie within an ‘ethical time horizon’. This 
recognizes that consequences manifesting too far in the future are not relevant to the current 
discourse on how contemporary societies impact Earth systems. Such an ethical time horizon could 
consider only social tipping processes which can have relevant consequences within the next 
centuries at most, corresponding to an upper life expectancy of the next generations of children 
born. 

 
4.4. Example of a potential social tipping process: European Climate Change Policy Dynamics Europe 

and FridaysForFuture 
 

Currently, international climate policies, including those of the European Union (EU) are 
insufficient to meet the +1.5°C or +2°C goals of the Paris Agreement (101). While European policy 
makers presume to lead global mitigation efforts and characterize their actions as ambitious (102, 
103), actual policy measures and proposals have been lagging behind this aspiration (104). EU 
countries emit about a tenth of the world’s emissions, and a policy change towards more rapid 
decarbonization would not only have significant direct impacts on the climate system, but likely 
have indirect effects on the policies of other major emitters. But what kinds of sociopolitical 
processes can lead to these necessary changes? Could such changes result from social tipping 
dynamics? 
 
Public opinion is a crucial factor in policy formation, where the public can be understood as a 
“thermostat” signalling what is politically feasible (105, 106). Shifts in public opinion can punctuate 
previously stable and ‘sticky’ institutions, leading to policy change (107). Increased activism and 
public concern regarding climate change can generate new coalitions, or shift the priorities of 
existing ones (108, 109). Here we examine the European political system as an example of and how 
social tipping processes could be triggered as a result of large-scale public activism and social 
movements. 
 
The European political system is composed of networks of agents (i.e., activists, decision-makers 
and organizations) with a range of social and political ties and is structured in nested and 
overlapping subsystems (i.e., national group, transnational political coalitions). Viewed through the 
lens of social tipping, European political dynamics present a ‘social system’, embedded within the 
broader international political and climate change governance community ‘environment’.  Driven 
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by the FridaysForFuture movement (16) (among other things), a groundswell of bottom-up support 
for more proactive climate policies has recently developed among European citizens, resulting in 
routine mass demonstrations and historical wins for Green parties in the 2019 European 
Parliamentary Elections, as well as in federal elections in Austria, Belgium and Switzerland. The 
European political system could be moving towards a critical ‘state’, creating the conditions for a 
tipping process towards radical policy change, bringing European climate policy in line with the 
Paris Agreement. Accordingly, the European political system could constitute a potential ‘social 
tipping element’, where as it nears critical conditions, a small change to the system or its broader 
environment could lead to large-scale macroscopic changes, affected by cascading network 
dynamics and positive feedback mechanisms. Such transformations could involve establishing more 
aggressive mitigation strategies that connect goals (such as remaining below +2°C, 50% emissions 
reductions by 2030, zero carbon emissions by 2050) with measures and pathways that have a 
reasonable chance to achieve them (i.e., investment in negative emission technologies, increased 
carbon taxation policies etc.). 
 
The FridaysForFuture movement has been pushing the European political system towards 
criticality, where it becomes more likely that the system will be propelled into a qualitatively 
different state. The movement was set off and inspired by a single Swedish high school student 
choosing to protest on the steps of the Riksdag for meaningful climate action. Greta Thunberg’s 
protest quickly spread through the European social-political networks until more than a million 
students have been participating in weekly protests. This growing bottom-up pressure on the 
European climate policy-makers (16, 110) has created an opening for significant policy change. 
 
The European political system consists of embedded subsystems at multiple scales. At the national 
scale, for example, the German socio-political system responded strongly to the activities of the 
FridaysForFuture movement. Polling throughout 2019 in Germany suggested that the environment 
was the most important public policy challenge, ahead of other issues, such as the migration and 
financial crises. Drawing upon survey data collected monthly by the Politbarometer, 40–60% of 
Germans responded that the environment was an important problem in the Fall of 2019, a rapid 
increase from roughly 5% in the Fall of 2018 (Figure 3, Panels A and B). Since 2000, rarely more 
than 10% of Germans have viewed the environment as an important problem – a time period which 
includes the emergence of other large environmental movements in Germany, such as protests 
against nuclear energy in response to Fukushima. The specific upward shift in Germans viewing 
the environment as an important problem appears to coincide with the large-scale protests organized 
by FridaysForFuture in March, May and September of 2019. 
 
Similarly, several national Western European Green Parties received historically strong electoral 
support in the May 2019 European Parliamentary Elections (such as in Belgium, Germany, Finland, 
France and Luxembourg). This increased support is also reflected in polling data in Germany, where 
the Green Party has been effectively equal with the conservative  party as the preferred political 
party of German voters in the latter half of 2019 (Figure 3, Panels C and D). Subsequently, Germany 
introduced its first ever federal climate change laws, mandating that the country meet its 2030 goals 
(a ~55% reduction in GHG emissions) and establishing pathways to carbon neutrality by 2050. 
Currently, only a limited set of countries have enacted national climate change laws, and Germany 
is one of the largest and most diverse economies to propose such actions. This presents the 
possibility for policy diffusion and transfer to other states (111), particularly considering the 
influential role Germany plays within the European Union. Climate policy entrepreneurs could 
build upon momentum to further capitalize on windows of opportunity, pushing climate change 
proposals prominently into national and supra-national governmental agendas before the ephemeral 
moment passes (112).  
 
The 2020 COVID-19 pandemic has placed new priorities on the policy agenda, also reflected in 
issue salience of climate change (see also Fig. S1 in Supplementary Materials). As political and 
behavioral responses to COVID-19 have led already to a significant temporary reduction in 
greenhouse gas emissions (113), this shock could be further leveraged to reinforce climate action – 
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future economic recovery packages should set European economies on a pathway towards carbon-
neutrality, rather than return to the old normal (114, 115). Drawing from this social tipping 
framework, the European political system may remain near a critical state. It remains unclear 
whether the COVID-19 shock has supplanted climate change, or whether both remain on the 
political agenda. For example, discussions of a “Green New Deal” remain at the core of COVID-
19 economic recovery plans within the European Union. 

 

 
 
Figure 3: Environment as an issue and willingness to vote for the Green Party in Germany. 
Percentages of potential German voters that list the environment as an important issue for the 
country and willingness to vote for the Green Party (Bündnis 90/Die Grünen) if the election were 
to be held "today". Panels (A) and (C) present monthly survey data from 2000 to September 2020  
Panels (B) and (D) display monthly surveys from August 2018 – September 2020, showing the 
change since the beginning of Greta Thunberg's protest actions. Dotted grey vertical lines display 
days of global strikes organized by FridaysForFuture in March, May and September 2019. Data is 
collected by Forschungsgruppe Wahlen: Politbarometer . 

 
Implications for criticality  

 
The sociopolitical dynamics have likely moved the Germany political subsystem further towards 
criticality, but it remains largely unknown whether this will result in tipping towards a qualitatively 
different state, in Germany or in the broader European political system. Rather, these judgements 
can likely only be made in hindsight, observing whether the system remained stable, moved towards 
criticality or experienced tipping dynamics. Such an analysis in line with the proposed framework 
requires specific process tracing, identifying the key moments, actors, networks, mechanisms 
affecting criticality, the triggering event (threshold), and the positive feedback dynamics propelling 
the system towards qualitative changes.  Much attention is often paid to the specific triggering event, 
but it is rarely one single actor or action which accounts for the entirety of the tipping process. 
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Rather a full account needs to be made of all of the previous and related processes that have further 
placed the system towards criticality, allowing for such changes to become more likely. 
Accordingly, for a tipping process to occur at the scale of the entire European political system, 
moving it into a state of decarbonization that is aligned with the Paris Agreement, a series of 
additional  social movements and protests, or other shifts within the system or the environment, 
may be required. 

 
While we identify the role of FridaysForFuture in creating critical conditions, or potentially 
triggering the social transformations required for global sustainability, recent literature has 
identified further tipping candidates which could have generally “positive” effects on global 
sustainability. For example, divestment and reinvestment present candidates for rapid 
decarbonization and processes to achieve climate targets (9, 12). In this case, intervention times 
range from years to decades, depending on the social structure level (9). Previous studies note that 
the adoption of technologies and behaviors such as rapid uptake of autonomously driven electric 
vehicles (if socially licensed), rapid change in dietary preferences reducing meat consumption and 
associated land-use and climate impacts can follow an epidemic-type model of diffusing across 
social networks (13, 15). 
 
Alternatively, social tipping processes can lead to states of criticality with less desirable outcomes: 
Recently it has been shown that climate change has contributed to the emergence of infections 
carried by mosquitoes, like dengue fever or Zika, which could be accelerated further by increased 
mobility, e.g., through denser air traffic networks (75). The thermal minimum for transmission of 
the Zika virus could in fact give rise to a threshold behaviour (116). Changes to the local 
environment may enact “push” factors, resulting in large scale migrations (117, 118). Further, 
increased global mean temperature has been suggested to increase the likelihood of civil conflicts 
(84). 
 
These social tipping processes are of great interest to policy makers, as it is desirable to potentially 
trigger or facilitate “positive” tipping (11, 13), while at the same time, mitigating the effects of 
potential “negative” outcomes.  

 
 

5. Discussion  
 

Social tipping processes have been recently recognized as potentially key pathways for generating 
the necessary shifts for sustainability. Drawing upon this emerging field, this paper develops a 
framework for characterizing social tipping processes. We find that mechanisms underlying social 
tipping processes are more likely to exhibit the unique characteristics of agency, social-institutional 
and cultural network structures, they occur across different spatial and temporal scales to climate 
tipping, and the nature of tipping can be more complex. Social tipping processes thus present 
qualitatively different characteristics to those shared by climate tipping processes.  
 
Accordingly, this paper develops a common framework for the unique characteristics of social 
tipping processes. We identify social tipping as a process, resultant of a complex system of drivers, 
resulting in shifting a system into a more (or less) critical state. It can thus serve to  structure and 
inform future data analysis and process-based modelling exercises (118, 119). 
 
Even so, while there is an emerging focus on social tipping dynamics (9–13), there remains great 
difficulty in pinpointing tipping events and generalizing the emerging dynamics. Drawing from 
natural tipping dynamics, previous work on social tipping has often focused on identifying specific 
trigger events or critical thresholds in macroscopic system variables in analogy to identifying for 
instance critical temperature thresholds in the context of climate tipping (10). In natural systems the 
underlying dynamics are more deterministic and often can be directly observed, allowing for the 
identification of specific thresholds and events. While social systems comprise a much more open 
and complex system, one that is constantly adapting and where dynamics are often incredibly 
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complex, interrelated and cannot be directly observed. Accordingly, one could observe the same 
event across ten similar social systems, and could potentially observe ten unique outcomes. As such, 
anticipating a specific trigger, making causal inferences, or having generalizability in expected 
effects are all greatly limited within social systems. Further, social tipping points are sometimes 
also understood as a point in time, rather than a point in a complex parameter space. Such an 
approach makes it difficult to identify social tipping processes, as they often do not contain easily 
observable macroscopic thresholds nor temporal markers for change. 
 
Rather, a complex adaptive systems viewpoint is required, understanding the multitude of 
interrelated processes and social structures driving change, and not focusing on a single trigger or 
threshold. Accordingly, our framework proposed here focuses on identifying the processes and 
mechanisms of such change, and not a single triggering event, where the interplay of micro-level 
changes embedded within adaptive structural conditions can affect systemic changes. 
 
The notion of a critical state is central within our framework. Changing conditions to the system’s 
environment can cause it to enter more (or less) critical states, such that a single, or multiplicative 
action, can effect a systemic change. It is these changing conditions, and specifically the processes 
and dynamics underlying them, that are of analytical importance. Drawing upon the analogy of a 
tipping coal wagon (15), it is not the single, specific piece of coal that caused the wagon to tip, but 
rather the processes by which the wagon was filled with enough coal that any single piece (placed 
at a number of different locales) could cause such tipping. Accordingly, the specific triggering event 
of a social tipping process could be somewhat random or arbitrary, as the conditions are critical 
enough such that any event with enough magnitude could have triggered these dynamics. 

 
It is therefore key to focus on the processes and mechanisms underlying the nature of such critical 
states which allow some trigger event to cause contagion dynamics. From social network models, 
we can deduce which kind of structural features make a system less resilient and thus more prone 
to social tipping (119). One example is polarization, where social network models and social media-
based data analyses have shown that in polarized states with nearly disconnected network 
communities which in themselves are highly connected, contagion processes are more likely to 
occur (120–122). Behavioral experiments and corresponding conceptual modelling approaches 
suggest that minority groups can initiate social change dynamics in the emergence of new social 
conventions (17, 119). Furthermore, a rich social science literature has noted an array of factors (i.e. 
political institutions, technological or behavioral adaptation, environmental, normative and 
attitudinal) effective in shifting the social conditions surrounding climate change (14). A better 
understanding of critical states as demanded by our framework may help to identify early warning 
signals that could possibly indicate that a social-ecological system is close to a critical state in 
specific situations (30, 123). 
 
Social tipping processes present a specific type of social change – characteristized by non-linear 
shifting states driving by positive feedbacks – which is similar to, but conceptually distinct from, 
other forms of social change. Similar to how we explore the differences between natural and social 
tipping processes, further research should engage with social tipping in comparison to other forms 
of social change (such as historical institutionalist perspectives, social movements, policy 
feedbacks, complex systems). One of the greatest challenges lies in dealing with multiple, entangled 
drivers of tipping processes on different scales – temporal, spatial or social structural levels – and 
different levels of agency and heterogeneous agents and subsystems. In order to further understand 
the dynamics arising from these various levels of agency, it is crucial to identify examples from 
different subfields (economics, political science, demographics). A key current limitation in 
applying our framework is finding and operationalizing empirical data describing actual spreading 
processes on networks across these different levels, particularly compared to macro-economic data 
and public opinion polls (124), even though first steps in this direction are being made (125, 126). 
Particularly data on the social structures and networks is notoriously difficult to access. While there 
have been advances in developing modeling frameworks (119, 127) to simulate social tipping 
dynamics, linking these theoretical modelling to empirical data and behavioral experiments requires 
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more attention. Even if predictive modeling (i.e., the kind of deterministic, time-forward modeling 
we know from Earth System Models for instance) of such social dynamics in the sense of inferring 
time trajectories is very difficult or even conceptually unfeasible, such process-based modelling of 
social tipping dynamics can be very crucial to understand the nature of critical states also in real-
world social situations. Lastly, we focus here specifically on social tipping processes relevant for 
mitigating climate change, or sustainability more broadly, fitting within the previous literature. But, 
such a framework for social tipping dynamics is generalizable to other areas of study and social 
phenomena (such as the 2020 rapid social movements and public opinion dynamics surrounding 
racial inequality in the United States). 
 
While we explore one example of social tipping in detail, further inquiry is required to test the 
distinctiveness of social tipping processes, as well as the utility of the proposed definition to other 
social tipping processes. Systematizing the types of social tipping processes, and exemplary case 
studies, would help to further illustrate these forms of change. Research is also warranted into 
establishing typical timescales of social tipping; understanding how network structures affect social 
tipping dynamics; identifying typical network structures of systems entering critical states; 
discerning the temporal aspects of how effects travel through different social network structures; 
and gaining a better understanding of the origin of spreading processes. Data acquisition, analysis 
and process-based modelling could all play a role in this research agenda. A wealth of social media 
data is available to study potential social tipping processes. However, this kind of data has mostly 
yet to be adopted within the context of Earth System analysis and tipping dynamics. 
 
Social tipping processes could be decisive for the future of the Earth System in the Anthropocene: 
some rapid shifts in social systems are, in fact, necessary to meet the targets of the Paris Agreement 
and the Sustainable Development Goals (8). While we focus here on processes relevant for future 
trajectories of the Earth system, we suggest that further analysis could use or adapt our definition 
to characterize other types of general social tipping processes (i.e. revolutions or rapid 
transformations). We also recognize that tipping processes within ecosystems present an interesting 
intermediary case between social and physical climate tipping as they typically incorporate 
characteristics from both realms. They are also crucial in determining future trajectories of the Earth 
system (see preliminary discussion in the SI). Understanding, identifying and potentially instigating 
some social tipping processes is highly relevant for the future of the Anthropocene, particularly with 
regard to the potential role in triggering rapid transformative change needed for effective Earth 
system stewardship (9, 11–13). 
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Supplementary Materials 

S1: A mathematical definition of social tipping processes 

In this section, we give a more formal version of the definition of ‘social tipping process’ given in 
the main text, as a reference for mathematically inclined readers. 

After defining what we mean by a social system and its environment, we first classify their 
possible states into critical, unmanageable, uncritical, and tippable conditions, and then finally 
define the notions of prevention time and triggering time. 

By a social system, 𝛴, we mean a set of agents together with a network-like social structure, that 
interacts in some form with the rest of the world, called the environment, 𝐸, of the system, such 
that, if no “perturbation” or deliberate “influence” by some decision-maker occurs, 𝛴 and 𝐸 
together can only follow certain “quasi-inertial” (or “default”) trajectories restricted by the agency 
of the system’s agents. Let 𝑥(%) and 𝑦(%) denote the states that 𝛴 and 𝐸 are actually in at time 𝑡. 

A critical condition for the system is a pair of possible system and environment states, (𝑥∗, 𝑦∗), 
such that there exists another possible pair of states, (𝑥′, 𝑦′), with the following properties: 

1. The state pair (𝑥′, 𝑦′) is no further away in state space from (𝑥∗, 𝑦∗) than a certain “small” 
distance, 𝜖, that represents the possible magnitude of “local” perturbations in 𝛴 (affecting only 
few agents or network links directly) or small changes in 𝐸 that are considered sufficiently 
“likely” to care about, with respect to some suitable distance function 𝑑. In other words, 
𝑑((𝑥′, 𝑦′), (𝑥∗, 𝑦∗)) < 𝜖. 

2. If 𝛴 and 𝐸 were in state (𝑥′, 𝑦′) at any time 𝑡′, there is a quasi-inertial trajectory that would 
move 𝛴 at some later time 𝑡″ > 𝑡′ into some state 𝑥″ that is “qualitatively” different from 𝑥∗. 
This move represents a “global” (i.e., affecting a very large fraction of the agents) and 
“significant” change in the system (but not necessarily in its environment). 

If such a change actually happens, the time point 𝑡′ (not the state!) at which it starts may be called 
the tipping point or less ambiguously the triggering time point, and the system behavior within the 
time interval from 𝑡’ to 𝑡″ is called the corresponding tipping process. An uncritical condition for 
𝛴 and 𝐸 then is any pair of states that is not critical. 

A critical condition is unmanageable for an actor that may influence 𝛴 or 𝐸 in some way if there 
exists a possible pair of states, (𝑥′, 𝑦′), with 𝑑((𝑥′, 𝑦′), (𝑥∗, 𝑦∗)) < 𝜖 and the following property: 

● Assume that 𝛴 and 𝐸 were in state (𝑥′, 𝑦′) at any time 𝑡’ and afterwards the state of 𝛴 and 𝐸 
would follow any trajectory (𝑥(𝑡), 𝑦(𝑡))%2%3 that the actor can force it to follow. Then the 
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resulting trajectory would still move 𝛴 at some time 𝑡″ > 𝑡′ into some state 𝑥″ (which will 
usually depend on the influence exerted) that is qualitatively different from 𝑥∗. 

Similarly, an uncritical condition, (𝑥∘, 𝑦∘), is tippable by a decision maker if there is a possible 
trajectory (𝑥(𝑡), 𝑦(𝑡))%2%3, starting in (𝑥∘, 𝑦∘) at some time 𝑡′, that the decision maker can force 𝛴 
and 𝐸 to follow, and this trajectory would move 𝛴 into some state 𝑥″ at some time 𝑡″ > 𝑡′ that is 
qualitatively different from 𝑥∘ (a tippable uncritical state roughly corresponds to what others call a 
‘sensitive intervention point’ ). 

At any time at which the system is not in an unmanageable critical state, the prevention time is the 
time interval it takes before some quasi-inertial trajectory has moved it into an unmanageable 
critical state. In other words, at time zero it is the largest time interval 𝑇 so that, when no 
intervention takes place until time 𝑇, for all 𝑡 > 0 with 𝑡 < 𝑇, the system would not be in an 
unmanageable critical state at time 𝑡. 

Similarly, at any time at which the system is in a tippable uncritical state, the triggering time is the 
time interval it takes before some quasi-inertial trajectory has moved it into an uncritical state that 
is no longer tippable. In other words, at time zero it is the largest time interval 𝑇 so that, when no 
intervention takes place until time 𝑇, for all 𝑡 > 0 with 𝑡 < 𝑇, the system would not be in a 
tippable uncritical state at time 𝑡. 

We only consider social tipping processes for which the prevention or triggering time is smaller 
than some intervention time horizon. 

S2 Ecosystem tipping as intermediary case 

Ecosystem tipping processes share properties of physical climate tipping dynamics in atmosphere, 
ocean and cryosphere in that they can often be described by a common driver, as well as that of 
deliberative social tipping elements in that they have adaptive capacity, and can therefore be 
regarded as intermediate. But, as previously noted, human agential capacity is far greater than 
those of other species. 

Similarly to human social systems, ecosystems are comprised of interacting living organisms, they 
can be viewed as networks with components that can adapt (e.g., food webs). This is different 
from physical tipping elements such as the cryosphere elements (e.g., melting of permafrost) 
which do not typically exhibit the same networked structures. Within the nominally ‘climate’ 
tipping elements are some major biomes – notably boreal forests, the Amazon rainforest, and 
coral reefs  – that are composed of living organisms and exhibit ecological network structures. 
Indeed changing interactions between the living elements of these systems may be key to tipping 
dynamics – for example epidemic bark beetle infestation of boreal forests triggered by climate 
warming allowing the beetles to complete two life cycles rather than one within a season (128). 
Thus these biotic tipping elements lie towards smaller scale ecosystems in the continuum, and 
tend to be more closely related to social systems in spatial and temporal scales compared to the 
typically much larger and more slowly changing physical climate tipping elements. 

These differences give rise to a proposed ordering of tipping elements, ranging from (1) the 
physical climate tipping elements via (2) ecosystem tipping elements to (3) social tipping 
elements (Table S1). 
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Table S1: Proposed ordering of tipping processes ranging from physical climate tipping 
processes via ecosystem tipping processes to social tipping processes. 

  

Properties 
Physical climate 
tipping processes 

Ecological tipping 
processes 

Social tipping 
processes 

Degree of 
agency 

Low/Absent Intermediate High 

Network 
structure 

Uncommon Common Common 

Temporal-spatial 
scales 

Slower and larger Faster and smaller Faster and 
smaller 

Degree of 
complexity 

Lower Intermediate High 

 
 
Figure S1: 
 

 
Figure S1: Environment and Corona as an important issue in Germany. Percentages of potential 
German voters that list the environment and the Coronavirus as an important issue for the country 
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from August 2018 – September 2020, showing the change since the beginning of Greta Thunberg's 
protest actions. Dotted grey vertical lines display days of global strikes organized by 
FridaysForFuture in March, May and September 2019. Data is collected by Forschungsgruppe 
Wahlen: Politbarometer . 

172 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reproduced from arXiv preprint: R. Winkelmann, J.F. Donges, E.K. Smith, M. Milkoreit et al., Social tipping processes for sustainability: An
analytical framework, arXiv:2010.04488. Published under arXiv.org - non-exclusive license to distribute.

http://arxiv.org/abs/2010.04488
https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html


Earth Syst. Dynam., 11, 395–413, 2020
https://doi.org/10.5194/esd-11-395-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Earth system modeling with endogenous and
dynamic human societies: the copan:CORE

open World–Earth modeling framework

Jonathan F. Donges1,2,*, Jobst Heitzig1,*, Wolfram Barfuss1,3, Marc Wiedermann1,
Johannes A. Kassel1,4, Tim Kittel3, Jakob J. Kolb1,3, Till Kolster1,3, Finn Müller-Hansen1,5,

Ilona M. Otto1, Kilian B. Zimmerer1,6, and Wolfgang Lucht1,7,8

1Earth System Analysis and Complexity Science, Potsdam Institute for Climate Impact Research,
Member of the Leibniz Association, Telegrafenberg A31, 14473 Potsdam, Germany

2Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 114 19 Stockholm, Sweden
3Department of Physics, Humboldt University, Newtonstr. 15, 12489 Berlin, Germany

4Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany
5Mercator Research Institute on Global Commons and Climate Change (MCC),

EUREF Campus 19, Torgauer Straße 12–15, 10829 Berlin, Germany
6Department of Physics and Astronomy, University of Heidelberg,

Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
7Department of Geography, Humboldt University, Unter den Linden 6, 10099 Berlin, Germany

8Integrative Research Institute on Transformations of Human-Environment Systems,
Humboldt University, Unter den Linden 6, 10099 Berlin, Germany

*The first two authors share the lead authorship.

Correspondence: Jonathan F. Donges (donges@pik-potsdam.de) and Jobst Heitzig (heitzig@pik-potsdam.de)

Received: 29 December 2017 – Discussion started: 15 January 2018
Revised: 3 March 2020 – Accepted: 7 March 2020 – Published: 4 May 2020

Abstract. Analysis of Earth system dynamics in the Anthropocene requires explicitly taking into account the
increasing magnitude of processes operating in human societies, their cultures, economies and technosphere
and their growing feedback entanglement with those in the physical, chemical and biological systems of the
planet. However, current state-of-the-art Earth system models do not represent dynamic human societies and their
feedback interactions with the biogeophysical Earth system and macroeconomic integrated assessment models
typically do so only with limited scope. This paper (i) proposes design principles for constructing world–Earth
models (WEMs) for Earth system analysis of the Anthropocene, i.e., models of social (world)–ecological (Earth)
coevolution on up to planetary scales, and (ii) presents the copan:CORE open simulation modeling framework
for developing, composing and analyzing such WEMs based on the proposed principles. The framework pro-
vides a modular structure to flexibly construct and study WEMs. These can contain biophysical (e.g., carbon
cycle dynamics), socio-metabolic or economic (e.g., economic growth or energy system changes), and sociocul-
tural processes (e.g., voting on climate policies or changing social norms) and their feedback interactions, and
they are based on elementary entity types, e.g., grid cells and social systems. Thereby, copan:CORE enables the
epistemic flexibility needed for contributions towards Earth system analysis of the Anthropocene given the large
diversity of competing theories and methodologies used for describing socio-metabolic or economic and socio-
cultural processes in the Earth system by various fields and schools of thought. To illustrate the capabilities of
the framework, we present an exemplary and highly stylized WEM implemented in copan:CORE that illustrates
how endogenizing sociocultural processes and feedbacks such as voting on climate policies based on socially
learned environmental awareness could fundamentally change macroscopic model outcomes.
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1 Introduction

In the Anthropocene, Earth system dynamics are equally
governed by two kinds of internal processes: those operating
in the physical, chemical and biological systems of the planet
and those occurring in its human societies, their cultures
and economies (Schellnhuber, 1998, 1999; Crutzen, 2002;
Lucht and Pachauri, 2004; Steffen et al., 2018). The history
of global change is the history of the increasing planetary-
scale entanglement and strengthening of feedbacks between
these two domains (Lenton and Watson, 2011). Therefore,
Earth system analysis of the Anthropocene requires clos-
ing the loop by integrating the dynamics of complex human
societies into integrated whole Earth system models (Ver-
burg et al., 2016; Donges et al., 2017a, b; Calvin and Bond-
Lamberty, 2018). Such models need to capture the coevolv-
ing dynamics of the social (the world of human societies)
and natural (the biogeophysical Earth) spheres of the Earth
system on up to global scales and are referred to as world–
Earth models (WEMs) in this article. In pursuing this in-
terdisciplinary integration effort, world–Earth modeling can
benefit from and build upon the work done in fields such as
social–ecological systems (Berkes et al., 2000; Folke, 2006)
and coupled human and natural systems (Liu et al., 2007)
research or large-scale behavioral land-use (Arneth et al.,
2014; Rounsevell et al., 2014) and socio-hydrological mod-
eling (Di Baldassarre et al., 2017). However, it emphasizes
more the study of planetary-scale interactions between hu-
man societies and parts of the Earth’s climate system such
as atmosphere, ocean and the biosphere, instead of more lo-
cal and regional-scale interactions with natural resources that
these fields have typically focused on in the past (Donges
et al., 2018).

The contribution of this paper is twofold: first, follow-
ing a more detailed motivation (Sect. 1.1), general theoret-
ical considerations and design principles for a novel class
of integrated WEMs are discussed (Sect. 1.2) and WEMs
are elaborated in the context of existing global modeling
approaches (Sect. 1.3). Second, after a short overview of
the copan:CORE open World–Earth modeling framework
(Sect. 2), an exemplary full-loop WEM is presented and stud-
ied (Sect. 3), showing the relevance of internalizing sociocul-
tural processes. Finally, Sect. 4 concludes the paper.

1.1 State of the art and research gaps in Earth system
analysis

Computer simulation models are pivotal tools for gaining
scientific understanding and providing policy advice for ad-
dressing global change challenges such as anthropogenic
climate change or rapid degradation of biosphere integrity
and their interactions (Rockström et al., 2009; Steffen et al.,
2015). At present, two large modeling enterprises consid-
ering the larger Earth system in the Anthropocene are ma-

ture (van Vuuren et al., 2016). (i) Biophysical Earth sys-
tem models (ESMs) derived from and built around a core of
atmosphere–ocean general circulation models that are evalu-
ated using storyline-based socioeconomic scenarios to study
anthropogenic climate change and its impacts on human so-
cieties (e.g., representative concentration pathways, RCPs)
(Stocker et al., 2013). (ii) Socioeconomic integrated assess-
ment models (IAMs) are operated using storyline-based so-
cioeconomic baseline scenarios (e.g., shared socioeconomic
pathways, SSPs; Edenhofer et al., 2014) and evaluate tech-
nology and policy options for mitigation and adaption lead-
ing to different emission pathways. There is a growing num-
ber of intersections, couplings and exchanges between the
biophysical and socioeconomic components of these two
model classes for increasing their consistency (van Vuuren
et al., 2012; Foley et al., 2016; Dermody et al., 2018; Robin-
son et al., 2018; Calvin and Bond-Lamberty, 2018).

However, the existing scientific assessment models of
global change only include dynamic representations of the
sociocultural dimensions of human societies to a limited de-
gree – if at all (Fig. 1), i.e., the diverse political and eco-
nomic actors, the factors influencing their decisions and be-
havior, their interdependencies constituting social network
structures and institutions (Verburg et al., 2016; Donges
et al., 2017a, b), and the broader technosphere they created
(Haff, 2012, 2014). In IAMs, these sociocultural dimensions
are partly represented by different socioeconomic scenarios
(e.g., SSPs), providing the basis for different emission path-
ways. These are in turn used in ESMs as external forcing,
constraints and boundary conditions to the modeled Earth
system dynamics. However, a dynamic representation would
be needed to explore how changes in the global environment
influence these sociocultural factors and vice versa.

There are large differences in beliefs, norms, economic in-
terests and political ideologies of various social groups and
their metabolic profiles, which are related to their access and
use of energy and resources (Fischer-Kowalski, 1997; Otto
et al., 2019; Lenton et al., 2016; Lenton and Latour, 2018).
Historical examples show that these differences might lead
to rapid social changes, revolutions and sometimes also dev-
astating conflicts, wars and collapse (Betts, 2017; Cumming
and Peterson, 2017). In other cases, the inability to estab-
lish effective social institutions controlling resource access
might lead to unsustainable resource use and resource degra-
dation (see the discussion around the tragedy of the com-
mons, Ostrom, 1990; Jager et al., 2000; Janssen, 2002). Cli-
mate change is a paradigmatic example of a global commons
that needs global institutional arrangements for the use of the
atmosphere as a deposit for greenhouse gas emissions if sub-
stantial environmental and social damage is to be avoided in
the future (Edenhofer et al., 2015; Schellnhuber et al., 2016b;
Otto et al., 2017).

Earth Syst. Dynam., 11, 395–413, 2020 www.earth-syst-dynam.net/11/395/2020/

174 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reproduced from: J. F. Donges et al., Earth system modeling with endogenous and dynamic human societies: The copan:CORE open World-Earth
modeling framework, Earth Syst. Dyn., vol. 11, no. 2, pp. 395-413, 2020, doi: 10.5194/esd-11-395-2020. Published under Creative Commons

Attribution License 4.0 (CC BY).

https://doi.org/10.5194/esd-11-395-2020


J. F. Donges et al.: The copan:CORE open World–Earth modeling framework 397

Figure 1. World–Earth models (WEMs) in the space of model
classes used for scientific analysis of global change. It is shown
to what degree current Earth system models, integrated assess-
ment models and WEMs cover environmental or biophysical, so-
cioeconomic or metabolic, and sociocultural processes. The term
“process-detailed” indicates the types of Earth system processes
that the different model classes typically focus on representing.
However, also in these core areas the level of detail may range from
very stylized to complex and highly structured.

In order to explore the risks, dangers and opportunities for
sustainable development, it is important to understand how
biophysical, socioeconomic and sociocultural processes in-
fluence each other (Donges et al., 2018), how institutional
and other social processes function, and which tipping el-
ements can emerge from the interrelations of the subsys-
tems (Lenton et al., 2008; Kriegler et al., 2009; Cai et al.,
2016; Kopp et al., 2016; Otto et al., 2020a). To address these
questions, the interactions of social systems and the natural
Earth system can be regarded as part of a planetary social–
ecological system (SES) or world–Earth system, extending
the notion of SES beyond its common usage to describe sys-
tems on local scales (Berkes et al., 2000; Folke, 2006). This
dynamical systems perspective allows us to explore under
which preconditions the maintenance of planetary bound-
aries (Rockström et al., 2009; Steffen et al., 2015), i.e., a
Holocene-like state of the natural Earth system, can be recon-
ciled with human development to produce an ethically defen-
sible trajectory of the whole Earth system (i.e., sustainable
development) (Raworth, 2012; Steffen et al., 2018).

1.2 World–Earth modeling: contributions towards Earth
system analysis of the Anthropocene

To this end, the case has been made that substantial ef-
forts are required to advance the development of integrated
world–Earth system models for the study of the Anthro-
pocene (Verburg et al., 2016; Donges et al., 2017a, b; Calvin
and Bond-Lamberty, 2018). The need for developing such
next-generation social–ecological models has been recog-
nized in several subdisciplines of global change science deal-
ing with socio-hydrology (Di Baldassarre et al., 2017; Keys
and Wang-Erlandsson, 2018), land-use dynamics (Arneth
et al., 2014; Robinson et al., 2018) and the globalized food–
water–climate nexus (Dermody et al., 2018). While in recent
years there has been some progress in developing stylized
models that combine sociocultural with economic and natu-
ral dynamics (e.g., Janssen and De Vries, 1998; Kellie-Smith
and Cox, 2011; Garrett, 2014; Motesharrei et al., 2014; Wie-
dermann et al., 2015; Heck et al., 2016; Barfuss et al., 2017;
Nitzbon et al., 2017; Beckage et al., 2018), more advanced
and process-detailed WEMs are not yet available for study-
ing the deeper past and the longer-term Anthropocene future
of this coupled system. The research program investigating
the dynamics and resilience of the world–Earth system in the
Anthropocene can benefit from recent advances in the theory
and modeling of complex adaptive systems (Farmer et al.,
2015; Verburg et al., 2016; Donges et al., 2017a, b; Calvin
and Bond-Lamberty, 2018). When advancing beyond styl-
ized modeling, a key challenge for world–Earth modeling is
the need to take into account the agency of heterogeneous so-
cial actors and global-scale adaptive networks carrying and
connecting social, economic and ecological processes that
shape social–ecological coevolution (Otto et al., 2020b).

A number of new developments make it attractive to re-
visit the challenge of building such WEMs now. Due to
the huge progress in computing, comprehensive Earth sys-
tem modeling is advancing fast. And with the ubiquity of
computers and digital communication for simulation and
data acquisition in daily life (Otto et al., 2015), efforts to
model complex social systems are increased and become
more concrete. Recent advances, for example in the the-
ory of complex (adaptive) systems, computational social sci-
ences, social simulation and social–ecological system mod-
eling (Farmer and Foley, 2009; Farmer et al., 2015; Hel-
bing et al., 2012; Müller-Hansen et al., 2017; Schill et al.,
2019) make it feasible to include some important macro-
scopic dynamics of human societies regarding, among oth-
ers, the formation of institutions, values and preferences and
various processes of decision-making in a model of the whole
Earth system, i.e., the physical Earth including its socially
organized and mentally reflexive humans. Furthermore, new
methodological approaches are developing fast that allow
representing crucial aspects of social systems, such as adap-
tive complex networks (Gross and Blasius, 2008; Snijders
et al., 2010). Finally, initiatives such as Future Earth (Fu-
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ture Earth, 2014), the Earth League (Rockström et al., 2014,
https://www.the-earth-league.org/, last access: 1 April 2020)
and the Open Modeling Foundation (Barton and The Open
Modeling Foundation, 2019) provide a basis for inter- and
transdisciplinary research that could support such an ambi-
tious modeling program.

It is important to emphasize that despite these advances,
integrated world–Earth modeling studies still face challenges
particularly in the areas of selecting and managing the ap-
propriate level of model complexity, mathematical represen-
tations of human behavior and social dynamics, costs of
computation and model development, and data availability
and consistency, as highlighted by a recent literature review
(Calvin and Bond-Lamberty, 2018). While at least a subset
of these challenges tends to apply to many other ambitious
modeling projects in diverse fields, they have been used as a
basis of criticism of past human-environment modeling ex-
ercises such as the classic WORLD3 model in the “Limits
to growth” studies (Meadows et al., 1972). To address these
challenges, as we detail in Sect. 2, world–Earth system mod-
eling should be developed following a modular approach, al-
lowing for the intercomparison of a diversity of modeling ap-
proaches and corresponding extensive robustness and uncer-
tainty analyses (Verburg et al., 2016). Model types and com-
plexity levels should be selected carefully depending on the
research questions of interest (van Vuuren et al., 2016). Com-
munity development is needed to foster the necessary inter-
disciplinary collaboration and to develop common protocols
and ontologies for data, model simulations and intercompar-
ison projects (Otto et al., 2015; Verburg et al., 2016; Calvin
and Bond-Lamberty, 2018; Barton and The Open Modeling
Foundation, 2019).

1.2.1 Research questions for world–Earth modeling

We envision world–Earth modeling to be complementary
to existing simulation approaches for the analysis of global
change. WEMs are not needed where the focus is on the
study of the biophysical and climatic implications of certain
prescribed socioeconomic development pathways (e.g., in
terms of emission and land-use scenarios), since this is the
domain of Earth system models as used in the World Cli-
mate Research Programme’s Coupled Model Intercompari-
son Project (CMIP) (Eyring et al., 2016) that provides input
to the Intergovernmental Panel on Climate Change (IPCC)
reports. Similarly, WEMs are not the tool of choice if the in-
terest is in the normative macroeconomic projection of opti-
mal socioeconomic development and policy pathways inter-
nalizing certain aspects of climate dynamics, e.g., the anal-
ysis of first- or second-best climate change mitigation path-
ways, since this is the domain of state-of-the-art integrated
assessment models.

In turn, WEMs as envisioned by us here are needed when
the research questions at hand require the explicit and in-
ternalized representation of sociocultural processes and their

feedback interactions with biophysical and socioeconomic
dynamics in the Earth system. In the following, we give ex-
amples of research questions of this type that could be stud-
ied with WEMs in the future, as they have been already elab-
orated in more detail by, e.g., Verburg et al. (2016), Donges
et al. (2017a, b) and Beckage et al. (2018):

1. What are the relative strengths of feedback interac-
tions between biophysical processes in the climate sys-
tem and processes of decision-making and behavioral
change in human societies (Calvin and Bond-Lamberty,
2018)? For example, what is their influence on the un-
certainty of projected global warming under different
emission and land-use scenarios (Beckage et al., 2018)?

2. What are the sociocultural, socioeconomic and environ-
mental preconditions for sustainable development to-
wards and within a “safe and just” operating space for
humankind (Barfuss et al., 2018; O’Neill et al., 2018),
i.e., for a trajectory of the Earth system that eventu-
ally neither violates precautionary planetary boundaries
(Rockström et al., 2009; Steffen et al., 2015) nor accept-
able social foundations (Raworth, 2012)?

3. A more specific example of the previous questions is:
how can major socioeconomic transitions towards a de-
carbonized social metabolism, such as a transformation
of the food and agricultural systems towards a sustain-
able, reduced-meat diet that is in line with recent recom-
mendations by the EAT-Lancet Commission on healthy
diets (Willett et al., 2019), be brought about in view of
the strong sociocultural drivers of current food-related
and agricultural practices and the reality of the political
economy in major food-producing countries? And how
would their progress be influenced by realized or antici-
pated tipping of climatic tipping elements like the West
Antarctic Ice Sheet (Wiedermann et al., 2019)?

4. Under which conditions can cascading interactions be-
tween climatic (e.g., continental ice sheets or major
biomes such as the Amazon rain forest) and potential
social tipping elements (e.g., in attitudes towards on-
going or anticipated climate change or eco-migration)
be triggered and how can they be governed (Schellnhu-
ber et al., 2016a; Steffen et al., 2018; Wiedermann
et al., 2019)? What are implications for biophysical and
social–ecological dimensions of Earth system resilience
in the Anthropocene (Donges et al., 2017a)?

5. How do multilevel coalition formation processes (like
the one modeled in Heitzig and Kornek (2018) assum-
ing a static climate) interact with Earth system dynam-
ics via changes in regional damage functions, mitiga-
tion costs, and realized or anticipated distributions of
extreme events that drive changes in public opinions,
which in turn influence the ratification of international
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treaties and the implementation of domestic climate
policies?

6. How do certain social innovations including technology,
policies or behavioral practices diffuse in heterogeneous
agent networks that could have global-scale impacts
on planetary-boundary dimensions (e.g., Farmer et al.,
2019; Tàbara et al., 2018; Otto et al., 2020a)? Which
factors, such as network structure, information access
as well as information feedback and update time, affect
the innovation uptake? What are the impacts of a cer-
tain social innovation uptake on different agent groups
(e.g., on agents with different economic, social or cul-
tural endowment)? (Hewitt et al., 2019)

1.2.2 Design principles for world–Earth models

To address research questions of the kind suggested by the
examples given above, we suggest that the development of
WEMs of the type discussed in this paper could be guided
by aiming for the following properties.

1. Explicit representation of social dynamics. Societal pro-
cesses should be represented in an explicit, dynamic
fashion in order to do justice to the dominant role of
human societies in the Anthropocene. (In contrast, so-
cial processes occur typically non-dynamically in ESMs
as fixed socioeconomic pathways and in IAMs as inter-
temporal optimization problems.)

Social processes such as behavioral change as described
by the theory of planned behavior (Beckage et al., 2018)
or social learning (Donges et al., 2018) may be included
in models via comparably simple equation-based de-
scriptions. Yet more detailed WEMs should also allow
for representations of the dynamics of the diverse agents
and the complex social structure connecting them that
constitute human societies, using the tools of agent-
based and adaptive network modeling (Farmer and Fo-
ley, 2009; Farmer et al., 2015; Müller-Hansen et al.,
2017; Lippe et al., 2019; Schill et al., 2019). The so-
cial sphere is networked on multiple layers and re-
garding multiple phenomena (knowledge, trade, insti-
tutions, preferences, etc.) and that increasing density
of such interacting network structures is one of the
defining characteristics of the Anthropocene (Steffen
et al., 2007; Gaffney and Steffen, 2017). While there
is a rich literature on modeling various aspects of so-
ciocultural dynamics (e.g., Castellano et al., 2009; Sni-
jders et al., 2010; Müller-Hansen et al., 2017; Schlüter
et al., 2017), this work so far remains mostly discon-
nected from Earth system modeling (Calvin and Bond-
Lamberty, 2018). Accordingly, more detailed WEMs
should be able to describe decision processes of rep-
resentative samples of individual humans, social groups
or classes and collective agents such as firms, house-
holds or governments. This includes the representation

of diverse objectives, constraints and decision rules, dif-
ferentiating, for example, by the agent’s social class and
function and taking the actual and perceived decision
options of different agent types into account.

2. Feedbacks and coevolutionary dynamics. WEMs should
incorporate as dynamic processes the feedbacks of col-
lective social processes on biogeophysical Earth system
components and vice versa. The rationale behind this
principle is that the strengthening of such feedbacks
is one of the key characteristics of the Anthropocene
(Beckage et al., 2018; Calvin and Bond-Lamberty,
2018). For example, anthropogenic greenhouse gas
emissions drive climate change, which acts back on
human societies through increasingly frequent extreme
events and may in turn change human behaviors rele-
vant for these emissions. Moreover, the ability to simu-
late feedbacks is central to a social–ecological and com-
plex adaptive systems approach to Earth system analy-
sis. Capturing these feedbacks enables them to produce
paths in coevolution space (Schellnhuber, 1998, 1999)
through time-forward integration of all entities and net-
works allowing for deterministic and stochastic dynam-
ics. Here, time-forward integration refers to simulation
of changes in system state over time consecutively in
discrete time steps, rather than solving equations that
describe the whole time evolution at once as in inter-
temporal optimization.

3. Nonlinearity and tipping dynamics. WEMs should be
able to capture the nonlinear dynamics that are a pre-
requisite for modeling climatic (Lenton et al., 2008;
Schellnhuber et al., 2016a; Lenton et al., 2019) and
social tipping dynamics (Kopp et al., 2016; Milkoreit
et al., 2018; Otto et al., 2020a) and their interactions
(Kriegler et al., 2009; Cai et al., 2016) that are not or
only partially captured in ESMs and IAMs. This feature
is important because the impacts of these critical dy-
namics are decisive for future trajectories of the Earth
system in the Anthropocene, e.g., separating stabilized
Earth states that allow for sustainable development from
hothouse Earth states of self-amplifying global warming
(Heitzig et al., 2016; Steffen et al., 2018).

4. Cross-scale interactions. Modeling approaches for in-
vestigating social–ecological or coupled human and
natural system dynamics have already been devel-
oped. However, they usually focus on local or small-
scale human–nature interactions (Schlüter et al., 2012).
Therefore, such approaches need to be connected across
scales and up to the planetary scale and incorporate in-
sights from macro-level and global modeling exercises
(Cash et al., 2006; Lippe et al., 2019; Ringsmuth et al.,
2019).

5. Systematic exploration of state and parameter spaces.
WEMs should allow for a comprehensive evaluation of
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state and parameter spaces to explore the universe of ac-
cessible system trajectories and to enable rigorous anal-
yses of uncertainties and model robustness. Hence, they
emphasize neither storylines nor optimizations but fo-
cus on the exploration of the space of dynamic pos-
sibilities to gain systemic understanding. This princi-
ple allows for crucial Anthropocene Earth system dy-
namics to be investigated with state-of-the-art meth-
ods from complex systems theory, e.g., for measur-
ing different aspects of the stability and resilience of
whole Earth system states and trajectories (Menck et al.,
2013; van Kan et al., 2016; Donges and Barfuss, 2017)
and for understanding and quantifying planetary bound-
aries, safe operating spaces, and their manageability and
reachability as emergent system properties across scales
(Heitzig et al., 2016; Kittel et al., 2017; Anderies et al.,
2019).

1.3 World–Earth models compared to existing modeling
approaches of global change

It is instructive to compare WEMs more explicitly than above
to the two dominant existing classes of global change mod-
els – Earth system models and integrated assessment models
(van Vuuren et al., 2016) – in terms of the degree to which
they represent biophysical, socio-metabolic or economic and
sociocultural subsystems and processes in the world–Earth
system (Fig. 1). Before discussing how model classes map to
these process types, we describe the latter in more detail.

1.3.1 Basic process taxa in world–Earth models

Based on the companion article by Donges et al. (2018) that
is also part of the special issue in Earth System Dynam-
ics on “Social dynamics and planetary boundaries in Earth
system modeling”, we classify processes occurring in the
world–Earth system as three major taxa that represent the
natural and societal spheres of the Earth system as well as
their overlap (Fig. 2). We give only a rough definition and
abstain from defining a finer, hierarchical taxonomy, being
aware that gaining consensus among different disciplines on
such a taxonomy would be unlikely, and we thus leave the
assignment of individual processes and attributes to a given
taxon to the respective model component developers:

– Environment (ENV; environmental, biophysical and nat-
ural processes). The “environment” process taxon is
meant to contain biophysical or “natural” processes
from material subsystems of the Earth system that are
not or only insignificantly shaped or designed by human
societies (e.g., atmosphere–ocean diffusion, growth of
unmanaged vegetation, and maybe the decay of former
waste dumps).

– Metabolism (MET; socio-metabolic and economic pro-
cesses). The “metabolism” process taxon is meant to

contain socio-metabolic and economic processes from
material subsystems that are designed or significantly
shaped by human societies (e.g., harvesting, afforesta-
tion, greenhouse gas emissions, waste dumping, land-
use change, infrastructure building). Social metabolism
refers to the material flows in human societies and
the way societies organize their exchanges of energy
and materials with nature (Fischer-Kowalski, 1997;
Martinez-Alier, 2009).

– Culture (CUL; sociocultural processes). The “culture”
process taxon is meant to contain sociocultural pro-
cesses from immaterial subsystems (e.g., opinion adop-
tion, social learning, voting, policy making) that are de-
scribed in models in a way abstracted from their mate-
rial basis. Culture in its broadest definition refers to ev-
erything people do, think and possess as members of so-
ciety (Bierstedt, 1963, p. 129). Sociocultural processes
such as value and norm changes have been suggested to
be key for understanding the deeper human dimensions
of Earth system dynamics in the Anthropocene (Nyborg
et al., 2016; Gerten et al., 2018)

1.3.2 Mapping model classes to Earth system
processes

Earth system models focus on the process-detailed descrip-
tion of biogeophysical dynamics (e.g., atmosphere–ocean
fluid dynamics or biogeochemistry), while socio-metabolic
processes (e.g., economic growth, greenhouse gas emissions
and land use) are incorporated via external forcing and so-
ciocultural processes (e.g., public opinion formation, politi-
cal and institutional dynamics) are only considered implicitly
through different scenarios regarding the development of ex-
ogenous socio-metabolic drivers (Fig. 1). Integrated assess-
ment models typically contain a more stylized description
of biophysical dynamics, are process-detailed in the socio-
metabolic or economic domains, and are driven by narratives
such as the SSPs (O’Neill et al., 2017) in the sociocultural
domain. In turn, WEMs could ultimately integrate all three
domains with varying focus depending on the research ques-
tions of interest. The focus of current and near-future devel-
opments in world–Earth modeling would likely lie on the
development of a detailed description of sociocultural pro-
cesses because they are the ones where the least work has
been done so far in formal Earth system modeling.

2 The copan:CORE open world–Earth modeling
framework

Here we give a short overview of the world–Earth open mod-
eling framework copan:CORE that was designed following
the principles given above (Sect. 1.2) and is more formally
described and justified in detail in the Supplement. It en-
ables a flexible model design around standard components
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Figure 2. Overview of the copan:CORE open World–Earth modeling framework. The entities in copan:CORE models are classified by entity
types (e.g., grid cell, social system, individual; see b). Each process belongs to either a certain entity type or a certain process taxon (a).
Processes are further distinguished by formal process types (see text for a list), which allow for various different modeling approaches (c).
Entity types, process taxa and process types can be freely combined with each other (gray lines). Thick gray lines indicate which combinations
are most common. The copan:CORE framework allows us to consistently build world–Earth models across the spectrum from stylized and
globally aggregated to more complex and highly resolved variants in terms of spatial and social structure. Hence, entity types, process taxa
and types may or may not be present in specific models. For example, a stylized and globally aggregated model would describe the dynamics
of the entity types “world” and “social system” and contain neither cells nor individual agents as entities.

and model setups that allows the investigation of a broad
set of case studies and research questions using both sim-
ple and complex models. Its flexibility and role-based mod-
ularization support flexible scripting by end users, interop-
erability and dynamic coupling with existing models, and
a collaborative and structured development in larger teams.
copan:CORE is an open, code-based (rather than graphical)
simulation modeling framework with a clear focus on Earth
system models with endogenous human societies. In other
words, it is a tool that provides a standard way of building
and running simulation models without giving preference to
any particular modeling approach or theory describing hu-
man behavior and decision-making and other aspects of so-
cial dynamics (Müller-Hansen et al., 2017; Schlüter et al.,
2017). Different model components can implement differ-
ent, sometimes disputed, assumptions about human behavior
and social dynamics from theories developed within differ-
ent fields or schools of thought. This allows for comparison
studies in which one component is replaced by a different
component modeling the same part of reality in a different
way and exploring how the diverging assumptions influence
the model outcomes.

All components can be developed and maintained by dif-
ferent model developers and can be flexibly composed into
tailor-made models used for particular studies again by dif-
ferent researchers (Fig. 3). The framework facilitates the in-
tegration of different types of modeling approaches. It per-
mits, for example, combining micro-economic models (e.g.,

of a labor market at the level of individuals) with systems of
ordinary differential equations (modeling, for example, a car-
bon cycle). Similarly, systems of implicit and explicit equa-
tions (e.g., representing a multi-sector economy) can be com-
bined with Markov jump processes (for example, represent-
ing natural hazards). It also provides coupling capabilities
to preexisting biophysical Earth system and economic inte-
grated assessment models and thus helps to benefit from the
detailed process representations embedded in these models.
Many of our design choices are based on experiences very
similar to those reported in Robinson et al. (2018), in partic-
ular regarding the iterative process of scientific modeling and
the need for open code, a common language for a broader
community and a high level of consistency without losing
flexibility. These features distinguish the copan:CORE mod-
eling framework from existing modeling frameworks and
platforms.

A model composed with copan:CORE describes a cer-
tain part of the world–Earth system as consisting of a po-
tentially varying set of entities (“things that are”, e.g., a spot
on the Earth’s surface, the European Union, yourself), which
are involved in processes (“things that happen”, e.g., vege-
tation growth, economic production, opinion formation) that
affect entities’ attributes (“how things are”, e.g., the spot’s
harvestable biomass, the EU’s gross product, your opinion
on fossil fuels, the atmosphere–ocean diffusion coefficient)
which represent the variables (including parameters) of a
model. An attribute can have a simple or complex data type,
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Figure 3. Model composition through multiple inheritance of attributes and processes by process taxa and entity types. This stylized class
diagram shows how a model in copan:CORE can be composed from several model components (only two shown here: the mandatory
component “base” and the fictitious component “migration”) that contribute component-specific processes and attributes to the model’s
process taxa and entity types (only two shown here: “individual” and “SocialSystem”). To achieve this, the classes implementing these entity
types on the model level are composed via multiple inheritance (solid arrows) from their component-level counterparts (so-called “mixin”
classes).

e.g., representing a binary variable, a whole social network
or, to facilitate interoperability and validation, a dimensional
quantity with a proper physical unit.

Entities are classified by entity type (cell, social system,
individual, etc.), processes by their formal process type (see
below), and both are represented by objects in an object-
oriented software design, currently using the Python pro-
gramming language. Each process and each attribute be-
longs to an entity type or a process taxon (environmental,
socio-metabolic, sociocultural). Currently, the following for-
mal process types are supported, enabling typical modeling
approaches:

– ordinary differential equations representing continuous
time dynamics,

– explicit or implicit algebraic equations representing
(quasi-)instantaneous reactions or equilibria,

– steps in discrete time representing processes aggregated
at the level of some regular time interval or for coupling
with external, time-step-based models or model compo-
nents, and

– events happening at irregular or random time points,
representing (e.g., agent-based and adaptive network
components or externally generated extreme events).

Processes can be implemented either using an impera-
tive programming style via class methods or using sym-
bolic expressions representing mathematical formulae. co-

pan:CORE’s modularization and role concept distinguish be-
tween

– model components developed by model component
developers, implemented as sub-packages of the co-
pan:CORE software package providing interface and
implementation mixin classes for entity types and pro-
cess taxa,

– models made from these by model composers, imple-
mented by forming final entity types and process taxa
from these mixin classes,

– studies by model end users in the form of scripts that
import, initialize and run such a model,

– a master data model providing metadata for common
variables to facilitate interoperability of model compo-
nents and a common language for modelers, managed
by a modeling board.

Entity types and their basic relations shipped with co-
pan:CORE are the following:

– “world”, representing the whole Earth (or some other
planet).

– “cell”, representing a regularly or irregularly shaped
spatial region used for discretizing the spatial aspect of
processes and attributes which are actually continuously
distributed in space.
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– “social system”, such as a megacity, country or the EU.
It can be interpreted as a human-designed and human-
reproduced structure including the flows of energy, ma-
terial, financial and other resources that are used to sat-
isfy human needs and desires, influenced by the accessi-
bility and use of technology and infrastructure (Fischer-
Kowalski, 1997; Otto et al., 2020b), and may include
social institutions such as informal systems of norms,
values and beliefs and formally codified written laws
and regulations, governance, and organizational struc-
tures (Williamson, 1998).

– “individual”, representing a person, typically used in a
network-theoretic, game-theoretic or agent-based com-
ponent. In contrast to certain economic modeling ap-
proaches that use “representative” consumers, an indi-
vidual in copan:CORE is not meant to represent a whole
class of similar individuals (e.g., all the actual individu-
als of a certain profession) but just one specific individ-
ual. Still, the set of all individuals contained in a model
will typically be interpreted as being a representative
sample of all relevant real-world people. Each individ-
ual resides in a cell that belongs to a social system.

Figure 2 illustrates these concepts. Although there is
no one-to-one correspondence between process taxa, entity
types and modeling approaches, some combinations are ex-
pected to occur more often than others, as indicated by the
thicker gray connections in Fig. 2. We expect environmen-
tal (ENV) processes to deal mostly with cells (for local pro-
cesses such as terrestrial vegetation dynamics described with
spatial resolution) and world(s) (for global processes de-
scribed without spatial resolution, e.g., the greenhouse ef-
fect) and sometimes social systems (for mesoscopic pro-
cesses described at the level of a social system’s territory,
e.g., the environmental diffusion and decomposition of in-
dustrial wastes). Socio-metabolic (MET) processes will pri-
marily deal with social systems (e.g., for processes described
at national or urban level), cells (for local socio-metabolic
processes described with additional spatial resolution for eas-
ier coupling to natural processes) and world(s) (for global
socio-metabolic processes such as international trade) and
only rarely with individuals (e.g., for micro-economic model
components such as consumption, investment or the job mar-
ket). Sociocultural (CUL) processes will mostly deal with in-
dividuals (for “micro”-level descriptions) and social systems
(for “macro”-level descriptions), and rarely world(s) (for in-
ternational processes such as diplomacy or treaties). Other
entity types such as firms, social groups or institutions can
be added to the framework if needed.

3 Influence of social dynamics in a
minimum-complexity world–Earth model
implemented using copan:CORE

In this section, we present an illustrative example of a model
realized with our framework. The example model was de-
signed to showcase the concepts and capabilities of co-
pan:CORE in a rather simple WEM, and its components were
chosen so that all entity types and process taxa and most
features of copan:CORE are covered. Although most model
components are somewhat plausible versions of model com-
ponents that can be found in the various literatures, the ex-
ample model is intended to be a toy representation of the real
world rather than one that could be used directly for study-
ing concrete research questions. Likewise, although we show
example trajectories that are based on parameters and ini-
tial conditions that roughly reproduce current values of real-
world global aggregates in order to make the example as ac-
cessible as possible, the time evolutions shown may not be
interpreted as any kind of meaningful quantitative prediction
or projection.

In spite of this modest goal here, it will become obvious
from the presented scenarios that including sociocultural dy-
namics such as migration, environmental awareness, social
learning and policy making in more serious models of the
global coevolution of human societies and the environment
will likely make a considerable qualitative difference to their
results and thus have significant policy implications.

The example model includes the following groups of
processes: (1) a version of the simple carbon cycle used
in Nitzbon et al. (2017) (based on Anderies et al., 2013)
coarsely spatially resolved into four heterogeneous boxes;
(2) a version of the simple economy used in Nitzbon et al.
(2017) resolved into two world regions. The fossil and
biomass energy sectors are complemented by a renewable
energy sector with technological progress based on learning
by doing (Nagy et al., 2013) and with human capital depre-
ciation; and (3) domestic voting on subsidizing renewables
and banning fossil fuels that is driven by individual environ-
mental friendliness. The latter results from becoming aware
of environmental problems by observing the local biomass
density and diffuses through a social acquaintance network
via a standard model of social learning (see, e.g., Holley and
Liggett, 1975). These processes cover all possible process
taxon interactions as shown in Table 1 and are distributed
over six model components in the code as shown in Fig. 4.

We now describe the model components in detail. As many
processes add terms to variables’ time derivatives, we use the
notation Ẋ += Y to indicate this. The effective time evolu-
tion of X is then determined by the sum of the individual
processes given below.
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Table 1. Possible classification of exemplary model processes by owning process taxon (row) and affected process taxon (column) (fol-
lowing the taxonomy developed in the companion paper Donges et al., 2018): environmental (ENV), social-metabolic (MET) and sociocul-
tural (CUL).

→ CUL MET ENV

CUL social learning, voting energy policy environmental protection
MET well-being production, capital growth extraction, harvest, emissions
ENV well-being, awareness resource availability carbon cycle

Figure 4. Components, entity types and processes of the example model. Each box represents a model component that contributes several
processes (white bars) to different entity types and process taxa (differently hashed rectangles).

3.1 Entity types

The example model contains one world representing the
planet, two social systems representing the Global North
and South, four cells representing major climate zones: “bo-
real” and “temperate” belonging to the territory of the Global
North and “subtropical” and “tropical” belonging to the
Global South, and 100 representative individuals per cell,
which form the nodes of a fixed acquaintance network.

3.2 Global carbon cycle

Our carbon cycle follows a simplified version of An-
deries et al. (2013) presented in Nitzbon et al. (2017) with
coarsely spatially resolved vegetation dynamics. On the
world level, an immediate greenhouse effect translates the
atmospheric carbon stock A (initially 830 GtC) linearly into
a mean surface air temperature T = Tref+a(A−Aref) (a pro-
cess of type explicit equation) with a sensitivity parame-
ter a = 1.5 K/1000 GtC and reference values Tref = 287 K
and Aref = 589 GtC. There is ocean–atmosphere diffusion
between A and the upper-ocean carbon stock M (initially
1065 GtC):

Ȧ += d(M −mA), Ṁ += d(mA−M) (1)

(processes of type “ODE”), with a diffusion rate d =

0.016 yr−1 and a solubility parameter m= 1.5. On the level
of a cell c, A and the cell’s terrestrial carbon stock Lc (ini-
tially 620 GtC for all four c) are changed by a respiration
flow RFc and a photosynthesis flow PFc:

Ȧ += RFc−PFc, L̇c += PFc−RFc. (2)

The respiration rate depends linearly on temperature, which
is expressed as a dependency on atmospheric carbon den-
sity A/6, where 6 = 1.5× 108 km2 is the total land surface
area, so that

RFc = (a0+ aAA/6)Lc, (3)

with a basic rate a0 = 0.0298 yr−1 and carbon sensitiv-
ity aA = 3200 km2 GtC−1 yr−1. The photosynthesis rate also
depends linearly on temperature (and hence on A) with
an additional carbon fertilization factor growing concavely
with A/6 and a space competition factor similar to a logis-
tic equation, giving

PF= (l0+ lAA/6)
√
A/6 (1−Lc/k6c)Lc, (4)

with land area 6c =6/4, parameters l0 =

34 km GtC−1/2 yr−1 and lA = 1.1× 106 km3 GtC−3/2 yr−1,
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and per-area terrestrial carbon capacity k = 25×
103 GtC/1.5× 108 km2. Note that the linear tempera-
ture dependency and the missing water dependency, in
particular, make this model rather stylized; see also Lade
et al. (2018).

3.3 Economic production

As in Nitzbon et al. (2017), economic activity consists of
producing a final good Y from labor (assumed to be propor-
tional to population P ), physical capitalK (initiallyKNorth =

4×1013,KSouth = 2×1013, both given in units of USD), and
energy input flow E. The latter is the sum of the outputs of
three energy sectors, fossil energy flow EF, biomass energy
flowEB, and (other) renewable energy flowR. The process is
described by a nested Leontieff and Cobb–Douglas produc-
tion function for Y and Cobb–Douglas production functions
for EF, EB and R, all of them here on the level of a cell c:

Yc = yEmin
(
Ec,bYK

κY
Y,cP

πY
Y,c

)
, Ec = EF,c+EB,c+Rc, (5)

EF,c = bFK
κF
F,cP

πF
F,cG

γ
c , (6)

EB,c = bBK
κB
B,cP

πB
B,c
(
Lc−L

p
c

)λ
, (7)

Rc = bR,cK
κR
R,cP

πR
R,cS

σ
s . (8)

In this, yE = USD147 GJ−1 is the energy efficiency, Gc is
the cell’s fossil reserves (initially 0.4, 0.3, 0.2 and 0.1×
1125 GtC in the boreal, temperate, subtropical and tropi-
cal cells), Lp

c is the environmentally protected amount of
terrestrial carbon (see below), Ss gives the renewable en-
ergy production knowledge stock of the corresponding so-
cial system s (initially 2× 1011 GJ), and κ• = π• = γ = λ=
σ = 2/5 are elasticities leading to slightly increasing re-
turns to scale. The productivity parameters b• have units
that depend on the elasticities and are chosen so that ini-
tial global energy flows roughly match the observed val-
ues: bF = 1.4× 109 GJ5 yr−5 Gt C−2 USD−2 , bB = 6.8×
108 GJ5 yr−5 Gt C−2 USD−2, and bR,c = 0.7, 0.9, 1.1 and
1.3 times the mean value bR = 1.75×10−11 GJ3 yr−5 USD−2

in boreal, temperate, subtropical and tropical to reflect re-
gional differences in solar insolation. As in Nitzbon et al.
(2017), we assume bY � bB, bF, bR so that its actual value
has no influence because then KY,c�Ks and PY,c� Ys .
Furthermore, K•,c and P•,c are the shares of a social sys-
tem s’s capital Ks and labor Ls that are endogenously allo-
cated to the production processes in cell c so that

Ks =
∑
c∈s

(
KY,c+KF,c+KB,c+KR,c

)
(9)

and similarly for its population Ps . The latter shares are de-
termined on the social system level in a general equilibrium
fashion by equating both wages (marginal productivity of la-
bor) and rents (marginal productivity of capital) in all cells
and sectors, assuming costless and immediate labor and cap-
ital mobility between all cells and sectors within each social
system:

∂yEEF,c/∂PF,c ≡ ∂yEEB,c/∂PB,c ≡ ∂yERc/∂PR,c ≡ ws (10)

for all c ∈ s, and similarly forK•,c. The production functions
and elasticities are chosen so that the corresponding equa-
tions can be solved analytically (see Nitzbon et al. (2017) for
details), allowing us to first calculate a set of “effective sec-
tor or cell productivities” by a process of type explicit equa-
tion on the cell level, which are used to determine the labor
and capital allocation weights P•,c/Ps andK•,c/Ks , and then
calculate output Ys , carbon emissions, and all cells’ fossil and
biomass extraction flows in another process of type explicit
equation on the social system level. Given the latter, a second
process of type ODE on the social system level changes the
stocks A, Gc and Lc for all cells accordingly.

3.4 Economic growth

Again as in Nitzbon et al. (2017), but here on the social sys-
tem level, a fixed share i (here 0.244) of economic produc-
tion Ys is invested into physical capital Ks :

K̇s += iYs . (11)

Capital also depreciates at a rate that depends linearly on
surface air temperature to represent damage from climate
change:

K̇s += − (k0+ kT (T − TK ))Ks (12)

with k0 = 0.1 yr−1, kT = 0.05 yr−1 K−1, and TK = 287 K. In
addition, renewable energy production knowledge Ss grows
proportional to its utilization via learning by doing:

Ṡs += Rs . (13)

Finally, we interpret Ss as a form of human capital that also
depreciates at a constant rate (due to forgetting or becoming
useless because of changing technology, etc.):

Ṡs += −βSs, (14)

with β = 0.02 yr−1. Note that unlike in Nitzbon et al. (2017),
we consider populations to be constant at PNorth = 1.5× 109

and PSouth = 4.5× 109 to avoid the complexities of a well-
being-driven population dynamics component (which could,
however, be implemented in the same way as in Nitzbon et al.
(2017) on the social system level).

3.5 Environmental awareness

On the level of the culture process taxon, an “awareness up-
dating” process of type “event” occurs at random time points
with a constant rate (i.e., as a Poisson process, here with a
rate of 4 yr−1), representing times at which many people be-
come aware of the state of the environment, e.g., because of
notable environmental events. At each such a time point, each
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individual independently updates their environmental friend-
liness (a Boolean variable) with a certain probability. When
individuals update, they switch from “false” to “true” with a
probability ψ+ depending on the terrestrial carbon density in
their cell c, TCDc = Lc/6c, given by

ψ+ = exp
(
−TCDc/TCD⊥

)
, (15)

and switches from true to false with a probability

ψ− = 1− exp
(
−TCDc/TCD>

)
, (16)

where TCD⊥ = 1× 10−5 and TCD> = 4× 10−5 are sensi-
tivity parameters with TCD⊥<TCD> to generate hysteresis
behavior. As a consequence, a fraction Lp

c of the terrestrial
carbon Lc is protected from harvesting for economic produc-
tion. This fraction is proportional to the cell’s social system’s
population share represented by those individuals which are
environmentally friendly. The initial share of environmen-
tally friendly individuals will be varied in the bifurcation
analysis below.

3.6 Social learning

Similarly, on the culture level, “social learning” events oc-
cur at random time points with a constant rate (here 4 yr−1),
representing times at which the state of the environment be-
comes a main topic in the public debate. At each such time
point, each individual i independently compares their envi-
ronment with that of a randomly chosen acquaintance j with
a certain fixed probability (here 1/10). j then convinces i
to copy j ’s environmental friendliness with a probability ψ
that depends via a sigmoidal function on the difference in
logs between both home cells’ terrestrial carbon densities:

ψ = 1/2+ arctan
(
πφ′

(
logTCDj − logTCDi − logρ′

))
/π, (17)

where φ′ = 1 and ρ′ = 1 are slope and offset parameters. The
underlying social network is a block model network in which
each individual is on average linked to 10 randomly chosen
others: 5 in the same cell, 3.5 in the other cell of the same
social system and 1.5 in the other social system.

3.7 Voting on climate policy

Each (of the two) social systems performs general elections
at regular time intervals (hence implemented as a process of
type “step”, here every 4 years) which may lead to the intro-
duction or termination of climate policies. If at the time t of
the election, more than a certain threshold (here 1/2) of the
population is environmentally friendly, both a subsidy for re-
newables (here USD 50 GJ−1) is introduced and use of fossils
is banned. This leads to a shift in the energy price equilib-
rium that determines the energy sector’s allocation of labor
and capital, which then reads

marginal production cost of biomass energy
=marginal production cost of renewable energy
− renewable subsidy.

Conversely, if these policies are already in place but the en-
vironmentally friendly population share is below some other
thresholds (here also 1/2), these policies are terminated.

Note that we have chosen to model awareness formation
and social learning in an agent-based fashion here mainly
to illustrate that such an approach can easily be combined
with other approaches in copan:CORE, not because we want
to claim that an agent-based approach is the most suitable
here. Indeed, one may well want to replace these two agent-
based model components by equation-based versions which
approximate their behavior in terms of macroscopic quanti-
ties (e.g., as in Wiedermann et al., 2015), and because of the
modular design of copan:CORE, this can easily be done and
the two model versions could be compared (nevertheless, this
is beyond the scope of this paper).

3.8 Results

In order to show in particular what effect the inclusion of so-
ciocultural processes into WEMs can have on their results,
we compare two representative 100-year runs of the exam-
ple model described above: one without the sociocultural
processes environmental awareness, social learning, and vot-
ing (left panels of Fig. 5) and another with these processes
included (right panels of Fig. 5). Both runs start in model
year 0 from the same initial conditions and use the same pa-
rameters, which were chosen to roughly reflect real-world
global aggregates of the year 2000 (see above). For the sim-
ulation without social processes (left panels of Fig. 5) both
social systems (“Global North” as solid and “Global South”
as dashed lines) initially rely on fossil energy in order to
meet their energy needs, thus causing a rise in atmospheric
and ocean carbon and a decline in fossil carbon stocks. Sim-
ilarly both social systems initially rely heavily on energy
from biomass, with the consequence of a reduction in terres-
trial carbon. Due to the technology becoming competitive,
the Global South changes its energy production to renewable
energy comparatively early in the simulation, resulting in a
fast fading out of biomass and fossils as an energy source.
Due to its larger fossil reserves and lower solar insolation,
the Global North takes 2 decades longer to make this switch.
However, this delay in the Global North causes high atmo-
spheric carbon, hence a high global mean temperature, which
due to our oversimplified vegetation model makes the terres-
trial carbon stock decline further even after biomass has been
phased out as an energy source as well, recovering only much
later (not shown). In both social systems, economic growth
declines until the switch, then boosts and later declines again
since neither population nor total factor productivity grow in
our model. Once the Global South switches to renewables,
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it hence overtakes the Global North, and this reversed in-
equality is then sustained as our model includes no trade,
knowledge spillovers, migration or other direct interaction
which would lead to economic convergence. Certainly, such
results are not in themselves realistic (as this model does not
intend to be) or transferable to real-world application. Fu-
ture WEMs, therefore, should include such processes beyond
pure economic ones in order to properly capture real-world–
Earth dynamics; see the Supplement for some corresponding
extensions of this model.

If social processes are considered, we obtain qualitatively
similar but quantitatively different trajectories, e.g., in the
right panels of Fig. 5, where we initially assume 40 % of all
individuals are environmentally friendly. As before, both so-
cial systems initially rely on energy produced from fossils
and biomass, but as biomass reduces terrestrial carbon den-
sity, environmental awareness makes some people environ-
mentally friendly and this spreads via social learning. Once
half of the population is environmentally friendly, the next
elections in that social system bring a fossil ban and subsidies
for renewables. This causes a slightly earlier switch to re-
newables than before, especially in the Global North (dashed
lines in Fig. 5). This ultimately results in lower atmospheric
and ocean carbon stocks, lower peak temperatures, less cu-
mulative use of fossil fuels and a much faster recovery of
terrestrial carbon.

copan:CORE further allows for a systematic investigation
of the influence of individual parameters on the outcome of
the simulation (e.g., along the lines of a bifurcation analysis).
As an illustration of such an analysis we now vary the learn-
ing rate from 1/50 yr−1 (less than once in a generation) to
12 yr−1 (once every month) and compute the carbon stocks
as well as the GDP per capita and the global mean tempera-
ture in model year 120 for an ensemble of 50 simulations per
learning rate (Fig. 6) and the same initial conditions for all
runs (we thus do not test for a possible multistability of the
system).

For learning rates lower than 1 yr−1 (slow learning) the
carbon stocks as well as the global mean temperature align
well for the two simulation setups, i.e., the one with (scatter
points) and without social processes (dashed lines). In con-
trast, for learning rates larger than 1 yr−1 (faster learning)
the individuals become more capable of assessing the conse-
quences of their behavior (in our case extensive biomass use)
before the system has reached a state with low terrestrial and
high atmospheric and ocean carbon stocks. As such, increas-
ing the learning rate also causes an increase in the terrestrial
carbon stock combined with a decrease in the atmospheric
and ocean carbon stocks (in model year 120). This behavior
is also reflected in the global mean temperature which de-
creases as the learning rate increases. Hence, with respect to
the environment, social learning only has a positive effect if
it happens at a sufficiently high rate (around once to more
than once a year). It remains to note that learning rates have
in the past already been shown to have a profound impact

on the state and dynamics of a coupled socio-ecological sys-
tem, a feature that is recovered in our simple WEM as well
(Wiedermann et al., 2015; Auer et al., 2015; Barfuss et al.,
2017).

The metabolic variable GDP per capita interestingly al-
ready increases much earlier (i.e., for much lower learning
rates than 1 yr−1) as compared to the changes in the envi-
ronmental variables. This implies that for our specific WEM,
social processes generally seem to foster the economy re-
gardless of their actual rate. Furthermore we observe that the
Global South shows an approximately 3 times higher GDP
per capita than the Global North, which is caused by the ear-
lier switch to renewable energies in that social system (see
third row of Fig. 5). As already stated above, note again, that
these results are not intended as a realistic projection of fu-
ture trajectories of the Earth system, but are discussed here
to showcase the capabilities of the copan:CORE framework.

Using the pycopancore reference implementation, running
the above two simulations (Fig. 5) took 140 s (without so-
ciocultural processes) and 290 s (including sociocultural pro-
cesses) on an Intel Xeon E5-2690 CPU at 2.60 GHz. Since
further performance improvements are desirable to support
Monte Carlo simulations, we aim at a community-supported
development of an alternative, more production-oriented im-
plementation in the C++ language.

4 Conclusions

In this paper, we presented a simulation modeling framework
that aims at facilitating the implementation and analysis of
world–Earth (or planetary social–ecological) models. It fol-
lows a modular design such that various model components
can be combined in a plug-and-play fashion to easily explore
the influence of specific processes or the effect of competing
theories of social dynamics from different schools of thought
(Schlüter et al., 2017) on the coevolutionary trajectories of
the system. The model components describe fine-grained yet
meaningfully defined subsystems of the social and environ-
mental domains of the world–Earth system and thus enable
the combination and comparison of different modeling ap-
proaches from the natural and social sciences. In the mod-
eling framework, different entities such as geographic cells,
individual humans and social systems are represented and
their attributes are shaped by environmental, socio-metabolic
and sociocultural processes. The mathematical types of pro-
cesses that can be implemented in the modeling framework
range from ordinary differential and algebraic equations to
deterministic and stochastic events. Due to its flexibility, the
model framework can be used to analyze interactions at and
between various scales – from local to regional and global.

The current version of the copan:CORE open modeling
framework includes a number of tentative model compo-
nents implementing, e.g., basic economic, climatic, biolog-
ical, demographic and social network dynamics. However,
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Figure 5. Two runs from a world–Earth model example: one without (left panels) and one with (right panels) the sociocultural processes
of environmental awareness, social learning and voting included, showing different transient (and asymptotic) behavior. The top row shows
variables related to the cultural process taxon, the second and third row those related to the metabolic process taxon and the bottom row those
related to the environmental process taxon. Green, orange, cyan, blue and gray lines correspond to variables related to terrestrial carbon,
renewables, atmospheric carbon, ocean carbon and fossils, respectively. In second and third row, dashed lines indicate variables associated
with the “Global South”, solid lines to the “Global North”.

to use the modeling framework for rigorous scientific analy-
ses, these components have to be refined, their details have
to be spelled out and new components have to be developed
that capture processes with crucial influence on world–Earth
coevolutionary dynamics. For this purpose, various model-
ing approaches from the social sciences are available to be
applied to develop comprehensive representations of such

socio-metabolic and sociocultural processes (Müller-Hansen
et al., 2017; Schill et al., 2019, and references therein). For
example, hierarchical adaptive network approaches could be
used to model the development of social groups, institutions
and organizations spanning local to global scales or the in-
teraction of economic sectors via resource, energy and infor-
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Figure 6. Dependency of some selected variables after 120 model
years on the learning rate of environmental awareness. Scatter
points denote (the average over 50) simulations with social pro-
cesses, and error bars denote 1 standard deviation for each choice of
learning rate. Dashed lines indicate the corresponding values for a
simulation without social processes. Panel (a) shows the three envi-
ronmental (non-fossil) carbon stocks; panel (b) shows the GDP per
capita in the two social systems as well as the global mean temper-
ature.

mation flows (Gross and Blasius, 2008; Donges et al., 2017a;
Geier et al., 2019).

Making such an endeavor prosper requires the collection
and synthesis of knowledge from various disciplines. The
modular approach of the copan:CORE open modeling frame-
work supports well-founded development of single model
components, helps to integrate various processes and allows
analyzing their interplay. To facilitate this, we envision an
emergent community of modelers who contribute mature
model components, composed models and variable defini-
tions that add to a growing master component and model
repository, and a master data model that are hosted within
the open-source software repository (see below under “Code
availability”), curated by a repository management board
and cross-linked with platforms such as the CoMSES net-
work (https://www.comses.net, last access: 1 April 2020).
Complete models should also be contributed. This way, co-

pan:CORE could support the emergence of community stan-
dards for modeling coupled human–natural systems that have
recently been demanded by many researchers (Barton and
The Open Modeling Foundation, 2019). We therefore call
upon the interdisciplinary social–ecological modeling com-
munity and beyond to participate in further model and appli-
cation development to facilitate “whole” Earth system anal-
ysis of the Anthropocene.

Code availability. A Python 3.7.x implementation of the co-
pan:CORE open World–Earth modeling framework, detailed doc-
umentation, a tutorial and the world–Earth model example are
available at https://doi.org/10.5281/zenodo.3772751 (Heitzig et al.,
2020).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-11-395-2020-supplement.
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3
Theoretical and methodological work

This third section is dedicated to theoretical publications on
World-Earth models and to present new analytical methods for the
analysis of complex social-ecological systems, which is structured in
four subsections.

In “Stability and resilience of complex social-ecological sys-
tems” (Sect. 3.1) we present a selection of our conceptual and
theoretical work as a basis for further investigations of complex
social-ecological systems. In particular, we describe investigations
of system resilience through nonlinear stability analyses.

The subsequent section on “Sustainable management of com-
plex social-ecological systems” (Sect. 3.2) deals with qualitative
differences between regions in systems’ state spaces and their con-
nectivity with respect to sustainable management. Furthermore,
we introduce methodologies for analysing sustainable management
options in social-ecological systems.

In the third section on “Dynamics of adaptive social-ecological
networks” (Sect. 3.3), we focus on the characteristic dynamics of
social-ecological systems described as complex networks. Two
exemplary models serve as showcases.

We close with “Model simplification and approximation meth-
ods” (Sect. 3.4) by showing approaches for describing emerging
macroscopic phenomena in agent-based social-ecological dynam-
ics on networks that help getting a deeper understanding of the
behaviour of these complex systems.
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3.1 Stability and resilience of complex social-ecological systems

This section presents selected analyses of resilience and stabil-
ity of complex social-ecological systems.

The concept of “basin stability”, introduced earlier [Menck et al.,
2013], builds on and formalises influential conceptualisations of
social-ecological resilience [Holling, 1973] and has widely been
used to study the sensitivity of complex systems. In “Constrained
basin stability for studying transient phenomena in dynamical
systems” [Van Kan et al., 2016], we introduced a generalization of
this that takes also transient behaviour into account.

Adding to this, in “Survivability of deterministic dynamical
systems” [Hellmann et al., 2016] we joined our colleagues from the
COEN project in defining survivability in a complex system as the
likelihood that the transient behaviour of a deterministic system
does not leave a region of desirable states.

Trajectories might converge to a stable attractor but still take
infinitely long to get there. The paper “Timing of transients: quan-
tifying reaching times and transient behavior in complex systems”
[Kittel et al., 2017a] focuses on the question of how long such a
transient phase takes.

We close with a proposal for a classification of modern notions of
social-ecological resilience from a multi-agent-environment perspec-
tive in “From math to metaphors and back again: social-ecological
resilience from a multi-agent-environment perspective” [Donges
and Barfuss, 2017]. Building on this, we demonstrated why a fur-
ther development of the mathematics of resilience and advancing
models suitable for the study of social-ecological-technological
system resilience is necessary [Tamberg et al., 2020].



PHYSICAL REVIEW E 93, 042205 (2016)

Constrained basin stability for studying transient phenomena in dynamical systems

Adrian van Kan,1,2,* Jannes Jegminat,1,† Jonathan F. Donges,3,4 and Jürgen Kurths3,5,6,7

1Department of Physics and Astronomy, University of Heidelberg, Im Neuenheimer Feld 226, D-69120 Heidelberg, Germany
2Department of Physics, Imperial College London, Prince Consort Rd, London SW7 2BB, United Kingdom

3Potsdam Institute for Climate Impact Research, P.O. Box 601203, D-14412 Potsdam, Germany
4Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 114 19 Stockholm, Sweden
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Transient dynamics are of large interest in many areas of science. Here, a generalization of basin stability (BS)
is presented: constrained basin stability (CBS) that is sensitive to various different types of transients arising from
finite size perturbations. CBS is applied to the paradigmatic Lorenz system for uncovering nonlinear precursory
phenomena of a boundary crisis bifurcation. Further, CBS is used in a model of the Earth’s carbon cycle as a
return time-dependent stability measure of the system’s global attractor. Both case studies illustrate how CBS’s
sensitivity to transients complements BS in its function as an early warning signal and as a stability measure.
CBS is broadly applicable in systems where transients matter, from physics and engineering to sustainability
science. Thus CBS complements stability analysis with BS as well as classical linear stability analysis and will
be a useful tool for many applications.

DOI: 10.1103/PhysRevE.93.042205

I. INTRODUCTION

Many fields of science analyze dissipative dynamical
systems in terms of their attractors. Thus it is an important
challenge to quantify the stability of attractors with respect to a
given perturbation. The most popular method is linear stability
analysis, which considers infinitesimal perturbations. Menck
et al. [1] suggest to complement this linear measure with
basin stability (BS), which accounts for finite and even large
perturbations. The application of BS to power grids has yielded
novel mitigation strategies against superoutages [2,3]. BS is
computed by estimating the volume of an attractor’s basin.
Therefore, it is not sensitive to different forms of transient
dynamics. However, transient phenomena in complex systems
are of large interest in many areas of science, such as climatic
and, more generally, global change in Earth system science [4],
epileptic seizures in neuroscience [5], ecosystem transitions in
ecology [6], as well as in the previously mentioned study of
super outages in power grids [2,3]. For example, in the case of
climate change [4] and the great acceleration [7] as transient
phenomena in the global social-environmental system [8,9],
major efforts are invested into studying the maximum global
mean temperature and its timing along the trajectory due
to anthropogenic greenhouse gas emissions. Moreover, the
model- and data-driven analysis of transient global change
trajectories underlies many recently proposed frameworks for
sustainable development such as tolerable environment and
development windows [10], planetary boundaries [11,12], and
the safe and just operating space for humanity [13].

Making BS sensitive to transients, we generalize it to
a family of stability measures termed constrained basin
stabilities (CBSs). As opposed to BS, CBS is not computed

*van_kan@stud.uni-heidelberg.de
†jegminat@iup.uni-heidelberg.de

from the entire basin of an attractor but only from a subset
of the basin. The subset is defined by a generic constraint
imposed on the transients. Thus CBS is sensitive to transients
while maintaining the intuitiveness and simplicity of BS. To
illustrate how CBS complements BS, we choose two specific
constraints on transients, one based on the confinement of
transient trajectories to certain regions in phase space and one
based on transient duration, and apply them to the Lorenz
system and a global carbon cycle model, respectively. In the
former example, CBS anticipates a boundary crisis bifurcation.
In the latter, we show that CBS represents a more intuitive
measure for stability than BS because CBS reflects not only
that perturbation-induced transients return to the attractor but
also that they do so within a desirable time interval.

This paper is structured as follows. In Sec. II we introduce
CBS and discuss some of its properties used in the further
analysis. In Sec. III we present two examples of CBS analysis
in dynamical systems: the paradigmatic Lorenz [14] model and
a global carbon cycle model proposed by Anderies et al. [15].
Then, in Sec. IV we discuss the relevance of CBS and
how it differs from established stability concepts. The paper
concludes with closing remarks.

II. METHODS

Let the (not necessarily analytic) vector valued function
f represent an autonomous potentially multistable dynamical
system ẋ = f (x), where x ∈ Rn, and let φt (x0) be the system
state at time t on a trajectory starting at x0 at t = 0. The
basin stability SB(A) of an attractor A of this system quantifies
the probability that after a finite size perturbation trajectories
return to A [1]. Perturbations within the attractor’s basin B(A)
return but the remaining ones fall into a different attractor.
The probability distribution of perturbing a trajectory on the
attractor to the state x is given by ρ(x). Thereby, BS is formally
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defined as

SB(A) =
∫

�

dxnρ(x)1B(A)(x), (1)

where � denotes the state or phase space of the dynamical
system and the indicator function is

1B(A)(x) =
{

1 if x ∈ B(A),
0 else. (2)

BS can be computed quickly once an attractor’s basin is given:
it equals the mass of ρ that is supported by the basin. However,
in practice, the basin of attraction is usually not known and
needs to be determined first. For this purpose, initial conditions
are sampled according to the perturbation density ρ and then
integrated until they reach an attractor. Thus, in computing BS
only the long-term limit of the trajectories is used to determine
if an initial condition lies in the basin of attraction. Therefore,
by construction, BS does not depend on transient motion.

To generalize BS, here we propose instead to use the
properties of transients to define a class of stability measures
that we term constrained basin stabilities (CBSs). Calculating
CBS requires a computational effort similar to that needed
for BS, but CBS reveals additional information about the
system that is encoded in the transient trajectories. We define
a transient as the set of points belonging to the part of the
trajectory between the initial condition x(0) = x0 and reaching
the attractor A,

T (x0) = {φt (x0) ∈ �\A | t � 0}. (3)

The fact that we define the attractor not to be part of the
transient makes a difference for example in the case of
trajectories induced by nonsmooth flows where an attractor
may be reached within finite time. The idea of CBS is that a
region in phase space is identified by some constraint on the
transients starting from a subset of phase space

C = {x ∈ �\A| the transient from x satisfies a constraint}.
(4)

In other words, the transients starting from this conditioned
set C satisfy the given constraint. For instance, we can choose
C to be the set of states x the transients starting from which
exhibit monotonicity in the x1 component. This is equivalent
to demanding that the projection of a transient’s velocity onto
the basis vector e1 in x1 direction is nonvanishing. Thus the
conditioned set is Cmon = {x ∈ �\A|f (φt (x)) · e1 �= 0 ∀ t >

0}. If x1 represents a population, the set Cmon is the set of initial
conditions which do not lead to a population overshoot [16].

Incorporating an arbitrary constraint (not necessarily mono-
tonicity) as an additional factor in Eq. (1), we formally define
CBS as

SC
B (A) =

∫
�

dxnρ(x)1C(x)1B(A)(x). (5)

The product of the two indicator functions checks whether
a perturbation is inside of the attractor’s basin and at the same
time inside the region transients originating from which satisfy
the prescribed constraint. Figure 1 illustrates the regions in
a schematic two-dimensional phase space that are relevant
for computing BS and CBS for a fixed point. Three useful

FIG. 1. Subspaces of a schematic two-dimensional phase space
containing a fixed point x�: perturbations are sampled from the
domain of the perturbation probability density ρ (area within dashed
line). Their transients return to the fixed point when sampled from the
basin of attraction B(x�) (gray area). The set C (white within solid
line) is the set of initial conditions which lead to transients that satisfy
a given constraint, e.g., on the x1 component. While BS is computed as
the fraction of perturbations within the basin of attraction, CBS is the
fraction of perturbations within the intersection C ∩ B(x�) (striped
area). Thus CBS reflects the stability with respect to perturbations
whose transients fulfill a given constraint.

properties of CBS follow directly from its definition. First,
since 1C(x) � 1,

SB(A) � SC
B (A). (6)

Secondly, let {Ci}i∈I be a partition of �, then∑
i∈I

S
Ci

B (A) = SB(A). (7)

Thirdly, if C1 ⊂ C2 then

S
C1
B (A) � S

C2
B (A). (8)

The novelty of CBSs is that they integrate information about
the transients into the asymptotic framework of BS. This
information is encoded in a set C of states the transients
originating from which satisfy a given requirement, such as
monotonicity in the previous example. We suggest classifying
these requirements as static, dynamic, and integrated, depend-
ing on how much information is necessary to find out which
desirable region of phase space corresponds to them as follows.
(i) Static requirements a priori define a phase space region
�′ ⊂ � that must not be entered by the transient. No further
knowledge of the system or its dynamics is required. Examples
are planetary boundaries in Earth system dynamics [11,12],
minimum or maximum operating temperatures of a device or
the evaluation of external functions (not f ) of the system, e.g.,
the performance of a second system that depends on the system
state x. (ii) Dynamic requirements depend on velocity, thus
more knowledge about the system is required: the dynamics,
i.e., f , must be known. Using this knowledge, a region similar
to �′ is defined. Consider, for example, a roller coaster that
must not exceed a certain velocity or acceleration or the
requirement of monotonicity in economic output to exclude
the burst of market bubbles. (iii) Integrated conditions depend
not only on the current state of the transient but also on its past,
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i.e., they operate on an infinite dimensional space and memory
effects are possible. Despite this complexity, testing integrated
conditions is often easy in practice as can be seen from the
following examples: imposing a limited number of opinion
changes of a political party, thresholding the time needed to
reach an attractor, integrated damage in a climate model or
imposing a minimum average power output of a wind farm per
time interval. Note that each of the constraints implies a binary
decision: CBS identifies a qualitative property in a transient.

In order to implement CBS [Eq. (5)] numerically, we need
to discretize it. For simplicity of presentation, we choose the
attractor to be a fixed point, A = {x�}, and consider a uniform
distribution ρ of N initial conditions drawn from some subset
of phase space approximated by a set of sampling points xi ,
i ∈ {1, . . . ,N} drawn at random from the phase space volume
in question. This results in

SC
B (x�,ε) = 1

N

N∑
i=1

1C(xi) �(ε − dmin), (9)

where dmin is the minimal state-space distance (within the finite
simulation time) between the fixed point x� and the transient
T (xi) and �(x) is the Heaviside function.

If a trajectory reaches a distance smaller than the threshold
ε from the attractor within finite simulation time, we regard it
to have reached the attractor. Furthermore, the uniformity of ρ

implies ρ(xi) = N−1. Operationally, for any attractor A (not
necessarily a fixed point), we proceed as follows: (1) sample
an initial condition xi according to ρ; (2) integrate xi in time
until it has reached an attractor; (3) if the reached attractor is A,
count xi towards SB(A); (4) check if the transient originating
from xi satisfies the constraint, if so count xi towards SC

B (A);
(5) increase i → i + 1; repeat until i = N .

The computational procedure outlined above by which we
determine BS and CBS allows us to estimate the uncertainty
of our estimates of BS and CBS. Since we consider a uniform
perturbation ρ, we are effectively drawing initial conditions at
random from the subset R of phase space where ρ is nonzero.
The fraction p of the volume the basin B(A) occupied by
R is the true BS, i.e., the probability that we draw an initial
condition from B(A) at random. This implies that, effectively,
our estimate of BS after drawing N initial conditions comes
from a binomial distribution with expectation value p = SB ,
which leads to the standard deviation

σSB (A) = 1

N

√
SB(1 − SB)N = 1√

N

√
SB(1 − SB). (10)

Equation (10) also holds when SB(A) is replaced by SC
B (A),

which follows from an argument analogous to the one above. It
is important at this point to note that nonuniform distributions
ρ are also admissible and make sense in certain applications
when some perturbations need to be weighted more than
others. However, an error estimate as in Eq. (10) is less
straightforward to obtain for nonuniform ρ.

III. APPLICATION

To illustrate the versatility of CBS, we give examples of
specific constraints in the paradigmatic Lorenz system [14]
and in a global carbon cycle model by Anderies et al. [15].

In the Lorenz63 (L63) model we show how CBS can reveal
precursory phenomena before the onset of a boundary crisis
bifurcation. In the Anderies model, we argue that CBS reflects
our intuition of stability of a desired state against perturbations
better than standard BS. We illustrate in both examples how
CBS can generate important new insights into the dynamics of
complex systems, while being simple enough to be amenable
to a quick interpretation.

A. Anticipating a boundary crisis bifurcation

The L63 system [14]

ẋ = σ (y − x), (11)

ẏ = rx − y − xz, (12)

ż = xy − bz (13)

is a conceptual model of Rayleigh-Bénard convection. It is
famous for exhibiting chaotic dynamics along with a rich
dynamical behavior. Setting σ = 10 and b = 8/3, we begin
by summarizing the bifurcation structure as the parameter
r ∈ [9,26] increases. At first, two stable fixed points exist
at x(±)

� = (±√
b(r − 1), ± √

b(r − 1),r − 1), corresponding
to left and right turning convection rolls, respectively. At
r1 = 13.926 a chaotic saddle appears. At r2 = 24.06 this
chaotic saddle undergoes a boundary crisis and becomes
attractive. The fixed points lose their stability at r3 = 24.74.
Our goal is to anticipate this boundary crisis [17]. To this
end, we choose a specific condition sensitive to long (chaotic)
transients, since these are precursors of the crisis. With the
following static constraint, we discriminate between transients
that stay close to one of the fixed points x+ or x− (i.e., one
sense of convective overturning) and chaotic transients that
flip between them:

C± = {x ∈ � |φt (x) · n �= 0 ∀t > 0}, (14)

where the difference vector n = |x+
� − x−

� |−1(x+
� − x−

� ) is the
normal of a plane H containing the origin that separates the
phase space into two symmetric halves. Figure 2 shows two-
dimensional cross sections of the three-dimensional basins
of attraction B(x±

∗ ) and their intersections C± ∩ B(x±
∗ ) with

the sets C± defined above for two different values of the
parameter r .

BS and CBS are computed for 15 625 initial conditions
sampled from the uniform perturbation distribution ρ(x) =
1

40�(20 − |x|) 1
40�(20 − |y|) 1

30�(15 − |z|), which describes a
box that roughly covers the attractor. To compute BS, we
evolve each initial condition in time until it reaches either one
of the fixed points or the chaotic attractor. The termination
condition in the former case is that the trajectory enters an
ε-ball around x±

� ; here ε = 10−4. In the latter case, we iterate
until the trajectory has crossed the plane H a large (but
computationally feasible) number m of times; here m = 400.
Figure 3 shows the resulting BS and CBS. The BS and CBS
curves are identical for both fixed points due to their symmetry.
Thus only the values for the positive fixed point are shown.
For any conditioned set C and its complement C = �\C,
Eq. (7) reduces to SB(A) = SC

B (A) + SC
B (A). This implies that

the difference between the two stability measures reflects the
fraction of the basin from where (long) chaotic transients
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FIG. 2. Illustrations of the phase space structure of the L63
system defined by Eqs. (11)–(13). Both panels show cross sections,
obtained by cutting along the plane containing the origin with normal
(1,1,0), of the basins of attraction B(x±

∗ ) and their intersections
C± ∩ B with the sets C± for r = 15 (upper panel) and r = 23 (lower
panel). In both panels, the blob-shaped region around each fixed point
(black dots) is C± ∩ B. Top panel: the total basin of a fixed point is
composed of successive layers: it is given by C± ∩ B combined both
with the region in the respective other half-space (x > 0 or x < 0)
directly surrounding C± ∩ B and with the next layer of the same
color in the fixed point’s half plane. In the lower panel (coloring
identical), the fractal structure of the basins, visible as intermingled
green and blue sets, is apparent; it is associated with transient chaos.
One observes that the fraction of the window covered by the sets C±

shrinks as r increases. This illustrates the general behavior observed
in the L63 system and quantified by CBS, namely that the volume
fraction of the three-dimensional sampling region occupied by C±

decreases continuously as r approaches r3.

originate. The magnitude of CBS reflects the opposite, i.e.,
the part of the basin from where trajectories fall into the fixed
point without crossing H . For 9 � r � 14, the two stability
measures are constant but differ in their value. For 14 � r �
23 the fraction of chaotic transients increases continuously (in
agreement with Fig. 2), while the basin volume, i.e., BS, does
not change. Between r ≈ 23 and the bifurcation point at r2, the

SB

SB
C

FIG. 3. BS [green (upper) line] and CBS [red (lower) line] of the
positive fixed points in the L63 system as the parameter r is varied.
From left to right, the vertical lines indicate the appearance of the
chaotic set (r1), the boundary crisis (r2), and the stability loss of the
fixed point (r3). The difference between the two curves represents the
fraction of the basin from where chaotic transients evolve. Note that
BS exhibits a jump at r2 which is blurred by the finite simulation time:
the simulation stopped before all (increasingly long) transients had
reached the fixed point. Because of the system’s x-y symmetry the
negative fixed point has the same BS and CBS. The gray envelopes
represent ±3σ according to Eq. (10).

basins of the fixed points collapse as the fraction of trajectories
exceeding m crossings grows rapidly. In the limit m → ∞,
the basin size changes discontinuously at r2: the fraction of
the basin that corresponds to the chaotic transients at r < r2

suddenly feeds the newly born attractor when r > r2. In Fig. 3
the drop is not discontinuous due to finite simulation time: long
transients do not reach the fixed points before the simulation is
ended. From r2 to r3, both stability measures coincide because
chaotic transients are absent due to the chaotic saddle now
being attractive. For r > r3, both BS and CBS vanish. In short,
with BS alone we cannot anticipate the crisis at r2. However,
combining it with CBS, the emergence of the chaotic set can be
observed by the increasing fraction of chaotic transients within
the fixed points’ basins. Although CBS does not predict the
bifurcation at r2, it does indicate the approaching crisis, while
BS does not and thus it substantially complements the original
BS by revealing additional information on the basin structure.

B. Anderies carbon cycle model

Anderies et al. [15] present a conceptual model of global
carbon cycle dynamics in the Earth system formulated as
a mass balance between three carbon stocks x = (ca,ct ,cm)
which are nondimensional atmospheric ca , terrestrial ct , and
marine stocks cm, respectively. Formally, the model for the
preindustrial case is given by

ċt =PEN (ca,ct ) − H (ct ), (15)

ċm =D(ca,cm), (16)
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where total carbon in the system is conserved such that
ca + ct + cm = 1 and ca,ct ,cm � 0. The expressions
describing the derivatives ċt ,ċm are defined as follows:
a harvesting term H (ct ) = αct , where α determines the
human offtake of terrestrial carbon stocks, a diffusion term
between atmosphere and ocean D(ca,cm) = 0.05(ca − cm),
and net ecosystem productivity PEN (ca,ct ) =
2.5ct (1−ct/0.7){1.5c0.3

a 220T (ca)3 exp[−7T (ca)]−110T (ca)4

exp[−5T (ca)]} with T (ca) = 0.8ca + 0.2.
It is found in [15] that any initial condition converges to

one of two fixed points of interest: either a desirable state
xd

� = ((ca)d� ,(ct )d� ,(cm)d� ) with vegetation or an undesirable
global desert state xud

� . At low values of α ∈ [0,0.6], the
desirable state is attractive, while the undesirable state is
repulsive. At αcrit ≈ 0.4 a transcritical bifurcation occurs and
the fixed points reverse their stability. Anderies et al. [15] study
their model in the context of planetary boundaries interacting
with each other. In order to define a safe operating space, they
suggest to classify trajectories by whether they return to a
certain small ε ball around the desirable fixed point xd

� by a
certain critical time tcrit. Translating this into our framework,
we obtain the condition

C = {x ∈ � | ∃t < tcrit such that |φt (x) − xd
� | < ε}, (17)

where we choose ε = 10−4. The constraint formulated in
Eq. (17) is an integrated constraint since it depends on time.
The motivation for this choice of constraint is that, although
all trajectories converge to xd

� as t → ∞ for α < αcrit (since
then xd

� is globally attractive), some trajectories pass very
closely and slowly by xud

� . These trajectories would entail
catastrophic consequences for life on the planet. Therefore,
they are identified by whether they exceed a certain return
time threshold. Thus we compute CBS of the desirable fixed
point based on Eq. (17). We consider a perturbation density
ρ describing a depletion of the terrestrial carbon stock ct

(e.g., by immense wildfires). The released carbon is fed
into the atmospheric carbon stock ca . We implement this
scenario using a uniform perturbation density on a line in
phase space: the terrestrial carbon stock is depleted to a
value ct ∈ [0,(ct )d� ), while the marine carbon stays constant,
cm = (cm)d� , and the atmospheric carbon increases according
to the carbon conservation law ca = 1 − cm − ct . We draw
N = 500 initial conditions. Figure 4 shows the set C in
two-dimensional phase space for two different values of α. The
more detailed dependence of BS and CBS on α is shown in
Fig. 5: BS is discontinuous at αcrit (within numerical accuracy),
whereas CBS exhibits a smooth monotonic decay from 1 to
0 on the interval α ∈ [0.02,0.31]. This reflects the fact that
perturbations result in undesirable trajectories much more
frequently as human carbon offtake increases until, at α ≈
0.31, the return time for the considered perturbations always
exceeds tcrit. Even though α < αcrit, none of the perturbed
trajectories can avoid passing through a long quasiglobal
desert state. On this parameter interval the desired state is
unstable with respect to CBS but stable with respect to BS. We
suggest that the former measure provides a more meaningful
notion of Earth system resilience from an anthropocentric
point of view: it measures the probability that perturbations
decay within a predefined acceptable time horizon, while the

FIG. 4. Illustrations of the phase space structure of the Anderies
system, Eqs. (15) and (16). Both panels show the (globally attracting)
desirable fixed point (black dot) and the set C (red, upper part of
triangle) and its complement B/C (green, lower part of triangle) for
α = 0.15 (upper panel) and α = 0.35 (lower panel). The white dot at
(0,0.5) is the desert state fixed point. One observes that the fraction of
the two-dimensional finite phase space covered by the set C shrinks
as α increases, in agreement with Fig. 5.

latter only measures the probability of returning within any
(possibly infinite) time horizon. Further, CBS captures the
change in transient structure and therefore reveals a signal
of the transition in the Anderies model already at values of α

significantly smaller than αcrit. In contrast, BS is discontinuous
(within numerical accuracy) at αcrit and does not exhibit any
precursory phenomena. Figure 4 shows the set C defined above
in Eq. (17) and B, the basin of attraction of the desirable fixed
point for two different values of α.

IV. DISCUSSION

We have defined CBS as a generalization of BS, thereby
combining an asymptotic stability measure with information
retrieved from transient behavior into a compact and intuitive
measure. While BS is computed from an attractor’s basin,
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SB

SB

SB
C

FIG. 5. BS (straight lines) and CBS (curved red line) of xd
� and

xud
� vs the human carbon offtake rate α ∈ [0,0.6] for tcrit = 90. BS

of xd
� is represented by the green straight line (α � αcrit ≈ 0.4) and

BS of xud
� by the blue straight line (α � αcrit). At low values of α,

the desirable state is stable against any strength of perturbation while
the desert state is unstable. For α > 0.03, an increasing fraction of
perturbation-induced trajectories takes longer than tcrit to return to the
desirable fixed point until, at α ≈ 0.32, CBS vanishes. By contrast,
BS of both fixed points exhibits a jump at αcrit and thus no precursory
phenomena can be observed there. The gray envelope represents ±3σ

according to Eq. (10).

CBS is computed from a subset of the attractor’s basin. The
subset is defined by the transient behavior of trajectories
originating from this subset. Thus CBS represents potentially
very complicated transient behavior as an easy to interpret
scalar quantity.

To underpin that a compact representation of transient
behavior is highly relevant in applications, we have presented
two examples using specific constraints on the transients. In
the case of Rayleigh-Bénard dynamics in the scope of the
Lorenz63 model we used the static constraint that the sense
of rotation of convection rolls does not change. Here, CBS
uncovers nonlinear precursory phenomena of a boundary crisis
bifurcation. In the global carbon cycle model by Anderies
et al. [15], we have studied the stability of the desirable
state for a specific perturbation scenario under the premise
that it can be restored within an acceptable time horizon.
CBS reflects the fact that long return times to the attractor
after a perturbation are not desirable. More generally, these
applications demonstrate the following three main advantages
of CBS over BS. (i) CBS provides useful information in the
case of global attractors, while BS cannot be meaningfully
applied (it is always equal to 1). (ii) Sudden changes in basin
size are often preceded by a change in transient behavior.
Extending linear notions of early warning signals for incipient
bifurcations [6], CBS uncovers these nonlinear precursory
phenomena in the case of the Lorenz63 model and helps
anticipating the boundary crisis. (iii) CBS reflects the fact that
certain perturbation-induced transients are often undesirable,
e.g., long return times, thus allowing one to define highly
relevant stability measures for a specific application.

The importance of BS lies in its applicability to a wide range
of dynamical systems in various fields. The concept of CBS
is even more general as it encompasses BS as a special case.
However, to apply CBS, we must choose a specific constraint,
such as a limit on the return time. This choice strongly
depends on a specific application, revealing highly relevant
information there but potentially not being as useful in other
applications. By providing two examples of useful constraints
and by defining CBS precisely, formally, and in close analogy
to BS, we hope to facilitate the transfer of ideas between
different applications and different generalizations of BS. For
example, BS has been employed successfully to study power
grid stability [2]. CBS could be used to develop more specific
notions of stability, e.g., to impose that certain units recover
quickly from megaoutages or to constrain the total energy
loss on the way of recovery. Another example is ecology
where BS has proven to be a useful concept and transients
are important [18]. CBS could be used to quantify questions
of how fast ecosystems recover or investigate potential early
warning signals based on minimal abundances of certain
species after transients. More generally, BS has successfully
applied in resilience research [19,20] and we expect interesting
results from further investigating the notion of constrained
resilience based on constraints on transients. We expect that
future work on CBS will yield a set of transient constraints that
prove valuable across a wide range of different applications.

CBS can be used in both passive and active experimental
settings. In the former, we have only limited or no control of the
system, e.g., the Earth system. We start with some normative
notion of undesirable transients as the time threshold in the
Anderies example. Heitzig and Kittel [21] discuss desirability
in relation to phase space topology. From a given notion of
desirability, a constraint is derived. Then, CBS addresses
the question of how stable the system is with respect to
perturbation-induced transients given that only some of them
are desirable. If a system parameter varies over time, CBS is
capable of revealing a stability trend which can justify an action
to reverse the parameter change. It remains an open problem
how CBS can be inferred experimentally or from observational
data if a satisfactory model of the system is not available. In
principle, if long time series of some environmental parameter
(e.g., forest cover on the Earth’s surface) can be derived
from measurements and if many natural perturbations can be
observed in the data, such as volcanic eruptions, then these
can be exploited to estimate CBS. In the active setting, we use
CBS to foster our understanding of the system without needing
a normative proposition. The constraint and the perturbation
are chosen such that new information about the structure of
the basin of attraction is revealed. This situation is analogous
to the Lorenz63 example: restricting the number of flips
between the two halves of phase space (i.e., the two convection
senses), the basin of attraction can be subdivided according to
the number of flips. Thus CBS helps to characterize a system
that is subject to perturbations. In this active setting, it is
easier to measure CBS: the system parameters can be chosen
freely and the number of perturbations is not restricted by
historic events.

The specific condition (14) is reminiscent partly of the
concept of “viability” [22,23], although there are significant
differences: in particular, in our case, there are no man-
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agement options and, more importantly, we are considering
deterministic dynamics while viability theory incorporates
stochastic and more generally nondeterministic processes.
Furthermore, Eq. (14) can easily be generalized by allowing
for trajectories to “pierce through” H once or multiple
times—these generalizations are not related to viability theory.
Another concept that has certain features in common with the
condition (14) is “survivability” [24]. There, too, a desirable
region of phase space is designated as in the case of our
choice of C±. However, survivability does not incorporate
the asymptotic nature of BS: it depends on the fraction of
trajectories starting in a designated region of phase space
spending a certain time exclusively in that region. In particular,
it does not depend on which attractor trajectories converge to
in the long-time limit. For these reasons, CBS is different from
both viability theory and survivability and presents a broadly
applicable concept for quantifying stability of an attractor with
respect to a given not only small perturbation, uniting both the
asymptotic features of BS and the transient features of sur-
vivability. In conclusion, CBS represents a general framework
to quantify the stability of attractors with broad applicability

in various fields with an interest in complex dynamical
systems, ranging from physics and technology to sustainability
science.
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Survivability of Deterministic 
Dynamical Systems
Frank Hellmann1,*, Paul Schultz1,2,*, Carsten Grabow1, Jobst Heitzig1 & Jürgen Kurths1,2,3,4

The notion of a part of phase space containing desired (or allowed) states of a dynamical system is 
important in a wide range of complex systems research. It has been called the safe operating space, 
the viability kernel or the sunny region. In this paper we define the notion of survivability: Given 
a random initial condition, what is the likelihood that the transient behaviour of a deterministic 
system does not leave a region of desirable states. We demonstrate the utility of this novel stability 
measure by considering models from climate science, neuronal networks and power grids. We also 
show that a semi-analytic lower bound for the survivability of linear systems allows a numerically very 
efficient survivability analysis in realistic models of power grids. Our numerical and semi-analytic work 
underlines that the type of stability measured by survivability is not captured by common asymptotic 
stability measures.

In almost all dynamical systems applicable to the real world, the stability of the system’s stationary states (periodic 
orbits, chaotic attractors, etc.) is of key interest, because perturbations are never truly absent and initial data is 
never exactly determined. Nevertheless, the asymptotic stability of the system’s attractors ensures that we can still 
extract sensible long-term information from our dynamical models.

Complementary to the notion of stability, one can analyse whether the system will remain in a desirable 
regime1. This becomes important when a model represents a system that we have influence on, either because 
we engineer its fundamental behaviour, or because there are management options. We often want to design the 
dynamics, or our interventions, such as to more easily keep the system in such a desired state. Note that the desir-
able region not necessarily contains a stationary state.

For the traditional notion of asymptotic stability against small perturbations, the key mathematical concept 
is the analysis of the linearised dynamics, in particular by means of the Lyapunov exponent or master stability 
function2,3.

Real-world systems typically are multistable4–6. They have more than one stable attractor7, and thus potentially 
exhibit a wide range of different asymptotic behaviours. The key question then becomes from which initial state 
which attractor is reached, i.e., to determine the basin of attraction of an attractor. Most work so far focused on 
the geometry of the basin of attraction8 of desirable attractors, e.g. by finding Lyapunov functions9–11.

A recent idea that has been found to be useful is to study a more elementary property, i.e. not which states go 
to an attractor, but just how many. This quantity, the volume of the basin of attraction of a given attractor, can 
then be interpreted as the stability of the system in the face of a random, non-small perturbation. It quantifies 
the probability that the typically non-linear response to such a perturbation will lead the system to a different, 
undesirable attractor. This probability is called the basin stability (SB) of an attractor12. This is important for a 
number of applications where relevant system deviations are typically not small, for example in neuro science, 
system Earth or power grids.

One of the key appealing features of SB is that, by studying just the volume rather than the shape of the basin 
of attraction, it becomes numerically tractable to analyse even very high-dimensional systems. It was also shown 
that the information revealed by the volume of the basin genuinely complements the information provided by the 
Lyapunov exponents of the system12.

There are, however, two major drawbacks when estimating SB. On the one hand, the measure relies on identi-
fying the asymptotic behaviour of a system, which might be difficult to detect, typically requires prior knowledge 
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about the attractor’s nature, and is only meaningful in multistable systems. On the other hand, a SB estimation 
is insensitive to undesired transient behaviour of the system, i.e. if the trajectory visits an undesired part of the 
phase space where the system would take damage that is not modelled explicitly. To detect this type of dangerous 
transients, a new, complementary measure is required.

In this paper we introduce a new stability-related measure, the survivability S(t) of a dynamical system. This 
is the fraction of initial system states (i.e. arising from an initial large perturbation) giving rise to evolutions that 
stay within a desirable regime up to a given time t. The set of these initial conditions is called basin of survival.

More formally, call the phase space of our system X, and a chosen desirable region ⊆+X X . The finite-time 
basin of survival ⊆ +X Xt

S  is defined as the set of initial conditions in X for which the entire trajectory over the 
interval [0, t] lies in X+. We choose a probability measure μ of initial conditions, reflecting our knowledge of the 
nature of perturbations we wish to study. Accordingly, the finite-time survivability is defined as

µ= .µS t X( ) : ( ) (1)t
S

The total survivability then is the infinite-time limit of Sμ(t). This can naturally be decomposed into the prob-
ability that the initial perturbation is survived, and that the following trajectory stays save:

µ
µ

µ µ= = ⋅ .µ µ+
+ +

+S t X
X

X S t X( ) ( )
( )

( ) ( ) ( )
(2)

t
S

with ∩µ µ µ⋅ = ⋅+ + +X X( ) : ( )/ ( ). Now μ(X+) does not depend on the dynamics but only on the desirable region 
and the perturbations, i.e. it is a constant for given X+. The conditional survivability µ+S t( ) captures the interplay 
of dynamics, desirable region and perturbations; it has a natural interpretation as the conditional probability of a 
system to survive random, large perturbations that do not kill it immediately.

Assuming a uniform distribution of perturbations, the measure μ is proportional to the volume Vol. The 
resulting conditional survivability is our main object of study in what follows. We will call this finite-time surviv-
ability of a dynamical system:

= = .++S t S t X
X

( ) : ( ) Vol( )
Vol( ) (3)

t
S

Vol

We are also interested in initial perturbations that only occur in a particular region of phase space. Thus, we 
want to study uniform perturbations in a subset C ⊂​ X. The conditional survivability SC(t) can then simply be 
defined with respect to the measure VolC(⋅​) =​ Vol(⋅​ ∩​ C)/Vol(C):

∩= = .S t S t X C
C

( ) : ( ) Vol( )
Vol( ) (4)

C t
S

VolC

An important example of such a conditionial survivability is the single node survivability for networked sys-
tems. There we condition on the phase space at a single node, thereby isolating the impact of local perturbations 
on the whole system. A mathematically precise discussion will follow in the power grid example in the results 
section and the supplementary information (SI).

To further illustrate this definition, consider a simple example: A penguin wishing to ski down a mountain X 
going the fastest route possible in Fig. 1. The system is multistable as the penguin might end up in the goal or the 
valley. However, if the penguin goes over the cliff it will almost certainly slide the rest of the way to the goal on its 
back. The state of the penguin is not explicitly modelled by our (potential) landscape. We take this into account 
by declaring the parts of the cliff our penguin can not ski safely as an undesirable region. Further, if the penguin 
wishes to continue skiing, the valley might or might not be undesirable as well. Depending on these choices, dif-
ferent starting points can be in the basin of survival. If the goal is the only desirable attractor, the basin of survival 
lies in its basin of attraction, but if the valley is OK, too, this is not the case, and the asymptotic structure plays 
no role.

As opposed to SB or a linear(-ised) analysis based on Lyapunov exponents, the survivability is concerned not 
just with the asymptotic behaviour of the system, but depends strongly on the transient dynamics. As opposed to 
SB it is applicable in unstable, mono-stable, or multistable, linear or non-linear systems.

The application of the survivability concept is especially appropriate when interventions happen at the same 
time scale as the system dynamics, or when entering an undesirable region is deadly.

A key insight is that evaluating survivability becomes amenable to Monte Carlo integration. This is due to 
focusing on the probability that the trajectory following a perturbation violates the boundary rather than trying 
to find the actual sets of phase space from which a trajectory survives. Hence, a survivability analysis, just as SB, 
is applicable to very high-dimensional systems. In fact, the situation is more favourable than in the case of SB, as 
the entire curve S(t) can be evaluated at a computational cost not exceeding that of SB, while potentially revealing 
much more information.

This sets survivability apart from formally similar approaches, e.g. in control theory13,14. Their precise relation-
ship to survivability is discussed in detail in the Methods section.

For linear systems with a polyhedral desirable region, we derive a closed form lower bound on the infinite-time 
survivability S∞ : =​ S(t →​ ∞​) as well as a semi-analytic, stronger bound that becomes exact in the case of vanish-
ing dissipation. These bounds reveal that the survivability of linear systems depends strongly on the eigenvectors 
of the linear dynamics, rather than just the eigenvalues. The semi-analytic bound eliminates the need to simulate 
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the system trajectory opening survivability up to a wide range of applications for which numerically estimating 
the full dynamics is not feasible.

Results
To demonstrate the diverse applicability of our survivability concept we apply it to three paradigmatic model 
systems. A two-dimensional model of carbon stock dynamics, a system of integrate-and-fire neurons and a 
high-dimensional network model of the power grid.

These systems were chosen to cover a wide range of types of systems. The carbon cycle model has one or two 
attractors, depending on the parameter regime, and some transients are deadly. The neurons are mono-stable 
but exhibit transient chaos15–19. Finally the power grid model is high-dimensional, non-linear and multistable. 
However, the acceptable operating regime is close to a certain class of fixed points, thus the linearised behaviour 
near these fixed points is of great practical importance.

In all three systems there are externalities which are not or cannot be modelled explicitly. Namely, the influ-
ence of dramatic climate changes on society, external stimuli for a network of neurons and frequency control 
mechanisms in the power grid. We will see that survivability accurately captures the interplay of externalities with 
the intrinsic dynamics.

Carbon cycle model by Anderies et al.  We begin by applying survivability to a two-dimensional carbon 
cycle model from climate science which has been recently introduced20. This is a conceptual model with the aim 
to reproduce the non-linear dynamics of the carbon cycle in the Earth system. The boundaries of the survival 
region are closely related to the concept of planetary boundaries21. This system exhibits both the property that 
the undesirable states are deadly and that in some parameter regimes there is only a single stable attractor of the 
asymptotic dynamics.

The model equations for the atmospheric (ca), marine (cm) and terrestrial (ct) carbon stocks are given by

α β
α

= −
= −
= − −





c c c
c NEP c c c
c c c

( )
( , )

1 (5)

m m a m

t a t t

a m t

where αm denotes the atmosphere-ocean diffusion coefficient, β the carbon-solubility in sea water factor, α the 
human terrestrial carbon off-take rate and NEP(ca, ct) the net ecosystem production, a complex non-linear rela-
tionship between the atmospheric and terrestrial carbon stocks (see Anderies et al.20 for further details). Note 
that the total amount of carbon is kept constant, leaving us with the marine (cm) and terrestrial (ct) carbon stocks 
as independent variables.

Part of the phase space X of the model are states with virtually no terrestrial carbon, referred to as desert states. 
While the model can recover from such states and eventually reach high terrestrial carbon states again, entering 
a desert state would lead to the collapse of human civilisation and thus, tragically, our model would no longer be 

Figure 1.  Survivability cartoon. A penguin can ski down the mountain starting anywhere on the slope. 
Starting at A the penguin will tumble over the cliffs, passing an undesirable state although ultimately reaching 
the goal. Starting at B the penguin will reach the goal standing on its feet. Starting even further to the right, it 
might end up in the valley, which might or might not be desirable.
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valid after entering this regime. Hence, we define the set of desirable states X+ as the complement of the desert 
states plus a safety margin m:

= ∈ > .+X c c c X c m{( , , ) : } (6)a m t t

The safety margin should at no time, during the transient or asymptotic behaviour, be crossed. The finite-time 
basin of survival, here introduced as Xt

S, is then given by

=





∈ ∀ ′ > .
≤ ′≤ }X c c c X c t m( , , ) : ( )

(7)
t
S

a m t
t t

t
0

A phase plane analysis for this model is illustrated in Fig. 2(a). Of special importance here are those trajecto-
ries (exemplified by the blue trajectory in Fig. 2(a)) that first cross the safety margin, i.e. are not desirable due to 
the very low terrestrial carbon stocks ct, but eventually will return to the desirable region X+. These trajectories 
are counted for the SB estimation, since they eventually approach the attractor, but are disregarded for the surviv-
ability, since they cross the safety margin during the transient period.

By varying the human carbon off-take α in Eq. 5, the system undergoes a bifurcation changing the number of 
attractors (around α =​ 0.35) as illustrated in Fig. 2(b). The main picture shows the asymptotic survivability, the 
inset contains the survivability curves for different values of α. We see that the survivability drops to the asymp-
totic plateau at around the same time. Thus, if a trajectory eventually leaves the desirable regime, the time it takes 
until it does so is not strongly affected by α.

The bifurcation, which is known to be a saddle-node bifurcation20, has a drastic impact on the SB estimation, the 
survivability only changes marginally in this interval. On the other hand, the behaviour in the interval α ∈​ [0; 0.35]  
shows how the SB estimation becomes insensitive to system changes if the multistability is lost, i.e. if there is 
only a single attractor (in this case with non-zero ct). The crucial question whether trajectories stay in a desired 
regime is thus not captured by the SB measure, but can be answered with the survivability concept. Note that in 
this case and in what follows we estimate a finite-time survivability for the entire simulated time evolution of the 
system. Given that the asymptotic behaviour sets in earlier than the simulation ends, this is a good estimate for 
the infinite-time survivability.

It was argued12 that SB can also serve as a better early warning indicator of approaching tipping points than 
other measures. Here we see that a survivability estimation mirrors the trend in the system’s behaviour, i.e. how 
the set of surviving states depends on system parameters, while SB remains fixed at its plateau value. Hence, sur-
vivability can serve as a complementary, and in some scenarios better early warning sign than SB.

Network of integrate-and-fire oscillators.  In the case of transient chaos15–18 there are long, inter-
esting transients but potentially just a single global attractor. As an example, we consider a network of N 
integrate-and-fire neurons22–25. They exhibit long-term chaotic transients, but asymptotically have a global peri-
odic attractor where the neurons are in a state of phase-synchronisation. Considering the synchronised state as 
undesirable, the integrate-and-fire neurons are an example of a system in which neither asymptotic nor basin 
stability are informative.

Figure 2.  (a) Phase portrait of Anderies’ model (Eq. 5, α =​ 0.1). We choose initial terrestrial (ct) and 
marine (cm) carbon stocks, the colour scale then indicates the minimum of ct over the whole time evolution 
commencing from a point. An example trajectory with a long excursion to the desert state (ct <​ m) is plotted in 
blue and ends at the attractor which is circled in yellow, the stream plot indicates the vector field of the right-
hand-side (cf. Eq. 5). The dashed black line indicates the value of the safety margin m =​ 0.1. (b) Bifurcations in 
the carbon cycle model. Basin stability (SB, blue) and finite-time survivability (S(t =​ 500), green) estimates for 
different values of the terrestrial human carbon off-take α. For the survivability estimation we assumed a safety 
margin m =​ 0.1. The shading around the curves indicates one standard error, the background colour indicates 
the different dynamical regimes. In the inset, we give survivability curves for five selected values of α, i.e. 
α ∈​ {0.1, 0.2, 0.3, 0.4, 0.5} from top to bottom as indicated.
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Modelling external stimuli as essentially randomly resetting the phases of stimulated neurons, the surviva-
bility S(t) here carries the interpretation of the probability that the system will not fall into a synchronised state 
in between stimuli, spaced apart at interval t. Such synchronised states model epileptic seizures and are thus 
undesired.

Concretely we study the convergence from arbitrary initial conditions to periodic orbit attractors, in which 
several synchronised groups of oscillators (clusters) coexist26. In the network every oscillator j =​ 1…​N is con-
nected to another oscillator i ≠​ j by a directed link with probability p. A phase variable φj(t) ∈​ [0, 1] specifies the 
state of each oscillator j at time t. The free dynamics of an oscillator j is given by

φ = . t( ) 1 (8)j

The oscillators interact on a directed graph by sending pulses when they reach the threshold φj =​ 1. After a 
delay time τ this pulse induces a phase jump (indicated by differentiating the left and right limit of t as t+ and t−) 
in the receiving oscillator i:

φ φ ε= −+ − −t U U t( ) : ( ( ( ) )) (9)i i ij
1

for a potential U and coupling strength εij (For more details cf. the SI).
The survivability S(t|p) for a directed network of N =​ 16 pulse-coupled oscillators in dependence on the aver-

age connectivity p is illustrated in Fig. 3. For each value of p we create an ensemble of 100 network realisations. 
The randomly chosen initial phase vectors for each realisation are distributed uniformly in [0, 1]N.

All different network realisations with their associated initial conditions eventually lead to a fully synchronous 
state. However, our concept of survivability reveals the highly non-linear, non-monotonic dependence on the 
network connectivity p. While the survivability of transient dynamic states is small for networks with low and 
high connectivity values p, it becomes very large for intermediate connectivities, even for only weakly diluted 
networks (Fig. 3). The finite-time survivability reveals a new, collective time scale that is much larger than the 
natural period, 1, of an individual oscillator and the delay time, τ, of the interactions.

These long, irregular transients are the main property of interest for the system, motivating their study in  
ref. 26. The dependence of the average lifetime of the transient chaotic trajectories on p was already studied  
ibidem. In this example, survivability reveals the same dynamical information as previous studies. Note that this 
is due to the specific choice of desirable region as the non-periodic parts of state space. Generally, there is no 
direct relationship between survivability and transient lengths, the fact that the desirable region can be chosen 
such that survivability reveals the quantity of interest for this system in a natural way speaks for its universality.

Survivability again is a natural and informative stability measure of this system, however, this time not against 
perturbations, but against getting trapped in an undesired corner of phase space.

Power grids.  Power grids are subject to a variety of failures and perturbations and there are numerous stud-
ies concerning asymptotic stability analysis, e.g. refs 27 and 28, and recent approaches to an SB assessment29,30. 
However, contrary to common model assumptions, the dynamical system does usually not evolve freely after a 
perturbation. If the system does not return to a stable operating state after a typical time span of a few seconds 
or if predefined thresholds are exceeded, control mechanisms that would require independent modelling are 
triggered.

The long-term behaviour and stability of the system is thus a question for control theory rather than just 
dynamics. Conversely, the transient dynamics, and the question whether there is a temporary amplification of 
perturbations, is critical to whether the control has to be activated at all, or the system is explicitly resilient to 
such perturbations. Hence, the power grid is an example where the undesirable region is deadly and management 
options operate at the system dynamics time scale.

The effective network model of the power grid31,32 is the current standard baseline model for the frequency 
dynamics of power grids. It is known as the swing equation or the second-order Kuramoto model, and is used for 
short-term frequency stability studies in power grids. The various ways in which a power grid can be modelled 

Figure 3.  Survivability curves for networks of integrate-and-fire oscillators. Finite-time survivability S(t|p) 
for given survival times t vs. the network parameter p. For each value of p we average over an ensemble of 100 
network realisations, each with initial conditions drawn at random from the full state space.
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using the swing equation are discussed in ref. 32 and limits to its applicability are discussed, for example, in refs 
33 and 34.

The dynamical system modelling N generators’ instantaneous phases φi and frequency deviations ωi from the 
grid’s rated frequency is given as

∑

φ ω

ω α ω φ φ

=

= − − −
=




P K sin( )

(10)

i i

i i i i
j

N

ij i j
1

with Pi being the net input power/consumption, αi the electro-mechanical damping at node i and Kij as the capac-
ity of the link i – j. Here we choose Pi =​ 1 for net generators, Pi =​ −​1 for net consumers, and a uniform distribu-
tion of αi =​ α =​ 0.1. We choose the nonzero Kij uniformly equal to 6, corresponding to an average transmission 
line length of about 200 km.

A stable operating state of the power grid is a fixed point of the dynamics with no frequency deviation, 
φ φ= …  …⁎ ⁎( , 0) : ( , , 0, )1 . Conversely, limit cycle solutions (frequency oscillations) need to be prevented in order 

to avoid the tripping of generators. Frequency deviations are usually kept very small in large real power grids, 
with typical thresholds of ±​0.2 Hz35 which corresponds to a phase velocity deviation of |ω| ≈​ 0.25 in our units. 
Smaller island grids have considerably larger fluctuations. As an illustrative extreme case we will consider up to 
20 times larger fluctuations. For SB assessments, the reaction of the system to much larger deviations was also 
taken into account.

We will study the single-node basin of survival, i.e., the conditional basin of survival in the sense of Eq. 4, con-
ditioned on initial perturbations that occur locally at a single node n, starting from a stable operating state. The 
space we wish to condition on is then the direct product of the stable operating state at all nodes except node n 
and the full state space of the node dynamics at n:

φ φ φ ω φ π ω= … …  … …  ∈ ∈ .⁎ ⁎C {( , , , , 0, , , , 0) [0, 2 ), }n n N n n n1

The desirable region being defined as ∀​i : |ωi| <​ 5, which, as explained above, is chosen to mirror realistic con-
straints. Concretely, this means that we construct initial conditions by setting φi and ωi to the value of the fixed 
point φ ⁎

i  and 0, for all nodes other than the node n we are studying, and to a random phase in [−​π; π] as well as a 
random frequency deviation in [−​5; 5] for the node n. Then we simulate the system up to t =​ 100 and observe 
whether (and if, when) any of the frequency deviations ωi leave the desirable region. In this way we sample 300 
trajectories to estimate =S t S t( ): ( )n Cn . This leads to a standard error of less than 0.03 for Sn(t) =​ 0.5 in the worst 
case (see Methods section). We evaluate the survivability up to 100 in simulation time (18 s in real time), at which 
point a steady state has typically been established, and the asymptotic value of the survivability is reached.

While SB captures the overall ability of the system to avoid permanent frequency oscillations, it does not 
directly capture the stability of the system against large perturbations. Instead, as discussed above, it is the ability 
of the system to keep perturbations under fixed frequency thresholds which is crucial. We will study this form 
of stability using both numerical simulations and the analytic approximations we have derived. The former will 
allow us to compare the survivability of the system to its SB, the latter to assess the accuracy of our bounds.

We now turn to the question whether the semi-analytic bounds on the dynamics linearised around the fixed 
point can accurately mirror the single-node survivability Sn(t =​ 100).

Defining φ : =​ (φ1, …​, φN)T, ω =​ (ω1, …​, ωN)T and α : =​ diag(αi), the linearised dynamics is given by

φ
ω α

φ
ω







 =



 −









( )L
0

(11)
N

where the lower left block ( ω φ= ∂ ∂


L /i j) can be identified with the network’s Laplacian matrix (at the fixed point 
(φ*, 0)) given by

∑δ φ φ φ φ= − − + −
=

⁎ ⁎ ⁎ ⁎L K Kcos( ) cos( )
(12)ij ij

m

N

im i m ij i j
1

The Jacobian has two real eigenvalues, λ1 =​ 0 and λ2 =​ −​α, corresponding to the eigenvectors (φ, ω)1 =​ (1, …​, 0, …​) 
and (φ, ω)2 =​ (−​1/α, …​, 1, …​). The first eigenvalue, λ1 and the corresponding eigenvector show the linearised 
version of the rotational symmetry of the system under shifting all elements of φ by the same amount  
φs: φ φ φ+i i s. The second corresponds to a homogeneous shift of all oscillator’s frequencies, which does not 
affect the phase differences, and decays exponentially due to the damping term. The remaining part of the spec-
trum consists of N −​ 1 pairs of complex conjugated eigenvalues.

The basin of attraction in the conditional subspace Cn of this system is illustrated in Fig. 4(a). Concerning 
survivability, there is a subdivision in three different sets. The desirable region contains infinite- (central green 
region) and finite-time surviving states (yellow and red regions in the band). Trajectories commencing from the 
remaining states within the basin of attraction (blue region) eventually reach the attractor asymptotically. Note 
that there are also finite-time surviving states outside the basin of attraction (red region). A large part of the 
single-node basin of attraction is centred around the fixed point (φ*, 0). Within this region we expect the linear 
approximation to provide a lot of information on the system.
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Regarding survivability, Fig. 4(b) shows that the frequency deviations inside the basin of attraction do indeed 
become large. The shape of the level lines of the frequency deviations corresponds to the basins of survival for 
different frequency constraints.

Figure 4(c) shows the bound for the frequency deviation of the linearised dynamics calculated according to 
Eq. 16. This shows a good qualitative agreement with the actually simulated frequency deviations as long as the 
deviations remain close to the fixed point, e.g. in the range of realistically allowed perturbations (see above). Still, 
the impact of the non-linearity (e.g. multistability is not captured) on the system becomes apparent, especially 
further away from the fixed point.

Indeed Fig. 5(a) shows that there is a high correlation between the lower bound of the survivability of the 
linear system S t( )lin

n  calculated according to Eq. 16 (see Methods section) and the actual survivability Sn(t) at the 
majority of nodes for realistic values of frequency deviations. What exactly gives rise to the outliers far below the 
diagonal will require further study. It is important to emphasise that the computational cost of calculating the 
bounds on the maximum frequency deviation for a sample of initial conditions is many orders of magnitude 
lower than the numerical estimate of the survivability via simulations of the actual time evolution. For a realistic 
network size of several hundred nodes, the approximate calculations can be performed on a laptop computer in 

Figure 4.  Single-node phase space of a consumer in the Scandinavian grid. (a) We plot the initial frequency 
deviation ωn vs. the phase difference to the fixed point at node n, visualising the definition of the following areas 
using the simulation results from (b). The central green area resembles the infinite-time basin of survival, while 
the yellow and red areas contain finite-time surviving states. The union of the blue, yellow and green regions 
resembles the synchronous state’s basin of attraction, while trajectories starting in the white or red regions 
approach different attractors. The frequency threshold is chosen as ωcrit. =​ ±​5 and initial conditions correspond 
to perturbations at a single consumer node of the network. (b) Simulated maximum frequency deviations ωmax 
along all dimensions, measured over the time evolution of the system for initial conditions that correspond to 
perturbations at node n of the network. For comparison with (a), we give the numerically estimated basin of 
attraction’s boundaries in red. (c) Corresponding analytic upper bound for the maximum frequency deviation 
(cf. Eq. 16) for the linear approximation.

Figure 5.  Simulated vs. approximated single-node survivability for the Scandinavian grid. (a) Scatter plot of 
the simulated Sn(t) vs. approximated single-node survivability S t( )lin

n  (cf. Eq. 16) estimated for all nodes in the 
Scandinavian power grid (ωcrit. is indicated in the legend). The corresponding distributions are given on the 
sides. (b) Single-node basin stability vs. single-node survivability for the Scandinavian grid. Scatter plot of the 
single-node basin stability SB

n vs. single-node survivability Sn(t =​ 100) (ωcrit. is indicated in the legend) estimated 
for all nodes in the Scandinavian power grid. The corresponding distributions are given on the sides. Note that 
we have chosen the initial region X0 for single-node basin stability with |ω| <​ 100, the same region as in ref. 29.
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less than a minute, whereas the numerical survivability estimation took several hours on 200 nodes of a comput-
ing cluster.

Figure 5(b) shows SB
n as well as the single-node survivability of nodes in the Scandinavian power grid. We see 

that there is no significant correlation between the two quantities. This proves the point that the asymptotic 
behaviour of the system is not a strong indicator of the transient behaviour, at least in the case of power grids. The 
information we obtain from the survivability analysis is genuinely new information.

The Scandinavian power grid29 consists of N =​ 236 nodes and 320 links, corresponding to a mean degree of 
= .k 2 7. Hence, it has a sparse network topology with only a few neighbours per node on average, which is typical 

for power grids in general, independent from the number of nodes36. The same holds for our second data set, the 
UK high-voltage transmission grid, which consists of N =​ 120 nodes and 165 links, corresponding to a mean 
degree of = .k 2 8.

In Fig. 6(a,b) we show the geographically embedded Scandinavian and UK power grid. The colour of each 
node corresponds to the single-node conditional survivability Sn(t =​ 1s). Different nodes exhibit starkly different 
survivability to perturbations. We find that at a threshold of |ωcrit| =​ 10, for both of these realistic power grid 
topologies, there are a few nodes that are particularly vulnerable to perturbations. This means a perturbation 
at these nodes is very likely to be amplified temporarily by the overall grid dynamics. What exactly leads to this 
vulnerability, and how to characterise it in terms of grid parameters and topology is a question for future work.

Finally, we also found that the survivability in this system asymptotes very quickly. Simulating just the first 
second of the power grid is typically sufficient, the so-called “first swing” following a disturbance mainly deter-
mines the overall frequency deviation.

Let us summarise the key points from applying survivability to power grids:

•	 For realistic small deviations, the upper bound applied to the linear approximation provides an excellent 
picture of the infinite-time basin of survival. The fact that the bulk of nodes shows a high correlation at large 
perturbations indicates that Sn can still be determined from the approximation in this case.

•	 For the given dynamics, the survivability very quickly reaches its asymptotic value. We expect this to be a 
fairly generic phenomenon if we are dealing with damped systems near a stable fixed point.

•	 Conditioning the survivability on regions of phase space with special meaning, like perturbations at a single 
node, allows us to reveal a large amount of non-obvious structural information on a networked system. Fur-
ther work is needed to understand what gives rise to the revealed structure in realistic power grids.

Figure 6.  Scandinavian power grid. (a) The nodes’ colouring indicates the respective single-node survivability 
estimate Sn(t =​ 1s) in the Scandinavian power grid. The frequency threshold is chosen as ωcrit. =​ ±​10. We 
randomly selected a dispatch scenario, circular nodes are net generators, squares are net consumers. The map 
of Scandinavia has been modified from https://commons.wikimedia.org/wiki/File:Scandinavia.svg, which 
is licensed under the Attribution-Share-Alike 3.0 Unported license. The license terms can be found on the 
following link: https://creativecommons.org/licenses/by-sa/3.0/. (b) UK power grid. Single-node survivability 
estimate Sn(t =​ 1s) of the UK power grid. Details analogous to (a). The map of Great Britain has been modified 
from https://commons.wikimedia.org/wiki/File:England,_Scotland_and_Wales_within_the_UK_and_Europe.
svg, which is licensed under the Attribution-Share-Alike 3.0 Unported license. The license terms can be found 
on the following link: https://creativecommons.org/licenses/by-sa/3.0/.
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Discussion
Survivability is a novel stability concept complementary to basin stability SB and linear methods of asymptotic sta-
bility analysis. It applies to linear and non-linear systems, in the absence and presence of multi-stability. It focuses 
on transient rather than asymptotic behaviour, and incorporates exogenous information via assuming a desirable 
region for the system dynamics. Further, survivability can be estimated numerically at low computational costs, 
comparable to or even lower than for estimating SB.

For linear systems we provide easy to evaluate analytic and semi-analytic expressions for lower bounds of the 
survivability, with a trade-off between the quality of the bound and numerical cost for evaluating the analytic 
expression. These reduce the need to simulate the system, yielding further dramatic improvements in computa-
tional cost.

The bounds we find demonstrate that the survivability depends crucially on the eigenvectors of the linear 
dynamics, rather than the eigenvalues (see discussion in the Methods section). It is an effective measure of the 
interaction between external constraints and the geometry of the dynamics in its phase space. The fact that the 
bound is tight exactly when the analysis of asymptotic stability using the eigenvalues of the linearised system fails 
shows that the survivability is genuinely complementary to eigenvalue-based stability concepts.

To explore this measure in practice, we analyse three conceptual examples.

Carbon Cycle.  We observe that survivability accurately exhibits the presence of dangerous transient behav-
iour in the model, something that SB can not detect. The almost monotonous decrease towards the first tipping 
point, opposed to the discontinuous SB curve, shows the potential to derive an early warning scheme from an 
observation of these measures for certain kinds of bifurcations. Just as for SB, the problem of evaluating the sur-
vivability from data remains a challenge for future work.

Neuronal Networks.  Here, the transients do not arise from perturbations constructed as deviations around 
a desirable attractor, but they are randomly chosen from the whole compact phase space. Rather, the main interest 
lies on the transients themselves. Survivability reveals the same qualitative dependence of the dynamical behav-
iour on the underlying network topology as the average length of the transient26. Beyond that, considering S(t) at 
fixed t as a function of the underlying topological parameters enables us to look in more detail into the relation-
ship between function and structure of pulse-coupled oscillator networks. In contrast to the average length of the 
transients, the survivability also has a direct conceptual interpretation as the probability of the system remaining 
in the interesting transient regime. Thus it captures the appropriate notion of stability of transient chaos against 
the global attractor.

Power Grid.  In this example we can see in detail the interplay between the semi-analytic bounds that we 
developed and the fully non-linear system. We demonstrate that survivability under realistic constraints captures 
information about the system not contained in the SB estimate. We also demonstrate that the semi-analytic lower 
bounds, are strongly correlated with the simulations of the non-linear dynamics. Thus they contain much of the 
relevant information about the system. In strategic power grid development studies, this fact becomes particularly 
important as computational power is often at a considerable constraint, due to the need to simulate a wide range 
of divergent future scenarios of the energy transition. Dynamical properties outside of quasi-stationary calcula-
tions can only be taken into account if efficient estimators exist, since it is not feasible to run simulations. Thus 
our lower bounds, which eliminate the need for such simulations, potentially enable a more systematic way to 
investigate the impacts of the energy transition. In particular, the influence of changing topologies and different 
distributions of dynamical parameters on the dynamics of the power grid become computationally accessible. For 
the application to power grids, there are many more operational conditions on the system’s behaviour that we do 
not consider here. While not all of them are as amenable to analytic considerations as the frequency deviation, we 
anticipate that it will still be possible to find cheap analytic boundaries for them. The reason that we could calcu-
late the lower bounds so easily is that the phase space geometry is encoded in an efficient way in the eigenvectors. 
This aspect will carry over to many other, more complicated exogenous boundaries.

We thus have seen that the notion of survivability is general and powerful enough to capture the interplay 
between externalities and the intrinsic dynamics in three vastly different examples. In particular the last example 
demonstrated both the utility of single node survivability, revealing structural weaknesses and strengths of real-
istic power grid topologies, as well as of our semi-analytic bounds, reducing computational efforts dramatically.

The work presented here thus opens up a plethora of new avenues of research. On the theoretical side, the 
existence of a closed form lower bound on the survivability of a linear system opens the door to study the sur-
vivability as a function of the network topology and system parameters analytically, especially for the optimisa-
tion of these parameters to increase the system’s survivability. The lower bounds presented here can certainly be 
improved by taking the more detailed geometry of the trajectories of the linear system into account. It will also be 
important to extend them to the types of bounds we have in more realistic power grid models.

Methods
Numerically estimating survivability.  One advantage shared by survivability and12 is that they can be 
efficiently estimated by randomly sampling starting conditions. A trajectory either survives or not, therefore we 
can regard the sampling as a Bernoulli experiment with probability given by S(t), hence the standard error (SE) of 
the probability estimator of a trial with N draws is simply

=
−

.SE S t S t
N

( )(1 ( ))
(13)
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As a crucial consequence, the standard error of a survivability estimation does not depend on the dimension-
ality of the system. Further, the condition that a trajectory has left X+ tends to be easier to evaluate in practice 
than whether the trajectory is asymptotically approaching a fixed point. Furthermore, in numerical simulations, 
an integration might be stopped once X+ has been left.

Analytic results for linear systems.  An important analytically tractable case is the total survivability S∞ 
for a linear dynamic in =X N , the Lebesgue measure ∫=X xVol( ) dX

N , and a polyhedral desirable region 
given by m linear conditions yk ⋅​ x(t) <​ 1 for a set of vectors yk, k =​ 1…​m in N . In this case we can give a lower 
bound on ∞XVol( )S  that is easy to evaluate.

In this section we briefly give the results necessary for the applications in the results section on power grids. 
There we demonstrate that the semi-analytic bound captures the survivability of the system quite accurately in 
practical examples. In the SI we show detailed derivations, as well as further analytic results.

Consider a system of linear ordinary differential equations

=x t Lx t( ) ( ) (14)

with ∈ =x X N  and ∈ ×L N N  with all eigenvalues having non-positive real parts. In general, L has a complex 
spectrum. The eigenvectors vj of the complex eigenvalues are real or come in complex conjugate pairs, from which 
we pick one eigenvector each. We then define the N ×​ N matrix  by stacking the eigenvectors, or their real and 
imaginary parts respectively, against each other as column vectors:

 = 
 … … − …

.v v v, , Re( ), , Im( ), (15)j j1

This allows us to translate initial conditions into the eigenvector basis by setting ′ = −c x(0)1 , and combining 
′ck into complex numbers as appropriate = ′ + ′+c c icj k k nc

, where nc is the number of complex eigenvalues. Then 
the trajectory describes an exponential decay along the real eigenvectors and an inward spiral in the Re(vj), Im(vj) 
plane that is parametrised by cj, and given by Re(exp(λjt)cjvj). We then obtain an upper bound for the deviation of 
the trajectory starting at x(0) in a direction yk by maximising the contribution of each eigenvector separately.

Now, setting ykj : =​ yk ⋅​ vj for vj real, and ykj : =​ |yk ⋅​ vj| for vj complex, this leads to the estimate:
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where the first sum is over real eigenvectors corresponding to null eigenvalues, the second is over nonzero real 
eigenvectors and the last is over the complex eigenvectors.

Setting the right hand side of Eq. 16 smaller than 1 defines a region Vc in N  spanned by the real and imagi-
nary parts of the coefficients cj. This region is mapped to the state space by  and thus its volume is related to the 
corresponding region in phase space by a determinant factor. As it is defined by a weaker inequality than ∞X S  it 
follows that

≥ .∞X det VVol( ) Vol( ) (17)S T
c

The inequalities Eq. 16 together with the matrix  can be used to efficiently estimate the total survivability as 
well as the conditional survivability. Remarkably, for systems with a purely imaginary spectrum, the bounds of 
Eqs 16 and 17 hold with equality.

In the SI we also derive a lower bound for Vol(Vc).
This lower bound demonstrates that for the survivability of a linear system, the eigenvectors play a crucial role. 

In fact, the eigenvalues do not enter the bound at all, except in terms of classifying the corresponding eigenvectors 
in separate classes. This demonstrates that the survivability captures substantially different information about 
the linear system than eigenvalue-based stability measures like relaxation time, or the master stability function.

Relationship to Similar Concepts.  Survivability is related to a number of concepts in other fields, notably 
control theory. From this perspective it can be seen as a so far unstudied, simplifying case where a number of 
distinct concepts from various fields intersect. In this section we discuss a number of such concepts and their 
precise relationship to survivability.

Survivability is conceptually similar to the notion of finite time stability as studied for linear control sys-
tems13,14. There the focus is on finding a particular control scheme that will ensure that the resulting closed loop 
system stays within a particular region for some time, possibly in the presence of perturbations of the dynamical 
equations. From our perspective this can be seen as attempting to find systems with S(t) =​ 1. As the focus there 
is on perturbed dynamics in linear control systems, the actual overlap of methods is very small, in particular it is 
not possible to extend the methods to high-dimensional non-linear systems.

Another concept from control theory which is similar to the basin of survival is the viability kernel defined 
by Aubin et al. in the context of viability theory37,38. They introduce the notion of an environment K that contains 
all desirable states. Within the environment, there is the so-called viability kernel V39,40 as the set of all initial 
conditions from which the system can stay within the environment. This basically is a more general version of 
our infinite-time basin of survival for non-deterministic systems or systems with multiple evolution paths and a 
management process. Consequently, K\V corresponds to the set of finite-time surviving states in deterministic 
systems. The viability kernel’s volume is proposed as a measure of the degree of viability38, in the limit of no con-
trol it thus reduces to our total survivability. However, we are not aware of this special case ever being considered 
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in the context of viability theory. Whereas survivability measures the ability of the intrinsic dynamics to withstand 
perturbation, viability theory is concerned with the question of the power of control. Beyond this conceptual dif-
ference, evaluating survivability also requires very different technical methods, analytically as well as numerically. 
As far as we are aware, sampling based methods, which are efficient and natural for survivability, are impossible 
for viability. This is due to the fact that whether a particular point belongs to the viable set depends on the optimal 
control, which might not be known.

There are two concepts that share some formal similarity to survivability in the context of deterministic sys-
tems, transient times and open systems.

The study of transient life times15,19,41,42 is only related to the survivability in the non-typical special case 
that the attractor (or a small epsilon environment around it) is the only undesirable region. In our example 
of integrate-and-fire neurons this is the case, but in the power grid there is no clear relationship between the 
strength of the transient (which might kill the system) and the return time to the attractor. In fact, there, the 
attractor we start from is in the desirable region. Transients life times are a special case, and not a typical one, of 
survivability. The latter is far more general, going beyond the focus on the length of transients and their distribu-
tion, and typically captures genuinely different information of the system (e.g. the linear analysis mainly depends 
on eigenvectors, not eigenvalues).

The theory of open systems, on the other hand, is generally concerned with ergodic systems. For leaky chaotic 
systems43 the asymptotic behaviour of the survival probability is the key observable. At the formal level there 
is an analogy to our definitions, however, the total survivability, the size of the total phase space that leaks, is 
never considered as an observable in the literature. Indeed it is often the case that it is the whole phase space. 
Nor is the cumulative leakage ever interpreted as a stability measure or are efficient methods to estimate it for 
high-dimensional systems being discussed. In fact, as in the case of transient times, leaky systems can be seen as 
a special case of our discussion. Specifically it is the conditional survivability with the conditional space chosen 
as the space of surviving states XS.

The closest analogy to our deterministic survivability is simply the survival analysis in the the context of sto-
chastic systems. The concept of the so-called first hitting time and survival probability44–46, which can be studied 
for the case of stochastic perturbations to deterministic systems by quasi-potentials47–49, map directly to our work. 
The first hitting time t measures when a system is expected to first hit the forbidden region X−. The cumulative 
of the probability of first hitting the undesirable region before t is then 1 −​ S(t). Our definitions given above can 
be seen as a deterministic version of these concepts. The role of stochasticity in the evolution is replaced by a 
probabilistic initial perturbation. Here similar sampling based methods are possible and necessary. The type of 
semi-analytic analysis we performed for the linear case would however be hard to duplicate. From this perspective 
what we have demonstrated is how to successfully apply methods and concepts from stochastic systems in the 
study of their deterministic counterparts.

The key insight in our work, as it is for SB, is that restricting ourselves to probabilistic notions enables a consid-
erably wider applicability of our analysis, as well as new numerical and analytic methods. Put differently, by ask-
ing not about the geometry of sets in phase space but merely about their volume, we can access high-dimensional 
non-linear systems that are out of reach for detailed geometric analysis. The challenge then lies in defining inter-
esting sets that capture concepts of interest. As such we take it as a confirmation for the wide interest of the 
specific sets that survivability is based on, that it occurs a the intersection of a number of well studied concepts.
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Abstract
In dynamical systems, onemay ask how long it takes for a trajectory to reach the attractor, i.e. how
long it spends in the transient phase. Although for a single trajectory themathematically precise
answermay be infinity, it stillmakes sense to compare different trajectories and quantify which of
them approaches the attractor earlier. In this article, we categorize several problems of quantifying
such transient times. To treat them,we propose twometrics, area under distance curve and regularized
reaching time, that capture two complementary aspects of transient dynamics. Thefirst, area under
distance curve, is the distance of the trajectory to the attractor integrated over time. Itmeasures which
trajectories are ‘reluctant’, i.e. stay distant from the attractor for long, or ‘eager’ to approach it right
away. Regularized reaching time, on the other hand, quantifies the additional time (positive or
negative) that a trajectory starting at a chosen initial condition needs to approach the attractor as
compared to some reference trajectory. A positive or negative valuemeans that it approaches the
attractor by thismuch ‘earlier’ or ‘later’ than the reference, respectively.We demonstrated their
substantial potential for applicationwithmultiple paradigmatic examples uncovering new features.

1. Introduction

In complex dynamical systems, the importance of a trajectory’s transient, i.e. the part of the trajectory distant
from the attractor, has been identified in physics research aswell as in various otherfields. Different phenomena
during the process ofmagnetization for variousmaterials, in particular the domain growth, have been studied
extensively [1–3]. In laser physics, it was possible to derive analytical resultsmatching the transient phases of
different lasers [4, 5]. In kinetic theory, there has been research on non-equilibrium approaches formore than a
century by now [6]. Othermodern areas of statistical physics have emphasized the importance of transient
dynamics, too, e.g. in social systems [7] and transient phases between jam and free-flowphases in vehicular
traffic [8].

Even outside of the direct field of physics, but still within the scope of complex dynamical systems, a focus on
transient dynamics has been developed recently. Hastings [9]made a call formore transient analysis of
ecologicalmodels. An example of this was given by vanGeest [10], describingmacrophyte-dominated states of
lakes as non-equilibrium states. Inmedicine and biology, epilepsy is seen as a transient phenomenon andmuch
work has been done [11, 12]. In economics, a transient analysis complementing the asymptotic analysis proved
to be fruitful, particular supportingwith the stability analysis and understanding how to reach the equilibria
[13]. Climate change is often seen as a transition to a new situation, i.e. a transient change to a new attractor
[14–16]. Closely related, discussions in sustainability sciences are on transient dynamics because they refer to
transformations from and to sustainability. Important key topics are the Anthropocene [17–19], particular the
great acceleration [20], and planetary boundaries [21, 22].

OPEN ACCESS

RECEIVED

16November 2016

REVISED

20 June 2017

ACCEPTED FOR PUBLICATION

23 June 2017

PUBLISHED

7August 2017

Original content from this
workmay be used under
the terms of the Creative
CommonsAttribution 3.0
licence.

Any further distribution of
this workmustmaintain
attribution to the
author(s) and the title of
thework, journal citation
andDOI.

© 2017 IOPPublishing Ltd andDeutsche PhysikalischeGesellschaft

theoretical and methodological work 215

Reproduced from: T. Kittel et al., Timing of transients: Quantifying reaching times and transient behavior in complex systems, New J. Phys., vol. 19,
no. 8, 2017, doi: 10.1088/1367-2630/aa7b61. Published under Creative Commons Attribution License 3.0 (CC BY).

https://doi.org/10.1088/1367-2630/aa7b61


An important emphasis on long transients has beenmade in [10, 15, 23].With this term, they refer to
trajectories where the relevant and observable phenomena/states, e.g.macrophyte-covered lakes or desert states
of the Earth system, are away from the actual attractor, but in the transient phase where a trajectorymay stay for a
substantial amount of time.

Hastings [9] stressed the importance of different time scales and pointed out how the transient dynamics can
be very different andmuchmore interesting than the asymptotic behavior. In addition, he explained how
saddles play a central role by inducing long transients. This has been demonstrated in a study byAnderiesetal
[15] in the context of sustainability science. The ‘interacting planetary boundary’ [21, 22] has been defined by
whether states take ‘long’ to the attractor or not. This idea leads precisely to themain question for this article
‘Howcanwe properly quantify the time to reach a system’s attractor?’, i.e. associatemeaningful numbers with it.

This study ismeant as amethodological step in direction for applications in real-world systems. So in the
following, we focus on being able to do numerical estimationswhile analytical results are only given to
understand general properties.

Often, a trajectory is divided arbitrarily in a transient part and the asymptotics close to the attractor. Sowe
split themain question into two sub-questions: (a) ‘What are the problems of these current/intuitivemethods to
quantify transient time?’ and (b) ‘Howcanwemend them?’.

To answer thefirst question, wework out four essential problems one is confrontedwith: (I) infinite reaching
time: the attractor is not reached infinite time for a large class of physically relevant systems; (II) physical
interpretation: it is unclear how to define precisely ‘when the transient is over’, so it is ambiguouswhere to divide
between the transient and the asymptotics; (III) discontinuities: when having parameter dependence, small
changes in the parameter often induce a large (noncontinuous) effect on themeasured quantity; and (IV) non-
invariance: the results depend on the choice of coordinates. Problem (IV) is particularly important, as a result
should be a property of the dynamical system and thus independent of the choice of coordinates, i.e. invariant
(or correctly transforming) under smooth transformations of the state space (see ‘smoothly equivalent’ in [24]).

Then, we approach question (b) by formulating twometrics, area under distance curve (D) and regularized
reaching time (TRR). Thefirst one is the integral over the distance to the attractor along the trajectory, and has a
physical dimension of time times distance. Itmeasures which trajectories are reluctant, i.e. stay distant from the
attractor for long, or eager, i.e. approach it right away. The second one,TRR, is defined by the difference between
the reaching times for the trajectory of interest and a reference trajectory. Thus, it takes a different point of view,
actuallymeasuring a time. The idea is that even though the actual reaching times are infinite (problem (I)), their
difference is typicallyfinite. So, we can compare trajectories approaching the attractor and define the notions
earlier and later.

We chose four examples to illustrate different features of thesemetrics.Wefirst use a linear system to
understand how themetrics act generally and to observe the divergence ofTRR on the strong stablemanifold
particularly. Also, due to the system’s simplicity, analytical solutions are possible.We then use a global carbon
cyclemodel [15] and amodel of a generator in the power grid [25] to apply the ideas to some first real world
systems.Our final example, the chaotic Rössler oscillator, demonstrates that one can apply thesemethods to
more complex attractors also, in this case a chaotic one. The chosen examples are rather well-understood. So
they are good testing cases for themetrics, while their complexity still needs numerical approaches for a proper
quantification of reaching times.

Finally, a detailed discussion on how far the twometrics solve the aforementioned problems is given,
followed by a summary and an outline of future research.

The remainder of this article is structured as follows. After stating the four essential problems of reaching
time definitions in section 2, we illustrate themwith a small example. Then, we present the twometrics in
section 3 and apply them to examples in section 4.Next, we give a detailed discussion on how far themetrics
solve the essential problems in section 5. Finally, we closewith a summary and an outlook. Additional
information that can be found the supplementalmaterial is available online at stacks.iop.org/NJP/19/083005/
mmedia referencedwithin the article with the prefix ‘Suppl.Mat.’.

Assumptions and notations.Weassume a general, deterministic and autonomous dynamic system given by
the differential equation

= Î˙ ( ) ( )x f x x X 1

with an n-dimensional state space =X n and the right-hand side (rhs) f (x). Usually, we use x to denote an
arbitrary state Îx X , and refer to specific/fixed states with letters as superscripts, e.g. xa, xb, and xref . The
components of a state arewrittenwith subscripts, so = -( )x x x x, ,..., n0 1 1 and = -( )x x x x, ,...,a a a

n
a

0 1 1 . The
words ‘point’ and ‘state’ are used synonymously for the elements ofX.We assume the system (1) to have at least
one attractor Í X with a basin of attraction  Í X . In case the systemhasmore than one attractor, the
analysis should be applied to the attractors of interest separately.
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For convenience, wewillmake heavy use of the time-evolution operatorjwherej ( )t x, is the state after
starting at some point x and letting the system evolve for some time t 0. Hence

j
j

j=
¶
¶

=( ) ( ) ( ( )) ( )x x
t

t x f t x0, and , , . 2

Whenwe speak of ‘quantifying the transient time’wemean tofind a function ⟶X , a ‘metric’, that gives
a reasonable number for the time a trajectory spent in transient phase for each initial condition Îx .

Additionally, within the article we assume the asymptotics of the system to be understood as wewant to
focus on the transient only.

2. The problems of reaching time definitions

In this section, we introduce four essential problems. They need to be addressedwhen aiming to quantify the
transient time to reach an attractor in a systemof type (1). Then, we illustrate themwith an examplemodel.

(I) Infinite reaching time.Abasic property of a large class of complex systems is that trajectories reach the
attractor in infinite time only. That includes even steady states or limit cycles andmost systems of ordinary
differential equations with smooth rhs functions. This is the fundamental problemwhy the analysismade in this
article is necessary.

(II) Physical interpretation. It is far frombeing obviouswhat the terms ‘close to the attractor’ or ‘when the
transient is over’means.Often, this is tackled by using some arbitrary threshold ò to definewhat is a ‘small
distance’ to. But because of problem (I), the time to reach this ò-neighborhood typically diverges for   0.
So the result depends strongly on the value of ò. Note that the focus of this article is to quantify the transient time
to reach the attractor. Sowewant to associatemeaningful numbers and need to treat this problem.

(III) Discontinuities.When defining ametric to quantify the transient time to reach using some
parameters e.g. ò, the resultmight depend discontinuously on the parameter. Usually, wewant results to change
smoothly and, if possible, weakly to changes of the parameter. If there is a discontinuous dependence, thenwe
would expect there to be a corresponding specific property of the system that introduces this behavior.

(IV)Non-invariance.Our focus is on real-world systems. So the transient time should be a general property
of the system, and not dependent on the chosen variables or coordinates to represent it. These coordinates
correspond to a point of view on the systemonly. In other terms, invariance under change of coordinates should
be given.

Example.While the aforementioned problems are of general nature, we illustrate themnext using the example
system

= - - = - = =  ( ) ( )x
x

bx x a x a b1
2

, 2 , 2, 0.3. 30
1

0 1 0
2

It has a stable focus = - +( ( ))x a b a, 2 1s as its only attractor, and a saddle = -( ( ))x a b a, 2 1u .
This has been chosen deliberately simple but is still sufficient to demonstrate all four problems. This way, we do
not have to copewith problems inherent to the example system, like high-dimensionality or chaos.

Itsflow is shown infigure 1(a). For a chosen trajectory starting at = ( )x 2.8, 6.2a (see figure 1(a)) the time-
dependence of the Euclidean distance to the attractor

j j=( ( ) ) ( ) · ( )d t x x t x x, , , 4a a
E

s s

is depicted infigure 1(a). Two commonmetrics are the timeswhen an ò-neighborhood is entered the first and
the last time. Sowe define the class of sets

 f= =( ) { ∣ ( ( ) )} ( )T x t d t x x, , , 5a a
E

s

that invert the axes offigure 1(b) as depicted infigure 1(c) (blue dotted line).  ( )T xa is the set of timeswhen the
ò-neighborhood is entered or left. Furthermore, the first and last entry times are then  =( ) ( )T x T xinfa a

F and
 =( ) ( )T x T xsupa a
L respectively. They are graphed infigure 1(c) also.

The infinite reaching time (problem (I)) is visible infigure 1(c) right away, as    ¥( ) ( )T x T x,a a
F L for

  0. By definition, this implies that all elements in  ( )T xa will approach¥ also.

Problem (II):  ( )T xa
F and  ( )T xa

L depend heavily on the choice of ò. So a proper physical interpretation is
rather difficult. The notions of ‘close to the attractor’ or ‘when the transient is over’ depend strongly on ò.

The strong discontinuities (problem (III)) for  ( )T xa
F and  ( )T xa

L when changing ò infigure 1(c)make the
choice of a proper ò even harder. The discontinuities arise because the trajectorywill (for afixed ò) enter and exit
the corresponding ò-neighborhood several times. This behavior is caused by the complex eigenvalues of the
system. It could be circumvented locally by choosing a different distance function, for instance

3
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l l= - =-

+ -
  ⎜ ⎟⎛

⎝
⎞
⎠( ) · ( ) ( )d x x P x x P

a a
, ,

1 1
4 4

, 6P
s 1 s

where l = -  - b b a2 4 22 are the complex eigenvalues of the linearization of (3) around xs. (This is
related to the · P-normused in Suppl.Mat. Proposition 3.4.)Unfortunately, this is not so easy formore
complex attractors, e.g. the later treated chaotic Rössler system.However, wewill present a pragmatic solution to
this problem in section 3.2.

Finally, using a different set of coordinates, i.e. smoothly transforming the system, gives different values for
 ( )T xa
F and  ( )T xa

L , because the Euclidean distance is not invariant. Hence, the result depends on the set of
coordinates chosen for the system and is not invariant under coordinate transformations (problem (IV)). This
dependence on the chosen distance is also known to appear infinite-time dynamical systems and their
stability [26].

3. Two complementarymetrics

To treat the aforementioned problems, we devise twometrics for a general system as equation (1): area under
distance curve (abbreviated as D) and regularized reaching time (TRR). They naturally lead to a transient analysis
from separate points of view as explained in the following.

3.1. Area under distance curve
Area under distance curve (D) comes from the idea that a trajectory stays distant from the attractor during the
transient while it is close in the asymptotics. A distance function (· ·)d , is needed to have notions of ‘far’ and
‘close’ andwe define D

ò j=
¥( ) ( ( ) ) ( )D x t d t xd , , , 7

0

where is the attractorwith the basin  andj the time-evolution operator as in equation (2). Sowe look at the
cumulative distance to the attractor and remove the influence of the asymptotics. As (7) is the integral over the
distance in time, D is the area below the distance curve. A different point of view is that it is the timeweighted by
the distance.

Figure 1.The phase space for the example system equation (3) is depicted in (a). Furthermore, the stable spiraling node xs and the
saddle xu are added. The trajectory (blue) starting at xa closely passes by xu before it finally circulates in to xs. (b) shows the Euclidean
distance dE (dotted, blue) of this trajectory to its attractor xs over time t. The first longer dip between t=1 and t=5 is the transient at
the (unstable) saddle xu while the oscillations afterwards are the spiraling around xs. (c) turns (b) around in order to show the
dependence of the time t on some distance =d (dotted, blue) of the trajectory to the attractor xs. Secondly, there aremultiple
values of ò for each t so observables like  ( )t xa

F and  ( )t xa
L need to be introduced.  ( )t xa

F (dash–dotted, black)markswhen thefirst time
the ò-neighborhood around xs is entered and  ( )t xa

L (dashed, green) the last time. The implications, particularly the arising problems
for time definitions, are described in text.
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As D is definedwith the limit of an integral, a note on the convergence is due and can be found in the
discussion in section 5.

The distance function d should be between a point in state space and the attractor. If containsmore
than just one element, it could be the infimumof the distances to all points within. Choosing a tailor-made
function (· ·)d , allows to adapt themetric to specific research questions, e.g. by letting ( )d x, represent some
formof costs or damages due to being away from the attractor. For the idea of D towork, dneeds to approach 0
around the attractor and be 0 on it.

Due to the integral representation, D can be estimated numerically directly from the trajectory assuming the
attractor is known. The latter was taken as a prerequisite for this article as wewant to emphasize the analysis of
the transient.

Initial conditionswith relatively high values of D are called ‘reluctant’ and thosewith low values ‘eager’. This
terminology is used to emphasize that reluctant states go through large transients distant from the attractor,
while eager states approach it directly.

By straightforward differentiation, we can compute the orbital derivative

j j
¶
¶

= -( ( )) ( ( ) ) ( )
t

D t x d t x, , , , 8

meaning its value strictly decreases along the flow; a property we use later. Furthermore, this shows it to be a
Lyapunov function [27]. Furthermore, using equation (8) and adding the condition = " Î( )D x x0 is an
alternative definition forD.

3.2. Regularized reaching time
The second idea, regularized reaching time (TRR), is based on time differences between trajectories. It can be
interpreted as the additional time (positive or negative) that a trajectory starting at a point of interest needs to
approach the attractor after a reference trajectory has already approached it. A positive or negative valuemeans
that the trajectory at hand approaches the attractor by thismuch later or earlier, respectively, than the reference
trajectory does.

To formalize this idea, we introduce  ( )t x as the time a trajectory starting at an arbitrary state xneeds in
order to reach an ò-environment around the attractor. Thatmeans for some function D ⟶X: 0 it holds
that

 j= D( ( ( ) )) ( )t x x, , 9

wherewewantΔ to be 0 on the attractor and jD( ( ))t x, to be strictly and continuously decreasing in t. This
means, in equation (9),Δ has the role of a generalized distance function,measuring how far a point in state space
is away from the attractor. Note that j ( ( ) )t x x, is the state after starting at x and evolving the system for a time
 ( )t x . Hence, equation (9) implicitly defines  ( )t x to be the time at which an ò-environment around the
attractor, with respect to the generalized distance functionΔ, is entered.

Since the actual reaching times to the attractor are both infinite,TRR is formally described as the limit for
  0 of the difference between how long the trajectory starting at some arbitrary state x and the trajectory
starting at a chosen (fixed) reference point xref need to enter the corresponding ò-environment



 = -


( ) ( ( ) ( )) ( )T x x t x t x; lim . 10RR
ref

0

ref

For hyperbolic fixed points, we prove in Suppl.Mat. section 3 undermild conditions that there exists a class of
choices forΔ such that this limit exists for all xwithin the basin of attraction except the strong stablemanifold
and the attractor itself.We call themanifold associated to all Lyapunov exponents except the leading one the
strong stablemanifold. And, ifTRR exists, it is unique, i.e. independent of whichΔ has been chosen from the
class.

Furthermore, we show thatTRR is a parametrization of the strong stable foliation. Thus, after a smooth
change of coordinates F, i.e. a diffeomorphismof the state space, the diffeomorphic image of the strong stable
foliationwill again parametrize the level sets ofTRR in the new variables. Therefore,TRR is invariant under such
transformations and it holds that

F F =( ( ) ( )) ( ) ( )T x x T x x; ; , 11RR
ref

RR
ref

wherewe obviously transformed xref , too.
TRR represents the actual time by howmuch a trajectory approaches the attractor later or earlier than the one

starting at the reference point, sowe call states with relatively lowTRR ‘early’ andwith highTRR ‘late’.
Different choices of xref (that are not on the strong stablemanifold or the attractor) result in additive

constants. To be precise, choosing another ¢xref yields
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- ¢ = ¢( ) ( ) ( ) ( )T x x T x x T x x; ; ; . 12RR
ref

RR
ref

RR
ref ref

Because the rhs of equation (12)does not depend on x , different choices of xref do not influence the structure of
TRR w.r.t. x . Thus centralmoments, i.e. ones invariant under shifts, are sensible for analyzingTRR over a
distribution of initial conditions in state space; especially the standard deviation proves useful for the examples
below. In particular, for any choice of xref it obviously holds that =( )T x x; 0RR

ref ref .
The reference point should not be chosen on the attractor because this gives  =( )t x 0ref for any ò, but for
Î ⧹x X the time   ¥( )t x for   0. Vice versa, thismeanswhen having chosen Îxref then

= -¥ " Î( )T x x x;RR
ref . The same holds for the strong stablemanifold.

In order to compute the orbital derivative j¶
¶

( ( ) )T t y x, ;
t RR

ref , we use equation (10) and find



j j
¶
¶

=
¶
¶

( ( ) ) ( ( )) ( )
t

T t y x
t

t t y, ; lim , , 13RR
ref

0

where Îy X is an arbitrary state and exchangeability of the limit and the derivative has been assumed.Next, we
take the derivate with respect to time t in equation (9) for j= ( )x t y, . Sorting the terms appropriately gives

 j j j=
¶
¶

D +
¶
¶

+⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠( ◦ ) ( ( ( )) ) · ( ( )) ( )

t
t t y t y

t
t t y0 , , , 1 . 14

jD( ( ))t x, is strictly decreasing in t for any Îx X . So its derivative is j jD = D <¶
¶

¶
¶( )( ( )) ( ◦ ) ( )t x t x, , 0

t t

and in particular non-zero. Hence,  j = -¶
¶

( ( ))t t y, 1
t

, leadingfinally to the orbital derivative ofTRR

j
¶
¶

= -( ( ) ) ( )
t

T t y x, ; 1. 15RR
ref

This equation is actually rather natural, as the change of time to approach the attractor along the trajectory
should exactly be the time passed. Also, thismakes it a Lyapunov function [27].

To use equation (15) as an alternative definitionwe need another constraint. Because of =( )T x x;RR
ref

-¥ " Îx , this cannot be done on the attractor (in contrast to D). In case of hyperbolic fixed points, it
follows directly from Suppl.Mat. Proposition 3.7 thatTRR is a parametrization of the strong stable foliation ss,
whose definition is recalled in Suppl.Mat. Theorem 3.6. Sowe can use the constraint that

= " Î( )T x x x; 0RR
ref

ss
ref , wherewe call  = ( )xss

ref ss ref the reference leaf containing xref . Formore
complex attractors, a generalized condition needs to be found and this is part of the outlook.

Suppl.Mat. Proposition 3.4 provides the convergence ofTRR in equation (10) for hyperbolic fixed points
only.When thinking aboutmore complex attractors thatmay arise in real-world examples the question of
convergence comes up again. A general ideawhyTRR should convergewith awell chosenΔ in this case, too, is
that in the asymptotics, trajectories will ‘behave similarly’ because they are close to the attractor. So, for two very
small  >1 2, the time difference to enter the 2-environment after entering the one of 1 should be roughly the
same, independent fromwhere a trajectory started. Hence, for two states x and xref we can assume
   - » -( ) ( ) ( ) ( )t x t x t x t xref ref2 1 2 1 implying    - » -( ) ( ) ( ) ( )t x t x t x t xref ref2 2 1 1 . This suggests that the
limit in equation (10)might exist. So a crucial problem is tofind an appropriate function forΔ in order to get an
estimation forTRR.

Estimation ofTRR. Thefirst idea for aΔwould be the infimumof the Euclidean distance to the points in the
attractor. Basically, thismeans that t should be replaced by TF or TL from section 2. This would give a very
coarse estimation but is probably not the correct choice as the condition ofΔ being strictly decreasing along the
flow is in general not fulfilled.

A pragmatic choice ofΔ isD, the area under distance curve. It fulfills both conditions demanded forΔ (see
section 3.1)whenusing for d the infimumof the Euclidean distance to the attractor points.Hence, we can define
 ( )t xD as the time until the D (equation (7)) of the trajectory’s remainder is ò-small

 
òj j= =
¥( ( ( ) )) ( ( ) ) ( )
( )

D t x x t d t x, d , , . 16D
t xD

Note that the ideas for D andTRR are generally independent and the usage of D in this case is purely because it
fulfills the abovementioned conditions. So it is a good, pragmatic choice.

Using tD defined in equation (16) as the time-function t in equation (10) for the estimation ofTRR, our
numerical results show that this idea is sensible formore complex attractors, e.g. in the Rössler systembelow.

4. Examples

In order to demonstrate the applicability of themetrics, we selected four examples with differing properties and
increasing complexity.
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4.1. Linear systemwith two different time scales
Even thoughwewant to focus on going in the direction of application to real-world systems, understanding
some features in a basic linear systemproves useful. For general systems, TRR and D can be tackled numerically
only. But a linear system can be solved analytically and explicit expressions for bothmetrics were found.Wewill
first analyze bothmetrics for a general linear system and then discuss a chosen example.

TRR for a general linear system. For a hyperbolically stable linear systemwith a (complex-)diagonalizable
matrix Î ´A n n and thefixed point x f at the origin,

=˙ · ( )x A x, 17

wedecompose a= å =
-x vi

n i i
0
1 with coefficients a a -,..., n0 1 in the eigenvector basis -v v,..., n0 1with eigenvalues

l l -,..., n0 1 sorted in descending order by real part.We assume in particular l0 to have a strictly larger real part
than l1 andmultiplicity one. Hencewe can apply Suppl.Mat. equation (10) derived in the Suppl.Mat. and get

l
a
a

=( ) ( )T x x;
1

ln , 18RR
ref

0

0,ref

0

where a0,ref is the a0 coefficient for the reference point xref . a0,ref should be non-zero, i.e. xref should not be on
the strong stablemanifold.

Note that Suppl.Mat. Proposition 3.4 gives the uniqueness of this result independent of the choice ofΔ.
In equation (18),TRR depends only on a0, meaning the projection of x on the eigenvector corresponding to

the least stable eigenvalue l0.While thismight be counter-intuitive in the beginning, it can be explained: the
contributions from all other eigenvalues are vanishing because they decay faster than l0 by definition. So for a
linear system, only the contribution from l0 remains. Also, on the strong stablemanifoldwhere a = 00 , the
values forTRR go to-¥whichwementioned already in section 3.2 for general systems.

D for a general linear system.Taking the system (17) and choosing =( { }) ( )d x x d x x, ,E
f f 2 the squared

Euclidean distance, we calculate D directly by using the definition equation (7)

*
*

å a a
l l

=
-

+=

-

( ) ( )
( ) ( ) ( )†D x v v . 19

i j

n i j

i j
i j

, 0

1

Therefore, in case of D, all eigenvalues contribute, contrary toTRR. But they are weighted as can be seen in the
denominator. In case ofA being symmetric, this formula can be reduced to = -( )D x x A x1

2
1 .

TRR for an example linear system.Wechoose the n= two-dimensional linear system

= -
-( )˙ · ( )x x1 0

4 2
20

with a stable and a strong stable eigenvalue and corresponding eigenvectors

l l= - = = - = ( )( ) ( )v v1, 1
4

and 2, 0
1

. 21s s ss ss

Wechoose the reference point to be = ( )x 1, 1ref . Identifying l l=0 s, =v v0 s implies a = x0
0. Then, using

equation (18) gives

=( ) (∣ ∣) ( )T x x x; ln . 22RR
ref

0

This result is also visible in the numerical estimation infigure 3(c); the values ofTRR change only in the direction
of x0. The coloring describes the values of themetrics (see the colorbar in the right of thefigures) and the green
star represents xref .

In order to get a better feeling for thesemetrics, we have chosen two exemplary initial conditions, an early-
eager one and a late-eager one, and plotted their trajectories’ distance to the attractor over time infigure 2.We see
an intuition forTRR: it can be interpreted as the time-shift between the original trajectory and the reference
trajectory until the asymptoticsmatch. Sowe plotted both trajectories shifted to each other using the analytical
result forTRR in equation (22).

D for an example linear system.Analyzing D for the example linear system in equation (20) gives

= + +( ) ( )D x x x x x
11

6

1

4

2

3
, 230

2
1
2

0 1

where equation (19) has been used. The numerical result infigure 3(a) confirms this.
Infigure 2, the blue-shaded area corresponds to the D valuewhich is the same in both cases of our particular

choice. This choice wasmade in order to see how trajectories can have differingTRR values even if the D values
match.

The exponential lower bound that comes up in the scatter plotfigure 3(b) can be calculated analytically by
combining equations (22) and (23)
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Figure 2.The figure shows for two exemplary initial conditions (a) = ( )x 0.8, 2.35b and (b) = ( )x 1.4, 0.24c the distance of the
attractor over time (blue curve) in the linear example systemof section 4.1. The initial conditions have been chosen such that the D
value, which corresponds to the blue-shaded area, is the same for both trajectories, = =( ) ( )D x D x 3.8b c . But the trajectory starting
at xb approaches the attractor earlier than the reference trajectory (green in (a) and (b)), which in turn is earlier than the one from xc ,
meaning = - < = < = +( ) ( ) ( )T x x T x x T x x; 0.22 ; 0 ; 0.34b c

RR
ref

RR
ref ref

RR
ref . In order to show this, the example trajectories

(blue) have been shifted in each plot by the value of TRR with respect to the reference trajectory (green). This demonstrates an intuition
behind TRR : it describes by howmuch one has to shift one trajectory so itmatches the asymptotics of the reference trajectory.

Figure 3. For the presented example systems (top to bottom: linear system, global carbon cycle, generator in a power grid, Rössler
system) the two newmetrics have been computed for each initial condition in the state space andmarkedwith color, see left column
area under distance curve (D, D) and right column regularized reaching time (TRR). Themiddle column shows their relations for the
particular system. The initial conditions xb (triangle) and xc (square) fromfigure 2 have beenmarked in (a)–(c), too. As the Rössler
system is three-dimensional, the above plot depicts only a slice atfixed z=0.6where the boundary of the attractor’s projection to this
plane is shown in dashed red lines. As this is only a projection,D is not 0 for all points within. For comparison, a graphical
representation of the full attractor can be found in supplementarymaterial section 2.
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( ) ( )( )D x
25

18
e . 24T x x2 ;RR

ref

4.2. Global carbon cycle
The second example has been chosen to take a step in the direction of real-world examples. It is a conceptual
model of the global carbon cycle proposed byAnderiesetal [15].We use the pre-industrialization version. It
consists of three dynamical variables, the terrestrial,marine and atmospheric carbon stocks, denoted by
=c ct terrestrial, =c cm marine and =c ca atmospheric respectively. Furthermore, the conservation of total carbon is

formulated in the constraint = + + =C c c c constt m a . Thus, we can reduce the system to 2 state variables ct
and cm and rescale the units such thatC=1:

a= -˙ ( ) ( )c p r c c aNEP , , , 25t t t

=˙ ( ) ( )c I c c b, , 25m a m

whereNEP is the net Eco-systemproduction, p photosynthesis, r respiration,αharvesting parameter and I
diffusion; indirect dependencies have been omitted andmore details are in [15, 28]. As the full equations are
rather lengthy, we put them in Suppl.Mat. section 1 and refer in the analysis to the flow that is drawn in
figures 3(d) and (f) and theα parameter stated above. Thewhole phase space of equations (25a) and (25b) is the
basin of the attraction of the fixed point in themiddlemarked by a blue dot; the dynamics is drawn as streams.
The trajectories starting in the lower part have to pass by a ‘desert-like’ saddle (with ct=0) at the left (green dot).

The color infigure 3(f) depictsTRR and thefirstfinding is the splitting of the basin of attraction. The strong
stablemanifold of the stable node becomes visible as a light beige line due to its low values ofTRR, i.e. as very early
states because  -¥TRR . So it is the separatrix for the observed splitting. Also, the expected smooth increase
of the return timeswhen distancing (along the trajectories) from the attractor can be observed.

Still, the splitting of the basin of attraction is visible for values of <c 0.3terrestrial , where it is only due to
quantitatively different behavior and the visible boundary is actually a rather sharp but still continuous
transition. (The latter statement follows right fromSuppl.Mat. Theorem3.6 and Suppl.Mat. Proposition 3.7.)
Looking at figure 3(f) one can also see that the boundary becomesmore andmore fuzzy for even smaller values of
cterrestrial, demonstrating that there is really a need for a quantitative analysis.

When applying D to thismodel (figure 3(d)), the splitting of the basin can be observed again. In contrast to
TRR, the strong stablemanifold of the stable node is not visible because D can be seen as a (by distance)weighted
time and the contributions from the asymptotic part where the difference in the Lyapunov spectrummatters are
negligible.

Furthermore, we see a clear linear correlation of bothmetrics infigure 3(e) because all trajectories starting in
the lower part have to pass by at the saddle on the left and spend a long time there.

Bothmetrics work as early-warning signals [14, 29], too.When increasingα, corresponding to the harvest of
terrestrial carbon, the systempasses through a subcritical pitchfork bifurcationwhere the saddle becomes stable
and the lower-left part of the phase space splits off. The divergences of the twometrics’ statistics as seen in
figure 4 prove their prebifurcational sensitivity, while other systemic indicators like basin stability [30] do not
change (up to numerical fluctuations, see figure 4). Note that in this example, a Lyapunov exponent analysis of
the saddlewould be able to predict the bifurcation due to the simplicity of the saddle also. However, in case of a
more complex saddle, this would become arbitrarily difficult while this numerical estimationwould still be
possible for bothmetrics.

Figure 4. For the global carbon cycle in equations (25a) and (25b), themean of D and standard deviation of TRR are plotted (with their
5%–95%bootstrap error) and show a divergence before the parameterα (yearly human carbon offtake) reaches the bifurcation value
(marked by the red line). For comparison Basin stability is shown, which does not show any change because the size of the basin stays
constant before the bifurcation.
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4.3. Generator in a power grid
As the next example, we chose the swing equation in equation (26), a basicmodel describing the dynamics of a
single generator connected to a large power grid [31]. It consists of two dynamical variables, the phase θ and
angular frequencyω, both in a reference frame rotating at the grid’s rated frequency. The parameters of the
system correspond to the net power production P=1 (at the node), the capacity of the transmission lineK=6
and dampening a = 0.1.

f w w aw f= = - -  ( )P K, 2 2 sin . 26

In this form,which is used in electrical engineering [25, 32], it is formally equivalent to a pendulumwith
constant driving and damping.

The stable fixed point at w = 0s , f = arcsin P

K
s describes a state of synchronization. For the chosen set of

parameters, the system exhibits another attractor: a limit cycle at larger positive values ofω. For negative values,
the two basins of attraction are interleaved. Amore detailed introduction and analysis can be found in
[25, 31, 33].

Calculating TRR inside the basin of the stable fixed pointed w q( ),s s yieldsfigure 3(i). There is basically no
color change away from the attractor, sowe can see that a trajectory barely spends any time in the transient and
goes quickly to the attractor. Analogously, figure 3(g) for D leads to the same conclusion asTRR.

Comparing bothmetrics infigure 3(h) shows that they are closely linked.Note that this timeD is presented
on a logarithmic scale, so the relation is exponential andwhat we see here is actually the influence of the
linearized part of the system. The accumulation in the upper right corresponds to the initial conditionswith
lower values ofω. Thismeans, they only go through a very short transient and spendmost of their time in the
part where the linearization holds.

Thewhite parts in the phase spaces figures 3(g) and (i) correspond to the basin of attraction of the limit cycle.
As thismeans the system is away from synchrony, the generators would usually switch off before reaching it. So
we did not include it in the analysis.

4.4. Chaotic Rössler oscillator
Althoughwe have proven the convergence ofTRR forfixed points only, we showwith the chaotic Rössler system
[34, 35] that bothmetrics are applicable to higher-dimensional andmore complex attractors, too. The equations
are

= - - = + = + -   ( ) ( )x y z y x ay z b z x c, , , 27

where x, y and z are the coordinates in state space.While this naming convention is not in line with the rest of the
article, it has been chosen as it is standard for these equations.

Figure 3(l) shows a slice of the phase space with the standard parameters a=0.2, b=0.2, c=5.7 forTRR

and the expected sensitivity to initial conditions for chaos is observed: early and late trajectories lie closely
together and themetricTRR has low spatial correlation.

In contrast, D shows infigure 3(j) surprisingly smooth changes of an embryo-like shape. Because the focus
of this article is on transient dynamics a new feature of the chaotic Rössler system is uncovered: while the
attractor is chaotic, the basin of attraction is very regular. D focuses on the initial transient and the chaotic
asymptotics isfiltered out. For comparison, the boundaries of the attractor’s projection have been addedwith
dashed red lines infigure 3(j) and depictions of the attractor are in Suppl.Mat. section 2.

Furthermore, TRR can be applied as an early-warning signal in this case, too. In order to demonstrate this, we
chose to vary a as it has a crucial influence on the system’s dynamics (see the bifurcation diagram infigure 5
(green)). For values of <a 0.006 (see [36]) there is only a single stablefixed point. At »a 0.006 a limit cycle
emerges due to aHopf bifurcation [36]. For >a 0.11, several period doublings are observed,finally leading to
chaos for >a 0.155. Even in the chaotic regime, further bifurcations can be observed.

Infigure 5, the standard deviation of theTRR distribution from randomly chosen initial conditions inside the
basin of attraction is given. Due to the sensitive dependence on initial conditions, the reference value varies a lot
and hence introduce shifts in the distribution that do not describe actual changes in the system’s dynamics. To
remove this effect, it is crucial to use centralmoments like the standard deviation.

TRR is strongly sensitive to any qualitative changes in the dynamics of the system, incl. even chaos–chaos
transitions. Closely observing figure 5 uncovers that there is a base-linewith littlefluctuations at »( )TStd 10RR

complementedwith strong peaks. In the chaotic regime, the peaks correspond directly to qualitative changes.
Also, we observe sensible changes during the period-doubling phase and a strong increase before theHopf
bifurcation at »a 0.006, proving the usefulness as an early-warning signal.

The abrupt downward peak at »a 0.11 is unexpected andmore details are needed to clarify it. The other
peaks correspondwell with the transitions visible in the bifurcation diagram.
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5.Discussion

In order to see how far the two proposedmetrics answer the question ‘How canwe properly quantify the time to
reach a system’s attractor?’wewill go along the four essential problems that have beenworked out in section 2
for this discussion: (I) infinite reaching time, (II) physical interpretation (III)discontinuities and (IV)non-
invariance.

Area under distance curve (D) has been defined as the cumulative distance to the attractor over time in order
to emphasize the idea that a trajectory stays ‘far’ from the attractor in the transient while being close in the
asymptotics. The distance d is not necessarilymeant in themathematical sense [37], but it only needs to
approach 0 around the attractor and be 0 on it. In that way, it is possible to choose the appropriate d for different
research questions, e.g. asking about costs or damages. Even in these interpretations D is ametric capturing the
transient time, because there are only contributions when the trajectory is distant from the attractor, i.e. still in
its transient phase. Another point of view is to see D as the time to reach the attractor weighted by the distance.

We understand Problem (I), infinite reaching time, as solved. For hyperbolic attractors and d being a
mathematical distance function, the integral in equation (7) does converge. Trajectories approach the attractor
exponentially in the asymptotics and the integral over the exponential envelope isfinite.

While this coversmost systems relevant for real-world applications, in some very specific cases, D might be
infinite. The asymptotic tail of the integralmight not converge, i.e. the trajectory does not approach it ‘fast
enough’. Thismeans, either this is thewanted result or d has not been chosen appropriately. In the first case, it
could be for example that D was computed for an initial condition that is not economically feasible, so the cost
diverges. Furthermore, this would imply that even though the attractor is systemically stable, it is not
economically feasible to copewith small perturbations.

From a technical perspective a divergence inD can be understood as indicating that d has not been chosen
matching to the system. E.g. using the Euclidean distance and = -ẋ x1

2
3 where the solutions are

j =
+ -

( ) ( ) ∣ ∣t x x, sign
t x

1
2
, D does not converge. Another example is to take a linear system = -ẋ x with

<x 1. Using = -( { }) ∣ ∣d x, 0
x

1

ln
with =( { })d 0, 0 0 gives  ¥D .

This can usually be solved by choosing an appropriate d. E.g. choosing for = -ẋ x1

2
3 using

= - -( { }) ( ∣ ∣ )d x x, 0 exp 1 and =( { })d 0, 0 0 gives finite values for D.
Problem (II) is solved because there is no direct parameter. Still, as there is the indirect dependence on d a

discussion is necessary and given in comparison to the first and last entry time to an ò-environment  ( )T xF and
 ( )T xL respectively. For them, a small change in òwill have a huge impact on themeasured times because for
  0 both values go to infinity. Furthermore, if onewould locally change theway how the distance to the
attractor ismeasured, the values for  ( )T xF and  ( )T xL would change drastically, too.

BecauseD is defined as the cumulative d over time, a local change in dwill have onlyminor effects on the
exact value, so even estimated functions for dwith some uncertainty can be used.

Problem (III), discontinuities, have been avoided in D by using the integral representation. Hence the
function is even differentiable along the flow (see equation (8)).

We see Problem (IV), non-invariance, as solved, if d has been chosenwith somemeaning, e.g. economic
damages. Then one can simply represent the economic damage function in the changed coordinates, because the
meaning is independent of the coordinates. This reasoning is notmathematical but context-dependent. From a
purelymathematical point of view, if d is just any distance function, generally the result is not invariant under

Figure 5.The bifurcation diagram (green) of the Rössler system for varying the parameter a in equation (27)was computed from the
localmaxima in z of the attractor and TRR (orange) shows a strong sensitivity to these qualitative changes. The gray background is used
so the reader canmore easily connect the peaks in TRR to the corresponding parts in the bifurcation diagram.
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change of coordinates as it depends on geometric features of the system. But as wewant to go in the direction of
real-world systems, amodel-specific choice of d is compulsory anyway.

Regularized reaching time (TRR) has been defined as the difference in time to approach the attractor.
Problem (I), infinite reaching time, does not appear for all states in the basin of attraction except the attractor

and the strong stablemanifold. In case of the attractor, the trajectorywill stay on it while trajectories fromother
points approach the attractor only; and, by definition, points on the strong stablemanifold approach the
attractor a lot faster, also in the asymptotics. So these infinities are actually reasonable results. Also, both are
usually of a smaller dimension than the state space.Hence coincidently being there is unlikely, and these cases
are rather irrelevant for real-world applications.

Problems (II) and (III) are intrinsically solved by avoiding parameters. The necessary choice of xref

introduces a constant shift only while not changing the structure of the function.When looking at central
moments ofTRR, i.e. ones invariant under shifts, this dependence on the choice of xref disappears completely as
theywould only shift themean. So an analysis by changing the system’s parameters is possible. This has been
done in the examples for the global carbon cycle andRössler system andTRR has been confirmed as an early-
warning signal. This analysis can be seen as a systemic approach to the concept of critical slowing down (CSD)
[14, 29, 38] after a shock, i.e. an instantaneous and non-infinitesimal perturbation, uncovering prebifurcational
changes in the transient behavior. In contrast, CSD is usually donewith (local)noise only. The usage of shocks
has been developed in the context of Basin stability [30, 31] and its extensions [23, 39–42].

Problem (IV), non-invariance, is proven to be solved for hyperbolicfixed points. In case ofmore complex
attractors, we can currently only define an estimation ofTRR which depends on geometric properties. So
invariancemight not be given andmore research due in that direction. An important step in that direction has
been done bywriting down the properties ofΔwhich imply that the necessaryway ofmeasuring how a
trajectory approachesmight not be local (exceptfixed-points). The used pragmatic choice ofD = D
demonstrates this as it basically says that the remainder of the trajectory should have an ò small value ofD only.

An assumption that has beenmade during the proof of invariance ofTRR for hyperbolicfixed points is: the
eigenvalue of the RHS’s Jacobianwith the largest real-part is either unique andwithmultiplicity 1 or there are
two that are complex conjugated to each other. However, this condition is not really constraining becausewe
assumemost real world systems fulfill it.

Comparison.Themetrics have been applied to several examples andwewill discuss a comparison between
bothmetrics here. They are depicted in figures 3(b), (e), (h) and (k) and showdifferent relations, as stated in the
figures. The exponential lower bound and the exponential relation for the linear system and swing equation
respectively comemostly from the asymptotic behavior, in particular as the linear systemdoes (by definition)
not have any nonlinearities. Still the relations are different as the asymptotic behavior differs slightly, too, one
being a node the other a focus. This shows that even thoughwe clearly focus on the transient, it is actually
important to be aware of the asymptotic behavior, too. And one cannot analyze the formerwithout knowing
about the latter.

In contrast, the linear relation for the global carbon cycle really points to the transient behavior only. It is due
to the states passing by the ‘desert-like’ saddle. Finally, there seems to be no clear relation between bothmetrics
for the Rössler example, pointing to the chaotic behavior. Still, bothmetrics have separately been useful, D
demonstrating the smoothness of the basin of attraction and the standard deviation ofTRR being sensitive to
qualitative changes of the system.

Othermethods.Whendeveloping this research onmeasuring times to approach the attractor, we had the
impression that there are twomore common ideas, additionally to thefirst and last entry time.We do not intend
to have a complete overview of allmethods but would like to discuss these two shortly here. This part refers to a
general system in the sense of (1).

Thefirst idea is to developmetrics based on characteristic times. These are usually defined as the time until a
quantity is reduced to 1 e of its original value [43]. This quantity could be a distance to the attractor or a
coordinate. From this definition it already follows that they are subject to problem (IV). Also, even if the quantity
is at 1 e of its initial value, the trajectorymight still be far away from the attractor and in its transient dynamics.
Lastly, taking a one-dimensional linear system and assuming the quantity is the coordinate, the characteristic
time is constant for all initial conditions. This is counter-intuitive when thinking about a time to approach the
attractor.

The second idea for general systems is to use Lyapunov exponents [44]. They have units of inverse time and
are invariant under changes of coordinates. However, they are actually a property of the attractor. So they do not
capture the transient but only the asymptotics closely around and at the attractor.
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6. Summary and outlook

In this article, wehave treated the question: ‘Howcanweproperly quantify the time to reach a system’s attractor?’
First, we haveworked out the four essential problems of quantifying the timing of transients in order to

develop two newmetrics, area under distance curve D and regularized reaching timeTRR. As the focus of this work
ismeant to be onmaking afirst step to real-world systems, we have applied themetrics numerically to four
chosen examples systems, observing different features. Finally, we have discussed in detail how far themetrics
treat the four essential problems.

With this approach, interesting features of the examples have been uncovered. Using the global carbon cycle,
we have demonstrated the importance of the transient analysis, as the desert state is only a saddle but
nevertheless passing by therewould lead to an extinction of humanity. The splitting of the basin of attraction is
partially due to the strong stablemanifold of the attractor but it continues for lower values of cterrestrial where it is
only due to quantitatively different behavior demonstrating the need for quantitativemethods. Particularly
interesting is how the (central) statistics of ourmetrics are a systemic approach to the concept of CSD leading to
an interpretation as early-warning signals, whichwe have demonstrated also. The independence of the choice of
reference points has been achieved by the usage of centralmoments. In case of the generator in a power grid,
most of the relevant dynamics seems to be dominated by the linearization of the equations around the focus.

In order to prove the applicability tomore complex dynamics, we have used ourmetrics on the Rössler
system, too, and found the smoothness of the attractor’s basinwith D. As the attractor itself is chaotic, this
smoothness is surprising.TRR reacts strongly to the sensitivity to initial conditions of the chaotic system and one
mightwant to askwhether there is a relation towinding numbers when approaching the attractor. Still, its worth
is displayedwhen varying the a parameter. This parameter has strong influence on the Rössler system’s
dynamics andTRR reacts strongly to the different bifurcations and even the chaos–chaos transitions, proving
again its worth as early-warning-signal.

We have not performed any comparative analysis with thementioned first- and last-entry-time approaches
because these behave inconsistently and their quantitative results are arbitrary, as discussed at length in section 2.

The detailed discussion on the twometrics have showed that, while they do treat the four essential problems,
they do not fully solve them and further investigation is needed. Also, they come from two very different basic
ideas so the comparison showed that they reallymeasure independent features but can improve the
understanding of a systemby combining them. For bothmetrics, we have showed that they are Lyapunov-
functions.While some properties have already been used in the article, these definitions in terms of orbital
derivativesmay be a rich groundwork for the next steps.

Four directions of immediate future research are due:
(1)Working on the definition ofTRR using the Lyapunov function properties. This step is crucial in order to

further the understanding of transient analysis and needs to take the attractor into account aswell. Hence, the
analysis ofmore complex attractors and basin shapes, e.g. riddled basins, is part of this.

(2)Applying the current definition of themetrics, in particular using the estimation ofTRR withD = D, to
understand the implications and the precise use cases better. Furthermore, their relations to topological
structures, e.g. in complex networks [45], need to beworked out in detail. This part, even though
complementary, should be done in accordance with the results in (1).

(3)On the numerical side, it is important to introducemore sophisticatedmethods of Lyapunov function
estimations, where a starting point is thework byGiesl andHafstein [46]. The curse of dimensionality is going to
be a problem for network systems, hencemethods for estimation of thesemetrics’ statistics in such kinds of
systems induce a need for developing specific algorithms.

(4)Comparison of the timing of transients inmodel output and observation data as the newobservable time
is now available.
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Science and policy stand to benefit from reconnecting the
many notions of social-ecological resilience to their roots 
in complexity sciences. We propose several ways of moving towards
operationalization through the classification of modern concepts of
resilience based on a multi-agent-environment perspective.

From Math to Metaphors 
and Back Again
Social-Ecological Resilience from a 
Multi-Agent-Environment Perspective

ocial-ecological system (SES) resilience is a popular concept
now widely applied in many fields of science related to sustain -

able development as well as in science communication and edu -
ca tion efforts (Folke et al. 2016, Folke 2016). Notably, the concept
of resilience is at the heart of the Planetary Boundaries Framework
(Rockström et al. 2009, Steffen et al. 2015), which, together with
its extensions such as Doughnut Economics introducing the safe
and just operating space for humanity (Raworth 2012), has been
influential in formulating the United Nations Sustainable Develop -
ment Goals (SDGs)1. However, as already Carpenter et al. (2001,
p.765) have pointed out: “Resilience has multiple levels of mean-
ing: as a metaphor related to sustainability, as a property of dynam -
ic models, and as a measurable quantity that can be assessed in
field studies of SES”. This multi-level nature of resilience can be
seen as an intrinsic strength of the concept (e.g., Folke et al. 2016),
but together with its often meandering use by various communi -
ties also has the potential to cause confusion and difficulties in
operationalizing and practically applying the concept. The inten -
tion of this paper is to propose a classification of various modern
concepts of social-ecological resilience from a multi-agent-envi-
ronment perspective and, while not proposing a concrete oper-
ationalization, to discuss possible avenues to developing such a
mathematical formalization reconnecting these notions to their
theoretical foundations in complex systems theory.

SES resilience (Berkes and Folke 1998) originated from a com-
plex systems perspective on ecological dynamics (Holling 1973)
integrating at the time revolutionary mathematical insights into

From Math to Metaphors and Back Again.
Social-Ecological Resilience from a 
Multi-Agent-Environment Perspective
GAIA 26/S1(2017): 182–190

Abstract

Social-ecological resilience underlies popular sustainability concepts 

that have been influential in formulating the United Nations Sus-

tainable Development Goals (SDGs), such as the Planetary Bound-

aries and Doughnut Economics. Scientific investigation of these 

concepts is supported by mathematical models of planetary 

biophysical and societal dynamics, both of which call for opera-

tional measures of resilience. However, current quantitative de-

scriptions tend to be restricted to the foundational form of the

concept: persistence resilience. We propose a classification of

modern notions of social-ecological resilience from a multi-agent-

environment perspective. This aims at operationalization in a

complex systems framework, including the persistence, adapta-

tion and transformation aspects of resilience, normativity related

to desirable system function, first- vs. second-order and specific

vs. general resilience. For example, we discuss the use of the

Topology of Sustainable Management Framework. Developing the

mathematics of resilience along these lines would not only make

social-ecological resilience more applicable to data and models,

but could also conceptually advance resilience thinking.
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the properties of even relatively simple dynamical systems includ -
ing nonlinearity, multistability, bifurcations and chaos (Lorenz
1963). From these insights, the basal understanding of resilience
can be summarized as “the magnitude of disturbance that can be
tolerated before a socioecological system (SES) moves to a differ -
ent region of state space controlled by a different set of process-
es” (Carpenter et al. 2001, p. 765).

This classical definition of resilience resonated well beyond
the area of theoretical research and translated into a concept of
practical value for policy makers and participatory research en -
deav ours. Thus, “more liberal definition(s)” of resilience emerged
in this context such as the “capacity of a system to absorb distur -
bance and reorganize while undergoing change so as to still retain
essen tially the same function, structure, identity, and feedbacks“
(Schef fer 2009, p.357). Eventually Folke et al. (2010) termed the
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integrat ed perspective of persistence, adaptation and transforma -
tion as “resilience thinking” based on Walker et al.’s (2004) semi -
nal intro duction of this triad of terms. This framework includes
the spectrum from specific resilience of “what to what” (Carpen-
ter et al. 2001) to general resilience (Carpenter et al. 2012). Addi -
tionally, Schneider and Vogt (2017, p.179, in this issue) enrich this
picture by distinguishing resilience of first-order associated to a
specific system or actor from resilience of second-order that ad-
ditionally encompasses the interactions of first-order resiliences
of multiple systems or actors.

These extended definitions of SES resilience tend to use com-
plex systems language metaphorically rather than focussing on
operational measures and mathematical understanding. The pur-
pose of this contribution is to argue for reconnecting these resil -
ience metaphors to their foundations in complex systems theory.
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MAGIC SEVEN: “HOW CAN DESIGNERS BE SUPPORTED 

IN DEVELOPING CONTEMPORARY, RESILIENT DESIGNS?”

Resilience factors account for our ability to react to unforeseeable developments. For the project Magic Seven,

these were transferred to design: a creative range of questions was devised to inspire designers to think outside the box, think for the long haul, and 

incorporate incalculable courses of action into their designs. In the exhibition, the seven principles (adaptiveness, fault tolerance, modularity,

longevity, assumption of unpredictability, diversity, self-learning ability) were illustrated by seven forks. The three-headed fork 

in the front center of the picture symbolizes alternative courses of action and stands for the diversity principle.

EXHIBIT SURVIVING THE FUTURE –
RESILIENCE & DESIGN (2016)
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We believe that this agenda will serve to streamline communica -
tion on resilience across disciplines, help to avoid misunderstand -
ings and improve the applicability of SES resilience concepts. In
perspective, it will allow for devising useful quantitative measures
capturing also more subtle aspects of SES resilience that are im-
portant for empirical measurements and applications to comput -
er simulation models of SES across scales, for example, for use
in advising policy makers. Beyond arguing for these more practi -
cal benefits of quantification and formalization, we follow the rea-
soning of Carpenter et al. (2001, p.767) that a theory’s “success is
measured by the utility of the concepts in terms of their ability to
influence the research topics chosen by scientists and stimulate
productive hypotheses”, and “progress in the definition of con-
cepts is central to advancement of science”.

Persistence Resilience: Rooted in a Complex
Systems Perspective

The persistence aspect of SES resilience is the most formalized
among the various other notions such as adaptation and trans-
formation resilience. It corresponds to the foundational dynami -
cal systems understanding of ecological resilience (Holling 1973):
“the magnitude of disturbance a system can tolerate before it
moves into a different (region of) state (space)” (Scheffer 2009,
p.357). In this view, the state of a system is formally described by
a set of state variables (see dark green axes in figure 1), where the
state at a particular time corresponds to a point or state vector in
a potentially high-dimensional state space. The system state evolves
in time along a trajectory following prescribed deterministic or
stochastic rules.

In what are often called complex dynamical systems, multiple
attractors can coexist in state space implying multistability, that
is, the system can evolve towards alternative attractors depending
on in which basin of attraction the initial system state lies. For ex-
ample, in the domain of ecological resilience, turbid and clear at-
tracting states of a lake can coexist in state space (Scheffer 2009).
This property of multistability is central to formal definitions of
persistence resilience and is captured visually by the so-called ball-
and-cup diagram (figure1a). The ball symbolizes the current sys-
tem state. The minima of the stability landscape correspond to
fixed point attractors. In analogy to a ball rolling along a hilly land-
scape, the cups or valleys depict the attractors’ basins of attraction.

Generally, mathematical descriptions of persistence resilience
build upon this picture of a dynamical system evolving in a state
space with multiple attractors. A perturbation, shock or distur-
bance is then often seen as a sudden shift of the system state away
from dynamical equilibrium (i.e., with the system residing on an
attractor) induced by some external force. Measures of persistence
resilience can then be related to various dynamical and geometri -
cal properties of the attractor and its basin of attraction. Among
oth ers, operational measures of persistence resilience can be de -
rived from the speed of return to the attractor after small pertur -
bations (so-called engineering resilience related to linear stability con-

cepts in dynamical systems theory, see Pimm 1984, Anderies et al.
2013), the attractors’ distance to its basin boundary (Klinshov et al.
2015), the volume of the basin of attraction (Scheffer et al. 2001,
Menck et al. 2013), or combinations thereof (Mitra et al. 2015, Hell-
mann et al. 2016). Recent work on early warning signals for criti -
cal transitions in SES (Scheffer et al. 2009) exemplifies a fruitful
application of these and related mathematical formalizations of
persistence resilience.

Resilience Thinking: Modern Concepts of 
Social-Ecological Resilience

While the formal study of persistence resilience is quite elaborate,
it has been recognized that accounting for persistence aspects is
not sufficient in a complex, nonlinear world. Walker et al. (2004)
extended the persistence notion of resilience with the aspects of
adaptation and transformation.

Adaptability usually refers to the capacity of a system to learn and
adjust its responses to changing external processes within the cur-
rent stability domain (Berkes et al. 2003); put in short “to manage
(persistence) resilience” (Walker et al. 2004). An important exten -
sion in the mental model has been made at this point.Whereas
persistence resilience can be defined in a dynamical systems mod -
el, the notion of adaptability requires thinking additionally of an
agent, an entity capable of choosing among a certain set of actions.
The distinction between the persistence and adaptation aspects
of resilience has been reflected already through the adaptive cycle
concept (Gunderson 2001) and in the seminal work by Holling
(1973). A view going beyond this notion describes adaptability as
the ability to maintain system functioning under a changing envi -
ronment (Martin-Breen and Anderies 2011). This definition allows
the system to modify its current attractor and the associated basin
of attraction as long as the functioning of the system is ensured.
What system function is considered as desirable here needs to be
specified in addition. This is a normative notion that needs to be
accounted for in advanced complex systems operationalizations
of resilience to be outlined in the next section. Similarly, the resil -
ience of “what to what” (Carpenter et al. 2001) has to be specified,
for example, the resilience of a certain system property or func-
tion for a certain attractor with respect to a specific (fast) change
of system state (shock) that may be either unforeseeable or antic-
ipable. Also (slow) changes in the functioning and dynamics of
the environment are possible influences a system can be resilient
against (via adaptation).

Transformability recognizes that even an adaptation view of SES
resilience is not sufficient and refers to the “capacity to create a
fundamentally new system when ecological, economic, or social
conditions make the existing system untenable” (Walker et al. 2004).
Along these lines, the notion of general resilience acknowledges
the fact that building specific resilience for one part of the system
does not guarantee increasing specific resilience in other parts or
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the whole system, or may even undermine general resilience of
the whole system. It therefore acknowledges the dangers of a too
narrow perspective, for example, focussing only on the specific
resilience of social or ecological subsystems of an SES (Carpen-
ter et al. 2012). Both recognize SES as complex adaptive systems
(Martin-Breen and Anderies 2011, Folke 2016). However, it remains
unclear what makes a system fundamentally new and what is the
exact difference between adaptation and transformation.

In summary, while persistence resilience is founded on determin -
istic concepts from the theory of dynamical systems (ultimate ly
going back to Newton’s classical mechanics), modern notions of
SES resilience such as those related to adaptability and transform -
ability, specific vs. general and first- vs. second-order resil ience at
their core require introducing agency into efforts towards much
needed mathematical operationalizations. In the subsequent sec-
tion, we contribute to this endeavour by classifying and discuss -
ing modern resilience notions from a multi-agent-environment
perspective.

Notions of Social-Ecological Resilience from a
Multi-Agent-Environment Perspective

In the following we outline how the resilience triad of persistence,
adaptation and transformation (Folke et al. 2010) could be math-
ematically operationalized on the foundation of multi-agent envi -
ronment systems that are well established in computer science
(Busoniu et al. 2008) and that show parallels to Ostrom’s concep -
tualization of SES (Ostrom 2009). We discuss normative notions
related to the desirability of system states and classifications such

as specific vs. general and first- vs. second-order resilience. How-
ever, we stress that it is beyond the scope of this article to fully
de velop the proposed agenda and that the following discussion
outlines only one of potentially many possible operationalizations.

We propose three levels of SES resilience complexity (figure 1).
The first level focuses on the persistence aspect described in the
previous section (figure1a). The term environment denotes the eco -
logical, social and economic stochastic or deterministic system dy-
namics without any agent behavior. The system function notion
of persistence resilience is connected to the desirability of system
states: the gray area in figure 1a indicates states that are perceived
as undesirable.

To describe the adaptation and transformation aspects of SES
resilience, a “ball” representing the system state alone is not suf-
ficient. Instead, moving to a second level of resilience complex-
ity by introducing an agent equipped with the agency to choose
among a set of actions is required (figure1b). Schellnhuber (1998,
1999) already introduced related ideas in the Earth system context
under the terms geocybernetics and Earth system analysis distinguish-
ing the ecosphere and anthroposphere (together constituting the en -
vironment) from the global subject (the agent). Similarly, Ander ies
et al. (2007) – inspired by Ostrom’s general framework to study SES
(Ostrom 2009) – take a single-agent-environment perspective to
study SES following a robustness approach. Introducing an agent
extends the environment of the persistence resilience case to an
agent-environment interface and simultaneously to a decision prob-
lem of what action to choose given a history of system observations.
Any decision-making framework requires stating the choices or
actions available to the decision maker and a criterion to evaluate
the decisions, often called either rewards, utility or costs associat -
ed with the actions (Steele and Stefánsson 2016). With the agent’s >

Three levels of increasing resilience complexity: dynamical system (environment)(A), 
agent-environment interface (B), multi-agent-environment interface (C).
FIGURE 1:
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strategy or policy we refer to the rule describing what action to ap-
ply given a history of observations. Fixing a (default) strategy, this
system can be described equivalently to the dynamical systems
case (first level of resilience complexity, figure1a), that is, account-
ing for persistence resilience is also applicable here. This is visu -
alized by the “default” flow in figure 1b. Hence, a change of strat-
egy is equivalent to a change of the stability landscape in the ball-
and-cup picture. To see the correspondence of the latter and the
agent-environment view, imagine the agent climbing a hill (i. e.,
applying management deviating from the default strategy) in the
stability landscape along a specific direction in state space. The
agent’s movement is equally well described by a different land-
scape in the ball-and-cup picture, in which the ball (now repre-
senting the agent) glides downhill in the same direction follow-
ing the default flow.

Introducing an agent allows us to consider meta-rules or algo -
rithms that govern how a strategy adjusts to the environment over
time. These meta-rules may be inspired by modern artificial intel -
ligence or machine learning algorithms (Sutton and Barto 1998)
combined with sustainability paradigms as proposed by Schelln -
huber (1998, 1999): optimization, pessimization, equitization, or
standardization. For example, the equitization paradigm bears
the maxim that the option space for future generations is kept
as open as possible by actions of the current generation for build-
ing resil ience (see also Vogt 2013). Practically this requires suit-
able meta-rules to govern multiple kinds of uncertainties and
risks (Renn 2008).

In terms of desirability, at least two options seem plausible:
1. one can either fix the desirability of a state, or 2. the evaluation
criterion of the decision context can be utilized. In the former case,
a state’s desirability is independent from the current strategy,
whereas in the latter case the desirability of a state results from
the reward the agents receive following that current strategy. The
Tolerable Windows Approach (Petschel-Held et al. 1999) and the Plan-
etary Boundaries Framework (Rockström et al. 2009, Steffen et al.
2015) are examples of a division of state space into desirable and
undesirable states in the sustainability context. While the desir-
ability of states depends on normative judgement, this does not
necessarily hold for SES resilience, since an undesirable state may
be resilient as well (Carpenter et al. 2001).

The third level of resilience complexity extends the agent-en-
vironment further to a multi-agent-environment system (figure
1c, Busoniu et al. 2008). While all characteristics of the agent-
envi ronment interface discussed above apply, the multi-agent
aspect allows for the possibility of emergent phenomena (Sawyer
2005). It further emphasizes the potentially conflicting interests
of the agents, visualized by the distinct individual desirability
regions in state space.

In the following we discuss how some of the modern notions
of social-ecological resilience integrate into the proposed three
levels of resilience complexity (see table 1 for an overview).  

Adaptation and transformation. Folke et al. (2010, p. 2) describe
adaptability as the “capacity of a SES to learn, combine experience

and knowledge, adjust its responses to changing external drivers
and internal processes, and continue developing within the cur-
rent stability domain or basin of attraction”. Transformability is
described as the “capacity to transform the stability landscape it-
self”. In our view both aspects can only be treated either in the
second or third level of resilience complexity: the agent-environ-
ment or the multi-agent-environment case, in which the agents
use an internal meta-rule or algorithm to derive the actual rule
(strategy) describing what action to apply given a history of obser -
vations. Typically these algorithms are constantly changing their
internal variables, representing implicitly the agents’ world mod-
el, as a reaction to the observations over time.

Interpreting these definitions of adaptation and transforma-
tion in their most narrow sense, any change of the internal vari-
ables of the meta-rule or learning algorithm is an adaptation, as
long as it does not change the actual strategy. If the strategy
chang es one has to speak of a transformation, essentially because
a change of strategy is equivalently describable by a change of the
stability landscape.

As an alternative interpretation one may include into adapta -
tions changes in the strategies altering the corresponding stabil -
ity landscape smoothly, that is, those changes that vary the shape
(e.g., height, extent) or location of the minimum without disrupt-
ing the structure of this landscape. In contrast, a transformation
could be defined as strategy changes that alter the stability land-
scape qualitatively: destruction of old or creation of new attractors.
Technically, these situations are commonly referred to as bifurca -
tions, tipping points or critical transitions (Scheffer 2009). This
in terpretation focuses on the fact that a transformation is perceived
as a “fundamental” change (Walker et al. 2004, Folke et al. 2010).n

A further distinction between adaptation and transformation
could build on the dialectic micro-macro relationship between an
agent and the social structure connecting agents in the multi-agent-
environment perspective. An adaptation would correspond to strat-
egy changes of an individual that do not alter a suitable macroscop-
ic description of the multi-agent system including the complex
network structure of social-ecological interactions, whereas trans-
formations are observable qualitatively on the macroscopic level
(Lade et al. 2017). As a simple example, one microscopic variable
could be the wealth of an agent, while the macroscopic observable
is average wealth.

ENVIRONMENT AGENT- MULTI-AGENT-
ENVIRONMENT ENVIRONMENT

type persistence persistence persistence
adaptation adaptation

transformation transformation

scale first-order first-order
second-order

scope specific specific specific
general general general

TABLE 1: Applicability of resilience concepts (rows) to our proposed levels of
resilience complexity (columns).
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Specific and general resilience. Specific resilience refers to resil -
ience of “what to what” (Carpenter et al. 2001) whereas general
re silience is described as “the capacity of social-ecological sys-
tems to adapt or transform in response to unfamiliar or unknown
shocks” (Carpenter et al. 2012, p. 3251). We here interpret specif -
ic resilience as the capacity to absorb shocks along a specific di-
mension of the state space (or a more general subset of dimen-
sions) including fast (states) and slow variables (parameters). For
example, while we illustrated the persistence aspect with only one
dimension in state space (figure 1a), the agent-environment inter -
faces (figure1b,c) are visualized with two dimensions. Depend-
ing on context, both projections may be radical simplifications of
the actual high dimensional state space. Building resilience for a
specific subset of these state space dimensions could correspond
to increasing the basin of attraction only
along these dimensions.

General resilience, however, acknowl-
edges the importance of the total size of the
basin of attraction, that is, where the direc-
tion of the shocks is not specified. Further
it takes into account the in teractions be-
tween different state space dimensions,
that is, wheth er the increase of the basin of
attraction in one dimension may change
the basin’s size in other dimensions.With
this interpretation one can distinguish spe-
cific and general resilience in all levels of
resilience complexity presented in figure
1 (see also table 1).

Resilience of first and second order. In anal-
ogy to the distinction of specific and gen-
eral resilience, Schneider and Vogt (2017,
p.179, in this issue) discuss the notions of
resilience of first and second order. They
define resilience of first order for a specif -
ic system, entity, institution, or actor. Re-
silience of second order takes a perspec-
tive to include the relationships of a spe -
cif ic entity to further actors, structures,
and contexts.We interpret the focus of the
con cept of resilience order to be the actor
or agent. Thus we suggest formalizing re-
silience of first order as the resilience as-
sociated with one agent (figure 1b). Cor-
respondingly, the resilience of sec ond or-
der asks how the resilience of one agent
affects the resil iences of other agents in a
multi-agent-environment system (see fig-

Illustration of the mathematical
Topology of Sustainable Management Framework

formalizing resilience based on an agent-environ-
ment perspective(modified from Heitzig et al. 2016).

FIGURE 2:

ure1c). Thus, building resilience of second order demands build-
ing resilience of first order of individual agents in a mutual ly ben-
eficial way. It is an interesting research question to ask what prop-
erties of the meta-rules or adaptation algorithms are required for
this interpretation of second-order resilience.

Example: Topology of Sustainable Management
Framework

To give a concrete example how our proposed classification of re -
silience complexities can bring new insights by a rigorous math-
ematical treatment, we briefly introduce the Topology of Sustain-
able Management Framework (Heitzig et al. 2016). Extending upon

© Nora Molkenthin
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related efforts to formalize resilience using viability theory (Def -
fu  ant and Gilbert 2011), Heitzig et al. (2016) show how a classi-
fication of qualitatively different regions in system state space
emerges from the following three ingredients: 1. environmental
dynamics under a default strategy, 2. available management op-
tions the agent can choose from, and 3. the division of state space
into desirable (“sunny”) and undesirable (“dark”) regions. Hence,
it uses an agent-environment interface perspective (second lev-
el of resilience complexity) with a default strategy and fixed state
desirability (figure 2). The various elements of this picture meta -
phorically illustrate the underlying mathematical Topology of Sus-
tainable Management Framework with the waterstream correspond -
ing to the stability landscape under the default policy, similarly as
in figure 1. The interested reader is referred to the original publi -
cation for the mathematical details. 

For example, the shelter is the sunny set of states in which the
agent can remain forever without any management. Both in the

glade and the lake it is possible to reach the shelter but the agent
has to apply management. From the lake it has to cross through
the dark region, whereas from the glade it can reach the shelter
without leaving the sunny region. In other regions, such as the
backwaters, the shelter cannot be reached, but the agent can re-
main in the sunny region by constant or repeated management.
These regions emerge from the allowed rule changes describing
how the agent is able to adapt to and manage the environment.n

In the Topology of Sustainable Management Framework, the de-
fault action is perceived as preferable to the other available man-
agement options. The rationale is that non-default actions are at
risk of becoming inoperative, for example, due to external shocks.
Hence, the default is considered as a safer option. Several dilem-
mas arise from this reasoning: for example, starting in the lake
the agent can either remain in the sunny region under constant
and potentially risky management or choose to cross the dark re -
gion to reach the shelter, where no management is needed. Note
that while the mathematical framework serves to highlight these
dilemmas, resolving them requires deep ethical considerations
taking into account questions of justice, freedom and identity (Vogt
2013). See Heitzig et al. (2016) for a discussion of further dilem-
mas and various example systems to which the framework has
been applied.

Generalizing from measures of persistence resilience discussed
above, characteristics of these regions such as volume, depth, dis-
tance from the boundary or return rate could be interpreted as a
sequence of operational measures capturing both persistence and
adaptation aspects of SES resilience. For example, shelter resilience
could correspond to the volume of the shelter region and indicate
the size of a shock the system is capable to absorb to remain in the
shelter without using management. Moreover, assuming the sys-
tem continues to reside in the shelter or glade, glade resilience could
correspond to the size of the glade plus the size of the shelter. This
measure would indicate the magnitude of shock the system is cap -
able to absorb under the potential need to apply management to
return to the shelter without leaving the sunny region. Note that
in this particular example all adaptation and transformation as-
pects of resilience have been incorporated into the classification
of state space by emphasis on the default policy flow and possi-
ble management options deviating from the default action.

The point we would like to make with these examples is that
even from fairly simple ingredients a rich and sometimes unin -
tu itive picture of resilience may emerge under formal treatment
with broad potential for applications. Future mathematical work
could further extend the Topology of Sustainable Management Frame-
work to accommodate more advanced resilience dimensions such
as specific vs. general and first- vs. second-order resilience, for ex-
ample, by including multiple agents with possibly distinct man-
agement options and desirability criteria.

Discussion: Earth System Resilience in the 
Anthropocene

Reconnecting modern concepts of social-ecological resilience with
their roots in complex systems theory is relevant for analytically
addressing global change problems of the Anthropocene (Haber
et al. 2016). Viewed from a resilience angle, the SDGs can be in-
terpreted as normative criteria defining desirable biophysical, so -
cial and economic Earth system states (Folke et al. 2016). The Plan-
etary Boundaries (Rockström et al. 2009, Steffen et al. 2015) and
related concepts such as Doughnut Economics (Raworth 2012) ar-
gue for biosphere stewardship to maintain a safe (and just) oper -

Reconnecting modern concepts of social-ecological resilience with their roots 
in complex systems theory, based on a multi-agent-environment perspective, 
is relevant for analytically addressing global change problems of the Anthropocene.
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at ing space (Vogt 2013, Ekardt 2016). This is where the planetary
SES is seen as resilient and where development towards the SDGs
is argued to be possible. Refined insights into principles for ac-
tively building resilience and their preconditions would be useful
in this context. To this end, Biggs et al. (2015) summarize seven
principles for building resilience including its per sis tence, adap-
tation, and transformation aspects: 1. maintain diver si ty and re-
dundancy, 2. manage connectivity, 3. manage slow var iables and
feedbacks, 4. foster complex adaptive systems think ing,5. encour -
age learning, 6. broaden participation, and 7. promote polycentric
governance. These principles for building resil ience can also be
viewed in their inverse forms as principles for undermining resil -
ience of undesirable system states and structures.

Operational measures of the various dimensions of resilience
as outlined above including persistence, adaptation, transforma -
tion, first- vs. second-order and specific vs. general resilience could
be employed for systematically evaluating these seven and more
principles for building (or undermining) resilience and their de-
tailed preconditions. Such an investigation would be supported
by computer simulation models of SES of interest (Schlüter et al.
2012) but could also integrate various sources of empirical data.
Using this approach, the validity of the principles for building
re silience can be assessed in different situations, including pos-
sible unintended side effects induced by applying them.

Most analytical studies on the resilience of SES and the asso -
ciated principles for building resilience have been conducted on
local and regional scales. But a key characteristic of the Anthropo -
cene and the inherent great social and environmental challenges
are ever densifying global networks of teleconnected and tightly
intertwined social-ecological processes. Therefore, computer sim-
ulation models as well as more stylized conceptual models are
needed to operationally study resilience and principles for build-
ing resilience for the planetary SES that capture coevolv ing and
networked biophysical, socio-economic and socio-cultural dynam-
ics (Verburg et al. 2016, Donges et al. 2017). Applied in this set-
ting, operational measures of resilience dimen  sions will serve as
valuable tools for Earth system analysis (Schelln huber et al. 2004).

As a recent example, it has been argued that to meet the Paris
climate agreement (UNFCCC 2015) a controlled collapse of the
planetary-scale fossil fuel sector must be induced for triggering
a rapid global decarbonization transformation (Schellnhu ber et
al. 2016) as part of a concerted broader sustainability transforma -
tion (WBGU 2011). From a scientific perspective, this agenda calls
for a deeper understanding of the apparently massive specific re -
silience of this part of the global SES, the associated general plan-
etary SES resilience and principles for undermining this specif-
ic resilience without harmful and unwanted side effects such as
economic crises. Reconnecting modern concepts from resilience
thinking to their formal complex systems foundations through a
multi-agent-environment perspective as proposed in this article
could make a useful contribution to this endeavour by providing
operational measures of various resilience dimensions and, more
fundamentally, by shedding light on the underlying structure of
modern resilience concepts and their interconnections. 
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3.2 Sustainable management of complex social-ecological sys-
tems

This section addresses the challenge of managing complex social-
ecological systems so that they remain within the planetary bound-
aries [Rockström et al., 2009] and at the same time respect impor-
tant social foundations [Raworth, 2017].

In the first paper, “Topology of sustainable management of dy-
namical systems with desirable states: from defining planetary
boundaries to safe operating spaces in the Earth system” [Heitzig
et al., 2016], we developed a mathematical theory of the qualitative
topology of sustainable management.

This framework was applied numerically in “From lakes and
glades to viability algorithms: Automatic classification of system
states according to the Topology of Sustainable Management”
[Kittel et al., 2017b, not included in this reader] to a very stylized
World-Earth model. Furthermore, we studied the difference be-
tween one-time versus permanent management.

An alternative approach to managing social-ecological systems is
machine learning. In “Deep reinforcement learning in World-Earth
system models to discover sustainable management strategies”
[Strnad et al., 2019] we explored this methodology for finding sus-
tainable management trajectories.

Proposals for management of the Earth system usually follow
one of three policy paradigms: the paradigm of sustainability, the
concept of the safe operating space or the optimization of economic
welfare [Schellnhuber, 1998, Petschel-Held et al., 1999]. The study
“When optimization for governing human-environment tipping
elements is neither sustainable nor safe” [Barfuss et al., 2018] finds
that none of these policy paradigms guarantees fulfilling require-
ments imposed by another paradigm and derive simple heuristics
for the conditions under which these trade-offs occur. It is shown
that the absence of such a master paradigm is of special relevance
for governing real-world tipping systems such as climate, fisheries,
and farming, which may reside in a parameter regime where eco-
nomic optimization is neither sustainable nor safe.

Finally, we close with “A Thought Experiment on Sustainable
Management of the Earth System” [Heitzig et al., 2018]. Here we
analysed a possible management dilemma that humanity might
be currently faced with in dealing with current environmental
challenges of the Anthropocene and compared various theoretical
approaches for analysing it.
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Abstract. To keep the Earth system in a desirable region of its state space, such as defined by the recently

suggested “tolerable environment and development window”, “guardrails”, “planetary boundaries”, or “safe (and

just) operating space for humanity”, one needs to understand not only the quantitative internal dynamics of the

system and the available options for influencing it (management) but also the structure of the system’s state space

with regard to certain qualitative differences. Important questions are, which state space regions can be reached

from which others with or without leaving the desirable region, which regions are in a variety of senses “safe”

to stay in when management options might break away, and which qualitative decision problems may occur as a

consequence of this topological structure?

In this article, we develop a mathematical theory of the qualitative topology of the state space of a dynamical

system with management options and desirable states, as a complement to the existing literature on optimal

control which is more focussed on quantitative optimization and is much applied in both the engineering and

the integrated assessment literature. We suggest a certain terminology for the various resulting regions of the

state space and perform a detailed formal classification of the possible states with respect to the possibility of

avoiding or leaving the undesired region. Our results indicate that, before performing some form of quantitative

optimization such as of indicators of human well-being for achieving certain sustainable development goals, a

sustainable and resilient management of the Earth system may require decisions of a more discrete type that

come in the form of several dilemmas, e.g. choosing between eventual safety and uninterrupted desirability, or

between uninterrupted safety and larger flexibility.

We illustrate the concepts and dilemmas drawing on conceptual models from climate science, ecology, coevo-

lutionary Earth system modelling, economics, and classical mechanics, and discuss their potential relevance for

the climate and sustainability debate, in particular suggesting several levels of planetary boundaries of qualita-

tively increasing safety.
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1 Introduction

The sustainable management of systems mainly governed

by internal dynamics for which one desires to stay in

a certain region of their state space, such as a “tolera-

ble environment & development (E & D) window” or within

“guardrails” in a model of the Earth system (Schellnhuber,

1998; Petschel-Held et al., 1999; Bruckner and Zickfeld,

1998), requires first and foremost an understanding of the

topology of the system’s state space in terms of what regions

are in some sense “safe” to stay in, and to what qualitative

degree, and which of these regions can be reached with some

degree of safety from which other regions, either by the in-

ternal (“default”) dynamics or by some alternative dynam-

ics influenced by some form of management. In the con-

text of Earth system analysis for studying anthropogenic cli-

mate change (Schellnhuber, 1998, 1999), management op-

tions may correspond to global climate policies for mitiga-

tion of greenhouse gas emissions (IPCC, 2014) or techno-

logical interventions such as geoengineering (Vaughan and

Lenton, 2011) and much debated criteria for desirability in-

clude the resemblance of a Holocene-like state or the pro-

vision of certain levels of human well-being. In this setting,

it may be very hard to advance the definition of meaningful

“planetary boundaries” and a corresponding “safe operating

space for humanity” (Rockström et al., 2009a; Steffen et al.,

2015) and relate them to sustainable development goals with-

out such an in-depth analysis.

Also, the question of whether it suffices to influence the

system by active management for only a limited time to

reach a safe region, or whether it might be necessary to re-

peat active management indefinitely or even continue it un-

interruptedly in order to avoid undesired state space regions,

which is closely related to the “sustainability paradigms” of

Schellnhuber (1998), seems quite relevant in view of urgent

problems such as the climate policy debate. For example, if

suitable climate change mitigation policies such as certain

forms of energy market regulation can transform the eco-

nomic system in a way that allows one to eventually deregu-

late the market again, then for how long can one delay mit-

igation until this feature is lost and only permanent regula-

tion can help? Or, if certain adaptation or geoengineering op-

tions might be cheaper than mitigation but require an unin-

terrupted management or lead to a less well-known region

of state space (Kleidon and Renner, 2013), which of these

qualitatively different properties is preferable?

We will see that such questions about a “safe” or “safe

and just operating space” (Rockström et al., 2009b; Raworth,

2012; Scheffer et al., 2015; Carpenter et al., 2015) may lead

to decision dilemmas that cannot as easily be analysed in a

purely optimization-based framework, but that are highly rel-

evant for the design of resilient Earth system management

strategies. A summary of these dilemmas is contained in Ta-

ble 1 (the possible examples from Earth system management

mentioned there are discussed in the next section).

The paradigm of optimal control, which is much applied

in the engineering, on the one hand does not provide suf-

ficient concepts for such a qualitative analysis and on the

other hand typically requires quite a lot of additional knowl-

edge, in particular, some or other form of quantitative eval-

uation of states, e.g. in terms of indicators of human well-

being. Of course, the integrated assessment literature, al-

though also using optimization as a basic tool, has long real-

ized that the spatiotemporal distribution of wealth and the

diversity and uncertainty of impacts imply that the prob-

lem is hard to frame in terms of a single objective function

and has used several techniques to deal with this multi-issue

multi-agent decision problem, including certainty-equivalent

discount rates and hyperbolic discounting (Dasgupta, 2008),

cost–efficiency instead of cost–benefit analyses (Edenhofer

et al., 2010), lexicographic preferences (Ayres et al., 2001),

and many-objective decision making (Singh et al., 2015), to

name only a few, but although qualitative constraints appear

in many of them, the actual analyses then typically still focus

on quantitative assessments.

In this article, we will complement the above-mentioned

set of assessment tools by deriving in a purely topologi-

cal way a thorough and precise qualitative classification of

the possible states of a system with respect to the possibil-

ity of avoiding or leaving some given undesired region by

means of some given management options. Our results in-

dicate that in addition to (or maybe rather before) perform-

ing some form of quantitative (constrained) optimization, the

sustainable and resilient management of a system may re-

quire decisions of a more discrete type, e.g. choosing be-

tween eventual safety and permanent desirability, or between

permanent safety and increasing future options. This appears

even more so in the presence of strong nonlinearities, mul-

tistable regimes, bifurcations, and tipping elements (Lenton

et al., 2008; Schellnhuber, 2009; Keller et al., 2005), where

small state changes due to random perturbations or deliberate

management may not only have large consequences but can

also lead to qualitative and possibly irreversible changes.

To indicate the wide scope of applicability of our con-

cepts in various subdisciplines of Earth system science, we

illustrate the concepts and dilemmas with conceptual models

from climate science, ecology, coevolutionary Earth system

modelling, economics, and classical mechanics.

In contrast to the somewhat related but more formal ap-

proach of sequential decision problems in discrete-time sys-

tems (Botta et al., 2015), we focus on the more easily ap-

plicable class of continuous-time systems and their mod-

els here. Our classification is based on a distinction be-

tween default and alternative trajectories of a system, and

suitably adapted reachability concepts from control theory

and the important but vast field of viability theory (Aubin,

2009; Aubin et al., 2011; Aubin and Saint-Pierre, 2007;

Frankowska and Quincampoix, 1990; Martin, 2004; Rougé

et al., 2013). Since physical models of global-scale processes

or other macroscopic systems are usually of a statistical
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Table 1. Preview of dilemma types discussed in the article.

Name Option 1 Option 2 Possible example

“Glade” dilemma higher desirability/flexibility safety adaptation/mitigation

“Lake” dilemma uninterrupted desirability eventual safety great transformation

“Port” dilemma higher flexibility higher desirability land-use change

“Harbour” dilemma uninterrupted desirability eventually higher desirability/flexibility space colonization

“Dock” dilemma uninterrupted safety eventually higher desirability/flexibility new technologies

physics nature in the sense that they represent the aggregate

effects of many micro-scale processes by suitable approxi-

mations, their proper interpretation typically requires one to

expect small (actually or seemingly) random perturbations.

We take this into account here by strengthening the usual no-

tion of reachability to one of stable reachability, and by re-

quiring the featured subsets of state space to be topologically

open (instead of closed) sets, so that infinitesimal perturba-

tions cannot kick the system out of them.

In the next subsection (“Metaphorical framework”), we

will briefly summarize our main concepts with the help of a

metaphorical illustration, before introducing the correspond-

ing formal notation in Sect. 2 in a concise way, reserv-

ing a more detailed formal treatment for Appendix A. The

framework is then exemplified at the hand of several low-

dimensional, conceptual models from various subdisciplines

of Earth system science including climate science, ecology,

and coevolutionary social–environmental Earth system mod-

elling (Sect. 3) in order to indicate the wide scope of appli-

cability of our concepts. A thorough analysis of more realis-

tic and thus higher-dimensional models of the Earth system

is something we have to leave for future studies since that

would require further improvement of the numerical meth-

ods and algorithms employed for finding region boundaries.

We conclude with a discussion and outlook in Sect. 4.

1.1 Metaphorical framework

As a start, let us take the common metaphor that “we’re all

in the same boat” literally and represent the state of the Earth

system with all its natural and socio-economic parts at each

point in time by a single small boat floating or being rowed

somewhere on a rather complex system of waters such as in

Fig. 1.

The boat can only be on water, not on land, and will gen-

erally float along with the stream that represents the inherent

dynamics of the Earth system over hundreds and thousands

of years (the “default trajectory”), but it may also be rowed

in more or less different directions depending on how strong

the current of the stream is, and this possibility of rowing rep-

resents humankind’s agency in deliberately influencing the

Earth system’s course to some extent by some or other form

of what we will call “management” below. Let us assume

that the main qualitative distinction with regard to where hu-

manity wants their boat to be is represented by a division of

Figure 1. Metaphorical summary of concepts introduced in Sect.

1.1 (“Metaphorical framework”) inspired by Schellnhuber (1998).

It depicts a river flowing from the mountains to the sea while go-

ing through sunny (left) and dark parts (right) where humanity can

float and row on a boat. In the shelter, no rowing is needed to re-

main in the sun. One can row against the stream direction in slowly

flowing parts, shown with long thin arrows, but in fast parts marked

with swirls this is not possible. This setting gives rise to a number

of qualitatively different regions of the system’s state space that can

be found in any manageable dynamical system as well: upstream

regions such as glades and lakes from where the shelter can be

reached, downstream regions such as the backwaters from where

one can at best stay in the sun by management, and several types of

worse regions, all labelled here and explained in the text. See also

Figs. 2 and 3.
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the whole region into a desirable, “sunny” region on the left

and an undesirable, “dark” region on the right, both contain-

ing several parts of the waters that may be connected in any

imaginable ways, and with the natural water flow possibly

drawing the boat back and forth between these two regions.

The sunny region is meant to consist of all those possible

states of the natural and socio-economic parts of the Earth

system in which some generally agreed environmental and

living standards are met, such as those defined by the human

rights charter or the sustainable development goals (global

goals) recently adopted by the United Nations. An alterna-

tive definition of the sunny region has been put forward in

the planetary boundary framework (Rockström et al., 2009a;

Steffen et al., 2015), where states lying within the corridor

of Earth system variability during the Holocene that human

societies are adapted to are considered as desirable.

We will show in this article that in such a setting, no mat-

ter how the waters look exactly, the general situation is in

a certain sense always equivalent to the situation depicted

in Fig. 1. There will in general be a certain sunny water re-

gion where one does not need to row at all in order to stay

in the sun forever but can simply lean back and let the boat

float around inside that region. In the picture, this region is

the top-left tranquil tarn, but in general this region may also

consist of several disconnected parts which we will call the

shelters to emphasize their desirable and safe nature. Indeed,

we will argue below that these shelters may be the most nat-

ural candidates for being called a “safe and just operating

space for humanity”, only that we may not yet be in them.

In the Earth system, there may be several such shelters, one

of which might correspond to resilient states of the world

(Folke et al., 2010) where humanity lives reconnected to the

biosphere (Folke et al., 2011) and no active intervention or

constant large-scale management is needed.

Connected to the shelter(s), there will in general also be

other parts of the sunny region where it would not be safe to

just lean back since the flow would then draw the boat into

the dark after some time, but from where the shelters can still

be reached by some suitable rowing, as show to the left of the

“danger” sign in the image. For their “almost-safe” character,

we will call such regions glades. If the glade is for some

reason more desirable or offers more flexibility in terms of

where one may row, one may face a dilemma when in a glade,

i.e. a qualitative decision problem, namely whether to prefer

staying in the safety of the shelter or in the more desirable

but unsafe glade.

The shelters may also be reached by rowing from some

places within the dark region (e.g. to the right of the “danger”

sign) or through such a dark region from some other sunny

places (such as those above the “keep out” sign). Among

these latter sunny places from where the shelters can be

reached only through the dark, there will generally be some

places where one may alternatively stay forever in the sun

by continuous rowing instead of passing through the dark

and leaning back eventually. Such special places as the one

above the “keep out” sign will be called lakes here, and they

are characterized by a moderate current towards a dark place

that one can row against and by the decision dilemma that

results from the question of whether one should indeed do so

or rather row to a shelter through the dark.

All these regions together will be called the upstream re-

gion for reasons that should become clear soon. In any sys-

tem’s state space, the upstream consists of all states from

which the shelters can be reached by management, and it is

partitioned into one or several shelters, glades, dark upstream

parts, lakes, and some remaining sunny upstream parts where

it is not possible to stay in the sun forever. In Fig. 1, the up-

stream ends where the rapids left of the “keep out” sign be-

gin since there the stream becomes so strong that it becomes

impossible to row against it in order to eventually reach a

shelter. Once the boat has left the upstream via such a rapid,

there is no hope of leaning back eventually and staying in

the sun, and for this reason the borders of the upstream may

be called the “no-regrets planetary boundaries”, forming a

middle level of a hierarchy of planetary boundaries we will

suggest in Sect. 4.

Further down the stream there will typically be places

where it is still possible to stay in the sun forever, only that

one has to row over and over again to do so, such as in the

slow-moving side branch below the “keep out” sign in the

picture. Such regions, called backwaters here, are similar to

lakes, only without the option of rowing to a shelter, so that

the lake dilemma does not occur since the only chance one

has is to row against the slow current to stay in the backwa-

ter. While the upstream was defined by being able to reach

a shelter, the downstream is now defined as all places from

where a backwater but not a shelter can be reached, includ-

ing the backwaters, some dark parts such as the slow-moving

dark part just right of the backwater in the picture, and maybe

some remaining sunny downstream parts from where one

may reach a backwater only through the dark. An example

of a backwater could be a “machine world” where humanity

can fully control nature to its very minute detail. While they

can stay within the sunny region for infinite time through this

management, there is no way of reaching a shelter anymore

because the ecosystem has been changed irreversibly.

The waterfall in Fig. 1 indicates that besides the upstream

and downstream regions, where it is possible to stay in the

sun eventually, there will in general be further, less hopeful

places the system may be in, from where one cannot avoid

entering the dark over and over again. In some of those, one

can at least make sure that one also spends some time in the

sun over and over again, as depicted by the kayak in the pic-

ture. Since this is typically connected to some form of cyclic

motion, we will call such regions eddies. In some eddies, fail-

ing to row correctly may push the boat into an even less de-

sirable region, called an abyss, from where one can no longer

avoid ending up in the dark forever eventually, as in the ring-

shaped abyss shown inside the eddy in the figure. Finally, the
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dark region from where there is no escape, depicted in the

centre of the abyss, will be called a trench.

This completes our main partitioning of the Earth system’s

or any other manageable system’s state space into qualita-

tively different regions: upstream and downstream, defined

by being able to reach shelters or backwaters; abysses, de-

fined by not being able to avoid ending up in a trench; and

eddies in between, defined by being at least able to switch

between sun and dark forever. Figure 2 summarizes all these

regions in the form of a decision tree, where one can identify

the region the system is in by answering a small number of

questions. That our partitioning is indeed complete and can

be given a suitable and unambiguous mathematical form for

all kinds of systems is shown in the next section.

While in Fig. 1, each of the introduced set of system states

is just one topologically connected region, in general most of

these sets are composed of several disjoint regions, so there

may be several shelters, glades, lakes, etc. On a finer level,

these may be analysed further by looking at which parts may

be reached from which other parts, and this leads to a finer,

hierarchical partition into ports, rapids, harbours, docks, etc.

and to several new types of dilemmas, as shown in Fig. 3.

All of the five types of dilemmas listed in Table 1 can

easily occur in the collective “management” or governance

of the Earth system by humanity. A glade dilemma may oc-

cur if adaptation is seen as preferable to mitigation for wel-

fare reasons but turns out to be a riskier option due to a

higher uncertainty of the corresponding climate impacts. A

lake dilemma can arise if a great transformation of the global

energy system towards a carbon-free economy would tem-

porarily lead to welfare losses in poorer countries. A port

dilemma may come from the option of increasing welfare

by extending industrial agriculture causing biodiversity loss

(decreasing flexibility) due to the related large-scale land-use

change. A harbour dilemma could occur in the future when

colonization of other planets (increasing flexibility) becomes

feasible but extremely costly. Finally, a dock dilemma arises

whenever a very promising new technology with some un-

known risks and side effects (such as genetically engineered

food production) could be introduced on a planetary scale.

2 Formal framework

We will now put all of the above on thorough mathematical

footing. Let us assume a manageable dynamical system with

desirable states, given by the following components:

i. a dynamical system with a state space X, default dy-

namics represented by a family of default trajecto-

ries τx(t), and some basic topology on X (e.g. the Eu-

clidean topology; see Appendix A1 for more detail);

ii. a notion of desirable states represented by an open set

X+⊆X, called the sunny region, whose complement

X−=X−X+ we call the dark;

iii. a notion of management options represented by a family

Mx of admissible trajectories µ for each x ∈X.

We assume that one can switch immediately to any trajec-

tory µ∈Mx whenever in state x. We say the system floats

when it follows a default trajectory, and that we may row the

system along any other admissible trajectory.

Note that although, formally, we consider deterministic

autonomous systems only, non-deterministic systems can

be incorporated by considering probability distributions as

states, time-delay systems can be treated similarly, and exter-

nally driven or otherwise explicitly time-dependent systems

can be covered by including time t as a variable with ṫ = 1

into the state vector. Also, if management involves some

form of inertia, e.g. if not the propelling vector v of a boat

but only its acceleration v̇ can be changed discontinuously,

the proper way to model this in our framework would be to

treat v as part of the state.

2.1 Qualitative distinction of regions with regard

to sustainable manageability of desirability

The main idea of the coarsest of our classifications of states

is to first identify (i) a safe region where management is un-

necessary, called the shelters S, and (ii) a less safe but larger

manageable region M where one can permanently avoid the

dark at least by management. Then we classify all states

with regard to whether and how X+, S, and M can be sta-

bly reached from the current state by management. For each

state, we ask the following questions. (iii) Can S be stably

reached, and if so, can the dark be avoided on the way? (iv) If

not, can M be stably reached? (v) If not, can we stably reach

X+ over and over again, or at least once again? We will see

that these criteria lead to a partition of state space into a “cas-

cade” consisting of five main regions: upstream U , down-

stream D, eddies E, abysses ϒ , and trenches 2. Each of

these will then be split up further into sets such as glades G,

lakes L, and backwaters W by asking further qualitative

questions. In choosing these figurative terms, we try to avoid

a too technically sounding language and rather extend the

useful and common metaphor of “flows” and “basins” in a

natural way without trying to match their common-language

meanings too accurately.

To acknowledge the fact that all real-world dynamics and

management will be subject to at least infinitesimal noise and

errors, we base the formal definition of these state space re-

gions on certain notions of invariant open kernel, sustain-

ability, and stable reachability, whose symbolic mathemat-

ical definitions and algebraic properties are detailed in Ap-

pendix A2.

2.2 Shelters, manageable region, upstream, and

downstream

The invariant open kernel of a set A⊆X, denoted Aι◦, is the

largest open subset of A that contains the default trajecto-
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Figure 2. Decision tree summarizing the partition of a manageable dynamical system’s state space with regard to stable reachability of the

desired region or the shelters (main cascade), and the finer partition of the manageable region. The colour scheme (grey undesired regions,

green upstream regions, yellow downstream regions, red eddies, and abysses, with lighter meaning better) is also used in the remaining

figures.

ries of all its own points. The shelters are the invariant open

kernel of the sunny region,

S =
(
X+

)ι◦
. (1)

S contains all sunny states whose default trajectories stay in

the sunny region X+ forever without any management even

when infinitesimal (or small enough) perturbations occur. In

other words, when inside S, one will “stably” stay in X+ by

default.

We call an open setA sustainable (in the basic sense of the

word, simply meaning that it can be sustained) iff it contains

an admissible trajectory for each of its points. The sustain-

able kernel of a set A⊆X, denoted AS , is the largest sus-

tainable open subset of A. We call the sustainable kernel of

the sunny region the manageable region:

M =
(
X+

)S
⊇ S. (2)

In other words, when insideM , one can stably stay in X+ by

management.

In Appendix A2, we introduce a suitable notion of stable

reachability to overcome two problems with the classical no-

tion of (plain) reachability known from control theory. For

now, let us assume we know what we mean when saying that

a state y or a set Y ⊆X is stably reachable from some state x

through some set A⊆X, denoted x A y or x A Y . Using

this notion of stable reachability for the choice A=X (other

choices of A will be used in the next section), we can now

define the upstream U as the set of states from where the

shelters S can be stably reached at all. Likewise, the down-

stream D consists of all states from which the manageable

region M but not the shelters can be stably reached:

U = ( XS)⊇ S, (3)

D = ( XM)− ( XS)= ( XM)−U ⊇M −U. (4)
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Figure 3. Illustration of port, harbour, and dock dilemmas intro-

duced in Sect. 1.1 (“Metaphorical framework”). As in Fig. 1, hu-

manity can float in and row a boat on a complex waterway. From

the upper port city (upper dark-blue region), one can get to some

unknown region to the left and to another, nicer port city (lower

dark blue) at the shore through a rapid (hatched blue) which cannot

be traversed in the other direction. This choice between desirabil-

ity and flexibility forms a port dilemma. The nicer port city has

two harbours (middle blue regions), of which the right one is more

desirable, and between which one can switch only through an unde-

sired region where pirates loom (circular area). Boats in the left har-

bour face the harbour dilemma of choosing between either avoiding

the undesired region by all means or eventually reaching a place of

higher desirability. Finally, in the left harbour there are two safe

docks (light-blue regions), of which the top one is more desirable,

and between which one can switch only through an unsafe part of

the harbour from which one may be drawn into the undesired region

if the engine fails. Boats in the bottom dock face the dock dilemma

of choosing between uninterrupted safety and eventual higher de-

sirability.

2.3 Trenches, abysses, eddies, and the main cascade

On the other, dark end of what we will call the main cascade,

we first define the trenches 2 as that region in the dark from

which one cannot stably reach the sunny region even once,

2=X−
(
 XX

+
)

(5)

(this concept approximately corresponds to the “catastrophe

domains” of Schellnhuber, 1998).

Now we turn to the region from where one cannot avoid

ending up in the trenches. We define the abysses ϒ as the

closure of this region, minus the trenches:

ϒ = {x ∈X|∀µ ∈Mx∃t>0 : µ(t) ∈2}−2. (6)

The closure is taken since even an infinitesimally small per-

turbation from a point in this closure can make the trenches

unavoidable.

Finally, the eddies E are the remainder of X, i.e. the part

from where the manageable region cannot be stably reached

but the trenches can be avoided:

E =X−U −D−ϒ −2

= (X− ( XM))∩ (X− (ϒ +2)). (7)

Thus, when in the eddies, even though one can reach the

sunny part over and over again, one cannot stay there forever

but has to visit the dark repeatedly.

A connected component of 2, ϒ , or E will be called an

individual trench, abyss, or eddy, and the latter two typically

have sunny and dark parts.

The system C={U ,D, E, ϒ ,2} is a partition of X which

we call the main cascade because of the following mutual

reachability restrictions:

¬(2 ϒ),¬(ϒ E),¬(E D),¬(D U ). (8)

In other words, one might at best be able to go in the “down-

stream” direction by default or by management, from up-

stream to downstream to the eddies to the abysses to the

trenches, but not in the other, “upstream” direction (see also

Fig. 2).

2.4 The glades and lake dilemmas, backwaters, and the

manageable partition

Some of the states in the manageable region M may be in

U = ( XS) but not in ( X+S). This motivates the definition

of two subsets of M via the relation of sunny stable reacha-

bility, X+ , namely (i) the gladesG, from where the shelters

can be stably reached through the sun, and (ii) the lakes L,

from where the shelters can be stably reached only through

the dark:

G= ( X+S)− S, (9)

L=M ∩U − ( X+S)=M ∩U − S−G. (10)

Glades and lakes are two particularly interesting types of

regions since in both one has a qualitative decision prob-

lem. The glade dilemma occurs if a glade is for some reason

more desirable than its shelter, since then one has to decide

whether to stay in the more desirable but unsafe glade or row

to the less desirable but safe shelter. The lake dilemma ex-

ists in every lake: shall one stay in the sun by rowing over

and over again, but risking to float into the dark if the paddle

breaks, or shall one move into a shelter, accepting a tempo-

rary passage through the dark, to be able to recline in safety

eventually? In other words, the lake dilemma is a choice

between uninterrupted desirability and eventual safety. Be-

low we will encounter more qualitative dilemmas of this and

other types.

While {S, G, L} is a partition of M ∩U , the downstream

D may also contain a manageable part, the backwaters W .

This is the region where one may stay in the sun forever by
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rowing over and over again, but where one may not stably

reach the shelters at all, not even through the dark:

W =M ∩D =M −U. (11)

This completes the manageable partition

M = S+G+L+W. (12)

Also, bothU andD may contain points outsideM , which we

call the dark upstream/downstream,

U− = U ∩X−, D− =D ∩X−, (13)

and the remaining sunny upstream/downstream,

U (+)
=
(
U ∩X+

)
−M, D(+)

=
(
D ∩X+

)
−M, (14)

leading to the upstream and downstream partitions

U = S+G+L+U (+)
+U−,

D =W +D(+)
+D−. (15)

Finally, one can divide the eddies and abysses into sunny and

dark parts:

E± = E ∩X±, ϒ± = ϒ ∩X±. (16)

All the sets introduced so far are summarized in Fig. 2 in

the form of a decision tree that allows for a fast classification

of individual states.

2.5 Finer distinction of regions with regard to mutual

reachability of different types

In addition to the glade and lake dilemmas introduced above,

there exist at least three further types of qualitative decision

problems, all related to the question of which parts or subre-

gions of the above introduced regions may be stably reached

from which other parts, and whether corresponding transi-

tion pathways exist that do not leave the shelters or at least

the sunny region, or only through the dark. In order to study

these questions, we introduce three additional, successively

finer partitions derived from the reachability relations  X

(stable reachability) and  X+ (stable reachability through

the sun) that we used already above, and from the even more

restrictive relation S (stable reachability through the shel-

ters).

2.5.1 The ports-and-rapids partition and network, and

the port dilemma

While from each state in U , one can stably reach some part

of S, one cannot in general navigate freely inside S or U or

any other member of the main cascade C. Let us call a max-

imal region in which one can navigate freely a port (see Ap-

pendix A3 for more thorough formal definitions and proofs

of the claimed properties). Each port is completely contained

in one of the sets U , D, E, ϒ−, 2, and none can intersect

ϒ+, so the notion of ports fits well into the hierarchy of re-

gions that began with the main cascade and the manageable

partition. But there are also transitional states not belonging

to any port since one cannot return to them. Thus, to extend

the system of all ports into a partition of all of X, we also

have to classify these non-port states, and we do so by ask-

ing which ports they can reach and from which ports they

can be reached. States that are equivalent in this sense form

what we call a rapid. It turns out that U and D are then par-

titioned into ports and rapids, and so is each individual eddy,

abyss, and trench. The reachability relations between ports

and rapids form a directed network that concisely summa-

rizes the overall structure of all management options.

Figure 1 shows the very simple case of a linear network:

the whole upstream is one port, the sunny downstream and

the adjacent fast-moving part of the dark downstream form

a rapid, the backwater and the slow-moving part of the dark

downstream form another port, the waterfall is another rapid,

the eddy is a port again, and the abyss and the trench are

rapids. In the examples below, we will, however, see that

much more complex ports-and-rapids networks may occur in

models, and one can prove that any acyclic graph may occur

as the ports-and-rapids network of some system.

The ports-and-rapids partition is helpful in the discussion

of a certain type of dilemma that results from two different

objectives which may not be easily balanced: (i) the objective

of being in or reaching a state with high intrinsic desirability,

e.g. as measured by some qualitative preference relation finer

than the mere distinction between “desirable” and “undesir-

able”, or even by some quantitative evaluation such as a wel-

fare function, and (ii) the objective of retaining an amount of

flexibility as large as possible by being in or reaching a state

from which a large part of state space is reachable. Flexi-

bility may be important in particular in situations in which

there is some uncertainty about future management options

and/or future preferences (Kreps, 1979). We call this a port

dilemma.

2.5.2 The harbours-and-channels partition and network,

and the harbour dilemma

Since they do not take into account the definition of the desir-

able region X+ at all, ports and rapids are not directly com-

patible with the regions from the manageable partition M
since their members may overlap in complex ways. However,

we can construct a very similar but finer partition based on

stable reachability through the sun ( X+ ) instead of (plain)

stable reachability, restricted to the sunny region, and the re-

sult turns out to be compatible with M.

A maximal region in which one can freely navigate with-

out leaving the sun is called a harbour. A region of states

that do not belong to any harbour but from which the same

harbours can be reached through the sun and which can be
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reached from the same harbours through the sun is called a

channel. Since each harbour or channel lies completely in a

port or a rapid, the harbours and channels form a finer par-

tition than the ports and rapids and form a finer layer of the

reachability network in which the links represent reachability

through the sun instead of mere reachability.

The harbours-and-channels partition allows one to identify

decision problems involving (i) the objective of staying in a

desirable state and (ii) the objective of eventually reaching a

state with higher desirability or flexibility, which is called a

harbour dilemma here.

2.5.3 The docks-and-fairways partition and network,

and the dock dilemma

Note that although the harbours-and-channels partition is

finer than that into ports and rapids, there is still one impor-

tant region that can have nontrivial overlaps with harbours

and channels, namely the shelters S. In order to complete our

hierarchy of partitions and networks of regions, we there-

fore introduce a third and finest partition and network level,

restricted to S, based on the notion of stable reachability

through the shelters, S .

In complete analogy to the above, a maximal region of

states that are mutually reachable through S is called a dock,

and the non-dock states in S are classified into so-called fair-

ways with regard to their reachability of these docks. Again,

each dock or fairway lies completely in a harbour or channel,

and they form a third layer of the reachability network whose

links now represent the safest form of reachability, namely

through the shelters.

Finally, the docks-and-fairways partition is helpful in the

discussion of dilemmas involving (i) the objective of staying

in a safe state (i.e. in the shelters) and (ii) the objective of

eventually reaching a state with higher desirability or flexi-

bility. We call this a dock dilemma.

2.6 Summary of the introduced hierarchy of partitions

and networks

To summarize, we have now a hierarchy of ever-finer parti-

tions of the system’s state space at our hands. We began with

the main cascade C={U , D, E, ϒ , 2}, its refinement into

the partition {S, G, L, U (+), U−, W , D(+), D−, E+, E−,

ϒ+, ϒ−,2} (see Fig. 2), and the further refinement by topo-

logical connectedness into individual shelters, glades, lakes,

backwaters, eddies, abysses, and trenches. These partitions

represent the qualitative differences in stable reachability of

the shelters or the manageable set, thus allowing for a first

classification of states with regard to the possibilities of sus-

tainable management, and may reveal decision problems of

the type of glade or lake dilemma which will occur in many

of the examples below, where one has to choose between

higher safety and higher desirability or flexibility or between

uninterrupted desirability and eventual safety.

A different refinement of C into the ports-and-rapids net-

work is still based on stable reachability alone but contains

other details suitable for the identification and discussion

of possible port dilemmas that involve a choice between

higher desirability and higher flexibility. Inside the desirable

region X+, this partition can be refined into the harbours-

and-channels network suitable for the discussion of harbour

dilemmas that involve a choice between uninterrupted desir-

ability and eventually higher desirability or flexibility, and

further into the docks-and-fairways network suitable for the

discussion of dock dilemmas that involve a choice between

uninterrupted safety and eventually higher desirability or

flexibility (Table 1).

These three networks may also be interpreted as a three-

level “network of networks” with nodes representing state

space regions of different quality and size. A network-

theoretic analysis of it using methods such as the node-

weighted measures of Heitzig et al. (2012) may especially

be interesting in the context of varying system parameters

and bifurcations such as those in Fig. B2, but this is beyond

the scope of this article.

3 Examples

In this section, we will apply the introduced framework to

several illustrative examples from natural and coevolutionary

Earth system modelling, ecology, socio-economics, and clas-

sical mechanics. The examples have been chosen not for their

realism but for their simplicity in order to show the broad

scope of potential applicability of our concepts, as well as

the relevance of the identified types of decision dilemmas in

both the natural and socio-economic components of the Earth

system.

3.1 Carbon cycle and planetary boundaries

Our first example is from natural Earth system modelling and

illustrates which of the above-introduced regions occur most

often for systems that possess only a single, globally stable,

and desirable attractor.

Anderies et al. (2013) proposed a conceptual model of the

global carbon cycle capturing its main features while keeping

the model sufficiently low-dimensional to be able to discuss

the planetary boundaries concept with it. We use their model

for pre-industrial times, which has three dynamical variables

cm, ct and ca= 1− cm− ct representing the maritime, terres-

trial, and atmospheric shares of the fixed global carbon stock.

The dynamics are of the form

ċm = am (ca−βcm) , ċt = f (ca,ct)−αct,

where am and β are diffusion parameters, f is a function

representing photosynthesis and respiration, and α governs

the human offtake rate from the terrestrial carbon stock. See

Anderies et al. (2013) for details and parameter values.
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Since the parameter α can be considered the natural hu-

man management option for this system, we assume the de-

fault flow has a value of α=α+= 0.5, while management

can reduce it by half to α=α−= 0.25, which results in the

trajectories shown in Fig. 4. Both have a unique stable fixed

point in the interior of the state space which is globally at-

tractive for all states with ct> 0.

In order to roughly represent the planetary boundaries re-

lating to climate change, biosphere integrity, and ocean acid-

ification (Rockström et al., 2009b; Steffen et al., 2015), we

require a “sunny” state to have sufficiently low atmospheric

carbon, at least a minimum value of terrestrial carbon, and

not too large maritime carbon, leading to a dark region of the

shape shown in Fig. 4 in grey. If, as shown, the unmanaged

fixed point is sunny, one obtains a purely upstream situation

with a shelter surrounding the fixed point, a glade, and a re-

maining sunny upstream U (+) as shown in the figure. For

our (quite arbitrarily) chosen parameter values, a trajectory

starting in the sunny upstream is likely to first cross the cli-

mate boundary and then the biosphere boundary before get-

ting back into the sunny region, whereas it seems quite un-

likely to cross the acidification boundary.

In this example, all non-upstream regions are empty, and

so is the lake region; hence, no lake dilemma occurs. On the

other hand, if one considers a higher ct to be preferable, we

get an example of the glade dilemma since the managed fixed

point in the less safe glade has higher ct than the unmanaged

fixed point in the safer shelter. Note that this is neither a port,

harbour, or dock dilemma since both points are in the same

port and harbour and only the unmanaged one is in a dock.

If, instead, we had chosen the minimum value for ct to

be larger than the unmanaged equilibrium value, the shelter

would be empty and the whole situation would change from

upstream-only to either a downstream-only or an abyss-and-

trench situation. This type of topological bifurcation will be

studied in Sect. 3.4. In the next example, we will see a lake

dilemma instead of a glade dilemma.

3.2 Competing plant types and multistability

The second example, from ecology, demonstrates how the

lake dilemma may occur in a multistable system with a sunny

and a dark attractor.

In this fictitious example, two plant types (1 and 2) com-

pete for some fixed patch of land, modify the soil, and are

harvested. Their growth follows logistic-type dynamics, with

land cover proportions x1,2 ∈ [0, 1] following the equations

ẋ1 = x1

(
K1

(
x1,2

)
− x1

)
−h1x1,

ẋ2 = rx2(K2(x1,2)− x2)−h2x2.

In this, r > 1 is a constant productivity quotient, h1,2

are the harvest rates, and the two dynamic capacities

K1(x1,2)=
√
x1(1− x2)6 1 and K2(x1,2)=

√
x2(1− x1)6 1

represent the fact that each type modifies the soil quickly

Figure 4. Phase portrait of the pre-industrial carbon cycle model

of Anderies et al. (2013). Arrows indicate default/unmanaged dy-

namics (pale blue) and alternative/managed dynamics (dotted dark

blue) from reducing the human offtake rate by half. Filled dots: cor-

responding stable fixed points. Grey area: undesired region defined

by (i) upper bounds for maritime carbon cm (white horizontal line,

representing a planetary boundary related to ocean acidification)

and atmospheric carbon 1− ct− cm (white diagonal line, related to

a climate change boundary) and a lower bound for terrestrial carbon

ct (white vertical line, representing an ecosystem services planetary

boundary). Coloured areas and labels: derived state space partition

(see text); colours as defined in Fig. 2: a shelter S around the glob-

ally stable fixed point of the default dynamics, a gladeG from where

S can be reached by management without violating the bounds, and

a remaining sunny upstream U (+) from where one cannot avoid vi-

olating the bounds temporarily.

to its own benefit but to the other type’s disadvantage (see

Supplement 1 for a discussion of the model design based on

Bever (2003), Kourtev et al. (2002), Kulmatiski et al. (2011),

Levine et al. (2006), Poon (2011), and Read et al. (2003).

For our illustration, we assume that, on the default trajecto-

ries, both harvest rates h1,2 equal some rather high value h+,

leading to low equilibrium harvests. We assume management

can repeatedly choose between this default and two types

of alternative trajectories. Type 1 has a lower value for both

harvest rates, h1,2=h−<h+, representing management by

restricting harvests politically in order to yield higher long-

term harvests, but without aiming to change the plant mix,

as depicted in Fig. 5 (left panel). Type 2 management option

has harvest rates h2= 0 and h1= 2h+, representing manage-

ment by temporarily protecting type 2 in order to change the

plant mix to the higher productivity plant; we assume that

this moratorium results in more intense harvesting of type 1,

as depicted in Fig. 5 (right panel). We assume that both op-

tions exist simultaneously at all times (the separate plots of

Fig. 5 are only for better discernibility of the trajectories). We
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Figure 5. Competing plant types example, showing all upstream regions and illustrating the lake dilemma. A bistable system of two com-

peting plant types with two simultaneous management options (depicted in separate plots only for discernibility). Management by a general

harvesting quota (dotted arrows shown left) can ensure desirable long-term harvests of the less productive type x1 (lake L). Management

by temporary protection of the more productive type x2 (dashed arrows shown right) can cause a transition to the desirable fixed point (in

the shelter S), but only through the undesired region of low harvests (grey region). The state space partition boundaries resulting from both

options together (white curves) and a desirable minimum harvest boundary (white diagonal) follow some admissible trajectory at each point.

set the desirable region to where x1+ x2>` for some `> 0

in order to ensure some minimum harvests.

For the choice r = 2, h+= 0.2, h−= 0.1, `= 0.65 of the

figure, the desirable high-productivity stable fixed point of

the default dynamics at≈ (0, 0.79) is in the sunny region and

is thus contained in a shelter S. The latter is delimited by the

default trajectory that meets the boundary to the undesired re-

gion tangentially. S can be stably reached from all states with

x2> 0, and hence the upstream is U ={(x1, x2)|x2> 0}. The

border of the gladeG next to S can be found by backtracking

the “widest” admissible trajectory that meets the boundary to

the undesired region tangentially; this turns out to be a type

2 management trajectory as seen in Fig. 5 (right panel). This

shows how the boundaries of regions may often be found

by identifying tangential or otherwise significant points and

backtracking the default and alternative trajectories leading

to them.

The lower-productivity stable fixed point of the default dy-

namics (with h1,2=h+) at ≈ (0.52, 0) is undesired for this

choice of X+. From it one cannot only navigate to S but can

also (and faster) get to the higher productivity stable fixed

point of the first type of managed dynamics with h1,2=h−,

at ≈ (0, 0.79), and stay there as long as management holds.

Hence the region around (0, 0.79) is part of the manageable

region M . The exact boundary of this region (which soon

turns out to be a lake, L) is the “widest” admissible trajectory

that meets the boundary to the undesired region tangentially;

in this case, this trajectory turns out to be a type 1 manage-

ment trajectory as seen in Fig. 5 (left panel). To get from

this type 1-dominated region to the type 2-dominated shel-

ter S via the other management option of protecting type 2,

one has to cross the undesired middle region in which both

types coexist at a low level due to soil conditions that are

suboptimal for both types. Hence the region around (0, 0.79)

is a lake. The associated lake dilemma is similar to a glade

dilemma in that staying in a lake is unsafe as in a glade, but

it differs in the reason why one may want to stay there: while

staying in a glade may be attractive simply because the glade

may be more desirable than the shelter in some quantitative

sense, staying in a lake may seem attractive since that avoids

having to pass through the dark to reach safety.

This form of the lake dilemma can also occur in other mul-

tistable systems when one of the attractors is in the dark but

sufficiently close to the sunny region so that constant man-

agement can sustain the system in a sunny place near that

attractor, and when other management options may push the

system towards another, sunny attractor after crossing the

dark.

Note that, in this example, the lake dilemma falls together

with a port dilemma since after leaving the lake for the shel-

ter, one cannot return. If we choose a slightly larger sunny

region by lowering ` to `= 0.45, the unmanaged fixed point

with y= 0 gets into X+ and the former lake around it now

becomes a second shelter, which might be called a shelter–

lake transition. But from this shelter the other, more desirable

shelter can still only be reached through the dark. Since the

two shelters correspond to two harbours in the reachability

network, this means the former lake dilemma has been con-

verted into a harbour dilemma.
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Figure 6. Substitution of a dirty technology. Coevolution of the

cumulative production of a dirty technology (x1) and a clean one

(x2) without (pale-blue curves) and with (dotted dark-blue curves)

a subsidy for the clean technology. Undesired region with too high

future usage of the dirty technology coloured in grey. Knowledge

stocks x1,2 were transformed to z1,2= x1,2/(0.3+ x1,2) in order to

capture their divergence to +∞.

The example also shows that the more management op-

tions exist, the less trivial it is to find the boundaries be-

tween regions even in two-dimensional systems. For higher

dimensions, one will usually have to rely on specialized nu-

merical algorithms such as the viability kernel algorithm of

Frankowska and Quincampoix (1990) from viability theory.

3.3 Substitution of a dirty technology

Our third example concerns a purely socio-economic part of

the Earth system that bears some similarity to the preced-

ing example but features regions from both ends of the main

cascade: upstream and abyss/trench, without having the in-

termediate regions of downstream and eddies.

Instead of plants, in this example a certain produced good

(e.g. electric energy) comes in two types which are econom-

ically perfectly substitutable but whose production processes

use two different technologies – one “dirty” and one “clean”

(e.g. conventional and renewable energy). The production

costs C1 and C2 are convex functions of production output

per time yi and decrease over time via learning-by-doing dy-

namics that are similar to Wright’s law (Nagy et al., 2013):

Ci (yi)= γiy
1+σi
i / (1+ σi)x

αi
i .

In this, xi is cumulative past production (with ẋi = yi), γi are

cost factors, σi > 0 are convexity parameters, and αi > 0 are

learning exponents. We assume that demand D depends lin-

early on price, D(p)=D0− δp, δ > 0; that demand equals

production,D = y1+y2 (“market clearance”); and that price

equals marginal costs, p= ∂C/∂yi = γi y
σi
i /x

αi
i , due to per-

fect competition among producers. One can then uniquely

solve for the produced amounts yi , getting some formula

yi = fi(x1, x2). This results in a two-dimensional dynamical

system with state variables x1, x2 and equations

ẋi = fi (x1,x2) .

Let us put D0= 1, δ= 1, σi ≡ 1/5, αi ≡ 1/2, and assume

that the default dynamics have γi ≡ 1, so that the long-term

default behaviour is p(t)→ 0, D(t)→ 1. If the dirty tech-

nology (1) is the traditional one, so that x1(0)>x2(0), we

have x1(t)→∞, x2(t)→ x̂2<∞, y1(t)→ 1, and y2(t)→ 0,

i.e. usage of the clean technology (2) will die out. If instead

x1(0)<x2(0), technology 1 will die out. Hence the system is

bistable as in the plant example, but with attractors at infin-

ity. To depict the diverging behaviour, we used the transfor-

mation zi = xi/(0.3+ xi) in Fig. 6.

The main dynamical difference to the plant example is,

however, not the diverging behaviour, but has to do with the

choice of management options. While in the plant example,

the choice of management options led to an upstream-only

situation in which the more desirable fixed point could be

reached from everywhere, in this example we will get regions

from which the desirable fixed point cannot be reached and

which are thus non-upstream. We consider the management

option of lowering γ2 to a value of, say, 1/2 by subsidis-

ing the clean technology to induce a technological change

(Jaffe et al., 2002; Kalkuhl et al., 2012). This leads to the al-

ternative dynamics depicted in Fig. 6, showing that for some

initial states with x1 > x2 one can now get x2(t)→∞ and

y1(t)→ 0. The goal of keeping the usage of the dirty technol-

ogy below some limit, y1<`< 1, corresponds to a desirable

region in terms of x1, x2, whose border can be computed as

x2= x1(1/`− 1− 1/`4/5√x1)2/5 (see Fig. 6). That goal is

automatically fulfilled in the top-left shelter region, can also

be sustained by management (subsidies) in the glade region

below it, and can at least be reached eventually from the re-

maining sunny upstream U (+) below the glade and from the

dark upstream U−, which is delimited by the management

trajectory that meets the upper right corner.

But from below the latter trajectory, the shelter cannot be

reached. In other words, when in U−, one has to act fast in

order not to lose the option of reaching S. From the dark

part denoted 2, not even the sunny region is reached, and

hence that region is a trench, while the sunny part to its left

is the abyss leading to that trench. There are no intermediate

regions (downstream or eddies) between upstream and abyss

in this example.

3.4 Combined population and resource dynamics

Our fourth example models the coevolution (in the sense of

joint time evolution) of a natural Earth system component
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Figure 7. Combined population and resource dynamics. Coevolution of a population x and a resource stock y. In all cases, φ= 4,

r = 0.04. When the globally stable fixed point of the default dynamics (pale blue) falls into X+, only upstream regions occur (top-left

panel, γ0= 4× 10−6>γ1= 2.8× 10−6, δ=−0.1, κ = 12 000, xmin= 1000, ymin= 3000). When it falls into X− instead, but the sta-

ble fixed point of the alternative management trajectory (dotted dark blue) is in X+, then only downstream regions occur (top-right

panel, γ0= 8× 10−6<γ1= 13.6× 10−6, δ=−0.15, κ = 6000, xmin= 1200, ymin= 2000). Otherwise (bottom panels, γ0= 8× 10−6<γ1,

δ=−0.15, κ = 6000, xmin= 4000, ymin= 3000), the analysis depends on whether one can repeatedly reach X+ by switching between de-

fault and alternative trajectories: for γ1= 16× 10−6 (bottom-left panel), only eddies occur, while for γ1= 11.2× 10−6 (bottom-right panel),

only abysses and trenches occur.

coupled with a socio-economic Earth system component and

shows how different parameters may qualitatively move the

resulting state space topology through the whole main cas-

cade, from an upstream-only situation via downstream-only

and eddies-only to an abyss-and-trench situation.

The model was used in Brander and Taylor (1998) to ex-

plain the rise and fall of the native civilization on Rapa

Nui (Easter Island) before western contact, but it may also

be interpreted as a conceptual model of global population–

vegetation interactions. It is derived from simple economic

principles and leads to a modified Lotka–Volterra model with

a finite resource. The human population x is preying on the

island’s forest stock y, which itself follows logistic growth

dynamics:

ẋ = δx+φγ xy, ẏ = ry(1− y/κ)− γ xy

for some parameters γ , δ, κ , φ, and r representing growth

and harvest rates and the stock’s capacity.

We assume management will either reduce the default har-

vest rate γ0 to some smaller value γ1<γ0 to avoid over-

exploitation of the resource or increase it to a larger value

γ1>γ0 to avoid famine. Our choice of the sunny region re-

lies on two principles. The absolute population should not

drop below a threshold xmin and the relative decline in popu-

lation under the default dynamics, −ẋ/x, should not exceed

a value of `. Hence X+={x >xmin and y >ymin=max(0,

−(`+ δ)/φ γ0)}.

The resulting state space partition is depicted in Fig. 7

for φ= 4, r = 0.04 and different choices of γ0, γ1, δ, κ ,

xmin, ymin. One either gets an upstream-only situation, a

downstream-only one, an eddy-only one, or an abyss-and-

trench situation, depending on whether the unmanaged and
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Figure 8. Gravity pendulum fun ride with management by one-

sided acceleration and undesirable fast rotations. The 2π -periodic

coordinate θ is the pendulum’s inclination angle. If its angular ve-

locity ω exceeds ±`, people get sick (grey region). Since staying in

L (balancing almost upright) orG (balancing somewhat inclined) is

more exciting than in S (resting downward), we have both a glade

and a lake dilemma.

managed fixed points belong to the desired or undesired re-

gion. In Appendix B2, these kinds of transitions are more

formally interpreted as bifurcations.

An interesting case occurs when the whole state space is a

single eddy as in Fig. 7 (bottom-left panel): one can then re-

peatedly visit the sunny region by suitably switching between

a low default harvest rate and a managed higher harvest rate,

but one cannot avoid getting back into the undesired region

of a low or fast declining population. An “optimal” manage-

ment strategy would then lead to slowly but strongly oscillat-

ing behaviour.

3.5 Gravity pendulum fun ride

While in the above examples typically only some of the pos-

sible regions were non-empty for each parameter combina-

tion, the following example from classical mechanics dis-

plays a rich diversity of state space regions that coexist at

a single choice of parameter values. Despite extremely sim-

ple dynamics, it features both a glade and a lake dilemma, an

eddy, and a trench at the same time.

In the model, people sit in a fun ride resembling a gravity

pendulum with angle θ and angular velocity ω and default

dynamics given by

θ̇ = ω, ω̇ =−sinθ.

An optional additional clockwise acceleration of the pendu-

lum of magnitude a > 0 (“management”) leads to alternative

admissible trajectories on which for some time interval(s)

one has ω̇=−sin θ − a. The sunny region is where |ω|<`,

for some `> 0 representing a safety speed limit above which

people might get sick.

The unique shelter S is delimited by the default trajectory

leading through the points θ = 2kπ , ω=±` that surrounds

the stable resting state of θ =ω= 0 (see Fig. 8). If a state lies

on a default trajectory that has ω> 0 (anticlockwise pendu-

lum motion) at least some of the time, then there is an ad-

missible trajectory from it leading into the shelter, generated

by the management strategy of “braking” whenever ω> 0.

Hence the upstreamU equals the region strictly above the de-

fault trajectory with ω< 0 that connects the unstable saddle

point at θ = (2k+ 1)π , ω= 0 (pendulum balancing upright)

with itself.

Just left of the shelter is the unique gladeG. Depending on

the parameter values, the stable fixed point of the managed

dynamics (hanging pendulum inclined by constant acceler-

ation) may either belong to the shelter or to the glade. In

the latter case (Fig. 8), we have a glade dilemma since the

inclined position is preferred to the resting position by the

riders but is unsafe since if the engine breaks, people will get

sick.

An even more exciting position is close to the upright bal-

ancing saddle point, at θ slightly larger than (2k+ 1)π and

ω� 1, where there is an admissible trajectory that stays close

to there (by braking repeatedly for short intervals while stay-

ing almost upright), so that this point is in the manageable

region M . This is a typical example of how a region close

to a saddle point of the default dynamics may become man-

ageable due to an alternative feasible trajectory that has a

slightly shifted saddle point, so that in the diamond-shaped

region between the two saddle points, one can concatenate

unmanaged and managed trajectories into periodic orbits.

However, for choices such as a= 0.6 and `= 0.5 (Fig. 8),

there is no admissible trajectory leading from the exciting

region with θ ≈ (2 k+ 1)π , ω≈ 0 into the shelter without

entering the region with |ω|>`. In that case the diamond-

shaped region is a lake and we have a lake dilemma.

Finally, the region below and including the default trajec-

tory that touches the line ω=−` from below is the trenches

since one cannot brake in that direction, and the region be-

tween the trench and the upstream is the eddies. Downstream

and abysses are empty in this example.

3.6 Bifurcations with manageable parameter

This final example system is designed to illustrate the rela-

tionship of reachability and bifurcations of a dynamical sys-

tem that can be managed through a parameter and shows bi-

furcations of the type typically associated with tipping ele-

ments of the Earth system (Schellnhuber, 2009).

It has a two-dimensional state space X={(r , y)}, where

the “fast” variable y ∈R has default dynamics

ẏ = h(y|r)=−
(

4+ r2
)3

y3
+

(
2r2
− 1

)(
4+ r2

)
y+ er

− 10,

which cannot be managed directly, and r ∈R is a “slow”

variable with (approximately) no default dynamics (ṙ = 0)
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Figure 9. Bifurcations with manageable parameter. Loci of sta-

ble (solid black lines) and unstable (dotted lines) fixed points

of ẏ=−(4+ r2)3 y3
+ (2r2

− 1)(4+ r2)y+ er
− 10. Leftmost and

rightmost admissible management trajectories (dashed arrows) and

their starting points (dots). Border (grey line) between sunny region

y >−1/3 and the dark. See Fig. 10 for an analysis.

which, however, can be changed by management up to a

velocity at most 100 and with arbitrarily large acceleration,

leading to admissible trajectories with ṙ ∈ [−100, 100] and

ẏ=h(y|r). We assume that values of y 6−1/3 are undesir-

able.

If r is instead interpreted as a parameter of the one-

dimensional system ẏ=h(y|r), the set X can be interpreted

as its bifurcation space in which one can plot a bifurcation di-

agram consisting of the loci of stable (solid lines) and unsta-

ble (dotted lines) fixed points, as shown in Fig. 9. As one can

see, there are three saddle-node bifurcations at r1≈−2.2,

r2≈ 1.735, and r3≈ 4.9 with monostable parameter regimes

r1<r < r2 and r > r3, and bistable parameter regimes r < r1
and r2<r < r3. Individual and paired saddle-node bifurca-

tions (which often result from fold bifurcations) occur fre-

quently in bistable Earth system components such as the hys-

teretic thermohaline circulation (Stommel, 1961; Rahmstorf

et al., 2005), monsoonal soil–vegetation feedbacks (Janssen

et al., 2008), or other tipping elements (Schellnhuber, 2009).

Hysteresis also occurs on other spatial and temporal scales,

e.g. in local hydrology (Beven, 2006) and in long-term

glacial climate dynamics (Ganopolski and Rahmstorf, 2001).

The main part of the resulting network of ports and rapids

of our example system is depicted in Fig. 10. On its coars-

est level, there are two ports, each containing one of the two

connected loci of stable/unstable fixed points, and a rapid in

between through which one can pass from the left to the right

port but not back. If the right port seems more attractive,

e.g. because it allows a higher value of y, we have a port

dilemma since by leaving the left port for the right one, we

lose flexibility in terms of reachable regions.

The right port contains two harbours, similarly connected

by a narrow “internal” channel, as well as another “exit”

channel leading from the right harbour to the dark region.

Note that on the leftward-pointing dashed management tra-

jectory in the middle of the bifurcation diagram, there is a

leftmost point from where one can still “turn around” and

reach (if only unstably) the right part without entering the

dark region; this point is a corner of the right harbour (but not

belonging to it, for stability reasons), and below it is a chan-

nel leading to another harbour in the bottom left. Again, if

the right harbour seems more attractive, we have a dilemma,

this time a harbour dilemma, since in order to reach the right

harbour from the left one, we have to pass through the dark.

Finally, the right harbour contains two docks again con-

nected by a fairway, plus some more fairways. Again, we get

a dilemma if the top-right dock is more attractive than the

top-left one: the dock dilemma is that, in order to reach the

top-right dock from the top-left one, one has to pass through

the unsafe middle region and risk ending up in the dark if

management breaks down.

4 Discussion and conclusions

We have presented a formal classification of the possible

states of a dynamical system such as the Earth system into re-

gions of state space which differ qualitatively in their safety,

the possibilities of reaching a safe state, the possibilities of

avoiding undesired states, and in the amount of flexibility for

future management.

Based on an assumed main division of the system’s states

into only two classes, desirable (“sunny”) and undesirable

(“dark”), we have constructed a hierarchy of partitions of a

system’s state space, whose member regions we suggested

to name by metaphorical names either corresponding to the

general image of a boat floating or rowing on a complex

water system, such as “upstream”, “downstream”, “eddy”,

“abyss”, “trench”, “lake”, and “backwater”, or correspond-

ing to the image of a “shelter” surrounded by a “glade”. To

capture the nature of and relationships between the different

regions, we have introduced the notion of stable reachabil-

ity and the corresponding three-level reachability network of

“ports”, “harbours”, “docks”, “rapids”, “channels”, and “fair-

ways”, and illustrated our concepts with conceptual example

models from climate science, ecology, coevolutionary Earth

system modelling, economics, and classical mechanics. Most

of the different regions can readily be found in most models

for either most or at least selected parameter settings. A no-

table exception is the “eddies”, which, due to their circular

nature, can be expected to occur much more rarely in real-

world, non-conservative systems, especially when thermody-

namic or otherwise irreversible processes are involved, such

as soil degradation. Section 3.4, however, illustrates how ed-

dies may occur in coevolutionary systems and might incen-

tivize management cycles that lead to undampened periodic
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Figure 10. Main part of the three-level reachability network of ports and rapids (top panel), harbours and channels (middle panel), and

docks and fairways (bottom panel, and related dilemmas in the bifurcation example. Arrows indicate stable reachability (top panel), stable

reachability through the sun (middle panel), and stable reachability through the shelters (bottom panel). Some further arrows between rapids,

channels and fairways have been omitted here.
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ups and downs. It must remain an open question here whether

this effect might be an additional explanation for empirically

observable cycles such as business or resource cycles when

management is involved.

The introduced concepts have then been used to point out

a number of qualitatively different decision problems: the

glade, lake, port, harbour, and dock dilemmas. In our opin-

ion, one particularly nasty form of decision problem is the

lake dilemma, where one has to choose between uninter-

rupted desirability and eventual safety, and Sect. 3.2 indicates

that this dilemma may easily occur at least in ecological sys-

tems or other multistable systems with a sunny attractor and

another one slightly in the dark. Since the transformation of

socio-metabolic processes or complex industrial production

systems may resemble the soil transformation of Sect. 3.2,

one may also expect the lake dilemma to occur in the socio-

metabolic and economic subsystems of the Earth, e.g. in the

context of a great transformation leading to decarbonisation

of the world’s energy system. The form of lake seen near

the saddle point in the pendulum (Sect. 3.5) can also occur in

other nonlinear oscillators, e.g. the Duffing oscillator or mod-

els of glacial cycles that resemble it such as Saltzman et al.

(1982) and Nicolis (1987), when a management option exists

that has a slightly shifted saddle point. This indicates that the

lake dilemma may also occur in purely physical subsystems

of the Earth system.

We argue that our concepts may be especially useful in

the context of the current debate about planetary bound-

aries (PBs), a possible safe and just operating space (SAJOS)

for humanity, and the necessary socio-economic transitions

to reach it or stay in it. We suggest that the region delimited

by some identified set of PBs in the sense of Rockström et al.

(2009a) and Steffen et al. (2015) and some similar socio-

economic limits, e.g. those relating to the United Nations sus-

tainable development goals (Raworth, 2012), should be inter-

preted in our framework as a natural choice for the desirable

region X+, although their definitions already contain some

reasoning about the consequences for the respective sub-

systems when the boundaries are violated. Such boundaries

might be called the ultimate planetary boundaries (UPBs),

and they are typically defined by some simple thresholds for

relevant indicators as in Rockström et al. (2009a) and Stef-

fen et al. (2015), not taking into account the overall system’s

inherent dynamics much. In this sense, UPBs are typically

“non-interacting”. Based on the UPBs, one may then try to

identify one or more smaller shelter regions S that can be

considered a SAJOS in the sense that, once there, no further

large-scale management in the form of global policies is nec-

essary to stay within the limits for all times (or at least for

a sufficiently long planning horizon). The borders of these

shelters are also a form of PBs but are much more restrictive

than the UPBs we started with, and we suggest to call them

safe planetary boundaries (SPBs).

If it turns out that the current state of the Earth is out-

side the shelters, one should then aim next at trying to decide

whether it is in the upstream. If so, knowledge about whether

it is in a glade or lake or not, and which safe docks can be

stably reached, will be necessary in order to choose a man-

agement path. In the glade case, one can still reach the shelter

without ever violating the UPBs by appropriate management;

hence we suggest to refer to the border of shelters and glades

together as the provident planetary boundaries (PPBs).

In the lake case, one has to decide instead whether a tem-

porary violation of the UPBs can be justified by the eventual

safety of the shelters. In addition, a port dilemma may ne-

cessitate a decision between higher desirability and higher

flexibility at this point. Only after these qualitative decisions

have been made does it seem advisable to optimize the cho-

sen type of management pathway by means of more tradi-

tional control and optimization theory, hopefully using ac-

curate enough quantitative estimates of the involved options,

costs, and benefits. Once in the shelters, one may start car-

ing about improving the state further by moving between

docks to either improve desirability or flexibility, but this

may require a risky temporary passage through a sunny but

unsafe region (which poses a dock dilemma) or even a pas-

sage trough the dark (which poses a harbour dilemma). Of

course, many combinations of these qualitative and quantita-

tive criteria may appear in the actual global decision process,

e.g. in the form of lexicographic preferences, decision trees,

or more sophisticated welfare measures or other quantitative

objective functions that take the topology suitably into ac-

count and that may relate to some form of market (or other

game-theoretic) equilibrium or else be governed by some

suitable policy instruments, as kindly suggested by an anony-

mous referee.

If we are not in the “upstream” of the Earth system,

prospects are worse. Violating the limits can then only be

avoided by management, either eventually forever (if in the

downstream), or only repeatedly but with repeated violations

occurring (if in the eddies), or even only for a limited time

with an ultimate descent into the undesired region (if in the

abysses or already in the trench). We suggest to call the up-

stream borders the no-regrets planetary boundaries (NRPBs).

If the diagnosis reads “eddy”, “abyss”, or “trench”, one

may repeat the analysis with a less ambitious, “second best”

definition of the desirable region by choosing less restrictive

UPBs, or revert to quantitative optimization, e.g. to mini-

mize some damage function along the system’s trajectory.

On the other hand, as long as one is in the “manageable re-

gion” M (shelters, glades, lakes, and backwaters), the UPBs

need never be transgressed if managed wisely; hence we

propose to call the borders of M the foresighted planetary

boundaries (FPBs).

This completes our suggested hierarchy of PBs from the

relatively looser UPBs via the successively narrower FPBs

and NRPBs, then the PPBs, to the narrowest SPBs that de-

fine the SAJOS. While UPBs are “non-interacting”, FPBs,

PPBs, NRPBs, and SPBs will typically have a more complex

geometry in the system’s state space and are thus “interact-
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ing boundaries”. This means that they cannot be expressed

as a simple “threshold” for individual indicators but as con-

ditional thresholds for several indicators that depend on each

other as shown by the curved region boundaries in the exam-

ples, e.g. in the carbon cycle model of Anderies et al. (2013)

in Sect. 3.1. Obviously, the real world is less black and white

than suggested by the idealized division into “desirable” and

“undesirable”, so the actual location of these bounds will in

reality be somewhat vague, but this does not change the fact

that the different bounds and regions represent qualitatively

different states of the system, not just quantitative shades of

grey.

It should be noted that one strategy to decide the dilem-

mas described throughout this work is to follow certain “sus-

tainability paradigms” such as those suggested by Schellnhu-

ber (1998). For example, the “pessimization paradigm” is

based on the basic precautionary principle of “avoiding the

worst” and, hence, can be interpreted as suggesting to stay

in or aim for the shelter. In this way, the “pessimization

paradigm” decides the glade and lake dilemmas in favour

of safety. In turn, the “optimization paradigm” could be in-

terpreted to decide all but the harbour dilemma in favour of

uninterrupted or (eventually) higher desirability. The “stabi-

lization paradigm”, which seems to fit best the popular no-

tions of “sustainable development”, reflecting a “longing for

stable equilibria” in the coevolutionary dynamics of human

societies and the biophysical Earth system (Schellnhuber,

1998), might imply staying in a lake favouring uninterrupted

desirability over eventual safety in the sense of this work.

Finally, the “equitization paradigm” might imply choosing

higher flexibility, e.g. in terms of a larger set of remaining

options for future generations in the sense of intergenera-

tional justice, in all dilemmas but the lake dilemma. As also

argued by Schellnhuber (1998), the remaining “standardiza-

tion paradigm” is entirely based on static choices of norms or

development corridors instead of dynamical systems or “geo-

cybernetic” principles and, hence, cannot directly decide any

of the dilemmas. However, this paradigm can be viewed as a

way for identifying desirable domains in the Earth system’s

state space in the first place and, thereby, facilitate a subse-

quent topological classification of state space structure.

Contemplating sustainability paradigms gives rise to other

relevant qualitative decision problems. For what might be

called an “optimization/pessimization dilemma”, consider

the debate on geoengineering by solar radiation management

(Lenton and Vaughan, 2009; Vaughan and Lenton, 2011) as a

strategy for averting some of the consequences of global cli-

mate change that are induced by anthropogenic emissions of

greenhouse gases (Stocker et al., 2013). According to the re-

cent update of the planetary boundary framework by Steffen

et al. (2015) and the corresponding definition of desirability

(see Sect. 1.1, “Metaphorical framework”), the Earth system

is currently in the dark region of its state space, because core

planetary boundaries such as those related to climate change

and biosphere integrity have likely already been transgressed.

Following current assumptions on the feasibility of manage-

ment options (IPCC, 2014), assume further that the Earth

system is currently in the dark upstream. In this situation,

efforts for mitigation of greenhouse gas emissions, e.g. by

means of global energy market regulations, as well as con-

servation and restoration of biosphere integrity, would corre-

spond to navigating the Earth system from the dark upstream

towards the shelters following the “pessimization paradigm”.

In turn, massive investments in solar radiation management

as an alternative to mitigation could be seen as manoeu-

vring the Earth system into the glades or lakes going along

with a severe loss of resilience, since interruption of these

efforts due to global crisis or technological failure would

lead to very rapid and catastrophic climate change (Barrett

et al., 2014). In short, starting in the dark upstream, does

one choose to navigate to a glade or lake because this ap-

pears economically cheaper on the shorter term or politically

more feasible (“optimization paradigm”) or does one aim for

the shelters right away, even if this is more expensive on

the shorter term (“pessimization paradigm”)? Note, however,

that geoengineered Earth system states within the glades or

lakes would be expected to have a considerably reduced de-

sirably in the long-term compared to the shelters, since cur-

rent proposals for solar radiation management can only con-

trol a very small set of Earth system properties such as global

mean temperature, while regional temperature patterns and

the hydrological cycle would change strongly (Kleidon and

Renner, 2013; Kleidon et al., 2015), going along with corre-

sponding climate impacts.

We hope that the theoretical considerations outlined here

may be of some help to sharpen the important debate of

how a transition to a safe desirable state of the Earth sys-

tem can be managed. To this end, future studies should ap-

ply the proposed framework for comparing different Earth

system governance strategies in the form of various manage-

ment options (e.g. mitigation of greenhouse gas emissions vs.

geoengineering) and different notions of desirability (e.g. re-

semblance of a Holocene-like state or satisfaction of a cer-

tain standard of human well-being) in terms of their feasi-

bility and resilience. Furthermore, the structural stability of

future development pathways generated by integrated assess-

ment models through optimizing utility functions based on

certain notions of human well-being could be evaluated. For

achieving these aims, performant computer algorithms need

to be developed for automatically generating the proposed

topological charts also for higher-dimensional Earth system

models given a set of management options and desirabil-

ity criteria, e.g. building on algorithms from viability theory

(Frankowska and Quincampoix, 1990), the graph-theoretical

analysis of phase space transition networks (Padberg et al.,

2009), and flow networks from fluid dynamics (Ser-Giacomi

et al., 2015; Froyland and Padberg-Gehle, 2015). While the

examples discussed in this work have been limited to two dy-

namical variables for facilitating the visualization of the cor-

responding topological charts, investigation of more detailed
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models of Earth system dynamics calls for advanced visu-

alization techniques (Nocke et al., 2015) as well as the ap-

plication and further development of quantitative measures

of the size (Menck et al., 2013; Hellmann et al., 2015; van

Kan et al., 2015) and shape (Mitra et al., 2015) of the phase

space regions of interest. The fact that the introduced state

space partitions depend on qualitative rather than quantitative

properties of states may also make them a natural tool for the

analysis of complex but qualitative or “generalized” models

in the spirit of Kuipers (1994) and Petschel-Held et al. (1999)

or Lade et al. (2013, 2015b, a).
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Appendix A: Formal derivation of partitions and

properties

We use sloppy set theoretic notation when no confusion

arises: union A+B =A∪B, difference A−B =ArB,

power set 2A={B ⊆A}. Proofs only require an understand-

ing of general topological spaces, in particular of openness

and continuity, but not of any higher-level concepts from dif-

ferential topology or the like.

A1 Assumptions and notation

For a more formal treatment than in the main text, we assume

a manageable dynamical system with desirable states, made

of the following ingredients.

A state space X 6= 0 with some Hausdorff topology T ⊆
2X (i.e. a system of open sets that separate each two points)

on it whose elements we call states or points (e.g. X⊆Rn
with Euclidean topology). X may be compact or unbounded,

finite- or infinite-dimensional, etc.

A flow (i.e. deterministic continuous-time autonomous dy-

namical system) on X (e.g. a model of human-nature coevo-

lution or any other Earth system model) given by a fam-

ily of continuous (“business-as-usual” or) default trajecto-

ries τx : [0,∞)→X with τx(0)= x and ττx (t)(t
′)= τx(t + t ′)

for all initial conditions x ∈X and all relative time points t ,

t ′ > 0. We do not require further smoothness properties of

the flow, like differentiability, to avoid having to assume a

richer topological structure for X than just a general topo-

logical space, and to avoid unnecessarily complicated no-

tions and familiarity with, for example, differential geometry.

Although flows are often represented by ordinary differen-

tial equations, their solutions are sometimes not unique, and

hence our notion of flow is in terms of trajectories instead so

as to allow us to distinguish, for example, a 1-D flow with

ẋ=
√
x and τ0(t)≡ 0 from the flow that also has ẋ=

√
x but

τ0(t)= t2/4.

An open nonempty set X+ ∈ T of desirable states, called

the sunny region, e.g. defined by means of some notion of

“tolerable E & D window” (Schellnhuber, 1998). We call the

complement X−=X−X+ 6= 0 the dark (region). We re-

quire openness for convenience so that infinitesimal pertur-

bations cannot lead from the sunny to dark part, and trajec-

tories cannot touch the sunny region without entering it for

a strictly positive amount of time. Although in most of our

examples, X+ is a simply shaped, connected, convex, and

often bounded set, none of these properties is required for

the theory presented here except topological openness.

To represent “management options”, a family of nonempty

sets Mx of admissible trajectories from each x ∈X that in-

cludes τx and is closed under switching between trajectories

at any time, i.e. if µ∈Mx , t > 0, x′=µ(t), and µ′ ∈Mx′ ,

then the trajectory defined by µ′′(t ′′)=µ(t) for t ′′ 6 t and

µ′′(t ′′)=µ′(t ′′− t) for t ′′> t is also in Mx . This require-

ment corresponds to the so-called semigroup axiom of math-

ematical control theory (Sontag, 1998). Note that we do not

allow any explicit time dependency of flow or management,

but such dependencies can as usual be encoded by including

time as a state variable. Also, if management can change a

parameter of the model, that parameter has to be transformed

to a (slow) state variable with zero default dynamics of its

own to meet our framework.

A2 Open invariance, sustainability, and stable

reachability

The invariant open kernel of a set A⊆X, denoted Aι◦, is the

largest open subset of A that contains the default trajectories

of all its own points. Its existence and uniqueness is nontriv-

ial and will be proved below. Note that Aι◦ may be empty.

Each (topologically) connected component of S= (X+)ι◦ is

called an individual shelter.

We call an open set A∈ T sustainable iff, for all x ∈A,

there is µ∈Mx with µ(t)∈A for all t > 0. Again, the

openness requirement ensures a minimal form of stability

against small perturbations. The sustainable kernel of a set

A⊆X, denoted AS , is the largest sustainable open subset of

A. Again, existence and uniqueness will be proved below. In

viability theory (Aubin, 2001), AS roughly corresponds to

the “viability kernel” of A (see the discussion in Supplement

3). Also, AS may be empty.

Lemma 1 (Existence and uniqueness) For all A⊆X:

1. There is a unique largest (default-trajectory-) invariant

and open subset Aι◦⊆A, containing all other such sets.

2. Every invariant and open set is sustainable. In particu-

lar, S is.

3. There is a unique largest sustainable subset AS
⊆A

with AS
⊇Aι◦, containing all other such sets.

Proof.

1. Let I(A) be the system of all open subsets B ⊆A for

which τx(t)∈B for all x ∈B, t > 0. The proposition is

proved by showing that I(A) is a kernel system, i.e. con-

tains the empty set (which is trivial) and contains the

union
⋃ B of any of its subsets B⊆ I(A). The latter

follows from the fact that the system of all open sets,

T , is a kernel system by definition, and if x ∈
⋃ B,

then x ∈B ∈B, and hence τx(t)∈B ⊆
⋃ B for all t > 0.

Now Aι◦=
⋃ I(A)∈ I(A).

2. This follows because τx ∈Mx .

3. Similarly, the system S(A) of all sustainable subsets

B ⊆A is a kernel system: if x ∈
⋃ B, then x ∈B ∈B,

and hence there is µ∈Mx with µ(t)∈B ⊆
⋃ B for

all t > 0. Now AS
=
⋃ S(A)∈S(A). Point 2 implies

AS
⊇Aι◦.

Q. E. D.
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Next, we introduce a suitable notion of stable reachability

to overcome two problems with the classical notion of (plain)

reachability known from control theory, where a state y is

reachable from another state x iff it lies on some admissible

trajectory starting at x (Sontag, 1998).

First, we want a stable fixed point y of the default dy-

namics to be counted as stably reachable from a (sufficiently

small) neighbourhood of itself, although one might only get

arbitrarily close to y instead of getting to y in finite time.

Second, we want stable reachability to imply that small

perturbations along the way cannot render the target un-

reachable. To solve this conceptual task in a mathematically

convenient way, we define stable reachability here via the

following binary relation between sets. We call an open set

C ∈ T a forecourt for some set Y ⊆X, denoted C Y , iff

one can approach Y arbitrarily closely from everywhere in C

without leaving C, or, more precisely, iff for all x ∈C, there

is µ∈Mx so that, for all open sets Z ∈ T with Z⊇Y , there

is t > 0 with µ(t)∈Z and µ(t ′)∈C for all t ′ ∈ [0, t]. Now,

for a state x ∈X and some set A⊆X, we say that another

state y ∈X or another set Y ⊆X is stably reachable from

x through A, denoted x A y or x A Y , iff x is in some

subset of A that is a forecourt for {y} or Y , respectively. The

set of states from where Y can be stably reached through A

is denoted ( AY ). (This is a stable version of what Aubin,

2001, would call a “capture basin” of Y .) Note that in these

definitions, the order in which the logical quantifiers “for

all” and “there exists” appear is critical for some of the

resulting properties. If Y is open, the definitions can be

somewhat simplified:

Proposition 1 (Stable reachability)

For all A, A′, C, Y , Z⊆X and x, y, z∈X:

1. If Y is open, then (i) C Y iff, for all x ∈C, there

is µ∈Mx so that there is t > 0 with µ(t)∈Y and

µ(t ′)∈C for all t ′ ∈ [0, t], and (ii) x A Y iff there is

and open C⊆A with x ∈C and for all x′ ∈C, there

is µ∈Mx′ so that there is t > 0 with µ(t)∈Y and

µ(t ′)∈C for all t ′ ∈ [0, t].

2. If x A Y , then x is in the interior (i.e. largest open

subset) of A, A◦, and there is an open set B 3 x with

x′ A Y for all x′ ∈B. Hence, each set of the form

( AY ) is open.

3. Transitivity:

x Ay A′Z H⇒ x A+A′Z,

x Ay A′zH⇒ x A+A′z.

In particular,  A is a transitive (but not necessarily

reflexive) relation.

4. If A is open, it is stably reachable from each of its ele-

ments. In particular, since S= (X+)ι◦⊆ (X+)S =M is

open, S is also included in U = ( X S).

Proof.

1. (i) Assume C Y ∈ T and let x ∈C. Then, by defini-

tion of forecourts, there is µ∈Mx so that, for all open

sets Z ∈ T with Z⊇Y , there is t > 0 with µ(t)∈Z and

µ(t ′)∈C for all t ′ ∈ [0, t]. Since Y is open, it is such a

Z, proving the first direction.

For the other direction, assume that for all x ∈C, there

is µ∈Mx so that there is t > 0 with µ(t)∈Y and

µ(t ′)∈C for all t ′ ∈ [0, t]. Let x ∈C, choose such a

µ∈Mx and t > 0, and let Z ∈ T with Z⊇Y be an open

set. Then µ(t)∈Y ⊆Z as required.

(ii) By definition of stable reachability, x A Y iff there

is an open B ⊆A with x ∈B Y . By (i), B Y iff for

all x′ ∈B, there is µ∈Mx′ so that there is t > 0 with

µ(t)∈Y and µ(t ′)∈B for all t ′ ∈ [0, t].

2. Assume x A Y . Then x ∈X for some openB ⊆A, and

hence x ∈B ⊆A◦. Also, B Y and hence x′ A Y for

all x′ ∈B. Hence ( A Y ) contains an open neighbour-

hood of each of its points and is thus open itself.

3. We show this by concatenating suitably chosen ad-

missible trajectories between points close to x, y,

Z. Let x A y A′ Z, choose open sets B ⊆A,

B ′⊆A′ with x ∈B {y} and y ∈B ′ Z, and put

B ′′=B +B ′⊆A+A′, then x ∈B ′′ and B ′′ is open. To

show that B ′′ Z, we let x′′ ∈B ′′ and show that there

is µ∈Mx′′ so that, for all open W ′′⊇Z, there is t > 0

with µ(t)∈W ′′ and µ(t ′)∈B ′′ for all t ′ ∈ [0, t].

If x′′ ∈B ′, there is such a µ with µ(t ′)∈B ′⊆B ′′ for all

t ′ ∈ [0, t] since B ′ Z.

If x′′ 6∈B ′ instead, x′′ ∈B {y}, and hence we find

ν ∈Mx′′ so that, for all open W ⊇{y}, there is t > 0

with ν(t)∈W and ν(t ′)∈B for all t ′ ∈ [0, t]. Since B ′ is

such a W , we find t ′′> 0 with ν(t ′′)∈B ′ and ν(t ′)∈B

for all t ′ ∈ [0, t ′′]. For y′= ν(t ′′)∈B ′ Z, we then find

ν′ ∈Mx′′ so that, for all open W ′′⊇Z, there is t > 0

with ν′(t)∈W ′′ and ν′(t ′)∈B ′ for all t ′ ∈ [0, t]. Now

define µ by putting µ(t ′)= ν(t ′) for t ′ ∈ [0, t ′′] and

µ(t ′)= ν′(t ′− t ′′) for t ′ > t ′′. Then µ∈Mx′′ because of

our assumptions on M, and for all open W ′′⊇Z, there

is t > 0 with ν′(t)∈W ′′ and ν′(t ′)∈B +B ′=B ′′ for all

t ′ ∈ [0, t], as required.

The z case follows from putting Z={z}. Transitivity is

the special case of A′=A.

4. For x ∈A∈ T , we show x AA by showing A A.

Let x′ ∈A. By (1), we have to find µ∈Mx′ and t > 0

with µ(t ′)∈A for all t ′ ∈ [0, t]. Since A is open and τx′

is continuous, τx′ is such a µ.

Q. E. D.
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A3 Partitions

A topologically connected component of

2=X−
(
 XX

+
)
,

ϒ = {x ∈X|∀µ ∈Mx∃t>0 : µ(t) ∈2}−2,

or

E =X−U −D−ϒ −2

will be called an individual trench, abyss, or eddy, and the

latter two typically have sunny and dark parts. Some further

properties of these introduced partition sets are as follows.

Proposition 2 (Main cascade).

1. U = ( X S) and the unionD+U = ( XM) are open,

2=X− ( XX
+) and ϒ +2 are closed, the union

E+D+U =X−ϒ −2 is open, and the system {U ,

D, E, ϒ , 2} forms a partition of X.

2. For all u∈U , d ∈D, e∈E, y ∈ϒ , θ ∈2, we have

¬(θ Xy), ¬(y Xe), ¬(e Xd), ¬(d Xu).

3. If W =∅, also D=∅.

Proof.

1. Openness follows from Proposition 1, the par-

tition covers X by definition of E, and the

only nontrivial disjointness is that between the

open set D+U = ( XM) and the closed set

ϒ +2={x ∈X|∀µ ∈Mx∃t>0 : µ(t) ∈2}. If x is in

both sets, there is also x′ ∈ ( XM)∩ {x ∈X|∀µ∈

Mx ∃ t > 0 :µ(t)∈2}, but then there is µ′x ∈Mx ,

t ′> 0 with µ′x(t ′)∈M , and by definition of M there is

then also some µ∈Mx with µ(t)∈X+ for all t > t ′.
But, by assumption, there is t > 0 with µ(t)∈2. Since

2∩X+= 0, we have t < t ′, but by definition of 2, this

contradicts µ(t ′)∈X+. Hence such an x cannot exist.

2. Because of transitivity and (1), d X u∈U = ( X S)

would imply d X S and thus d ∈U ∩D=∅;

e X d ∈D= ( XM)−U would imply e XM and

thus e∈ (U +D)∩E=∅. If one could reach the eddies

from the abysses, one could avoid the trenches: assume

y X e 6∈ϒ +2={x ∈X|∀µ ∈Mx∃t>0 : µ(t) ∈2}.

Since the latter is closed, its complement is open, so

there is µ∈My and t > 0 with µ(t) 6∈ϒ +2. For

x=µ(t), we find µ′ ∈Mx and t ′′> 0 with µ′(t ′) 6∈2

for all t ′> t ′′. Concatenating µ with µ′ gives a similar

member of My , in contradiction to y ∈2. Finally, if

θ X y and θ ∈2, then y ∈2 by definition of 2, and

hence y 6∈ϒ .

3. This follows from ( XM)−U =D= ( XW ).

Q. E. D.

Note that in the (pathological) no-management case

in which Mx ={τx}, the upstream U = ( X S) is basi-

cally (i.e. up to boundary effects due to our openness re-

quirement) the basin of attraction of S, the downstream

D= ( XM)− ( X S) is then empty, the trenches basically

equal the invariant kernel of X−, the abysses basically equal

the rest of the basin of attraction of the trenches, and the ed-

dies are basically the union of those trajectories that will for-

ever alternate between X+ and X−. In that case, some of the

finer regions may coincide or be empty as well, and one can

also represent their relationship by means of symbolic dy-

namics (beim Graben and Kurths, 2003): assign each state x

a symbolic sequence representing the sequence of its trajec-

tory’s transitions between the sunny (+) and dark (−) re-

gions, and use the wildcard ∗ to denote repetitions of zero or

more symbols. Then (up to peculiarities that may occur for

boundary states)

S =M = (+),

U− = (−)(+− )∗(+),

U (+)
= (+−)(+− )∗(+),

G= L=D = ∅,

E+ = (+− )∞,

E− = (−+ )∞.

ϒ+ = (+)(−+ )∗(−),

ϒ− = (−+)(−+ )∗(−),

and

2= (−).

To formally define the ports-and-rapids partition, we say

that a set P ⊆X is portish iff it has x X y for all x, y ∈P ; is

topologically connected; and does not intersect two different

eddies, abysses, or trenches. A maximal portish set is called

a port.

We show below that all ports are disjoint; each port is

completely contained in one of the sets U , D, E, ϒ−, 2;

none can intersect ϒ+; and each returnable state (i.e. an x

with x X x) is in a port, but no transitional state (x with

¬(x Xx)) is.

In the pendulum example of Fig. 8, the returnable points

are those in U +D because of the periodic frictionless de-

fault flow and the possibility of counteracting small pertur-

bations by braking or acceleration at some later point of the

perturbed trajectory. In the eddies and below, this is not pos-

sible after an accelerating perturbation; hence those regions

are transitional. In the plant types example of Fig. 5, there are

also transitional regions, e.g. to the top and right, where all

admissible trajectories lead down and left, and in the techno-

logical change example of Fig. 6, all points are transitional

because of the positive growth of the knowledge stocks.
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To extend the system P of all ports into a partition of

all of X that is finer than the main cascade C, we say that

two non-port states x, y are port-equivalent iff they are

in the same member of C; do not lie in two different ed-

dies, abysses, or trenches; and fulfil x X P ⇔ y X P and

P  X x⇔P  X y for all P ∈P . Each maximal topologi-

cally connected set of port-equivalent states is now called a

rapid. This ensures that not only U and D are partitioned

into ports and rapids but also each individual eddy, abyss,

and trench. The ports and rapids together form the ports-and-

rapids partition, PR, which is finer than C.

A set H ⊆X is harbourish iff it has x X+ y for all x,

y ∈H ; is topologically connected, does not intersect two dif-

ferent lakes, eddies, or abysses; and does not intersect two

different connected components of S+G. A maximal har-

bourish set is called a harbour. Let H be the system of all

harbours. Two non-harbour states x, y ∈X+ are harbour-

equivalent iff they (i) are in the same member of {S+G,

L, U (+), W , D(+), E+, ϒ+}; (ii) do not lie in two differ-

ent lakes, eddies, or abysses; (iii) do not lie in two different

connected components of S+G; and (iv) fulfil the equiv-

alences x X+ H⇔ y X+ H and H X+x⇔H X+ y

for all H ∈H. Each maximal topologically connected set of

harbour-equivalent states is called a channel and lies com-

pletely in either one port or one rapid (see below for a proof),

and hence the resulting harbours-and-channels partition of

X+, HC, is finer than PR.

A set O ⊆X is dockish iff it has x S y for all x,

y ∈O, is topologically connected and does not intersect two

different shelters. A maximal dockish set is called a dock.

Let O be the system of all docks. Two non-dock states x,

y ∈ S are called dock-equivalent iff they belong to the same

shelter and x S O⇔ y S O and O S x⇔O S y for

all O ∈O. Each maximal topologically connected set of

dock-equivalent states is called a fairway and lies completely

in either one harbour or one channel, and hence the resulting

docks-and-fairways partition of S, OF , is finer than HC.

Proposition 3 (Ports, rapids, harbours, etc.).

1. Each two ports [or harbours or docks] are disjoint.

2. Each port lies completely in one of U ,D, E, ϒ−,2, no

port intersects ϒ+.

3. Each harbour [or dock] lies completely in one port [or

harbour].

4. Each channel [or fairway] lies completely in one mem-

ber of PR [or HC].

5. These partitions are successive refinements of each

other: C, PR, HC, OF .

6. If a harbour H intersects some of the regions S+G,

L, U+,W , orD+, it is already completely contained in

that region.

Proof.

1. Assume y ∈A∩A′ for two different maximal por-

tish (or harbourish or dockish) sets A, A′ and put

B =A+A′. But then B is itself portish (or harbour-

ish or dockish) because stable reachability is transitive.

This contradicts the maximality of A and A′.

2. By Proposition 2, if x P y P x then x and y must

belong to the same member of C, and hence each port

lies completely in one of them.

To show that a port P ⊆ϒ is already in ϒ−, assume

x ∈P ∩ϒ+⊆X+ ∈ T . We will now construct a contra-

diction by constructing an admissible trajectory from

x that avoids 2 forever. Since x X x and X+ is

open, there is an open set A⊆X+ with y X x for

all y ∈A. Since τx is continuous and A open, we find

t0> 0 with τx(t)∈A for all t ∈ [0, t0]. Let y= τx(t0)

and pick a µ∈My that returns arbitrarily closely to x.

Let A be the set of all open A⊆X+ with x ∈A, and

choose a tA> 0 with µ(tA)∈A for all A∈A (this re-

quires the axiom of choice, which we will assume here).

Let t1= infA∈A supB∈A,B⊆A tB > 0. Since y ∈ϒ +2,

there is t ′> 0 with µ(t ′′)∈2 for all t ′′> t ′, and hence

tA 6 t ′ for all A∈A and thus t1 6 t ′. Next we show that

µ(t1)= x. If µ(t1)= y 6= x, one can choose A∈A and

C ∈ T with y ∈C and A∩C=∅ (this is the only point

where we need the Hausdorff property). Since µ is con-

tinuous, there are tl < t1 and tu> t1 with µ(t ′)∈C for

all t ′ ∈ [tl , tu]. By definition of t1, there is A′ ∈A with

supB∈A,B⊆A′ tB ∈ [t1, tu]. Putting A′′=A∩A′ ∈A, we

then also have supB∈A,B⊆A′′ tB ∈ [t1, tu], and hence

there is B ∈A with B ⊆A′′⊆A and tB > tl and hence

µ(tB )∈C by choice of tl . But µ(tB )∈B ⊆A by choice

of tB . Hence µ(tB )∈A∩C=∅, a contradiction. Thus

µ(t1)= x after all. Finally we concatenate τx[0, t0] and

µ[0, t1] infinitely many times and get an admissible tra-

jectory from x that avoids 2 forever.

3. This follows because  S refines  X+ , which refines

 X.

4. Since dock equivalence refines harbour equivalence,

which refines port equivalence.

5. Follows from points 2–4.

6. This follows directly from the definitions of S+G, L,

U+, W , and D+ by means of  X and  X+ and the

transitivity of those relations.

Q. E. D.

A4 Remarks

– In general, Aι◦ may be properly smaller than both the

interior (Aι)◦ of the largest invariant subset Aι of A and
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the largest invariant subset of A◦, (A◦)ι. The three sets

can only be shown to be equal under additional smooth-

ness assumptions on τ and µ∈Mx .

– The set of all states that are stably reachable from x need

not be closed or open and need not contain any of the

intermediate states that lie on the trajectories µ∈Mx

used in stable reachability.

– x A Y does not imply x y for any y ∈Y , since, after

a perturbation, other points in Y may be reachable than

before.

– For two points x,y in the same port, harbour, or dock

A, one may still not have x A y since the intermedi-

ate states on the trajectories from x to y may not be

stably reachable from x and thus may not belong to A.

In other words, perturbations may still push the system

temporarily out of a port, harbour, or dock, but one can

then return to the same port, harbour, or dock. For this

reason, the directed reachability network is typically

acyclic but may contain reachability cycles in patholog-

ical situations.

– Any attractor A with the return property (e.g. a sta-

ble fixed point or limit cycle, and most strange and

chaotic attractors) of the default dynamics lies com-

pletely within one port, and hence within one member

of C. If A⊆X+ then already A⊆ S, and A lies com-

pletely within one dock.

– The scope of possible connection topologies that may

occur as the reachability network of a managed system

contains at least all acyclic finite or countably infinite

directed graphs, as can be seen by the following con-

struction: given an acyclic directed graph, one can con-

struct a topologically equivalent network of water bowls

which are connected by water tubes leading from a ded-

icated “drain” at the bottom of the source ball to a com-

mon entrance at the top of the target ball. Let water flow

into all balls without incoming tubes and out of all out-

going tubes through grilles, determining the default dy-

namics of a small submarine floating in the water. Then

assume the submarine can be propelled strongly enough

to move freely inside each ball and to each drain, but not

strongly enough to leave the ball through the entrance at

the top, against the direction of the water flow. By mak-

ing parts of the balls and tubes opaque and moving some

of the drains from the bottom to the sides of the ball, the

construction can be extended to show that also all inter-

nally consistent three-level acyclic networks can occur

as the three-level network of ports, harbours, and docks.

Appendix B: Further examples

B1 One-dimensional potential function

This simple model shows how almost all of the introduced

state space regions (except eddies and dark abysses) may al-

ready occur in a one-dimensional system ẋ=−df/dx that

is defined by a potential function f (x) and already for sim-

ple desirable regions such as X+= ]0, ∞[, as depicted in

Fig. B1.

Our example has default dynamics along the blue line

downwards at a speed proportional to slope, but management

is able to move upwards instead on the thin blue lines where

the slope is small enough (for |df/dx|< 3/2). The chosen

undesirable region of x 6 0 is indicated in grey. The shelter

consists of the two segments just left of point a and it can

be stably reached from everywhere properly left of a; hence

that whole region constitutes the upstream. The manageable

region is the union of shelter, glade, lake, and backwater,

and it can be stably reached from everywhere properly left

of point b; hence the downstream is the right-open interval

from a to b.

That there are no eddies and no dark abysses in this exam-

ple is typical for systems without any circular flows and with

a sufficiently simply shaped X+.

There are two ports, i.e. the two closed intervals where

the default flow is slow: one in the upstream and one in the

downstream. Note that the latter is only partially contained

in the backwater. One rapid lies to the left of the left port, an-

other between the left port and point a, and these two rapids

are port-equivalent since both can reach the left but not the

right port. Similarly, the right port is surrounded by two port-

equivalent rapids. Finally, there is a singleton rapid consist-

ing only of the point a and a last one formed by point b and

all that is to the right of it; from these two port-equivalent

rapids, no port can be stably (!) reached.

B2 Bifurcations of a directly manageable flow

If a system passes through a bifurcation, the classification

of states by the criteria outlined above will typically change.

Let us examine some archetypical cases that can occur in the

exemplary case where management can directly affect the

flow by changing the default derivative ẋ=F (x) of a one-

dimensional system by at most one unit, so that the admissi-

ble trajectories are those with ẋ ∈ [F (x)− 1, F (x)+ 1]. (See

Sect. 3.6 above for the case where management is via chang-

ing a parameter instead.)

Assume X+={|x|<`} for some `� 1, and the de-

fault flow has a subcritical pitchfork bifurcation, say

F (x)= x3
− r x, where for r > 0 the stable fixed point

x0= 0 is surrounded by two unstable ones at x±=±
√
r

and becomes unstable itself for r 6 0, as depicted by the

solid and dotted pale-blue lines in Fig. B2a. Then for

r > 0, we have a shelter-and-glade situation with a shelter
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S= ]−
√
r ,
√
r[ and two glades G= ]−g(r), −

√
r]+ [

√
r ,

g(r)[ where g(r)>
√
r is the upper solution to the equation

F (g(r))− 1= 0, indicating the limit above which also the ex-

treme management with ẋ=F (x)− 1 cannot move the sys-

tem downwards (dashed dark-blue lines). But for r 6 0, the

shelter disappears and the glades merge and are converted

into a backwater W = ]-g(r), g(r)[. In both cases, this is sur-

rounded by two sunny abysses ϒ+= ]−`, −g(r)]+ [g(r),

`[ and two trenches 2= ]−∞, `]+ [`, ∞[ (outside the de-

picted area). One may call this transition a backwater/glade

bifurcation. As an early warning signal of an imminent

breakdown of a shelter in such a backwater/glade bifurca-

tion, one may consider the volume of the shelters Vol(S) in

terms of some natural measure on X as a measure of “shelter

stability”, similar to the concept of basin stability for unman-

aged systems without desirable region (Menck et al., 2013; Ji

and Kurths, 2014; Schultz et al., 2014; van Kan et al., 2015)

and to the recently introduced survivability measure for un-

managed systems with a desirable region (Hellmann et al.,

2015).

The port surrounding the unstable fixed point x= 0,

P0= ]−g(r), g(r)[, where g(r) is the solution to

F (g(r))+ 1= 0, eventually also splits into three ports

P0 and P±, separated by two rapids R±; their borders are

depicted by the dashed red lines. But this happens only at a

larger value of r , namely at r = 3/
3
√

4≈ 1.9, after which the

two unstable fixed points x± can no longer be reached from

each other. The corresponding ports-and-rapids network has

these arrows: ¬(P− X)¬(R− X)P0 X R+ X P+.

One may call this transition a port pitchfork bifurcation.

An interesting case is a saddle-node bifurcation such as

the one in Fig. B2b, with F (x)=−r − x2 and a critical pa-

rameter value r = 0 at which the stable and unstable fixed

points at x=±
√
−r collide and disappear. First, at the crit-

ical point, the shelter caused by the stable fixed point and

its glade are transformed into a backwater. Then, somewhat

later (at r = 1), the maximal value of ẋ achievable by man-

agement becomes negative and the backwater ceases to exist

so that only the sunny abyss remains. One may call this a

glade–backwater–abyss transition.

If a stable fixed point approaches and eventually enters

deeply into the dark region, this may also be called a form

of “bifurcation” that causes a similar transition in the clas-

sification of states. If F (x)=−r − x and X+={x > 0}, as

in Fig. B2c, then again two changes occur: at r = 0, the

shelter-and-upstream situation of r < 0, with S= ]0,∞[ and

U−= ]−∞, 0], converts into a backwater-and-downstream

situation withW = ]0,∞[ andD−= ]−∞, 0]. Then at r = 1,

this further converts into an abyss-and-trench situation of

r > 1 with ϒ+= ]0,∞[ and2= ]∞, 0]. One could thus call

this a shelter–backwater–abyss transition.

Finally, a transition with three steps is caused if the fixed

point passes through a narrower strip of dark, as in Fig. B2d,

where again F (x)=−r − x but now X+={|x|> 1/4}. Here

the shelter is again first transformed into a backwater at

r =−1/4, but then into a lake L when the fixed point leaves

the dark again at r =+1/4, and even later into a remaining

sunny upstreamU (+) once the maximally achievable value of

ẋ at the upper boundary of the dark, i.e. at x= 1/4, becomes

negative. We suggest to call this a shelter–backwater–lake–

upstream transition.
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Figure B1. A system moves along the blue line: downward by default (pale-blue arrows), but in some regions management can move it in the

opposite direction (dark-blue arrow) in order to avoid the undesired “dark” region. Shelters, manageable region, upstream, and downstream

(boldface, Sect. 2.2) and other regions from the main cascade (top line, Sect. 2.3). Regions from the finer manageable partition (below,

Sect. 2.4). See Fig. 2 for a systematic summary of these concepts. Bottom: three-level reachability network (Sect. 2.5).
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Figure B2. Parameter changes can change the quality of states due to bifurcations. Top-left panel: backwater/glade bifurcation and later

port pitchfork bifurcation caused by a subcritical pitchfork bifurcation of the default flow (similar in the supercritical case). Top-right panel:

glade–backwater–abyss transition caused by a saddle-node bifurcation, with the second critical value marked in red. Bottom-left panel:

shelter–backwater–abyss transition caused by the transition of a stable fixed point into the deep dark. Bottom-right panel: shelter–backwater–

lake–upstream transition caused by the transition of a stable fixed point through a dark strip.
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ABSTRACT

Increasingly complex nonlinear World-Earth system models are used for describing the dynamics of the biophysical Earth system and the
socioeconomic and sociocultural World of human societies and their interactions. Identifying pathways toward a sustainable future in these
models for informing policymakers and the wider public, e.g., pathways leading to robust mitigation of dangerous anthropogenic climate
change, is a challenging and widely investigated task in the �eld of climate research and broader Earth system science. This problem is partic-
ularly di�cult when constraints on avoiding transgressions of planetary boundaries and social foundations need to be taken into account. In
this work, we propose to combine recently developed machine learning techniques, namely, deep reinforcement learning (DRL), with classical
analysis of trajectories in theWorld-Earth system. Based on the concept of the agent-environment interface, we develop an agent that is gener-
ally able to act and learn in variable manageable environment models of the Earth system. We demonstrate the potential of our framework by
applying DRL algorithms to two stylized World-Earth system models. Conceptually, we explore thereby the feasibility of �nding novel global
governance policies leading into a safe and just operating space constrained by certain planetary and socioeconomic boundaries. The arti�-
cially intelligent agent learns that the timing of a speci�c mix of taxing carbon emissions and subsidies on renewables is of crucial relevance for
�nding World-Earth system trajectories that are sustainable in the long term.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5124673

We propose a framework for using deep reinforcement learning

(DRL) as an approach to extend the �eld of Earth system anal-

ysis by a new method. We build our framework upon the agent-

environment interface concept. The agent can apply management

options tomodels of the Earth system as the environment of inter-

est and learn by rewards provided by the environment. We train

our agent with a deepQ-neural network extended by current state-

of-the-art algorithms.We �nd that the agent is able to learn novel,

previously undiscovered policies that navigate the system into

sustainable regions in two exemplary conceptual models of the

World-Earth system.

I. INTRODUCTION
E�orts invested in identifying pathways toward global sus-

tainability need to account for critical feedback loops between the
socioeconomic and sociocultural World and the biophysical Earth
system.1,2 These pathways may require novel, yet undiscovered, mul-
tilevel policies, from the local to the global scale, for the governance
of this coupled World-Earth system leading toward a safe and just
operating space.3,4 Striving for a safe and just operating space, policy-
makers of the United Nations agreed on global political cooperation
for a sustainable future at the resolution of the 17 Sustainable Devel-
opment Goals (SDG)5 and the adoption of the Paris Agreement on
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Climate Change.6 The safe and just operating space is based on a set
of biophysical planetary boundaries (de�ned on dimensions such as
climate change or biosphere integrity loss) as they are formulated by
Rockström et al. in Refs. 3, 4, 7, and 8, extended by social founda-
tions (e.g., poverty alleviation) by Raworth.9 If respected together,
staying within these boundaries is seen as a prerequisite to ensuring
sustainable human development. The �eld of Earth system model-
ing develops computer models to show possible pathways toward a
sustainable future. However, the identi�cation and characterization
of concrete trajectories within the planetary boundaries and above
social foundations remains a problem requiring ongoing research
e�orts.10,11

In this paper, we consider this problem on a globally aggre-
gated level assuming the following basic structure: An abstract single
decision-maker interacts with a dynamical, in most cases, nonlinear
environment to �nd sustainable trajectories within certain bound-
aries. The �eld of Integrated Assessment Modeling (IAM) addresses
this issue via optimizing a social welfare function in order to esti-
mate the design of sustainable management strategies.12 IAMmodels
integrate data and knowledge from established climatemodels.13,14To
identify pathways in IAM, numerical solvers such as GAMS15 are fre-
quently used. However, these IAM models are highly dependent on
the choice of the target function of the optimization. In many cases,
this choicemay not be obvious and depends on the IAMdevelopers.16

As another approach, optimal control theory (OCT) can be used
to solve problems where dynamical systems are supposed to stay
within certain constraints. In these systems, OCT tries to �nd an
optimal choice for some control variable by optimizing a speci�c
objective function.17 Applied to Earth system models, the focus has
been set on the design of climate regulators and their impact on cli-
mate modi�cation.18,19 Viability theory (VT) as a sub�eld of OCT
can be stated as an example. In this �eld, such problems of identi-
fying trajectories are typically addressed by methods that rely on a
discretization of the state space, followed by the application of local
linear approximations.20 It is, however, not well applicable in systems
with more than just a small number of variables due to the curse of
dimensionality.21

The use of reinforcement learning (RL)22 can also be consid-
ered as a possible approach for intelligent decision-making within
World-Earth system models.23 It is designed for �nding optimal pol-
icy strategies as well. However, in contrast to the previously presented
approaches, RL does not detect solutions based on numerically solv-
ing an optimization problem, but by a dynamic search process via
exploration and exploitation of past experiences, guided by a reward
function. However, tabular methods, which are mainly used for clas-
sical RL solutions, cannot be straightforwardly applied to the systems
of interest here, due to the continuous state spaces that wemostly �nd
in World-Earth system models.

The common point of all the presented methods outlined above
is that they reach their limits as the complexity of the environments
increases. However, deep reinforcement learning (DRL)24 algorithms
have been shown to detect solutions in other highly complex envi-
ronments surprisingly well.24,25 In this paper, we propose using DRL
as a novel approach for Earth system analysis. Even though �rst suc-
cessful reinforcement learning experiments by using neural networks
as nonlinear function approximators were reported already in 1995,26

the breakthrough of DRL was achieved only in 2013.24,25 Since then,

DRL algorithms have become increasingly popular in the �eld of arti-
�cial intelligence.27,28 The key to the success of this approach lies in
the combination of Q-learning,29 neural networks,30 and experience
replay,31 which has been shown to learn policies up to a super-
human performance in a variety of di�erent environments.24,25Often
DRL applications come up with unexpected and novel solutions.32,33

Many extensions have been proposed addressing both speed and
e�ciency.34 Due to its general applicability to various environments,
DRL is used in a wide range of di�erent �elds, e.g., resources man-
agement in computer clusters,35 optimization of chemical reactions,36

playing abstract strategy games like chess and Go,32,33 autonomous
driving,37 and, in particular, robotics.38–41

Due to the wide applicability of DRL, we propose a framework
that uses DRL as a tool that is both robust and easy to use at the
same time to identify and classify trajectories in Earth system mod-
els e�ectively. As a proof of concept, we use our DRL framework
within various stylizedWorld-Earth systemmodels.2,42Thesemodels
are designed to investigate the coevolutionary dynamics of humans
and nature in the Anthropocene. Some �rst applications of reinforce-
ment learningmethodswithin resource usemodels have been carried
out,43–45 but as far as we know, there are no approaches yet apply-
ing DRL to Earth systemmodels. We believe this approach will open
so far unused possibilities to discover so far unknown management
strategies that keep the Earth system within planetary boundaries,
while, at the same time, respecting social foundations of the world’s
societies. Recently, various ways of how to tackle problems related to
anthropogenic climate change by using machine learning techniques
have been outlined.46 Our work proposes a novel strand to this list.

II. METHODS
This work uses the agent-environment interface22 as a formal

mathematical framework which allows for making a fruitful con-
nection between reinforcement learning and the modeling of social-
ecological systems, as it was, e.g., proposed by Barfuss, Donges, and
Kurths.47 In the case of a single agent as studied here, RL problems
are based on the concept of Markov decision processes (MDPs).22

Therefore, we will provide a brief introduction to MDPs, followed
by a description of how we included the learning process by using
neural networks. We will further give a short overview of possible
extensions and conclude this section by outlining how we translate
Earth system models into the formal framework of an MDP.

A. Markov decision processes
RL is designed for problems where an agent observing the envi-

ronment output consisting of a state and a scalar reward signal is
acting upon this observation.22 Formally, this interaction is described
by a so-called Markov decision process (MDP).48 At each step t, the
environment is in a certain state st ∈ S , where S describes the set of
all possible states. The agent chooses an action at from a given �nite
action set at ∈ A. Environmental dynamics are now determined
by the transition probability T(s′|a, s) = P(st+1 = s′|st = s, a = at),
which does not depend on t explicitly. When for a given action a, the
environment transits from state s to s′, the agent receives an immedi-
ate numerical value rt , called the reward, that generally depends on
the state s and action a. The tuple (s, a, r, s′) de�nes the MDP. The
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agent chooses its action according to its behavior policy π which
maps state s to a probability distribution over all actions a ∈ A,
expressed as π(s, a) = P(a|s).

B. Deep reinforcement learning
Every decision the agent takes is followed by a reward it

gets from the environment. In all types of RL algorithms, the
goal of an agent is to maximize its exponentially discounted sum
of future rewards,22 called the gain Gt = rt + γ rt+1 + γ 2rt+2 + · · ·
=
∑∞

k=0 γ krt+k, where the discount factor γ ∈ [0, 1] expresses how
much the agent cares for future rewards. This lets us de�ne a state-
action value function Qπ quantifying the value of a state s, given
that the agent applies action a, as the expected return, following a
given policy π , Qπ (s) = Eπ [Gt|st = s, at = a]. The average Eπ can
be understood as the sumover all actions for a policyπ times the sum
over all possible state transitions to s′. Inserting the gainGt yields the
Bellman equation,49

Qπ (s, a) = Eπ [rt + γQπ (st+1, at+1)|st = s, at = a] . (1)

The best possible solution of anMDP is the optimal state-action value
functionQ∗(s, a), which is the maximum state-action value function
over all policies,

Q∗(s, a) = max
π

Qπ (s, a). (2)

The problem of maximizing the expected discounted reward sum Gt

is transformed to �nd the optimal state-action value function Q∗.
The optimal value function allows the following consideration. If for
all possible actions a′ for the next time step s′ = st+1 the value of
Q∗(s′, a′) was known, then the optimal strategy would be to choose
that a′ ∈ A, resulting in the highest value of Q∗(s′, a′). This identity
is known as the Bellman Optimality Equation,22

Q∗(s, a) = ET

[

r + γ max
a′∈A

Q∗(s′, a′)

]

. (3)

ET averages over all possible state transitions, given by the transi-
tion probability T. The task is now to �nd a way to estimate the
optimal action value function Q∗(s, a). Estimating the state-action
value function by performing rollouts on the environment are called
model-free. Mnih et al.24,25 address this issue with the combination
of Q-learning, deep neural networks, and experience replay suc-
cessfully, called deep Q-learning (DQL). Brie�y, we will provide an
overview of their approach.

a. Q-learning. Q-learning is a speci�c type of RL which con-
verges to the optimal solution. In Q-learning, we use the function
Q(s, a) representing the state-action value when performing action a
in state s. The temporal di�erence error of expected valueQ(s, a) and
experienced value r + Q(s′, a′) is used to estimate the current value
of the state.22 It is used to incrementally estimateQ-values for actions,
based on an iteratively updated Q-value function,29

Qi+1(st , a) = rt + γ max
a′∈A

Qi(st+1, a
′). (4)

Action selection when acting in the environment is usually made
with an ε-greedy policy, i.e., with probability ε ∈ [0, 1] the action
argmaxaQ(s, a) is used, and with probability 1− ε a random

action is used. Here, the parameter ε regulates this exploration-
exploitation trade-o�. Q-learning is an o�-policy algorithm, i.e., to
estimate the current state-action value the agent uses the maxi-
mum state-action value of the next state, regardless of which action
is actually chosen there. Still, one can prove that, for i→∞,
this algorithm will converge to the optimal action value function
Q(s, a)→ Q∗(s, a).22

b. Deep Q-networks. In practice, this convergence is only
applicable in state spaces with a small number of states. How-
ever, continuous state spaces make it impossible to learn state-
action pairs independently.22 Using multilayered neural networks
as function approximators, Q(s, a, θ) ≈ Q∗(s, a), called deep Q-
networks (DQN), is a possibility to overcome this issue.24 As target
function Yt , one can use di�erent RL variants.22 Here, the Q-
learning update from Eq. (4) is adjusted by setting Yt(st , at , θ)

= rt + γ maxa′∈A Q(st+1, a,′ θ). The parameters (i.e., the weights) θi
of the neural network are optimized by gradient descent to minimize
the loss Li(θi) at iteration i between the target and the current Q
value via

Li(θi) =
(

Yt(θ
−
i )− Q(st , at , θi)

)2
, (5)

∇θiLi =
(

Yt(θ
−
i )− Q(st , at , θi)

)

∇θiQ(st , a, θi), (6)

θi+1 = θi + α∇θiLi. (7)

The parameter α describes the learning rate of the network. To
account for amore stable learning, a second networkwith parameters
θ−t is used. This network is a copy of the �rst one but is frozen in time
for τtarget iteration steps. It is used as the target function Yt(s, a, θ−)
in Eq. (5). The �xed Q-values of Yt(s, a, θ−) make it possible that the
optimization process converges to a stable target.24 The target net-
work is updated every τtarget iteration steps by copying the parameters
from the current network: θ− ← θ .

c. Experience replay. Instead of learning from state-action pairs
as they occur during simulation, updates for the state-action value
functionQ(s, a, θ) are applied on samples (called Mini-Batches) ran-
domly drawn from a replaymemory—typically a large table of stored
observations that are collected during the training process. This sep-
arates the learning process itself from gaining experience,31 which
breaks the similarity of subsequent training samples and leads con-
sequently to more stable learning.24

C. Extensions to DQN
After the convincing performance of the DQN network pre-

sented by Mnih et al.,24 the algorithm has been further developed
and signi�cant improvements regarding stability and learning speed
could be achieved. By using double Q-learning,50 harmful overesti-
mation of the Q values51 can be reduced. With the introduction of
dueling network architectures,52 the value of a state and the advantage
of taking a certain action at that state could be decoupled. Fur-
thermore, the distributional DQL algorithm by Bellemare, Dabney,
and Munos53 addresses the issue that the value of future rewards is
restricted to the expected return (i.e., to theQ function) and replaces
it with a distribution of Q-values per action.
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FIG. 1. Using the agent-environment interface22 for analyzing World-Earth models via deep reinforcement learning (DRL) techniques. The environment is in a certain state
st , based on that state the agent chooses an action at . The environment responds with a next state st+1 and a reward rt+1. The dynamics of the environment for every time
step dt are numerically integrated. We interpret the action setA as a set of management options for the Earth system and propose different reward functions.O describes
the set of states that are within the planetary boundaries (PBs). The learning agent is implemented to use DRL24,25 using Q-learning29 combined with deep neural networks30

and experience replay31 to choose at every step one action from an action set which in our case represents governance management options. In the Q-learning box, the
representation of the target function is depicted. To visualize deep Q-networks’ functionality, we show a scheme for the function approximator via a deep neural network. In
the experience replay box, the dot as the index of the observations in the replay buffer of size k represents an arbitrary time point.

After having presented possible improvements to Q-learning
and the network architectures, one can also optimize the way which
experiences are used for learning. When treating all samples the
same, we are not considering that possibly we can learn more from
some transitions s→ s′ than from others. Prioritized experience
replay (PER), developed by Schaul et al.,54 is one strategy that tries
to account for this issue by changing the sampling distribution. The
basic idea is to use the absolute temporal di�erence error to priori-
tize important transitions. However, when PER is introduced, there
is obviously a bias toward high-priority samples, which changes this
distribution uncontrollably. It can be corrected by using importance-
sampling (IS) weights. This importance-sample weight is annealed
fromone starting value β0 to 1, whichmeans that its a�ect is felt more
strongly at the end of the stochastic process as the unbiased nature of
the updates in RL is most important near convergence.54

In Ref. 34, Hessel et al. compare and combine improvements to
a new state-of-the-art DQL algorithm, they called Rainbow, which
we will also use in this paper.

D. Agent-environment interface
In this work, we transfer the theoretical framework of an MDP

to concrete applications in Earth system dynamics by using the
agent-environment interface. In this context, the concept of the agent
is solely de�ned by its action set. The action set can be regarded
as a collection of possible measures the international community
could use to in�uence the system’s trajectory. The agent uses a DRL
algorithm outlined in Sec. II B. Concerning the detection of sus-
tainable governance policies, we are mostly interested in the �nal
outcomes the agent has learned rather than in letting the agent
make real-world decisions later on. To assess the feasibility of �nd-
ing sustainable policies, we also investigate the learning process.
In this work, we intend to test our framework in the context of
Earth system models. We focus on a particular type of Earth sys-
tem models, which has been termed “World-Earth models.”2,42 In
World-Earth modeling, one tries to capture the coevolving dynam-
ics between biophysical dynamics of the Earth system on the one
hand and on the other hand the social and economic dynamics of
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the World community. Since optimizing welfare may lead to poli-
cies that are neither sustainable nor safe,55 we are interested in
governance policies whose resulting trajectories stay within certain
“sustainability boundaries” of the state space. These include both
planetary and socioeconomic boundaries. We set up the environ-
ments based on Kittel et al.21 and Nitzbon, Heitzig, and Parlitz,56

both using deterministic nonlinear World-Earth models including
planetary boundaries and social foundations. The dynamics are
described by a set of coupled autonomous di�erential equations that
de�ne a continuous state space. In our setting, time is discretized
in integration steps dt. At each nth step, the environment’s dynam-
ics are numerically solved (i.e., integrated) for a single time step
dtn = tn − tn−1. Therefore, the environments ful�ll theMarkov prop-
erty of
the MDP.

A scheme of how this framework is implemented is shown
in Fig. 1. In the following paragraphs, we provide more details on
how we map the required parts for an MDP (i.e., concrete states
in the environment, actions, and reward function) to World-Earth
models. We conclude this section with some technical notes about
implementation and hyperparameter search.

a. Environment 1: The AYS model. This model is a low-
complexity model in three dimensions studied in Ref. 57 and
described in more detail by Kittel et al.21 It includes parts of climate
change, welfare growth, and energy transformation. As compared to
classical Earth system models, the AYS model is adapted. For sim-
plicity, carbon dynamics A is not modeled in an explicit carbon cycle
but assumed to follow an exponential relaxation toward equilibrium.
The relation of the wealth of a society is modeled through the eco-
nomic output Y , where the economy is assumed to have a constant
basic growth rate. A renewable energy source with learning by doing
dynamics is implemented via a renewable energy knowledge stock S.
The state the agent observes at time t is, therefore, given by the tuple
st = (A,Y , S)t , consisting of three numerical values. As sustainabil-
ity boundaries, we use a planetary boundary A > Ā = 345GtC and
a social foundation boundary Y > Ȳ = 4 · 1013 $/yr. For details, we
refer to the Appendix or Ref. 21.

b. Environment 2: The copan:GLOBAL model. This model, stud-
ied by Nitzbon, Heitzig, and Parlitz,56 is a conceptual model that
describes the coevolution of natural and economic subsystems of the
Earth. The model is meant for qualitative understanding of the com-
plex interrelations rather than for quantitative predictions. Climate
is represented as a global carbon cycle involving stocks of terrestrial
carbon L, atmospheric carbon A, and geological carbon G, which
in�uence the global mean temperature T. On the other hand, socioe-
conomic concepts, expressed through population P with capital K,
are used to describe the �ows of biomass and fossil fuels between
society and nature. In Ref. 56, the authors consider a scenario where
renewable energy does not exist. We extend the model for this study
by including renewable energy use via a learning-by-doing dynamics
for the renewable energy knowledge stock S, in the samemanner as it
was done in Ref. 42 for a regionalized version of Ref. 56. The state st is
thus determined by the tuple st = (L,A,G,T, P,K, S)t . Similarly, we
use again A > Ā = 345GtC and a social foundation boundary for
consumption of W > WSF = 7850 $/yr per capita as sustainability

boundaries. For details of the system dynamics, the reader is referred
to the Appendix or Refs. 42 and 56.

c. Action set. The action set A represents certain gov-
ernance management options. It consists of no extra manage-
ment (called default), a carbon tax, subsidies of renewable ener-
gies, for the c:GLOBAL environment of a nature protection pol-
icy, and all possible combinations of these management options.
Depending on the speci�c environment, each action alters the
dynamics of the state variables. For details, we refer to the
Appendix.

d. Reward function. Reward functions express the agent’s pref-
erences over state-action pairs and, therefore, control the learning
process. The reward functions are not a system feature but a param-
eter of the learning algorithm. We are free in our choice of the
reward function and are guided in this choice by how well the cho-
sen reward function helps the learner to achieve the actual goal.
Since our ultimate objective is not to maximize some objectively
given reward function but to stay within the boundaries, we chose
the reward functions accordingly. Reward functions can be both
continuously and discontinuously changing. To prove our frame-
work working for both types, we used the following simple reward
functions:

• Survival reward: provide a reward of 1 if the state st is within the
boundaries, else 0.

• Boundary distance reward: calculate the distance of the state st to
the boundaries in units of distances from the current state of the
Earth to the boundaries. This distance is provided as a reward.

Depending on the chosen reward function, the trajectories found by
the agent di�er. In the case of survival reward, the agent is only inter-
ested in staying within the boundaries, whereas, in the latter case of
the boundary distance reward, the agent tries to detect trajectories
resulting in a large distance to the boundaries.

e. Implementation. After the experience, replay memory is �lled
with experiences from an agent that acts randomly in the environ-
ment. The learning process runs as follows. The agent is trained for
a �xed number of episodes. A start position within the boundaries
is randomly drawn from a uniform distribution of states around the
current state. The number of iteration steps during one single learn-
ing episode is limited to a maximum of T. The end of one learning
episode is determined either whenT is reached or ended prematurely
at time t eitherwhen a boundary is crossed orwhen approximate con-
vergence to a �xed point is detected. In the latter case, the remaining
future rewards are estimated with a discounted reward sum for the
remaining time T − t of the reward rt . In any case, after the end of a
learning episode, the environment is reset to time t = t0 and a new
start point st0 within the boundaries of the environment is randomly
drawn.

f. Hyperparameter tuning. For each environment, we trained a
di�erent network. To get an optimal hyperparameter set for every
environment, we systematically investigated the e�ect of various
parameters on the learning success, such as the discount factor, the
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training data mini-batch size, or the exploration-exploitation trade-
o� based on own exploration and on standard parameters of the
DRL community as presented in Ref. 34. For a detailed explana-
tion, we refer to the Appendix. The exploration rate ε starts with
1 and decays over time. We achieved the best performance for a
replay bu�er (i.e., the memory size) of 105 which is less than the
default value in many DRL algorithms (e.g.,25,34,52) but in accor-
dance with the work of Ref. 58 stating that the size of the replay
bu�er is crucially environment-dependent and needs a careful tun-
ing. A full list of all hyperparameters can be found in Table I in the
Appendix.

The neural network is based on the following architecture. The
input layer of the size equaling the dimension of the state space is
followed by two fully connected hidden layers, each one consisting
of 256 units. The output layer is a fully connected linear layer that
provides an output value for each possible action in the action set,
representing the estimated Q-value of that action for the state given
by the inputs. For minimizing the loss function, instead of simple
stochastic gradient descent (SGD), the Adam optimizer59 is used due
to its better performance than SGD in DRL applications, as reported
in Ref. 34.

III. APPLICATION TO WORLD-EARTH MODELS
Based on our proposal outlined above, we implemented an agent

that learns by using aDRL (see Sec. II B) tomanage the environments
described in Sec. II D. The agent is trained for a maximum num-
ber of 104 episodes, where the learning success is evaluated every 50
episodes. Single simulation experiments can be carried out on stan-
dard notebook computers in a reasonable computing time (one to
two hours on a single machine). Using a tuned hyperparameter set
(see Table I in the Appendix for details), we can formulate three key
�ndings of thiswork that is outlined below. First, we �nd that learning
in terms of increasing rewards in the environments is indeed possible.
Second, we investigate the speci�c pathways found by the learner and
observe that the agent acts with great farsightedness. Moreover, we
see a general strategy behind the detected trajectories that the learner
has developed. Third, we explore that the agent also achieves good
performance in scenarios in which the state space is only partially
observable to the agent.

A. Training and stability
In order to verify the overall applicability of our algorithm, we

�rst analyze the learning behavior in general. Unlike in supervised
learning, where one can evaluate the performance of an algorithm
by evaluating it on a set of test data, it is not obvious how to evalu-
ate accurately the training progress an agent makes in RL problems.
Here, we stick to the method used by Mnih et al.25 visualizing the
training properly. We plot the total reward the agent collects dur-
ing one run over the number of learning episodes. Each value is
computed as a running average over 50 episodes. Each curve is the
average of 100 independent simulations.

As a result, we see that, after a certain number of episodes,
the average reward per episode signi�cantly increases in our envi-
ronments (see Fig. 2). Obviously, the agent �nds trajectories that

reveal a high reward. In other words, it learns tomanage the environ-
ment. We conclude that management can indeed be learned by the
agent.

Furthermore, we observe that the learning of the agent is sta-
bilized by using the extensions to DQN-Learning as outlined in
Sec. II C. The plot suggests that the usage of dueling network archi-
tectures combined with double-Q-learning (DDQN + Duel) and
prioritized experience replay with importance sampling (PER IS)
signi�cantly increases the performance of our DQN-Agent. The pos-
itive e�ect of PER IS can be explained by the observation that, in
both environments, we �nd states in the resulting trajectories, where
the dynamics signi�cantly changes (as it will be outlined below).
Experiences containing these states will be privileged in the learn-
ing process by PER IS. This is in good agreement with the results in
Ref. 52. Therefore, all results outlined below are achieved by using our
best performing agent (DDQN + Duel + PER IS), if not stated oth-
erwise. Moreover, this is in qualitatively good accordance with other
comparisons of di�erent learning architectures, as, e.g., presented in
Ref. 34, and the learning curves show a similar shape as seen in other
DRL applications.24,25,34

B. Management pathways in World-Earth
system models

In the following, we discuss the pathways in the two
environments described in Sec. II D that were found by using the
outlined framework ofDRL. In Sec. III B 1, we explore theAYSmodel
and, in Sec. III B 2, the copan:GLOBAL model. Speci�cally, in both

FIG. 2. Development of total average reward per episode. The average reward is
a running average over the last 50 episodes of the sum of all rewards gained
during one training episode. The curves are an average of 100 independent
simulations of the AYS model. The light bands show 95% confidence intervals
for the expected values estimated by these averages. Different deep-Q-network
architectures are analyzed: DQN = deep-Q-networks, DDQN = Double DQN,
DDQN Duel = Dueling network architecture with DDQN, DDQN Duel PER
IS = DDQN Duel using prioritized experience replay together with importance
sampling. The simulations were performed with a ε-greedy policy with ε decaying
exponentially from 1 to 0.01 at a decay rate of λ = 0.001.
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FIG. 3. Dynamics of a stylized World-Earth system according to Kittel et al.21 The default flow of the AYS model is sampled with thin trajectories with randomly distributed
initial conditions. We used nonlinearly scaled axes to account for the full spaceR3. The red dot in the center: Estimated current state of the world. Green lines: attraction basin
of sustainable fix point which can be understood as the safe and just operating space. Black lines: attraction basin of the carbon-based economy. Gray surfaces: sustainability
boundaries. In color, the example trajectory from the current state into a green future. The possible management options of the action set are: DG: degrowth, and energy
transformation, i.e., carbon tax + subsidies on renewables.

environments, we are interested in whether the learner �nds trajec-
tories toward regions, which we can associate with a safe and just
operating space without violating sustainability boundaries. First, we
present some successful examples. As a next step, we look at the spe-
ci�c trajectories in more detail, hoping to understand the general
strategy the agent found to reach its aim (i.e., maximize the total
reward).

1. Pathways in the AYS model

In the AYS model, the agent can choose between the follow-
ing actions: “energy transformation” (taxing carbon emissions and/or
subsidizing renewables) or “degrowth management” (reducing the
basic economic growth rate) or neither or both of them. As a �rst
analysis step, we look at the pathways the agent takes after it was
trained for a su�ciently long time (i.e., the convergence of the learn-
ing is reached, see Fig. 2). We �nd that, even though the dynamics
of the environment is unknown to the agent in advance, it is able
to �nd trajectories within sustainability boundaries (see Fig. 3) that
were deemed impossible in another study based on a viability theory
algorithm that used state space discretization.21

Due to the setup of our framework, each of the twomanagement
options can only be switched on and o�. In Fig. 3, in the region near to
the boundaries, the energy transformation (ET) option (representing
an energy tax or subsidy) is switched on and o� in short alternations,
achieving essentially the e�ect that a continuous application of a

smaller tax/subsidy would have. Hence, o�ering di�erent tax levels
as individual options might improve the learning success further.

To get a deeper understanding of the found solutions, we take
a closer look at the di�erent trajectories that were detected by using
the DRL framework. Depending on the chosen reward function, the
paths found by the agent di�er. If the boundary distance reward
is chosen, after su�ciently long learning, the agents always �nd a
path toward the “green �xpoint” at (A,Y , S) = (0,∞,∞), where the
distance to the boundaries is maximized. For the survival reward, the
agent is only interested in staying within the boundaries. Therefore,
it �nds pathways leading to the green �xpoint as well as pathways
toward a region close to the boundaries with S = 0 where it then
manages to stay. Althoughmany viable paths are found by the learner,
we �nd that the learning strategies that were found can be gener-
alized. We analyzed the management options the agent uses most
on di�erent parts of the trajectories. They are depicted in Fig. 4.
These di�erent regions of predominantmanagement options are now
used for the following discussion. The di�erent regions colored in
Fig. 4 may be analyzed with respect to a mathematical theory of
the qualitative topology of the state space of a dynamical system
with management options and desirable states, called topology of
sustainable management (TSM).60 Interestingly, these regions can be
seen to correspond roughly to some concepts from the TSM frame-
work, in particular, the concept of “shelter” and “backwaters.” The
approximate locations of these regions are depicted by dashed lines
in Fig. 4.
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FIG. 4. Analysis of predominant man-
agement strategies in 200 independent
simulations that find a trajectory inside
the boundaries (gray surfaces). Half of
them use the boundary distance reward
and go toward the green fixpoint within
the “shelter” region where management
can be stopped (green dashed line).
The others use the survival reward and
go into a fossil-based future within the
“backwaters” region from which no return
to the shelter region is possible (black
dashed line). Management options: DG:
degrowth, reducing the basic growth rate
of the economy; ET: energy transfor-
mation, taxing carbon and/or subsidiz-
ing renewables. Dots denote points of
strongest gradients on each trajectory
(green for going into the shelter and
black for going into the backwaters).
Here, the predominant learning strategy
changes as well. The color of the trajec-
tories shows the predominant manage-
ment option used in each state. One can
see that, close to the shelter, no specific
management option is preferred since the
choice becomes irrelevant.

We identify a general strategy the agent uses. Starting from
the current state, we found that in order to stay within the bound-
aries forever, it is not su�cient to use only one single management
option of energy transformation (ET) or degrowth (DG) in the begin-
ning. Rather, both ET and DG have to be applied to ensure keeping
the system within the sustainability boundaries in future times. To
understand this behavior, one has to recall the e�ect of the two pos-
sible management options DG and ET (for details, we refer to the
Appendix). Both boundaries Ā and Ȳ are potentially dangerous for
the learner. Using only option ETwill lead to an increase of renewable
knowledge but violate the Ā boundary. Applying option DG will on
the one hand respect the Ā boundary but on the other hand hit the Ȳ
boundary. The strategy found by the learner is a mix of both options:
First, it uses option ET + DG to reach a certain distance from the Ā
boundary. However, the Ȳ limit comes critically near. At a speci�c
time point, the agent has to change its predominant management
strategy to ET such that the renewable knowledge stock increases
faster and the agents avoid transgressing the boundary value of Ȳ .
At this speci�c point where DG + ET changes to ET, a sharp turn
in the trajectory happens (see Fig. 4). If S is large enough at this
point, the turn is “upwards” and after some time, a region is reached
where every trajectory is now leading toward unlimited growth of
economic output and renewable knowledge regardless of the chosen
management option, so that management can be “stopped,” lead-
ing to another sharp turn in the trajectories. In TSM, such a secure
region is called a shelter. However, if S is too small at the turning
point, the turn is “downward” toward S = 0, staying close to the social

foundation boundary. In Ref. 21, it was shown that this leads to a
region called the backwaters, from which the shelter could not be
reached any longer, but one can still stay within the boundaries by
managing over and over again.

Summarizing, the agent learns that the timing of the par-
ticular change of management is of crucial relevance. A general
interpretation of the resulting pathways would be that ET, e.g.,
via taxing fossils, is highly important to ensure further develop-
ment. However, to reach a secure state without violating the sus-
tainability boundaries, a degrowth policy is needed for some time
as well.

2. Pathways in the c:GLOBAL model
We verify that our framework works as well in higher-

dimensional environments by applying it to the c:GLOBAL model.
While classical approaches like viability theory are no longer well
applicable because of the dimension, our DRL learner is also capa-
ble of detecting solutions toward a sustainable future in this model,
see Fig. 5. Here, one learning episode has a maximum length of
500 yrs. Successful trajectories often converge already after around
100 yrs. However, to account for long-term e�ects, simulations were
executed for times up to 500 yrs since we observed that seem-
ingly converged trajectories sometimes transgressed boundaries at
much later times, posing an additional challenge for the learner.
The general strategy found by the learner turns out to be this. The
NP option is used throughout and renewables are subsidized during
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FIG. 5. Exemplary trajectories for successful management in the model based on Ref. 56. The upper graph shows the time evolution of the main variables, the lower the
chosen actions at every time step. Dynamical variables are displayed as colored bands and solid lines, derived variables as dashed lines, and the planetary boundaries
and social foundations in dotted lines. The total energy use is denoted as E = ER + EB + R. For visual reasons, we rescaled the S, P,W , K, Y with Smid = 5 · 1011 bits,
Pmid = 6 · 109 H, Wmid = WSF = 7850 $/yr H, Kmid = 5 · 1013 $, and Ymid = 6.3 · 1013 $/yr . Since the system converges, only the first 100 years are shown.
The available management options are Sub (subsidies on renewables), Tax (carbon tax on fossils), NP (nature protection for land use), and all combinations
of these.

most of the time. The crucial point is the timing of the carbon
tax, which cannot be used immediately without violating the social
foundation boundary. It is switched on only later and switched o�
again once renewables have passed through most of their learning
curve.

An interesting observation regarding the farsightedness of the
agent is the following. After some learning episodes, the agent often
uses trajectories that do not use any management during the years

20–60, which keeps the system within the boundaries for some time
but leads to a violation of Ā later for some t > 100 yrs. One example
trajectory can be found in Fig. 7 in the Appendix. Only after many
more episodes, the agent learns to act with foresight and use man-
agement options early on that only make a recognizable di�erence
much later and avoid crossing the boundaries. This is indeed a key
feature for the success of DRL and shows the potential power of the
method.
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FIG. 6. Percentage of tests the agent passes successfully given different informa-
tion about the state. An episode is considered successful if the agent, starting from
the current state, manages to reach the shelter region where management can
be turned off. For each set of dynamical variables, we simulated 100 independent
learning processes and show 95% confidence bands for the reported percent-
ages as estimates of the true success probabilities. The legend lists the vari-
ables observable by the agent: L = terrestrial carbon, A = atmospheric carbon,
G = geological carbon, T = global mean temperature, P = population, K =
capital, and S = renewable energy knowledge stock.

However, taking a look at the stability of the learning (see Fig. 6),
we observe that the learning success in the copan:GLOBAL model
also decreases again after a still larger number of episodes. As a pos-
sible explanation, we suggest that this is connected to the replay
bu�er. To avoid this phenomenon, the replay bu�er needs to con-
tain experiences, especially about the time steps where the dynamics
of the system changes signi�cantly.58 After many successful runs, we
still continue collecting observations in the memory bu�er at every
time step. Therefore, it mostly contains experiences for time points
t > 50 yrs. However, especially the �rst time steps are crucial to avoid
transgressing boundaries at later times as outlined above. These are,
therefore, essential for the learning success. It seems that the agent
tends to forget about experiences from early time steps and the learn-
ing success decreases. Further investigation considering the question
of which experiences should be stored in the replay bu�er could be
the �rst step to overcome this issue.

C. Partial observability and noise
As a generalization of Markov decision processes, partially

observable Markov decision processes (POMDPs) are of great
research interest. Here, the agent is only able to observe only part of
the actual system state.61We are interested in the performance of our
DRL agent under such observational constraints since a real-world
manager will only have access to vastly restricted information about
the Earth system’s current state. Moreover, we added noise to the
observations of the agent. Our experiments show (see Fig. 6) that,
even under partial observability of the state, the agent is still capa-
ble of detecting sustainable solutions. We observe that the learning
curves for observing either the full state(L,A,G,T, P,K, S) or only
the variable combinations (A,G,T, P,K, S) or (G,T, P,K, S) have
very similar shape. So, it seems that there is little added value in
observing the carbon stocks L and A when already observing the

geological stockGwhose decline is essential for the timing of the car-
bon tax (but which is also the hardest to observe in reality). However,
even if we limit the agent’s observation capabilities to the socioeco-
nomic variables (P,K, S), the agent achieves a similar performance
after a certain number of episodes, only considerably later. This
can be explained by the dominant force humans exert on the Earth
system.

To test the robustness of the DRL algorithm for a noisy state
input, we added white observational noise on the input state st the
agent receives from the environment. Not surprisingly, noise can
disturb the agent’s learning and lead to a massive decrease in per-
formance if the environment gets more complex (see Fig. 8 in the
Appendix for details). Neural networks are known to be vulnerable
by perturbed input62,63 and the harmful e�ect of noise has already
been observed and discussed as well in DRL applications.64–66 Still,
for further experiments with more realistic scenarios, the in�uence
of noise has to be investigated more systematically.

For the analysis of trajectories in the Earth system, we can
deduce the following. Even if the full state will not be observable
to the agent, it is just based on the distance boundary reward sig-
nal still able to su�ciently “understand” the system’s dynamics in
order to �nd appropriate management pathways. Furthermore, in
our experiments, we see that noise will be a limiting factor for some
DRL algorithms. In simulations with very noisy environments, some
preprocessing of the input state might be necessary to use DRL
successfully.

IV. CONCLUSION
The main contribution of this work is the development of a

framework for using DRL in Earth system models, mathematically
formalized in a Markov decision process. Throughout this paper,
we have combined the technique of deep reinforcement learning
with Earth system modeling in order to detect global sustainable
management strategies. We have presented a prototype for which
we hope extensions based on our work will become a helpful tool
to discover and analyze management pathways and to get a deeper
understanding of the impact of global governance policies.

As a proof of concept, we have applied it to two exemplarymod-
els from Earth system science, taken from theWorld-Earthmodeling
literature. They include components of Earth system modeling as
well as constraints of planetary boundaries and social foundations.
We have shown that our algorithm successfully identi�ed trajecto-
ries toward a secure region for the Earth system which a competing
approach using viability theory and a discretization of the state space
were not able to �nd.21 Even very simple reward functions were
su�cient, and only partial observations of the system state were nec-
essary for the learner to understand the complex, nonlinear system’s
dynamics. However, noisy observations have presented a challenge.
We have found signi�cant learning improvements by using the com-
bination of DQN with dueling network architectures and prioritized
experience replay and importance sampling.

With respect tomanagement strategies that the learner found in
the AYS and the c:GLOBALmodel, we can support the intuition that
there is not one single way for staying within the boundaries nor can
the impact of global management be observed immediately. Rather,
we conclude from our models that only an intelligent combination
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and timing of global policies may lead to a sustainable future. We
found that besides making renewables more attractive, also a tem-
porary slowing down of economic growth might be necessary for
staying within planetary boundaries.

Moreover, we have shown that our method is applicable as well
in environmentswith only partially observable state spaces. Due to its
connection to real-world problems,61 for example, in 3Dnavigation,67

partial observability of state spaces is widely discussed in the rein-
forcement learning community. Hence, in future work, the e�ects of
reducing the dimensionality of the state space in our World-Earth
system models need to be studied in more detail.

We used DRL to identify trajectories under certain constraints.
Formally, this can be regarded as an optimization problem, which
could be approached with other methods as well. For example, the
IAM community typically uses commercial solvers for the opti-
mization of long-term social welfare functions, which are in�u-
enced by nonlinear underlying dynamics. However, the choice of
the welfare function is not directly intuitive and hard to justify
straightforwardly.16 As an example, Pindyck16 puts forward the sig-
ni�cant di�erences in the outcome of two establishedmodels in IAM.
The results in Refs. 68 and 69 di�er widely, mainly based on the
di�erent values of the discount rates for the choice of which no uni-
form theory exists. However, in our models, the constraints imposed
by sustainability boundaries, as well as the choice of simple reward
functions, could be argued to be easier to justify and to understand
intuitively in some contexts.

We encourage the reader to apply our framework to his or her
preferred models. Since we formulated our problem as an MDP, our
approach is not restricted to deterministic environments but can be
generalized to environments that include stochastic dynamics and
agent-based components. One could think about replacing the global
society used in themodels above by agent-basedmodels of regionally
distributed interacting societies. Following the model developed by
Wiedermann et al.,70,71 which is a stochastic environment based on
an adaptive network model, could be a �rst step in this direction. On
the other hand, the biophysical dynamics could be incorporated in
more detail as well by using more complex global vegetation models
such as LPJ.72

Further, an interesting next step could be to use DQN agents
to represent major real-world agents such as governments in a mul-
tiagent environment setting. Here, �rst experiments in simple grid
worlds have already been performed to investigate sequential social
dilemmas73 and common-pool resource appropriation.74 Connec-
tions to game theory in the climate context are conceivable as well.47,75

Another approach that might be promising is to includemodel-
based RL in our framework. Regarding computation time, model-
based RL tends to bemuchmore e�cient.76 The key di�erence is that
model-free methods act in the real environment in order to collect
rewards and update the action value functions accordingly. In con-
trast, the agent in model-based methods uses RL to learn a model
of the environment and then predicts the system dynamics in a sec-
ond step. Once the model is learned, actions can be chosen by using
optimal control theory. Speci�cally, as environments inWorld-Earth
models are often based on a set of biophysical and socioeconomic
di�erential equations, this approach might be promising. However,
highly complex environments often cannot be learned perfectly, such
that solutions of this method involve the risk of being suboptimal.

A possible approach to overcome this issue is recently developed
algorithms that aim to combine advantages of both methods in one
algorithm.77

Another fruitful exchange could emerge between the �eld of
Earth system analysis and the �eld of safe and bene�cial AI.78 For
example, the important question of the latter �eld of how self-
learning agents can safely explore an environment without pursuing
catastrophic action directly translates to �nding sustainable policies
in Earth system analysis. Here as well, management strategies need to
navigate uncertain environments without activating tipping elements
in the Earth system with potentially catastrophic impacts on human
societies.79,80
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APPENDIX A: THE AYS MODEL ENVIRONEMENT
In this environment, the observable state is composed of three

real-valued components: the excess atmospheric carbon stock over
preindustrial levels A ≥ 0 (GtC), the gross world economic product
Y ≥ 0($/yr), and the global knowledge stock for producing renew-
able energy S ≥ 0 (GJ). The time evolution of these is given by three
ordinary di�erential equations in which several additional, derived
quantities occur that the agent cannot directly observe. These auxil-
iary variables are total world demand for primary energy U (GJ/yr),
a relative price level of renewables G, resulting in a division ofU into
renewable energy production R and a �ow of fossil energy F, and
�nally the global greenhouse gas emissions �ow E (GtC/yr) resulting
from F.

a. Dynamics in the AYS model.We assume that each unit of out-
put Y requires a �xed amount 1/ε of energy and the two energy
sources are used in proportion to relative price (see Ref. 21 for a
justi�cation), so that

U = Y/ε, F = GU, R = (1− G)U, E = F/φ. (A1)

We assume the absolute price of fossils to remain constant and that
of renewable energy to depend on the renewable knowledge stock in
a power law relationship, so that the relative price of renewables vs
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fossils has the form

G =
1

1+ (S/σ)ρ . (A2)

Instead of assuming a carbon cycle as in the c:GLOBAL model
(see below), we here simply assume that atmospheric carbon stock
declines exponentially toward its equilibrium value where excess
atmospheric carbon vanishes, so that

dA/dt = E− A/τA.

Likewise, instead of assuming a classical economic growth model as
in c:GLOBAL, we here simply assume that the gross world prod-
uct grows at a �xed basic rate which is reduced in proportion to A
(interpreted as a proxy for climate damages),

dY/dt = (β − θA)Y .

Finally, learning-by-doing makes the renewable knowledge stock
grow with renewable energy production, and forgetting makes it
decline exponentially,

dS/dt = R− S/τS.

We use the following initial conditions and parameter estimates from
Ref. 21: energy e�ciency ε = 147 $GJ−1, fossil combustion need
φ = 4.7 · 1010 GtCGJ−1, break-even level of renewables σ = 4 ·
1012 GJ, learning-by-doing exponent ρ = 2, characteristic time of
natural carbon uptake τA = 50 yr, basic economic growth rate
β = 0.03 yr−1, climate damage coe�cient θ = 8.57 · 10−5 yr−1

GtC−1, and characteristic time of forgetting τS = 50 yr−1.

b. Desirable region and management options. The AYS environ-
ment is an interesting minimum-complexity toy model for sustain-
ability science because one can represent both the climate change
planetary boundary and a wellbeing social foundation boundary in it
by studying whetherAmay stay below some threshold Ā = 345GtC,
and Y does not drop below someminimum value Ȳ = 4 · 1013 $ yr−1

at the same time. In this paper, we assume the agent that represents
the world community will try to avoid that the system converges to a
�xed point with S = 0, A > Ā, and Y < Ȳ , e.g., by making it instead
go to A = 0 and S,Y = ∞ without violating the bounds. To do so,
the agent has in this setup four options:

• DG: This option reduces the basic growth rate to β̄ = β/2, which
helps to respect the boundary Ā but now risks to violate the social
foundations boundary Ȳ .

• ET: This option supports an energy transition. It lowers the break-
even point to σ̄ = σ · (1/2)ρ which can be understood as subsidiz-
ing renewables and/or taxing fossils. This option does not change
the location of the �xpoints but changes the dynamics signi�cantly
toward the green �xpoint.21

• Default: The agent can also use neither of these options.
• DG+ ET: The combination of both of these options is possible as
well.

APPENDIX B: THE c:GLOBAL MODEL ENVIRONEMENT
The model underlying this environment is of a similar type but

more complex, having seven dynamic variables, of which the agent

can observe di�erent subsets in our experiments, as well as several
additional unobserved auxiliary variables.

a. Dynamics in the c:GLOBAL model. Here, terrestrial car-
bon stock changes due to temperature-dependent photosynthesis
(�rst term) and respiration (second term), and due to harvesting of
biomass B,

dL/dt = (l0 − lTT)
√

A/6 L− (a0 + aTT)L− B.

Absolute atmospheric carbon stock A changes due to photosynthe-
sis, respiration, combustion of harvested biomass (= −dL/dt), and
ocean-atmosphere di�usion,

dA/dt = −dL/dt + δ(M −mA).

Geological carbon stock G declines because of extraction of fossil
fuels F,

dG/dt = −F.

Global mean temperature converges to a value dependent on A due
to the greenhouse e�ect and is hence measured for simplicity on a
nonlinear scale in units of atmospheric carbon per land surface area,
so that

dT/dt = g(A/6 − T).

Population P has a fertility (�rst term) and mortality (second term)
that depend on wellbeingW,

dP/dt = P

(

2WWp

W2 +W2
p

p−
q

W

)

.

Physical capital K grows since part of GWP Y is invested and decays
exponentially,

dK/dt = iY − kK.

For renewable knowledge stock S, we assume the same dynamics as
in the AYS model,

dS/dt = sRR− sSS.

Since total carbon is �xed at C∗, maritime carbon stockM is

M = C∗−L− A− G.

Usage of the three assumed perfectly substitutable energy forms of
biomass B, fossil F, and renewable energy �ow R is determined by a
general price equilibrium model (see Refs. 42 and 56) that leads to
these equations,

B =
aB

eB

L2(PK)2/5

(aBL2 + aFG2 + aRS2)
4/5 , (B1)

F =
aF

eF

G2(PK)2/5

(aBL2 + aFG2 + aRS2)
4/5 , (B2)

R = aR
S2(PK)2/5

(aBL2 + aFG2 + aRS2)
4/5 . (B3)

Economic output is proportional to energy input,

Y = yE(eBB+ eFF + R).
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Finally, wellbeing is determined by per capita consumption and
ecosystem services, which are assumed proportional to terrestrial
carbon density,

W =
(1− i)Y

P
+ wL

L

6
.

We use the following initial conditions and parameter estimates from
Refs. 42 and 56, which are based on data from year 2000: initial
values L0 = 2480GtC (GtC= gigatons carbon),A0 = 830GtC,G0 =

1125GtC, T0 = 5.05 · 10−6 GtCm−2 (global mean surface air tem-
perature is not measured in Kelvin but for simplicity in carbon-
equivalent degrees, i.e., GtC), P0 = 6 · 109 H (H = humans), K0 =

5 · 1013 $, and S0 = 5 · 1011 bits.
The parameters are as follows: total available carbon stock

C∗ = 5500GtC; photosynthesis parameters l0 = 26.4 km yr−1

GtC−1/2 and lT = 1.1 · 106 km3 yr−1 GtC−3/2; total land mass
6 = 1.5 · 108 m2; respiration parameters a0 = 0.03 yr−1 and
aT = 3200 kmyr−1GtC−1/2; di�usion coe�cient δ = 0.01 yr−1; sol-
ubility coe�cient m = 1.5; strength of the greenhouse e�ect
g = 0.02 yr−1; peak fertility wellbeing level Wp = 2000 $yr−1 H−1;
peak fertility p = 0.04 yr−1; mortality coe�cient q = 20 $yr−2; sav-
ings and capital depreciation rates i = 0.25 and k = 0.1 yr−1;
knowledge accumulation sR = 1.0 bits GtC−1; forgetting parame-
ter sS = 1/50 yr−1; total carbon C∗ = 5500GtC; energy subsec-
tor productivities aB = 1.5 · 104GJ5yr−5GtC−2$−2H−2, aF = 2.7 ·
105GJ5yr−5GtC−2$−2H−2, and aR = 9 · 10−15GJ5yr−5bits−2$−2H−2;
energy e�ciencies eB = 4 · 1010 GJGtC−1 and eF = 4 · 1010 GJGtC−1;
�nal sector productivity yE = 120 $GJ−1; and wellbeing-sensitivity
on ecosystem services wL = 0 km2 GtC−1 yr−H−1

b. Desirable region and management options. The c:GLOBAL
model allows us to include both planetary boundaries and the social
foundations. To be consistent with the AYS model (see above), we
use the same value for the state variable Ā = 945GtC (note that here
A describes the amount of total atmospheric carbon, in contrast to
the AYS model where A describes the excess atmospheric carbon
after the beginning of the industrial revolution). However, in con-
trast to the AYS Environment, the social foundations boundary is
not included directly through a dynamical state variable but comes
within a derived variable. Since we have in the c:GLOBAL model a
direct measure for wellbeingW, we use it as a boundary for the social
foundations. The value is chosen as in the AYS model derived from
economic production in year 2000 and set to W̄ = 7850 $H−1. Due to
the mass conversation law, in any case, the dynamical variables L,A,
andG cannot exceed the total amount of carbonC? at any time. How-
ever, we �nd that the state variables P,K, and S diverge for large times
with our chosen initial conditions. Accordingly, we de�ne the desir-
able region that should be reached within this framework as a region
that is within the planetary boundaries of Ā, with still growing well-
being (i.e.,W →∞) and a population of above 1 · 1010 H since this
is a realistic estimation for the growth of the world population. As we
saw exampleswhere pathways ful�lled these requirements, but hit the
planetary boundaries at some later time steps, we demanded further-
more that the agent has to stay in this region for a time of t > 400 yr.
To �nd a pathway in these regions, the agent has in this setup eight
di�erent management options:

• Sub: This option doubles the energy availability of renewable
energies via the factor aR in Eq. (A5), which can be understood
as a subsidy on renewables. It helps to push the development of
renewable energy knowledge S but has no direct in�uence on the
carbon �ow.

• Tax: This option describes a carbon tax. It lowers the carbon based
energy availability via the factors aG and aF in Eqs. (A4) and (A3),
respectively. The factors aF and aB are decreased by a factor of 50%,
which is roughly the price of carbon proposed in the last IPCC
landmark report.10 This option increases the distance to the plan-
etary boundary Ā but lowers signi�cantly the distance to the social
foundations, especially at the beginning of the simulation.

• NP: Nature protection policy. It reduces the amount of terrestrial
bound carbon L that can be used for energy generation to a pro-
portion of 70%of the initial terrestrial carbon L0. This option helps
to avoid that too much terrestrial carbon is set free to the atmo-
sphere but has no in�uence on the �ow of geological carbon into
the atmosphere and risks furthermore the probability to violate the
social foundations W̄.

• Default: The agent can also use neither of these options.
• Combinations of Sub + Tax + NP: All four possible combina-
tions of the three single options can be used as well.

APPENDIX C: UNSUCCESSFUL MANAGEMENT IN
c:GLOBAL

FIG. 7. Exemplary trajectories for unsuccessful management in the model based
on Ref. 56. The upper graph shows the different trajectories, and the lower shows
the chosen action at that time. Dynamical variables are displayed in solid lines,
derived variables in dashed lines, and planetary boundaries and Social Founda-
tions in dotted lines. The total energy use is denoted as E = ER + EB + R. For
visual reasons, we rescaled the S, P,W , K, Y with Smid = 5 · 1011 bits, Pmid =

6 · 109 H, Wmid = 7850 $/aH, Kmid = 5 · 1013 $, and Y = 6.2 · 1013 $/a. We

plotted up to that time point when the Ā boundary is hit. The available manage-
ment options were as follows: Sub = Subsidies on renewables, Tax = Carbon tax
on fossils, and NP = Nature protection for landuse.
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APPENDIX D: NOISY INPUT TO ENVIRONMENTS

FIG. 8. Percentage of successful tests for environments with different levels of
noise strength σ . White noise is set on the input states, and the strength of the
noise could be up to σ relative to the input state st . We compare the learning
success in the AYS as well as in the c:GLOBAL model. The agent is provided in
all dimensions of the state space.

APPENDIX E: LIST OF HYPERPARAMETERS
In Table I, the list of the hyperparameters inAYS and c:GLOBAL

environment is shown. The hyperparameter search was mainly done
based on own exploration. Due to high computational costs, no
systematic grid search was performed, but as one parameter was
tested, the remaining were �xed at their previously explored opti-
mal values. For the priority of transition α, the initial importance

sampling weighting β0, and the Adam optimizer learning rate, the
recommended values in Refs. 54 and 34 were used.
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When optimization for governing human-
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Optimizing economic welfare in environmental governance has been criticized for delivering

short-term gains at the expense of long-term environmental degradation. Different from

economic optimization, the concepts of sustainability and the more recent safe operating

space have been used to derive policies in environmental governance. However, a formal

comparison between these three policy paradigms is still missing, leaving policy makers

uncertain which paradigm to apply. Here, we develop a better understanding of their

interrelationships, using a stylized model of human-environment tipping elements. We find

that no paradigm guarantees fulfilling requirements imposed by another paradigm and derive

simple heuristics for the conditions under which these trade-offs occur. We show that the

absence of such a master paradigm is of special relevance for governing real-world tipping

systems such as climate, fisheries, and farming, which may reside in a parameter regime

where economic optimization is neither sustainable nor safe.
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The Sustainable Development Goals1 and the Paris climate
agreement set the target of prosperous development for
people and our planet. Yet, it remains challenging to

translate these aims into concrete policy implementations,
accounting for non-linearities, such as tipping elements2,3, regime
shifts4,5, and multi-stabilities6, as well as multiple kinds of
uncertainties7–9, and extreme events10.

To support the decision making processes in these contexts, we
ask the question how the three prominent decision making
paradigms of economic welfare optimization, sustainability and
safe operating space compare with each other. Specifically, we
investigate the parameter regimes for synergies and trade-offs
when applying these paradigms to the management of tipping
elements11 and how these findings relate to the three real-world
systems of climate, fisheries and farming.

Optimization approaches have emerged as the primary guiding
principle to derive a policy strategy for environmental govern-
ance12,13. Most often, the present value of macroeconomic social
welfare, i.e., the sum of discounted future benefits minus costs, is
the target to be optimized. Such optimization approaches have
been criticized regarding the discount rates used, delivering short
term gains at the expense of long-term environmental degrada-
tion14,15. Further criticism targets the lack of a systems perspec-
tive required to understand the structural landscape of model
dynamics, as well as the assumptions made due to imperfect
information6,9,10. This critique is partly dealt with in optimization
variants, such as robust7,16 or viable17–19 control, which are
dealing with multiple types of uncertainty20. Naturally, other or
multiple objectives21 and criteria22,23 with possible constraints24

can be optimized as well. In this work, we use the term solely in
the narrow economic sense of maximizing the present value as
defined in Eq. 1 below.

In recognition of increasing environmental and social threats25

the policy paradigm of sustainability has emerged in the scientific
and political discourse26,27. The economics of sustainability has
brought up many definitions of sustainability alone28–31. In these
analyses sustainability is usually imposed as a constraint within
an economic welfare optimization paradigm. Trade-offs to eco-
nomic welfare optimization are well known28,32. However, these
classic social welfare optimization approaches are challenged
through the increasing recognition of non-linearities, such as
tipping points, regime shifts, uncertainties and the risk of cata-
strophic outcomes6,9. Taking up these challenges, e.g., non-
convexities33 and climate tipping elements34,35 have been studied
within an economic framework. Here, we derive our formal
definition of sustainability from the Brundtland report26. Its
design is deliberately simple and targeted to the mathematical
framework we use (see below). We do not intend our definition to
be applicable to a general model of a welfare economy12,27.

Recent advances in sustainability science have brought forth
tolerable windows36 or safe operating spaces37,38 as a policy
paradigm to derive concrete actions from39. These concepts ori-
ginate from resilience thinking40 and a precautionary principle41

to deal with potential dangerous tipping elements in the envir-
onmental governance system. Trade-offs but also synergies with
optimization thinking have been therefore discussed42. Also for-
mal analyses studying relations between resilience as a system
property and sustainability were conducted43,44.

However, the reciprocal relationships between these three
paradigms of economic optimization, sustainability and safe
operating space is still insufficiently explored. Such an
understanding is important in order to judge, for example,
when economic optimization is, or is not, an appropriate policy
goal. Also, guidance is required when a sustainability
paradigm may conflict with a safe operating space paradigm and
vice versa.

Here, we report progress towards a better understanding of the
mutual relationships between these three paradigms of economic
optimization, sustainability and safe operating space by applying
them to a stylized model of a human-environment tipping ele-
ment. We do so because of the increasing importance of tipping
points and regime shifts in environmental governance. Our
model is deliberately stylized, thereby applicable across multiple
cases and scales, to gain a deeper understanding more complex
models might miss. The formal definitions of the three paradigms
are designed to fit our mathematical framework (see below). Since
we do not focus on intragenerational justice in this article, one
agent suffices as a decision making subject, in contrast to a
multiagent setting. We find that there exists no master paradigm
between the three examined, i.e., a policy can be any combination
of optimal or not, sustainable or not and safe or not. This is of
special relevance to the climate system which may reside at the
edge in the parameter regime where economic welfare optimi-
zation becomes neither sustainable nor safe. This suggests the use
of more advanced paradigms to support decision making in cli-
mate policy.

Results
Stylized model of a human-environment tipping element. We
use the mathematical framework of Markov Decision
Processes45,46, in which an agent makes decisions about how to
interact with its environment (Fig. 1a). Our particular environ-
ment can reside in either a prosperous state, which provides
immediate rewards (also called payoffs) to the agent, or a
degraded state, from which the agent receives no payoff. At each
time step, the agent chooses between two actions a, exerting
either a high or low pressure on the environment. Depending on
the current state s, the current action a and the subsequent
state s′, the agent receives an immediate reward r (Fig. 1b).
At the prosperous state, taking the low pressure action the agent
is guaranteed to receive reward rl and remain at the
prosperous state. However, taking the high pressure action, the
agent may receive reward rh (which is typically larger than rl), but
risks triggering a collapse of the environment to the degraded
system state with non-zero probability δ and no immediate
reward at all. From there, only the low pressure action opens the
option to recover to the prosperous state with non-zero prob-
ability ρ.

For example, the high pressure action could correspond to
emitting a business-as-usual amount of carbon to the
atmosphere yielding a reward of high, short-term economic
output as long as the system has not tipped. The low
pressure action resembles emitting a reduced amount
of carbon, assuming a lower short-term economic output for
the guarantee to not trigger climate tipping elements into a
disastrous state.

A policy π is a function that specifies what action a to apply at
a system state s. The agent receives reward rt at time step t. The
value vπ(s) of a state s under a given policy π is given by the
expected value of the normalized accumulated discounted
rewards r with discount factor 0 ≤ γ ≤ 1 when starting in state
S0= s and following policy π:

vπ sð Þ ¼ Eπ lim
T!1

PT
t¼0 γ

trtPT
t¼0 γ

t
S0 ¼ sj

" #
: ð1Þ

Note that the discount factor actually denotes the farsighted-
ness of the agent. Thus, γ= 1 corresponds to no discounting
(weighting all rewards equally regardless of when they are
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expected), whereas γ= 0 corresponds to completely myopic, fully
discounting agents.

Paradigm definitions. We classify policies according to whether
they are economic welfare optimal or not, sustainable or not, and
safe or not. For the sake of simplicity we focus on two determi-
nistic policies, distinguishing whether the agent should apply the
low or the high pressure action at the prosperous state (Fig. 1c):
the risky policy (πr(p)= h, πr(d)= l), applying the high pressure
action at the prosperous state and the low pressure one at the
degraded state and the cautious policy (πc(p)= l, πc(d)= l),
applying the low pressure action at the prosperous, as well as the
degraded state.

A policy π is defined as optimal (in the economic welfare sense)
if its value vπ(s) (Eq. 1) for every state s is larger than or equal to
the value of any other policy46.

Based on the Brundtland Commission’s report on sustainable
development26 a sustainable policy should fulfill two
requirements: First, meet the needs of the present. We translate
this formally into the agent evaluating the present state s as
acceptable (similar to viable17, tolerable36 or desirable47), if its
value (Eq. 1) exceeds a normatively chosen minimum acceptable
value rmin:

s acceptable under π iff vπ sð Þ � rmin ð2Þ

Note, that the division of state space into acceptable and
unacceptable states is not identical for all polices, but depends on
the rewards receivable through executing a policy. Second, a
sustainable policy should sustain the ability to meet the needs of
the future26.

We define a policy π as sustainable if every state the agent
eventually visits under policy π is acceptable (Eq. 2).

Note that this reduction of sustainability to the one-
dimensional value vπ(s) has much similarity with the notion of
weak sustainability48.

The Safe Operating Space (SOS)37 is typically defined as a
subset of the whole state space S, containing favorable system
states bounded by thresholds39,49. In practice, the position of
these potential tipping thresholds is always uncertain and the
boundaries are placed at the lower end of the uncertainty zone. In
that way the definition of the safe operating space states
constitutes a normative judgment about the risk the decision
maker is willing to tolerate. In the subsequent analyses we take
the extreme position of no risk tolerance and identify the SOS
with only the (more favorable) prosperous state, independent of
the collapse probability δ.

We define a policy π as safe if every state the agents eventually
visits under policy π lies within the SOS.

In contrast to acceptable and unacceptable states, safe states are
independent of the policy used.

In summary, our stylized model of a human-environment
tipping element depends on the five parameters δ, ρ, γ, rl/rh, rmin/rh:
the probability of a collapse from the prosperous to the degraded
state under the high pressure action δ, the probability of recovery
from the degraded to the prosperous state under the low pressure
action ρ, the agent’s discount factor γ, the high reward receivable
from the high pressure action when staying at the prosperous
state rh, the low reward receivable by taking the low pressure
action at the prosperous state rl, and the normatively chosen
minimum acceptable reward rmin a state value must have to be
perceived as acceptable under a certain policy. Since all three
rewards come in arbitrary units, the policy classification only
depends on their ratios.

Classification of risky and safe policy. Based on Eqs. 1 and 2 we
analytically compute whether the risky and the cautious policy are
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optimal or not, sustainable or not and safe or not depending on
the model parameters (δ, ρ, γ, rl/rh, rmin/rh) (see Methods and
Fig. 2).

We observe that above a certain critical value of the collapse
probability δ the cautious policy becomes optimal (Fig. 2a, pink),
despite the smaller immediate reward rl= 0.5rh. This result
confirms previous findings on optimal management with regime
shifts50.

Further, we find a decreasing critical collapse probability with
increasing farsightedness γ. Hence, for more farsighted societies
the risky policy is optimal only for small collapse probabilities δ
(orange).

Provided the low pressure reward exceeds the normative
minimum acceptable value threshold, rl ≥ rmin, then the cautious
policy is sustainable for all parameter combinations δ, ρ, γ, rl/rh
(Fig. 2b, blue and purple). Only for small collapse probabilities δ
and simultaneously high farsightedness γ the risky policy
becomes sustainable as well (purple). This is because in this
parameter region the risky policy is acceptable also at the
degraded state (Methods).

The cautious policy is a safe policy independently from the
parameter combinations δ, ρ, γ, rl/rh, rmin/rh (Fig. 2c, green). It is
important to emphasize that there is no combination of
parameters at which the risky policy is safe.

Relationships between paradigms. We find that policies can be
classified along all logical combinations of the three examined
paradigms (optimization, sustainability, safe operating space).
This yields a classification of policies into eight different cate-
gories (Fig. 3).

In particular, optimal policies are not necessarily sustainable
(opt and not sus: Fig. 3, red and yellow). This is the case if the
normative value threshold rmin is too large. The cautious policy
does not return enough value to be sustainable (rl < rmin, yellow)
and the risky policy at the degraded state produces too little
future reward to be sustainable, due to the low chance of recovery
and lack of farsightedness.

Nor are optimal policies necessarily safe (opt and not safe:
Fig. 3, red and purple). This occurs in parameter regions where
the risky policy is optimal. The risky policy cannot be safe
because of the risk of collapse to the degraded state.

A safe policy does not necessarily imply a sustainable policy
either (safe and not sus: Fig. 3, green and yellow). When the

normative threshold value for sustainability rmin exceeds the
reward from a low pressure action rl: rmin > rl, then the cautious
policy is safe but not sustainable. Following a similar line of
argument, the SOS concept37 has been extended to a Safe And
Just Operating Space (SAJOS) which additionally accounts for
social indicators51, such as the number of people living in extreme
poverty. Thus, SAJOS policies can be interpreted as the overlap of
safe with sustainable policies. Within our model, we can give a
definite criterion for when this form of SAJOS exists: as long as
the reward from a low pressure action rl exceeds the normative
threshold value rmin (rl > rmin), the cautious policy is both safe and
sustainable (Fig. 3, cyan and gray).

However, there exist also sustainable policies outside the SOS
(sus and not safe: Fig. 3, blue and purple.) These are risky policies
(hence, not safe) with simultaneously high farsightedness γ and
low collapse probability δ. At those parameter regions the
degraded state is still evaluated as acceptable due to sufficient
anticipated future rewards and therefore the risky policy is
sustainable. The circumstance that parameter regimes exist that
are sustainable but not safe and vice versa clearly stems from our
definition of sustainability which resembles a form of weak
sustainability48. By doing so we can conceptually separate issues
of environmentally safe and socially just without compromising
the target of a safe and just parameter space regime.

Note that this classification into the eight different policy
paradigm combinations also applies to the case of absolute
farsightedness (γ= 1; see the tops of Fig. 3b–e). Thus, the trade-
offs between the examined paradigms do not vanish, as one might
presume considering the debate about appropriate discount
rates14,52.

Volume of paradigm combinations. So far, we have visualized
the parameter space of our stylized tipping element model in two
dimensional sections and fixed the remaining parameters for
illustrative purposes. By doing so, we showed the mutual
dependence between parameters, foremost the discount factor γ
and the collapse probability δ. However, in the light of con-
siderable parameter uncertainty we ask how large the eight
regimes of paradigm combinations are, given the whole para-
meter space (Fig. 4).

We observe the most likely option to be the regime that is
neither optimal, neither sustainable nor safe followed by the
parameter sweet spot regime in which all paradigms yield the
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cautious policy as optimal, sustainable and safe. Together they
constitute a parameter space volume of approx. 45% in which the
three paradigms of economic optimization, sustainability and safe
operating space align with each other in yielding the same policy.
Interestingly, the third likeliest option is the paradigm combina-
tion in which the risky policy is optimal but neither sustainable
nor safe. This is the most likeliest parameter regime among those

where the paradigms yield different policies. Thus, blindly
applying economic optimization in a our stylized tipping element
has a significant chance of leading to policies that are neither
sustainable nor safe.

On the other hand, the volume of the safe and just operating
space (gray and cyan bars in Fig. 4) is comparable to the most
likeliest (black) regime. Thus, about one out of four random
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decision making agents interacting with a random tipping
element will end up in the safe and just operating space.

Application to real-world human-environment tipping ele-
ments. The above policy classification offers valuable insights for
the governance of real-world human-environment systems. We
discuss how our analysis relates to the cases of the climate system,
fisheries and farming. Our purpose is to gain a qualitative
understanding how our model relates to important real-world
challenges of environmental governance, not a detailed assess-
ment of the latter. Therefore, we roughly estimate the respective
collapse and recovery probabilities per time step δ and ρ of our
model via the typical timescales on which these systems remain in
one state or the other (see Methods). Additionally, we added a
parameter sensitivity analysis by visualizing the likelihood of
ending up in a certain parameter regime by color gradients
between regimes (Fig. 5).

Regarding the climate system, we acknowledge that several
interacting tipping elements contribute to the system’s behavior2

and its representation as a single tipping element is a huge
simplification on its own. Nevertheless, we assume that the
current state of the climate system is still comparable to the
prosperous one of our model and relevant timescales for
triggering a collapse of 30 to 50 years under business-as-usual
socio-economic development scenarios2,53,54. Regarding the
recovery timescale it has been shown that human perturbations
of the climate system already changed its trajectory on a multi-
millennial timescale55,56. Therefore we assume a recovery
probability per time step ρ close to zero (Fig. 5).

For sufficiently large collapse probabilities (collapse time scale
near 20 years and smaller), the climate system is likely to reside in
a parameter sweet spot (gray area), where applying an optimiza-
tion, sustainability or SOS paradigm results in the cautious policy
as the advisable way of governing the climate system. However, if
the collapse probability per time step is smaller (collapse time

scale near 50 years and larger) the situation is different. Here, an
SOS and a sustainable paradigm would still yield the cautious
policy (Fig. 5, cyan), but an optimization paradigm is likely to
give the risky policy (Fig. 5, red), which at this point is neither
sustainable nor safe. We conclude that in climate policy,
economic welfare optimization alone may neither be sustainable
nor safe.

For fishery systems, both transition probabilities certainly
depend on a variety of factors, e.g., fisher’s technical and cultural
traits or the dominant fish species in the system, as well as
external factors such as climate change influencing habitat
condition57,58. The timescale of a fisheries collapse has been
shown to lie within decades59. Roughly consistent with observa-
tional and modeled data from the Baltic sea, where the stable
regime of high cod biomass lasted approximately from 1970 to
199057,60, we assume a typical collapse timescale of around 20
years. Concerning the typical recovery time scale, successful
attempts of fish stocks recovery lasted for decades61, but is
estimated to generally exceed this duration62. We therefore
assume a larger typical recovery timescale of around 50 years. The
color gradient in Fig. 5 at the fisheries point does not clearly
single out a paradigms regime, indicating the dependence on the
other parameters at this point. A risky policy might be
economically optimal (Fig. 5, red), but leads eventually to the
collapse of fish stock (c.f59.). At the collapsed and degraded state
the conditions for the fishers are not acceptable. Therefore they
have to leave the system and cannot wait for the fish’s recovery.
But further investigation is needed to reduce the uncertainty with
respect to the other parameters.

Last, we look at the case of land degradation by farming in our
stylized model. Land degradation and restoration is a complex
topic with many influencing factors63. Nevertheless, land
degradation by farming has been identified as a tipping element
by Kinzig and others64, where the authors discuss the case of the
western Australian wheatbelt with a typical collapse timescale of
about 100 years. Soil recovery is estimated to take place within 20
to 1000 years65, which is roughly consistent to Kitzing et al.,
where the duration to reach equilibrium again is estimated with
up to 300 years. We therefore assume a typical recovery timescale
of about 300 years. In contrast to climate and fisheries, the
transition probabilities we associated with the process of land
degradation by farming suggest, that here an optimality paradigm
is very likely to yield the risky policy which is neither sustainable
nor safe despite considerate parameter uncertainty (red area in
Fig. 5).

Taken together, it is interesting to see that in particular the
climate system may reside at the edge of the parameter regime
where economic welfare optimization becomes neither sustain-
able nor safe (Fig. 3). For land degradation by farming, our
assessment suggests that an optimal policy is likely to yield a non-
sustainable and non-safe policy whereas for fisheries the situation
is less clear.

Discussion
Overall, our results show that there exists no master paradigm
among the three examined in our model of environmental gov-
ernance of a stylized tipping element. Policies can be classified by
any combination of optimal, sustainable and safe. A master
paradigm, in contrast, would guarantee fulfilling requirements
imposed by other paradigms. Consequently, the selection of
appropriate policy paradigms, especially in more complex settings
and models, can be critical for effective environmental
governance.

Specifically, our results show theoretically, as well as empiri-
cally that economic welfare optimization for managing tipping
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not opt, not sus, not safe

0.00 0.05 0.10 0.15 0.20 0.25
Normalized parameter space volume of paradigms combinations

opt, sus, not safe

safe, not opt, not sus

sus, not opt, not safe

opt, safe, not sus

sus, safe, not opt

opt, sus, safe

Fig. 4 Ratios of parameter space volumes for all eight paradigms
combination. All parameters (δ, ρ, γ, rl/rh, rmin/rh) were chosen linearly
between 0 and 1 for both the risky and the cautious policy. As a direct
consequence of our definitions of the safe operating space paradigm and
the cautious and risky policy, all paradigm combinations which are safe
correspond to the use of the cautious policy, in all others the risky policy
was applied. A random decision making agent within a random tipping
element will most likely end up with a policy that is neither optimal, neither
sustainable nor safe, followed by the parameter sweet spot regime where
the policy is simultaneously optimal, sustainable and safe. Interestingly, the
third likeliest option is a parameter regime which is optimal, but neither
sustainable nor safe
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elements may be neither sustainable nor safe. For example, the
volume of the corresponding paradigm combination in parameter
space is the largest among those in which the three paradigms
actually yield different policies. This suggests the conclusion that
the mere structure of a tipping element causes a comparable high
chance of obtaining a policy that is neither sustainable nor safe
when blindly following an optimization paradigm. On the other
hand, our model also indicates parameter regimes where eco-
nomic optimization can safely and sustainably be used.

We derived simple heuristics to anticipate when a policy is
economic welfare optimal, sustainable and safe. A risky policy
may be optimal when the probability of collapse and/or the far-
sightedness are sufficiently small. It may be sustainable when the
probability of a collapse is sufficiently small but the farsightedness
is sufficiently large. However, it cannot be safe. A cautious policy
may be optimal when the collapse probability and/or the far-
sightedness are sufficiently large. It is sustainable if its immediate
reward exceeds the normatively chosen minimum acceptable
reward and it is always safe. The absence of a master paradigm is
of special relevance for governing the climate system, since the
latter may reside at the edge between parameter regimes where
economic welfare optimization becomes neither sustainable nor
safe.

Extensions are possible in many directions. Constrained opti-
mization24 is a straight-forward way to combine the paradigms
examined. Policy makers could aim for the maximum economic
welfare delivering a policy that is safe and sustainable, or least-
cost safe target strategies15. This is certainly a better approach
than relying on economic welfare optimization alone for model-
based policy advice. Examples of models for policy advice cer-
tainly include integrated assessment models or the use of the
maximum sustainable yield in fisheries management. However,
one might not desire to obtain the welfare optimal safe and
sustainable policy but e.g., the most resilient one, which calls for
an operationalization of modern social-ecological resilience
concepts66.

The application of our model to real-world systems in this
article is of qualitative, illustrative nature. A more detailed

analysis of real world tipping elements in which typical transition
probabilities might be estimated from empirical time series could
be a way forward to systematize and draw lessons from the
multitude of human-environmental tipping elements67.

Applying our analyses to larger, more complex Markov deci-
sion processes would be a way to extend the understanding of the
relationships between the paradigms examined. Moreover, it may
be desirable to include further policy paradigms into the analyses,
e.g., aiming for a large option space of future decision
makers30,68. Based on such analyses, policy makers could make
better informed decisions on how to translate the Sustainable
Development Goals and the Paris climate agreement into con-
crete policy implementations.

Methods
Derivation of value functions. There are four deterministic policies in our
Markov decision process model: (1) πr(p)= h, πr(d)= l, (2) πc(p)= l, πc(d)= l, (3)
π3(p)= h, π3(d)= h, (4) π4(p)= l, π4(d)= h. We concentrate on deterministic
policies only to simplify the calculation without loss of generality, because if an
optimal policy exits there exits also a deterministic optimal policy46. We further
focus here only on the first two policies, named the risky and the cautious policy,
since the remaining two apply a high pressure action at the degraded state. This
will trap the agent at this position for eternity without receiving any reward. The
math on these policies is left to the interested reader.

In the following we derive the analytical expressions of the state values of these
policies as functions of the parameters (δ, ρ, γ, rl, rh). From Eq. 1 and for γ < 1 one
can derive the recursive relationship between state values, known as the Bellman
Equation69:

vπ sð Þ ¼
X

s′
p s′js; π sð Þð Þ 1� γð Þr s; π sð Þ; s′ð Þ þ γvπ s′ð Þ½ � ð3Þ

with p(s′|s, π(s)) being the probability to enter state s′ given the agent has started in
state s and applied action π(s).

Applied to our model the value for the prosperous state reads

vπ pð Þ ¼
δγvπ dð Þ þ 1� δð Þ 1� γð Þrh þ γvπ pð Þ½ � for a ¼ h

1� γð Þrl þ γvπ pð Þ for a ¼ l

�
: ð4Þ
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Fig. 5 Human-environment systems in paradigms classification. For risky (a) and (b) cautious policy here shown in model parameter space of collapse
probability δ versus recovery probability ρ. Color indicates the paradigms combination similarly as in Fig. 3. Here, additional gradual changes between the
color regimes indicate the probability of being in a certain paradigms combinations regime under parameter uncertainty ranges. Remaining parameters
where chosen linearly within the range of 0.95≤ γ≤ 0.99, 0.3≤ rl/rh≤ 0.7, 0.1≤ rmin/rh≤ 0.5. The approx. transition probabilities δ and ρ were assigned to
the human-environment systems climate, fisheries and farming agriculture according to the timescale of the average time spent in one state (see
Methods). For farming, a risky policy is likely to be optimal but neither sustainable nor safe. The parameter uncertainty of the other parameters does not
allow a clear statement in which parameter regime fisheries are likely to fall. The climate system may lie at the edge of the sweet spot, where all paradigms
yield the cautious policy. However, for smaller collapse probability δ optimization is more likely to yield the risky policy, which becomes also neither
sustainable nor safe at this point. This suggests the use of other paradigms for climate policy making
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The value for the degraded state is given by

vπ dð Þ ¼
γvπ dð Þ for a ¼ h

1� ρð Þγvπ dð Þ þ ργvπ pð Þ for a ¼ l

�
: ð5Þ

To obtain the explicit state values for the risky policy (πr(p)= h, πr(d)= l) we
solve the system of equations

vπr pð Þ ¼ δγvπr dð Þ þ 1� δð Þ 1� γð Þrh þ γvπr pð Þ
h i

ð6Þ

vπr dð Þ ¼ 1� ρð Þγvπr dð Þ þ ργvπr pð Þ; ð7Þ

which yields

vπr pð Þ ¼ rh
1� δð Þ 1� 1� ρð Þγð Þ
1� 1� δ � ρð Þγ ð8Þ

vπr dð Þ ¼ rh
1� δð Þργ

1� 1� δ � ρð Þγ : ð9Þ

To obtain the explicit state values for the cautious policy (πc(p)= l, πc(d)= l) we
solve the system of equations

vπc pð Þ ¼ 1� γð Þrl þ γvπc pð Þ ð10Þ

vπc dð Þ ¼ 1� ρð Þγvπc dð Þ þ ργvπc pð Þ; ð11Þ

which yields

vπc pð Þ ¼ rl ð12Þ

vπc dð Þ ¼ ργrl
1� 1� ρð Þγ : ð13Þ

For γ= 1 we compute the values vπ (which are independent from the initial
state for γ= 1) by multiplying the stationary state of the effective Markov chain
with the reward vector rπ 2 R

jSj whose components read

rπs ¼
X

s′
p s′js; π sð Þð Þr s; π sð Þ; s′ð Þ: ð14Þ

The components of the transition matrix Pπ of the effective Markov chain read

Pπ
s′s ¼ p s′jπ sð Þ; sð Þ: ð15Þ

The stationary state σπ is the normalized eigenvector of the transition matrix
with eigenvalue one. Hence,

vπ ¼ σπ � rπ : ð16Þ

Performing this calculation for risky and cautious policy explicitly yields
consistent results with the calculation for 0 ≤ γ < 1 from above. For γ= 1 the value
vπ can be obtained by simply inserting γ= 1 into Eqs. 8 and 9 for the risky policy
and Eqs. 12 and 13 for the cautious policy.

Analytical expressions for paradigm policy classification. To derive the
analytical expression of the hypersurface in parameter space that separates the
regions where either the risky or the cautious policy is optimal we set
vπr pð Þ¼set vπc pð Þ (or equivalently vπr dð Þ¼set vπc dð Þ, since the parameter
combination where a policy is optimal is independent from the state) and implicitly
obtain

~rh � 1� ~δ
� �

1� ~γ 1� ~ρð Þð Þ ¼ ~rl � 1� ~γ 1� ~δ � ~ρ
� �� �

: ð17Þ

To obtain the hypersurface that separates state s being acceptable from being
not acceptable under policy π we apply the definition from Eq. 2: vπ sð Þ¼set rmin.
Hence, for the risky policy at the prosperous state we set vπr pð Þ¼set rmin and obtain
implicitly

~rh � 1� ~δ
� �

1� ~γ 1� ~ρð Þð Þ ¼ ~rmin � 1� ~γ 1� ~δ � ~ρ
� �� �

: ð18Þ

For the risky policy at the degraded state we set vπr dð Þ¼set rmin and obtain
implicitly

~rh � 1� ~δ
� �

~ρ~γ ¼ ~rmin � 1� ~γ 1� ~δ � ~ρ
� �� �

: ð19Þ

For the cautious policy at the prosperous state we set vπc pð Þ¼set rmin and obtain
implicitly

~rl ¼ ~rmin: ð20Þ

For the cautious policy at the degraded state we set vπc dð Þ¼set rmin and obtain
implicitly

~rl � ~ρ~γ ¼ ~rmin � 1� ~γ 1� ~ρð Þð Þ ð21Þ

To get from acceptability to sustainability for the risky policy one has to
logically combine Eqs. 18 and 19. The risky policy is sustainable only if both the
prosperous and the degraded state are acceptable since it will visit both states
recurrently. The safe policy is sustainable exactly where the prosperous state is
acceptable since it will eventually end up and remain at the prosperous state.
Supplementary Fig. 1 shows an example of the acceptability division of state-
parameter space and the resulting sustainability division.

The division of the parameter space according the safe operating space
paradigm is obvious from its definition. Only the cautious policy is a safe policy
since it will eventually end up and remain in the prosperous, safe operating space
state. The risky policy switches recurrently between the prosperous and the
degraded which makes it, by definition, not safe.

Conversion of timescales to transition probabilities. Let p be the probability per
time step that a system state will transition into another state. The average number
of time steps the system will be in that state is given by 〈N〉= (1− p)/p. Inverting
yields p= 1/(〈N〉+ 1). We map a model time step to a year. Thus, a collapse time
scale of e.g., 50 years corresponds to a collapse probability of δ ≈ 0.02. Supple-
mentary Tab. 1 shows the assumed transition timescales and corresponding
transition probabilities.

Code availability. Python code for the reproduction of the reported results plus
interactive versions of the figures can be downloaded from https://github.com/
wbarfuss/Paradigms.

Data availability. Data sharing not applicable to this article as no datasets were
stored on disk during the production of the figures (see Code availability).

Received: 2 February 2018 Accepted: 16 May 2018

References
1. Griggs, D. et al. Policy: sustainable development goals for people and planet.

Nature 495, 305–307 (2013).
2. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl

Acad. Sci. 105, 1786–1793 (2008).
3. Schellnhuber, H. J. Tipping elements in the earth system. Proc. Natl Acad. Sci.

106, 20561–20563 (2009).
4. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., Walker, B. Catastrophic

shifts in ecosystems. Nature 413, 591–596 (2001).
5. Lade, S. J., Tavoni, A., Levin, S. A. & Schlüter, M. Regime shifts in a social-

ecological system. Theor. Ecol. 6, 359–372 (2013).
6. Donges, J. F. et al. Closing the loop: reconnecting human dynamics to earth

system science. Anthr. Rev. 4, 151–157 (2017).
7. Anderies, J. M., Rodriguez, A. A., Janssen, M. A. & Cifdaloz, O. Panaceas,

uncertainty, and the robust control framework in sustainability science. Proc.
Natl Acad. Sci. 104, 15194–15199 (2007).

8. Polasky, S., Carpenter, S. R., Folke, C. & Keeler, B. Decision-making under
great uncertainty: environmental management in an era of global change.
Trends Ecol. Evol. 26, 398–404 (2011).

9. Irwin, E. G., Gopalakrishnan, S. & Randall, A. Welfare, wealth, and
sustainability. Annu. Rev. Resour. Econ. 8, 77–98 (2016).

10. Farmer, J. D., Hepburn, C., Mealy, P. & Teytelboym, A. A third wave in the
economics of climate change. Environ. Resour. Econ. 62, 329–357 (2015).

11. Crépin, A.-S., Biggs, R., Polasky, S., Troell, M. & de Zeeuw, A. Regime shifts
and management. Ecol. Econ. 84, 15–22 (2012).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04738-z

8 NATURE COMMUNICATIONS |  (2018) 9:2354 | DOI: 10.1038/s41467-018-04738-z | www.nature.com/naturecommunications

theoretical and methodological work 293

Reproduced from: W. Barfuss et al., When optimization for governing human-environment tipping elements is neither sustainable nor safe, Nat.
Commun., vol. 9, no. 1, pp. 1-10, 2018, doi: 10.1038/s41467-018-04738-z. Published under Creative Commons Attribution License 4.0 (CC BY).

https://doi.org/10.1038/s41467-018-04738-z


12. Perman, R., Ma, Y., McGilvray, J. & Common, M. Natural resource and
environmental economics. (Pearson Education, Essex, 2003).

13. Weyant, J. Integrated assessment of climate change: state of the literature. J.
Benefit-Cost. Anal. 5, 377–409 (2014).

14. Stern, N. The economics of climate change. Am. Econ. Rev. 98, 1–37
(2008).

15. Ackerman, F., DeCanio, S. J., Howarth, R. B. & Sheeran, K. Limitations of
integrated assessment models of climate change. Clim. Change 95, 297–315
(2009).

16. Woodward, R. T. & Tomberlin, D. Practical precautionary resource
management using robust optimization. Environ. Manag. 54, 828–839
(2014).

17. Martinet, V. & Doyen, L. Sustainability of an economy with an exhaustible
resource: a viable control approach. Resour. Energy Econ. 29, 17–39
(2007).

18. De Lara, M. & Doyen, L. Sustainable Management of Natural Resources:
Mathematical Models and Methods. (Springer Science & Business Media,
2008).

19. Rougé, C., Mathias, J. -D. & Deffuant, G. Extending the viability theory
framework of resilience to uncertain dynamics, and application to lake
eutrophication. Ecol. Indic. 29, 420–433 (2013).

20. Chadès, I., et al. Optimization methods to solve adaptive management
problems. Theoretical Ecology, 1–20 (2017).

21. Branke, J., Deb, K., Miettinen, K., Słowinski, R. Multi-objective Optimization:
Interactive and Evolutionary Approaches. (Springer-Verlag Berlin Heidelberg,
2008).

22. Greco, S., Ehrgott, M. & Figueira, J. R. Multiple Criteria Decision Analysis.
(Springer Science+Business Media, New York, 2005).

23. Ehrgott, M. Multicriteria Optimization. (Springer Science & Business Media
2006).

24. Altman, E. Constrained Markov Decision Processes, Vol. 7 (CRC Press, 1999).
25. Meadows, D. H., Goldsmith, E. & Meadows, P. The Limits of Growth, Vol. 381

(Earth Island Limited, London, 1972).
26. World Commission on Environment and Development. Our Common Future.

Technical report (1987).
27. Pezzey, J. Sustainable development concepts. World Bank Environ. Pap. 1, 45

(1992).
28. Pezzey, J. C. V. Sustainability Constraints versus “Optimality” versus

Intertemporal Concern, and Axioms versus Data. Land Econ. 73, 448–466
(1997).

29. Arrow, K. J., Dasgupta, P., Goulder, L. H., Mumford, K. J. & Oleson, K.
Sustainability and the measurement of wealth. Environ. Dev. Econ. 17,
317–353 (2012).

30. Fleurbaey, M. On sustainability and social welfare. J. Environ. Econ. Manag.
71, 34–53 (2015).

31. Gerlagh, R. Generous sustainability. Ecol. Econ. 136, 94–100 (2017).
32. Pezzey, J. C. V. One-sided sustainability tests with amenities, and changes in

technology, trade and population. J. Environ. Econ. Manag. 48, 613–631
(2004).

33. Dasgupta, P. & Karl-Göran, M. The Economics of Non-convex Ecosystems, Vol.
4. (Springer Science & Business Media 2006).

34. Lontzek, T. S., Cai, Y., Judd, K. L. & Lenton, T. M. Stochastic integrated
assessment of climate tipping points indicates the need for strict climate
policy. Nat. Clim. Change 5, 441 (2015).

35. Cai, Y., Lenton, T. M. & Lontzek, T. S. Risk of multiple interacting tipping
points should encourage rapid co 2 emission reduction. Nat. Clim. Change 6,
520 (2016).

36. Petschel-Held, Gerhard, Schellnhuber, Hans-Joachim, Bruckner, Thomas,
Toth, FerencL. & Hasselmann, Klaus The tolerable windows approach:
theoretical and methodological foundations. Clim. Change 41, 303–331
(1999).

37. Rockström, J. et al. A safe operating space for humanity. Nature 461, 472–475
(2009).

38. Dearing, J. A. et al. Safe and just operating spaces for regional social-ecological
systems. Glob. Environ. Change 28, 227–238 (2014).

39. Carpenter, S. R., Brock, W. A., Folke, C., van Nes, E. H. & Scheffer, M.
Allowing variance may enlarge the safe operating space for exploited
ecosystems. Proc. Natl Acad. Sci. 112, 14384–14389 (2015).

40. Folke, C. et al. Resilience thinking: integrating resilience, adaptability and
transformability. Ecol. Soc. 15, 20 (2010).

41. Raffensperger, C. & Tickner, J. A. Protecting Public Health and the
Environment: Implementing the Precautionary Principle. (Island Press,
Wahington, DC, 1999).

42. Fischer, J. et al. Integrating resilience thinking and optimisation for
conservation. Trends Ecol. Evol. 24, 549–554 (2009).

43. Karl-Göran, M. & Li, C.-Z. Measuring sustainability under regime shift
uncertainty: a resilience pricing approach. Environ. Dev. Econ. 15, 707–719
(2010).

44. Derissen, S., Quaas, M. F. & Baumgärtner, S. The relationship between
resilience and sustainability of ecological-economic systems. Ecol. Econ. 70,
1121–1128 (2011).

45. Bellman, R. A Markovian decision process. Indiana Univ. Math. J. 6, 679–684
(1957).

46. Puterman, M. L. Markov Decision Processes: Discrete Stochastic Dynamic
Programming. (John Wiley and Sons, Inc, Hoboken, New Jersey, 2005).

47. Heitzig, J., Kittel, T., Donges, J. F. & Molkenthin, N. Topology of sustainable
management of dynamical systems with desirable states: from defining
planetary boundaries to safe operating spaces in the Earth system. Earth Syst.
Dyn. 7, 21–50 (2016).

48. Neumayer, E. Weak Versus Strong Sustainability: Exploring the Limits of Two
Opposing Paradigms. (Edward Elgar Publishing, 2003).

49. Steffen, W. et al. Planetary boundaries: guiding human development on a
changing planet. Science 347, 1259855 (2015).

50. Polasky, S., Zeeuw, A. D. & Wagener, F. Optimal management with potential
regime shifts. J. Environ. Econ. Manag. 62, 229–240 (2011).

51. Raworth, K. A doughnut for the anthropocene: humanity’s compass in the
21st century. Lancet Planet. Health 1, e48–e49 (2017).

52. Nordhaus, W. D. A review of the Stern review on the economics of climate
change. J. Econ. Lit. 45, 686–702 (2007).

53. Schellnhuber, H. J., Rahmstorf, S. & Winkelmann, R. Why the right climate
target was agreed in paris. Nat. Clim. Change 6, 649–653 (2016).

54. Rockström, J. et al. A roadmap for rapid decarbonization. Science 355,
1269–1271 (2017).

55. Clark, P. U. et al. Consequences of twenty-first-century policy for
multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360
(2016).

56. Ganopolski, A., Winkelmann, R. & Schellnhuber, H. J. Critical insolation–co2
relation for diagnosing past and future glacial inception. Nature 529, 200–203
(2016).

57. Moellmann, C. et al. Reorganization of a large marine ecosystem due to
atmospheric and anthropogenic pressure: a discontinuous regime shift in the
central baltic sea. Glob. Change Biol. 15, 1377–1393 (2009).

58. Worm, B. et al. Rebuilding global fisheries. Science 325, 578–585
(2009).

59. Costello, C., Gaines, S. D. & Lynham, J. Can catch shares prevent fisheries
collapse? Science 321, 1678–1681 (2008).

60. Österblom, H. et al. Human-induced trophic cascades and ecological regime
shifts in the baltic sea. Ecosystems 10, 877–889 (2007).

61. Hutchings, J. A. & Reynolds, J. D. Marine fish population collapses:
consequences for recovery and extinction risk. AIBS Bull. 54, 297–309 (2004).

62. Caddy, J. F. & Agnew, D. J. An overview of recent global experience with
recovery plans for depleted marine resources and suggested guidelines for
recovery planning. Rev. Fish. Biol. Fish. 14, 43 (2004).

63. Blaikie, P. & Brookfield, H. Land Degradation and Society. (Routledge, 2015).
64. Kinzig, A.P., et al. Resilience and regime shifts: assessing cascading effects.

Ecol. Soc. 11, 20 (2006).
65. Horrigan, L., Lawrence, R. S. & Walker, P. How sustainable agriculture can

address the environmental and human health harms of industrial agriculture.
Environ. Health Perspect. 110, 445 (2002).

66. Donges, J. F. & Barfuss, W. From math to metaphors and back again: social-
ecological resilience from a multi-agent-environment perspective. GAIA-Ecol.
Perspect. Sci. Soc. 26, 182–190 (2017).

67. Rocha, J., Yletyinen, J., Biggs, R., Blenckner, T. & Peterson, G. Marine regime
shifts: drivers and impacts on ecosystems services. Philos. Trans. R. Soc. B 370,
20130273 (2015).

68. Schellnhuber, H. -J. Earth system analysis and the second Copernican
revolution. Nature 402, C19–C23 (1999).

69. Bellman, R. Dynamic Programming. (Princeton University Press, 1957).

Acknowledgements
This work was developed in the context of the COPAN project on Coevolutionary
Pathways in the Earth system at the Potsdam Institute for Climate Impact Research. The
authors are grateful for financial support from the Heinrich-Böll-Foundation, the
Stordalen Foundation (via the Planetary Boundaries Research Network PB.net), the Earth
League’s EarthDoc program, the Leibniz Association (project DOMINOES) and the
Swedish Research Council Formas (Project Grant 2014-589). We thank David Collste,
Jobst Heitzig, Antoine Levesque, Finn Müller-Hansen and Maja Schlüter for discussions
and comments on the manuscript.

Author contributions
W.B. designed and analyzed the model with assistance from J.F.D. and S.L. J.F.D and J.K.
supervised the project. All authors wrote the manuscript.

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04738-z ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2354 | DOI: 10.1038/s41467-018-04738-z | www.nature.com/naturecommunications 9

294 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reproduced from: W. Barfuss et al., When optimization for governing human-environment tipping elements is neither sustainable nor safe, Nat.
Commun., vol. 9, no. 1, pp. 1-10, 2018, doi: 10.1038/s41467-018-04738-z. Published under Creative Commons Attribution License 4.0 (CC BY).

https://doi.org/10.1038/s41467-018-04738-z


Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-
018-04738-z.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/
reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2018

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04738-z

10 NATURE COMMUNICATIONS |  (2018) 9:2354 | DOI: 10.1038/s41467-018-04738-z | www.nature.com/naturecommunications

theoretical and methodological work 295

Reproduced from: W. Barfuss et al., When optimization for governing human-environment tipping elements is neither sustainable nor safe, Nat.
Commun., vol. 9, no. 1, pp. 1-10, 2018, doi: 10.1038/s41467-018-04738-z. Published under Creative Commons Attribution License 4.0 (CC BY).

https://doi.org/10.1038/s41467-018-04738-z


sustainability

Article

A Thought Experiment on Sustainable Management
of the Earth System

Jobst Heitzig 1,*, Wolfram Barfuss 1,2 and Jonathan F. Donges 1,3 ID

1 Potsdam Institute for Climate Impact Research, P.O. Box 60 12 03, 14412 Potsdam, Germany;
barfuss@pik-potsdam.de (W.B.); donges@pik-potsdam.de (J.F.D.)

2 Department of Physics, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
3 Stockholm Resilience Centre, Stockholm University, SE-10691 Stockholm, Sweden
* Correspondence: heitzig@pik-potsdam.de; Tel.: +49-331-288-2692

Received: 30 April 2018; Accepted: 7 June 2018; Published: 11 June 2018
����������
�������

Abstract: We introduce and analyze a simple formal thought experiment designed to reflect a
qualitative decision dilemma humanity might currently face in view of anthropogenic climate change.
In this exercise, each generation can choose between two options, either setting humanity on a
pathway to certain high wellbeing after one generation of suffering, or leaving the next generation in
the same state as the current one with the same options, but facing a continuous risk of permanent
collapse. We analyze this abstract setup regarding the question of what the right choice would be both
in a rationality-based framework including optimal control, welfare economics, and game theory,
and by means of other approaches based on the notions of responsibility, safe operating spaces,
and sustainability paradigms. Across these different approaches, we confirm the intuition that a
focus on the long-term future makes the first option more attractive while a focus on equality across
generations favors the second. Despite this, we generally find a large diversity and disagreement of
assessments both between and within these different approaches, suggesting a strong dependence
on the choice of the normative framework used. This implies that policy measures selected to
achieve targets such as the United Nations Sustainable Development Goals can depend strongly on
the normative framework applied and specific care needs to be taken with regard to the choice of
such frameworks.

Keywords: decision dilemma; intergenerational welfare; time horizon; risk attitude; inequality
aversion; fairness; responsibility; sustainability paradigms

1. Introduction

The growing debate about concepts such as the Anthropocene [1], Planetary Boundaries [2–4],
and Safe and Just Operating Spaces for Humanity [5], and the evidence about climate change and
approaching tipping elements [6,7] shows that humanity and, in particular, the current generation has
the power to shape the planet in ways that influence the living conditions for many generations to come.
Many renowned scholars think that climate change mitigation by a rapid decarbonization of the global
social metabolism is the only way to avoid large-scale suffering for many generations, and some suggest
a “carbon law” by which global greenhouse gas emissions must be halved every decade from now [8]
to achieve United Nations Sustainable Development Goals within planetary boundaries. Others argue
that such a profound transformation of our economy would lead to unacceptable suffering at least in
some world regions as well, at least temporarily, and suggest that instead of focusing on mitigation,
the focus should be on economic development so that continued economic growth will enable future
generations to adapt to climate change. Still others advocate trying to avert some negative impacts
of climate change by large-scale technological interventions aiming at “climate engineering” [9,10].
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Since a later voluntary or involuntary phase-out of many climate engineering measures can have even
more disruptive effects than natural tipping elements [11], one should, of course, also be concerned
that a focus on climate engineering and, maybe to a somewhat lower degree, also a focus on adaptation
might increase humanity’s dependence on large-scale infrastructure and fragile technology to much
higher levels than we learned to deal with, posing a growing risk of not being able to manage these
systems forever.

While one might argue that there does not need to be a strict choice between either mitigation or
adaptation, the presence of tipping elements in both the natural Earth system and in social systems [12],
and the likelihood of nonlinear feedback loops between them [13], suggests that only significant
mitigation efforts will avoid natural tipping, and only significant socio-economic measures will cause
the “social” tipping into a decarbonized world economy that is no longer fundamentally based on the
combustion of fossil fuels. This means the current generation may face a mainly qualitative rather than
a quantitative choice: do or do not initiate a rapid decarbonization? Additionally, this choice might
take the form of a dilemma where we can either pursue our development and adaptation pathway and
put many generations to come at a persistent risk of technological or management failure, or get on a
transformation pathway that sacrifices part of the welfare of one or a few generations to enable all
later generations to prosper at much lower levels of risk.

While all this might seem exaggerated, we believe that as long as there is a non-negligible
possibility that, indeed, we face such a dilemma, it is worthwhile thinking about its implications,
in particular its ethical consequences for the current generation. The contribution we aim at making
in this article is, hence, not a descriptive one such as trying to assess policy options or other aspects
of humanity’s agency, as in integrated assessment modeling [14], or their biospherical impacts,
as in Earth system modeling, or the dynamics of the Anthropocene that arises from feedbacks
between biophysical, socio-metabolic, and socio-cultural processes, as in the emerging discipline
of “World-Earth modeling” [2–5,13–15]. Instead, we aim at making a normative contribution that
studies some ethical aspects of the described possible dilemma, independently of whether this dilemma
really currently exists. To initiate such an ethical debate and allow it to focus on what we think are
the most central aspects of the dilemma, we chose to use the method of thought experiments (TEs) for
this work, a well-established technique in philosophy, in particular in moral philosophy, that studies
real-world challenges through the analysis of often extremely simple and radically exaggerated
fictitious situations to identify core problems and test ethical principles and theories [16].

In Section 2, we introduce one such TE in two complementary ways, (i) as a formal abstraction
of the above-sketched possible dilemma for humanity; and (ii) as a verbal narrative in the style of a
parable. We justify the design of the thought experiment further by relating it to (i) a recent classification
of the state-space topology of sustainable management of dynamical systems with desirable states [17]
and (ii) a very low-dimensional conceptual model of long-term climate and economic development
designed to illustrate that classification [18]. In Section 3, we start discussing the ethical aspects of
the TE by analyzing it with the tools of rationality-based frameworks, in particular optimal control
theory, welfare economics and game theory. This is complemented in Section 4 by a short discussion
of alternative approaches based on the notions of responsibility, safe operating spaces, and different
sustainability paradigms. Section 5 concludes the paper.

2. A Thought Experiment

Before giving a verbal narrative, we describe our TE in more formal terms, using some simple
terminology of dynamical systems theory, control theory and welfare economics:

Assume there is a well-defined infinite sequence of generations of humanity, the current one being
numbered 0, future ones 1, 2, . . . , and past ones −1, −2, . . . . At each point in time, one generation
is “in charge” and can make choices that influence the “state of the world”. The possible states of
the world can be classified into just four possible overall states, abbreviated L, T, P, and S, and we
assume that this overall state changes only slowly, from generation to generation, due to the inherent
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dynamics of the world and humanity’s choices. We assume the overall state in generation k + 1,
denoted X(k + 1), only depends on the following three things: (i) on the immediately preceding state,
i.e., that in generation k, denoted X(k); (ii) in some states on the aggregate behavior of generation k,
denoted U(k) and called generation k’s “choice”; and (iii) in some states also on chance; all this in a
way that is the same for each generation (i.e., does not explicitly depend on the generation number k).
Being in state X(k) implies a certain overall welfare level for generation k, denoted W(k). We assume
the possible choices and their consequences depend on the state X(k) as follows:

• Up until generation 0 and including it, all generations have been in state X(k) = L, where welfare
is “high”, denoted W(k) = 1. When in state X(k) = L, generation k has two choices, A (which is
considered the “default” choice that all generations before 0 have made) and B.

# If generation k chooses option A, the next state is either L or T, depending somewhat
on chance. It will be again X(k + 1) = L with some (typically large) probability η > 0,
which is a time-independent constant, and will be X(k + 1) = T with probability π = 1
− η > 0.

# If they choose option B, the next state will be X(k + 1) = P for sure.

• In state X(k) = T, welfare is low, denoted W(k) = 0, and the state will never change again,
X(k’) = T for all k’ > k;

• In state X(k) = P, welfare is also “low”, W(k) = 0, but the next state will be X(k + 1) = S for
sure; and

• Finally, in state X(k) = S, welfare is again high, W(k) = 1, and the state will never change again,
X(k’) = S for all k’ > k.

We assume all this is known to generation 0 and all later generations.

Note that this TE has one free parameter, the probability η. Figure 1 shows this setup. Obviously,
one may be immediately tempted to make the TE more “realistic” by introducing additional aspects,
such as overlapping generations, a finer distinction between states, options, or welfare levels, more than
one “decision-maker”, more possible transitions, or even an explicit time dependency to account for
external factors. However, we boldly abstain from doing any of that at this point to keep the situation
as simple as possible, allowing us to focus only on those aspects present in the TE for our analysis.
Rather than justifying what we ignored, we will justify what we put into the TE, but only after having
given a verbal, parable-like version of the TE:

On an island very far away from any land lives a small tribe whose main food resource are the fruits of
a single ancient big tree despite which only grass grows on the island. Although the tree is so strong
that it would never die from natural causes, every year there is a rainy season with strong storms, and
someday one such storm might kill and blow away the tree. In fact, until just one generation ago, there
was a second such tree that was blown away during a storm. If the same happens to the remaining tree,
the tribe would have to live on grass forever, having no other food resource. Every generation so far
has passed down the knowledge of a rich but unpopulated land across the large sea that can be safely
reached if they build a large and strong boat from the tree’s trunk. Still, the tribe is so small and the
journey would be so hard that they would have to send all their people to be sure the journey succeeds.
Also, the passage would take so much time that a whole generation would have to live aboard and hope
to catch the odd fish for food, causing deep suffering, and would not be able to see the new land with
their own eyes, only knowing their descendants would live there happily and safely for all generations
to come. No generation has ever set off on this journey.

The main purpose of this narrative is not to add detail to the TE, but only to make it more accessible
by suggesting a possible alternative interpretation of the states and options in the experiment that
is simpler than the actual application to humanity and the Earth system that we motivated it with
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originally in the introduction. As any such narrative contains details that are not central to the problem
one wants to study, but which might distract the analysis, the existence of two alternative narratives
may also be used to check which aspects of them are actually crucial elements of the TE (namely those
occurring in both narratives) and which are not. While the following text may sometimes refer to
either narrative, our analysis will only depend on the formal specification.

Now why did we choose the specific formal specification above? The main justification is that
it is essentially the form the potential decision dilemma between adaptation/growth and mitigation
sketched in the introduction takes when one uses the recently developed theory of the state-space
(rather than geographic) topology of sustainable management (TSM, [17]) to analyze a conceptual model
of long-term climate and economic development [18].

TSM is a classification of the possible states of a dynamical system (such as the coupled system of
natural Earth and humans on it) which has both a default dynamics (which it will display without the
interference of an assumed “decision-maker” or “manager” such as a fictitious world government)
and a number of alternative, “managed” dynamics (which the decision-maker may bring about
by making certain “management” choices). The TSM classification starts with such a system and
a set of possible states considered “desirable”, and then classifies each possible system state with
regard to questions, such as “is this state desirable”, “will the state remain desirable by default/by
suitable management”, “can a desirable state be reached with/without leaving the desirable region”,
etc. This results in a number of state space regions that differ qualitatively w.r.t. the possibility of
sustainable management. One of the most important among these state space regions is what is called
a “lake” in TSM. In a “lake”, the decision-maker faces the dilemma of either (i) moving the system
into an ultimately desirable and secure region called a “shelter”, but having to cross an undesirable
region to do so; or (ii) using suitable management to avoid ever entering the undesirable region as
long as management is sustained, but knowing that the system will enter the undesirable region
when management is stopped, which leaves a permanent risk and makes the lake region insecure.
Rather than giving the mathematical details of TSM (see [17] for those), let us exemplify these notions
with a simple model of long-term climate and economic development, which was analyzed with
TSM in [18].

The “AYS” model is a very simple conceptual model of long-term global climate and economic
development, describing the deterministic development of just three aggregate continuous variables
in continuous time via the ordinary differential equations:

dA/dt = E − A/τA

dY/dt = (β − θ A) Y

dS/dt = R − S/τS

with the auxiliary quantities:

E = F/ϕ, F = G U, R = (1 − G) U, U = Y/ε, G = 1/(1 + (S/σ)ρ).

In this, A is the excess atmospheric carbon stock over preindustrial levels, naturally decaying
towards zero at rate τA but growing due to emissions E; Y is the gross world economic product,
growing at a basic rate β slowed by climate-related damages; θ is the sensitivity of this slowing to A;
S is the global knowledge stock for producing renewable energy, decaying at rate τS, but growing due
to learning-by-doing in proportion to produced renewable energy R; energy efficiency ε stays constant
so that total energy use, U, is proportional to Y; energy is supplied by either fossils, F, or renewables,
R, in proportions depending on relative price G; σ is the break-even level of S at which fossils and
renewables cost the same; ρ is a learning curve exponent; and, finally, emissions are proportional to
fossil combustion with combustion efficiency ϕ.

theoretical and methodological work 299

Reproduced from: J. Heitzig et al., A thought experiment on sustainable management of the earth system, Sustainability, vol. 10, no. 6, pp. 1-25, 2018,
doi: 10.3390/su10061947. Published under Creative Commons Attribution License 4.0 (CC BY).

https://doi.org/10.3390/su10061947


Sustainability 2018, 10, 1947 5 of 25

In [18], several things are shown about this model system: (i) with plausible estimates of the
initial state and parameters, it will eventually both violate the climate planetary boundary and stay
at welfare levels below current welfare, converging to a fixed point with S = 0; (ii) The system can be
forced to neither violate the climate planetary boundary nor to decrease welfare below current levels
if humanity has the option to adjust the economic growth rate in real-time within some reasonable
levels, but will return to case (i) once this management is stopped; and (iii) if one does not wait too
long, it can also be forced to an alternative attractor where S and Y grow indefinitely if humanity can
reduce σ by subsidizing renewables or taxing fossils to a reasonable extent, and this management can
be phased-out some time after fossils have become uncompetitive, but this decarbonization transition
cannot avoid decreasing welfare below current levels for a small number of generations.

In terms of the TSM classification, the attractor where the variables S and Y grow indefinitely
lies in a “shelter” region where no management is necessary, and it corresponds to the TE’s state
“S”. The initial state turns out to be in a “lake” region and corresponds to the TE’s state “L”,
while the region one has to cross to reach the shelter from the lake is the state “P” (passage) in
the TE. The permanently-managed alternative attractor at which S = 0 corresponds to what TSM
calls a “backwater” from which the shelter can no longer be reached. The default attractor with thee
planetary boundary and welfare boundary violated is either in what TSM calls a “dark downstream”
region since one may still reach the backwater by management, or, if management options have broken
down forever, it is in a “trench” region where no escape is possible any longer. If no management is
used, the system will move from the lake to the dark downstream which becomes a trench when the
management option is removed. In designing our TE, we omitted the dark downstream and simplified
the situation so that the system directly goes to the trench (“T”) when management breaks down in “L”.
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path “B”, surely leading to the good state “S” via the bad state “P” within two generations, or path
“A”, probably keeping them in “L”, but possibly leading to the bad state “T”.

3. Analyses Using Rationality-Based Frameworks

We will now start to analyze the ethical aspects of the TE by applying a number of well-established
frameworks based on a common assumption of rationality, where we take a broad working definition
of rationality here that considers a decision-maker’s choice as rational if the decision-maker knows of
no alternative choice that gives her a strictly more-preferred prospect than the choice taken, in view of
her knowledge, beliefs, and capabilities.

Since we want to focus on what is the ethically right response to the dilemma rather than what
makes a politically feasible or implementable choice, we will first treat humanity as a whole as formally
just one single infinitely-lived decision-maker that perfectly knows the system as specified in the
formal version of the TE, can make a new choice at every generation, can employ randomization for
this if desired, can plan ahead, and has the overall goal of having high welfare in all generations.
The natural framework for this kind of problem is the language of optimal control theory. Since it will
turn out that optimal choices and plans (called “policies” in that language) will very much depend on
the evaluation of trajectories (sequences of states) in terms of desirability, we will use concepts such as
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time preferences, inequality aversion, and risk aversion from decision theory and welfare economics
to derive candidate intergenerational welfare functions to be used for this evaluation, and will discuss
their impact on the optimal policy. We will restrict our analysis to a consequentialist point of view
that takes into account only the actual and potential consequences of actions and their respective
probabilities, and leave the inclusion of non-consequentialist, e.g., procedural [19], preferences for
later work.

After that, we will refine the analysis by considering each generation a new decision-maker, so that
humanity can no longer plan its own future choices, but rather a generation can only recommend
and/or anticipate later generations’ choices. The natural framework for this kind of problem is the
language of game theory. While most of economic theory applies game theory to selfish players,
we will apply it instead to players with social preferences based on welfare measures since, in our TE,
a generation’s welfare is deliberately assumed to be independent of their own choice between A and B.

3.1. Optimal Control Framework with Different Intergenerational Welfare Functions

3.1.1. Terminology

A trajectory, X, is a sequence of states X(0), X(1), . . . in the set {L, T, P, S}, where X(t) specifies the
state generation t will be in. The only possible trajectories in our TE are

• “XcLT” = (L, . . . , L, T, T, . . . ), with c > 0 times L and then T forever (so that c is the time
of “collapse”);

• “XkLPS” = (L, . . . , L, P, S, S, . . . ), with k > 0 times L, then once P, then S forever; and
• “all-L” = (L, L, . . . ), which is possible, but has a probability of zero.

A reward sequence (RS, sometimes also called a payoff stream), denoted r, is a sequence r(0),
r(1), r(2), . . . in the set {0, 1}, where r(t) = 0 or 1 means generation t has low or high overall welfare,
respectively. Each trajectory determines an RS via r(t) = 1 if X(t) in {L, S} and r(t) = 0 otherwise. The only
possible RSs are, thus:

• “rc10” = (1, . . . , 1, 0, 0, . . . ) with c > 0 ones and then zeros forever;
• “rk101” = (1, . . . , 1, 0, 1, 1, . . . ) with k > 0 ones, then one zero, then ones forever; and
• “all-1” = (1, 1, . . . ), which is possible, but has a probability of zero.

A (randomized) policy (sometimes also called a strategy) from time 0 on, denoted as p, is just a
sequence of numbers p(0), p(1), p(2), . . . in the interval [0, 1], where p(t) specifies the probability with
which generation t will choose option A (staying in L) if they are in state L, i.e., if X(t) = L. In view of
the possible trajectories, we may, without loss of generality, assume that if p(t) = 0 for some t, all later
entries are irrelevant since state L will never occur after generation t. Thus, we consider only policies
of the form:

• infinite sequences (p(0), p(1), . . . ) with all p(t) > 0,
• finite sequences (p(0), p(1), . . . , p(k − 1), 0) with p(t) > 0 for all t < k.

The two most extreme (“polar”) policies are:

• “all-A” = (1, 1, . . . ),
• “directly-B” = (0),

and another interesting set of policies is:

• “Bk” = (1, 1, . . . , 1, 0) with k + 1 ones, where the case k = 0 is “directly-B” and k→ ∞ is
“all-A”,

all of which are deterministic. A policy p is time-consistent iff it is a Markov policy, i.e., if and
only if all its entries p(t) are equal, so the only time-consistent policies are “all-A”, “directly-B”,
and the policies:
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• “Ax” = (x, x, x, . . . ) with 0 < x < 1, where the case x→ 0 is “directly-B” and x→ 1 is “all-A”.

Given a policy p, the possible trajectories and RSs have these probabilities:

• P(XcLT|p) = P(rc10|p) = p(0) η p(1) η . . . p(c − 2) η p(c − 1) π
• P(XkLPS|p) = P(rk101|p) = p(0) η p(1) η . . . p(k − 2) η (1 − p(k − 1))
• P(all-L|p) = P(all-1|p) = 0

Thus, each policy p defines a probability distribution over RSs, called a reward sequence lottery
(RSL) here, denoted as RSL(p).

The only missing part of our control problem specification is now a function that numerically
evaluates RSLs, or some other information on what RSLs are preferred over which others, in a way
that allows the derivation of optimal policies. Let us assume we have specified a binary social preference
relation that decides for each pair of RSLs g, h which of the following four cases holds: (i) g is strictly
better than h, denoted as g > h; (ii) the other way around, h > g; (iii) they are equally desirable, g ~ h;
or (iv) they are incomparable, denoted as g|h. We use the abbreviation g ≥ h for g > h or g ~ h,
and g ≤ h for g < h or g ~ h. For example, we might put g > h iff V(g) > V(h) and g ~ h iff V(g) = V(h)
for some evaluation function V.

Let us assume the social preference relation has the “consistency” property that each non-empty
set C of RSLs contains some g such that h > g for no h in C. Then for each non-empty set C of policies,
we can call any policy p in C optimal under the constraint C (or C-optimal for short) iff RSL(q) > RSL(p)
for no q in C. In particular, if the preference relation encodes ethical desirability, C contains all policies
deemed ethically acceptable, and p is C-optimal, then generation 0 has a good ethical justification in
choosing option A with probability p(0) and option B with probability 1 − p(0).

We will now discuss several such preference relations and the resulting optimal policies.
A common way of assessing preferences over lotteries is by basing them on preferences over certain
outcomes, hence, we first consider whether each of two certain RSs, r and s, is preferable. A minimal
plausible preference relation is based only on the Pareto principle that r(t) ≥ s(t) for all t should imply
r ≥ s, and r(t) ≥ s(t) for all t but r(t) > s(t) for some t should imply r > s. In our case, the only strict
preferences would then be between the RSs “all-1”, “rk101”, “rc10”, and “rc’10” for c > c’, where we
would have “all-1” > “rk101” > “rc10” > “rc’10”. However, this does not suffice to make policy
decisions, e.g., when we just want to compare policies “directly-B” with “all-A”, we need to compare
RS “rk101” for k = 1 with a lottery over RSs of the form “rc10” for all possible values of c.

One possible criterion for preferring r over s is their degree of “sustainability”. The literature
contains several criteria by which the sustainability of an RS could be assessed (see [20] for a detailed
discussion). The maximin criterion (also known as the Rawlsian rule) focuses on the lowest welfare
level occurring in an RS, which in all our cases is 0, hence, this criterion does not help in distinguishing
options A and B. The satisfaction of basic needs criterion [21] asks from what time on welfare stays above
some minimal level; if we use 1 as that level, this criterion prefers RS (1, 0, 1, 1, . . . ) to all other RS that
can occur with positive probability in our TE, hence, it will recommend policy “directly-B”, since it
makes sure that generation 2 on welfare stays high. The overtaking and long-run average criteria [21]
consider all RSs “rk101” equivalent and strictly more sustainable than all RSs “rc10”, hence, they also
recommend “directly-B” since that is the only policy avoiding permanently low welfare for sure.
Other sustainability criteria are based on the idea of aggregating welfare over time, which we will
discuss next.

3.1.2. Aggregation of Welfare over Time

Let us now focus on the simple question whether the RS “rB” = (1, 0, 1, 1, . . . ) that results from
“directly-B” is preferable to the RS “rc10” = (1, 1, . . . , 1, 0, 0, . . . ) with c ones, which may result from
“all-A”? This may be answered quite differently. The easy way out is to deem them incomparable
since, for some time points t, rB(t) > rc10(t), while for other t, rc10(t) > rB(t), but this does not help.
A strong argument is that “rB” should be preferred since it has the larger number of generations with
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high welfare. Still, at least economists would object that real people’s evaluations of future prospects
are typically subject to discounting, so that a late occurrence of low welfare would be considered less
harmful than an early one. A very common approach in welfare economics is, therefore, to base the
preference over RSs on some quantitative evaluation v(r), called an intergenerational welfare function,
which in some way “aggregates” the welfare levels in r and can then also be used as a basis of an
evaluation function V(g) of RSLs, which further aggregates the evaluations of all possible RSs in view
of their probability. However, let us postpone the consideration of uncertainty for now and stick with
the two deterministic RSs “rB” and “rc10”.

The most commonly used form of discounting (since it can lead to time-consistent choices) is
exponential discounting, which would make us evaluate any RS r as:

v(r) = r(0) + δ r(1) + δ2 r(2) + δ3 r(3) + . . . ,

using powers of a discount factor 0 ≤ δ < 1 that encodes humanity’s “time preferences”. For the
above “rB” and “rc10”, this gives v(rB) = (1 − δ + δ2)/(1 − δ) and v(rc10) = (1 − δc)/(1 − δ). Thus,
with exponential discounting, “rB” > “rc10” iff 1 − δ + δ2 > 1 − δc or, equivalently, δc−1 + δ > 1,
i.e., the policy “directly-B” is preferable iff δ is large enough or c is small enough. Since 1/δ can be
interpreted as a kind of (fuzzy) evaluation time horizon, this means that “directly-B” will be preferable
iff the time horizon is large enough to “see” the expected ultimate transition to state T at time c under
the alternative extreme policy “all-A”. At what δ exactly the switch occurs depends on how we take
into account the uncertainty about the collapse time c, i.e., how we get from preferences over RSs
to preferences over RSLs, which will be discussed later. A variant of the above evaluation v due to
Chichilnisky [21] adds to v(r) some multiple of the long-term limit, limt→∞ r(t), which is 1 for “rB” and
0 for all “rc10”, thus making “directly-B” preferable also for smaller δ, depending on the weight given
to this limit.

Let us shortly consider the alternative policy “Bk” = (1, . . . , 1, 0) with k ones, where choosing B is
delayed by k periods, and “B1” equals “directly-B”. If k < c, this results in RS r(k + 1)101, which is
evaluated as (1− δk+1 + δk+2)/(1− δ), which grows strictly with growing k. Thus, if the collapse time c
was known, the best policy among the “Bk” would be the one with k = c− 1, i.e., initiating the transition
at the last possible moment right before the collapse, which is evaluated as (1 − δc + δc+1)/(1 − δ) >
(1 − δc)/(1 − δ), hence, it would be preferred to “all-A”. However, c is, of course, not known, but a
random variable, so we need to come back to this question when discussing uncertainty below.

An argument against exponential discounting is that even for values of δ close to 1,
late generations’ welfare would be considered too unimportant. Under the most common alternative
form of discounting, hyperbolic discounting, one would instead have the evaluation:

v(r) = r(0) + r(1)/(1 + κ) + r(2)/(1 + 2κ) + r(3)/(1 + 3κ) + . . .

with some positive constant κ. Hyperbolic discounting can easily be motivated by an intrinsic
suspicion that, due to factors unaccounted for, the expected late rewards may not actually be realized,
but that the probability of this happening is unknown and has to be modeled via a certain prior
distribution [22]. Under hyperbolic discounting, v(rB) is infinite while v(rc10) is finite independently
of k, so the policy “directly-B” would always be preferable to “all-A” no matter how uncertainty about
the actual c is accounted for.

A somewhat opposite alternative to hyperbolic discounting is what one could call “rectangular”
discounting: simply average the welfare of only a finite number, say H many, of the generations:

v(r) = (r(0) + . . . + r(H − 1))/H,

where H is the evaluation horizon. With this, v(rB) = (H − 1)/H and v(rc10) = min(c, H)/H,
so that v(rB) > v(rc10) iff H > c + 1. Thus, again, “directly-B” is preferable if the horizon is large enough.
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3.1.3. Social Preferences over Uncertain Prospects: Expected Probability of Regret

Let us now consider evaluations of RSLs rather than RSs, which requires us to take into account
the probabilities of all possible RSs that an RSL specifies.

If we already have a social preference relation “≥” on RSs, such as one of those discussed above,
then a very simple idea is to consider an RSL g” strictly preferable to another RSL g’ iff the probability
that a realization r”(g”) of the random process g” is strictly preferable to an independent realization
r’(g’) of the random process g’ is strictly larger than 1/2:

g” > g’ iff P(r”(g”) > r’(g’)) > 1/2.

The rationale for this is based in the idea of expected probability of regret. Assume policy p was
chosen, resulting in some realization r(RSL(p)), and someone asks whether not policy q should have
been taken instead and argues that this should be evaluated by asking how likely the realization
r’(RSL(q)) under the alternative policy would have been strictly preferable to the actual realization
r(RSL(p)). Then the probability of the latter, averaged over all possible realizations r(RSL(p)) of the
policy actually taken, should be not too large. This expected probability of regret is just P(r”(g”) > r’(g’))
for g’ = RSL(p) and g” = RSL(q). Since for the special case where g’ = g”, the value P(r”(g”) > r’(g’))
can be everything up to at most 1/2, the best we can hope for is that P(r”(RSL(q)) > r’(RSL(p))) ≤ 1/2 for
all q 6= p if we want to call p optimal.

In our example, the polar policy “directly-B” results in an RSL “gB” which gives 100% probability
to RS “rB”, the opposite polar policy “all-A” results in an RSL “gA” which gives a probability of
ηc−1π to RS “rc10”, and other policies result in RSLs with more complicated probability distributions.
e.g., with exponential discounting, rB > rc10 iff δc−1 + δ > 1, hence, “gB” > “gA” iff the sum of ηc−1π

over all c with δc−1 + δ > 1 is larger than 1/2. If c(δ) is the largest such c, which can be any value
between 1 (for δ→ 0) and infinity (for δ→ 1), that sum is 1 − ηc(δ), which can be any value between π
(for δ→ 0) and 1 (for δ→ 1). Similarly, with rectangular discounting, “rB” > “rc10” iff H > c + 1, hence,
“gB” > “gA” iff 1 − ηH−1 > 1/2. In both cases, if η < 1/2, “directly-B” is preferred to “all-A”, while for
η > 1/2, it depends on δ or H, respectively. In contrast, under hyperbolic discounting, “directly-B” is
always preferred to “all-A”.

What about the alternative policy “Bk” as compared to “all-A”? If c ≤ k, we get the same reward
sequence as in “all-A”, evaluated as (1 − δc)/(1 − δ). If c > k, we get an evaluation of (1 − δk+1 +
δk+2)/(1 − δ), which is larger than (1 − δc)/(1 − δ) iff δc−k−1 + δ > 1. Thus, RSL(Bk) > gA iff the sum of
ηc−1π over all c > k with δc−k−1 + δ > 1 is larger than 1/2. Since the largest such c is c(δ) + k, that sum is
ηk(1 − ηc(δ)), so whenever “Bk” is preferred to “all-A”, then so is “directly-B”. Let us also compare
“Bk” to “directly-B”. In all cases, “directly-B” gets (1 − δ + δ2)/(1 − δ), while “Bk” gets the larger
(1 − δk+1 + δk+2)/(1 − δ) if c > k, but only (1 − δc)/(1 − δ) if c ≤ k. The latter is < (1 − δ + δ2)/(1 − δ)
iff c ≤ c(δ). Thus, “directly-B” is strictly preferred to “Bk” iff 1 − ηmin(c(δ),k) > 1/2, i.e., iff both c(δ)
and k are larger than log(1/2)/log(η), which is at least fulfilled when η < 1/2. Conversely, “Bk” is
strictly preferred to “directly-B” iff either c(δ) or k is smaller than log(1/2)/log(η). In particular, if social
preferences were based on the expected probability of regret, delaying the choice for B by at least
one generation would be strictly preferred to choosing B directly whenever η > 1/2, while at the same
time, delaying it forever would be considered strictly worse at least if the time horizon is long enough.
Basing decisions on this maxim would, thus, lead to time-inconsistent choices: in every generation,
it would seem optimal to delay the choice B by the same positive number of generations, but not
forever, so no generation would actually make that choice.

Before considering a less problematic way of accounting for uncertainty, let us shortly discuss a
way of deriving preferences over RSs rather than RSLs that is formally similar to the above. In that
case the rationale would not be in terms of regret but in terms of Rawls’ veil of ignorance. Given two
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RSs r’ and r”, would one rather want to be born into a randomly selected generation in situation r’ or
into a randomly selected generation in situation r”? i.e., let us put:

r” > r’ iff P(r”(t”) > r’(t’)) > 1/2,

where t”, t’ are drawn independently from the same distribution, e.g., the uniform one on the
first H generations or a geometric one with parameter δ. Then rB(t”) > rc10(t’) iff rB(t”) = 1 and
rc10(t’) = 0, i.e., iff t” 6= 1 and t’ > c. Under the uniform distribution over H generations, the latter
has a probability of (H − 1)(H − c)/H2 if H ≥ c, which can be any value between 0 (for H = c) and
1 (for very large H), hence, whether “rB” > “rc10” depends on H again. Similarly, rB(t”) < rc10(t’) iff
rB(t”) = 0 and rc10(t’) = 1. This has probability min(c,H)/H2, which is 1 for H = 1 and approaches
0 for very large H, hence, whether “rB” < “rc10” depends on H as well. However, this version of
preferences over RS leaves a large possibility for undecidedness, “rB”|“rc10”, where neither “rB”
> “rc10” nor “rc10” > “rB”. This is the case when both (H − 1)(H − c)/H2 and min(c,H)/H2 are at
most 1/2, i.e., when max[(H − 1)(H − c), min(c,H)] ≤ H2/2, which is the case when H ≥ 2 and H2

− 2(c + 1)H + 2c ≤ 0, i.e., when 2 ≤ H ≤ c + 1 + (c2 + 1)1/2. A similar result holds for the geometric
distribution with parameter δ. Thus, while the probability of regret idea can lead to time-inconsistent
choices, the formally similar veil of ignorance idea may not be able to differentiate enough between
choices. Another problematic property of our veil of ignorance-based preferences is that they can lead
to preference cycles. e.g., assume H = 3 and compare the RSs r = (0, 1, 2), r’ = (2, 0, 1), and r” = (1, 2, 0).
Then it would occur that r > r’ > r” > r, so there would be no optimal choice among the three.

3.1.4. Evaluation of Uncertain Prospects: Prospect Theory and Expected Utility Theory

We saw that the above preference relations based on regret and the veil of ignorance,
while intuitively appealing, are, however, unsatisfactory from a theoretical point of view, since they can
lead to time-inconsistent choices and preference cycles, i.e., they may fail to produce clear assessments
of optimality. The far more common way of dealing with uncertainty is, therefore, based on numerical
evaluations instead of binary preferences. A general idea, motivated by a similar theory regarding
individual, rather than social, preferences, called prospect theory [23], is to evaluate an RSL g by a linear
combination of some function of the evaluations of all possible RSs r with coefficients that depend on
their probabilities:

V(g) = ∑r w(P(r|g)) f(v(r)).

In the simplest version, corresponding to the special case of expected utility theory, both the
probability weighting function w and the evaluation transformation function f are simply the identity,
w(p) = p and f(v) = v, so that V(g) = ∑r P(r|g) v(r) = Eg v(r), the expected evaluation of the RSs resulting
from RSL g. If combined with a v(r) based on exponential discounting, this gives the following
evaluations of our polar policies:

V(RSL(directly-B)) = v(rB) = (1 − δ + δ2)/(1 − δ)

and:
V(RSL(all-A)) = Eall-A v(rc10) = ∑c>0 η

c−1π(1 − δc)/(1 − δ) = 1/(1 − δη).

Hence, “directly-B” is preferred to “all-A” iff (1 − δ + δ2)(1 − ηδ) − 1 + δ > 0. Again, this is the
case for δ > δcrit(η) with δcrit(0) = 0 and δcrit(1) = 1. The result for rectangular discounting is similar,
while for hyperbolic discounting “directly-B” is always preferred to “all-A”, and all of this as expected
from the considerations above.

In prospect theory, the transformation function f can be used to encode certain forms of risk
attitudes. For example, we could incorporate a certain form of risk aversion against uncertain social
welfare sequences by using a strictly concave function f, such as f(v) = v1−a with 0 < a < 1 (isoelastic
case) or f(v) = −exp(−av) with a > 0 (constant absolute risk aversion) (welfare economists might
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be confused a little by our discussion of risk aversion since they are typically applying the concept
in the context of consumption, income or wealth of individuals at certain points in time, in which
context one can account for risk aversion already in the specification of individual consumers’ utility
function, e.g., by making utility a concave function of individual consumption, income, or wealth.
Here we are, however, interested in a different aspect of risk aversion, where we want to compare
uncertain streams of societal welfare rather than uncertain consumption bundles of individuals. Thus,
even if our assessment of the welfare of each specific generation in each specific realization of the
uncertainty about the collapse time c already accounts for risk aversion in individual consumers
in that generation, we still need to incorporate the possible additional risk aversion in the “ethical
social planner”). This basically leads to a preference for small variance in v. One can see numerically
that in both cases increasing the degree of risk aversion, a, lowers δcrit(η), not significantly so in the
isoelastic case but significantly in the constant absolute risk aversion case, hence, risk aversion favors
“directly-B”. In particular, the constant absolute risk aversion case with a → ∞ is equivalent to a
“worst-case” analysis that always favors “directly-B”. Conversely, one can encode risk-seeking by
using f(v) = v1+a with a > 0.

Under expected utility theory, the delayed policy “Bk” has:

(1 − δ) × V(RSL(Bk)) = ηk(1 − δk+1 + δk+2) + ∑c=1 . . . k η
c−1π(1 − δc),

which is either strictly decreasing or strictly increasing in k. Since “directly-B” and “all-A”
corresponds to the limits k → 0 and k → ∞, “Bk” is never optimal but always worse than either
“directly-B” or “all-A”. The same holds with risk-averse specifications of f. Under isoelastic risk-seeking
with f(v) = v1+a, however, we have:

(1 − δ) × V(RSL(Bk)) = ηk(1 − δk+1 + δk+2)1+a + ∑c=1 . . . k η
c−1π(1 − δc)1+a,

which may have a global maximum for a strictly positive and finite value of k, so that delaying may
seem preferable. e.g., with δ = 0.8, η = 0.95, and a = 1/2, V(RSL(Bk)) is maximal for k = 6, i.e., one would
want to choose six times A before choosing B, again a time-inconsistent recommendation.

As long as the probability weighting function w is simply the identity, there is always a
deterministic optimal policy. While other choices for w could potentially lead to non-deterministic
optimal policies, they can be used to encode certain forms of risk attitudes that cannot be encoded
via f. e.g., one can introduce some degree of optimism or pessimism by over- or underweighing the
probability of the unlikely cases where c is large. For example, if we put w(p) = p1−b with 0 ≤ b < 1,
then increasing the degree of optimism b, one can move δcrit(η) arbitrarily close towards 1, which is
not surprising. We will however not discuss this form of probability reweighting further but will use a
different way of representing “caution” below. Since that form is motivated by its formal similarity to a
certain form of inequality aversion, we will discuss the latter first now before returning to risk attitudes.

3.1.5. Inequality Aversion: A Gini-Sen Intergenerational Welfare Function

While discounting treats different generations’ welfare differently, it only does so based on
time lags, and all the above evaluations still only depend on some form of (weighted) time-average
welfare and are blind to welfare inequality as long as these time-averages are the same. However,
one may argue that an RS with less inequality between generations, such as (1, 1, 1, . . . ), should be
strictly preferable to one with the same average but more inequality, such as (2, 0, 2, 0, 2, 0, . . . ).
Welfare economics has come up with a number of different ways to make welfare functions sensitive
to inequality, and although most of them were initially developed to deal with inequality between
individuals of a society at a given point in time (which we might call “intragenerational” inequality
here), we can use the same ideas to deal with inequality between welfare levels of different generations
(“intergenerational” inequality). Since our basic welfare measure is not quantitative but qualitative
since it only distinguishes “low” from “high” welfare, inequality metrics based on numerical
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transformations, such as the Atkinson-Theil-Foster family of indices, are not applicable in our context,
but the Gini-Sen welfare function [24], which only requires an ordinal welfare scale, is. The idea is that
the value of a specific allocation of welfare to all generations is the expected value of the smaller of the
two welfare values of two randomly-drawn generations. If the time horizon is finite, H > 0, this leads
to the following evaluation of an RS r:

V2(r) = (∑t=0 . . . H−1 ∑t’=0 . . . H−1 min[r(t), r(t’)])/H2.

It is straightforward to generalize the idea from drawing two to drawing any integer number
a > 0 of generations, leading to a sequence of welfare measures Va(r) that get more and more inequality
averse as a is increased from 1 (no inequality aversion, “utilitarian” case) to infinity (complete inequality
aversion), where the limit for a→ ∞ is the egalitarian welfare function:

V1(r) = [r(0) + . . . + r(H − 1)]/H

Va(r) = (∑t1=0 . . . H−1 . . . ∑ta=0 . . . H−1 min[r(t1), . . . , r(ta)])/Ha

V∞(r) = min[r(0), . . . , r(H − 1)]

Note that I = 1 − V2(r)/V1(r) is the Gini index of inequality and the formula V2(r) = V1(r) (1 − I)
is often used as the definition of the Gini-Sen welfare function.

Our RSs “rc10” then gets Va(rc10) = min(c/H, 1)a, while “rk101” gets Va(rk101) = [(H − 1)/H]a if
k < H and Va(rk101) = 1 if k ≥ H. Together with expected utility theory for evaluating the risk about c,
this makes:

Va(all-A) = ηH + ∑c=1 . . . H η
c−1π(c/H)a

and Va(directly-B) = [(H− 1)/H]a. Numerical evaluation shows that even for large H, “all-A” may still
be preferred due to the possibility that collapse will not happen before H and all generations will have
the same welfare, but this is only the case for extremely large values of a. If we use exponential instead
of rectangular discounting and compare the policies “directly-B”, “Bk”, and “all-A”, we may again get
a time-inconsistent recommendation to choose B after a finite number of generations. e.g., Figure 2a
shows V(Bk) vs. k for the case η = 0.985, δ = 0.9, a = 2, where the optimal delay would appear to be
five generations. If we restrict our optimization to the time-consistent policies “Ax”, the optimal x
in that case would be ≈0.83, i.e., each generation would choose A with about 83% probability and B
with about 17% probability, as shown in Figure 2b. Still, note that the absolute evaluations vary only
slightly in this example.
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Let us see what effect a formally similar idea has in the context of risk aversion.

3.1.6. Caution: Gini-Sen Applied to Alternative Realizations

What happens if instead of drawing a ≥ 1 many generations t1, . . . , ta at random, we draw a
≥ 1 many realizations r1, . . . , ra of an RSL g at random and use the expected minimum of all the
RS-evaluations V(ri) as a “cautious” evaluation of the RSL g?

Va(g) = ∑r1 . . . ∑ra g(r1) × . . . × g(ra) ×min[v(r1), . . . , v(ra)].

For a = 1, this is just the expected utility evaluation of g, while for a→ ∞, it gives a “worst-case”
evaluation. For actual numerical evaluation, the following equivalent formula is more useful (assuming
that all v(r) ≥ 0):

Va(g) =
∫

x≥0 Pg(v(r) ≥ x)a dx,

where Pg(v(r) ≥ x) is the probability that v(r) ≥ x if r is a realization of g. In that form, a can
be any real number ≥ 1 and it turns out that the evaluation is a special case of cumulative prospect
theory [23], with the cumulative probability weighting function w(p) = pa. Focusing on “all-A” vs.
“directly-B” again, we get Va(all-A) = (1 − ηaH)/(1 − ηa)H and Va(directly-B) = (H − 1)/H, hence,
“all-A” is preferred iff (1 − ηaH)/(H − 1) > 1 − ηa, i.e., iff H and a are small enough and η is small
enough. In particular, regardless of H and η, for a→ ∞ we always get a preference for “directly-B”
as in the constant absolute risk aversion. This is because with the Gini-Sen-inspired specification of
caution, the degree of risk aversion effectively acts as an exponent to the survival probability η, i.e.,
increasing risk aversion has the same effect as increasing collapse probability, which is an intuitively
appealing property.

3.1.7. Fairness as Inequality Aversion on Uncertain Prospects

Consider the RSs r1 = (1, 0, 1) and r2 = (1, 1, 0), and the RSL g that results in r1 or r2 with equal
probability 1/2. If we apply inequality aversion on the RS level as above, say with a = 2, we get
V(r1) = V(r2) = V(g) = 4/9. Still, g can be considered more fair than both r1 and r2 since under g,
the expected rewards are (1, 1/2, 1/2) rather than (1, 0, 1) or (1, 1, 0), so no generation is doomed to
zero reward but all have a fair chance of getting a positive reward. It is, therefore, natural to consider
applying “inequality aversion” on the RSL level to encode fairness, by putting:

Va(g) = (∑t1=0 . . . H−1 . . . ∑ta=0 . . . H−1 min[V(g, t1), . . . , V(g, ta)])/Ha,

where V(g, t) is some evaluation of the uncertain reward of generation t resulting from g,
e.g., the expected reward or some form of risk-averse evaluation. The interpretation is that Va(g) is the
expected minimum of how two randomly drawn generations within the time horizon evaluate their
uncertain rewards under g. Using exponential discounting instead, the formula becomes:

Va(g) = (1 − δ)a ∑t1=0 . . . H−1 . . . ∑ta=0 . . . H−1 δ
t1+...+ta min[V(g, t1), . . . , V(g, ta)].

If we use the expected reward for V(g, t) and evaluate the time-consistent policies “Ax” with
this Va(g), the result looks similar to Figure 2b, i.e., the optimal time-consistent policy is again
non-deterministic. A full optimization of Va(g) over the space of all possible probabilistic policies
shows that the overall optimal policy regarding Va(g) is not much different from the time-consistent
one, it prescribes choosing A with probabilities between 79% and 100% in different generations for the
setting of Figure 2.
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3.1.8. Combining Inequality and Risk Aversion with Fairness

How could one consistently combine all the discussed aspects into one welfare function? Since a
Gini-Sen-like technique of using minima can be used for each of them, it seems natural to base a
combined welfare function on that technique as well. Let us assume we want to evaluate the four
simple RSLs g1, . . . , g4 listed in Table 1 in a way that makes V(g1) > V(g2) because the latter is more
risky, V(g2) > V(g3) because the latter has more inequality, and V(g3) > V(g4) because the latter is less
fair. Then we can achieve this by applying the Gini-Sen technique several times to define welfare
functions V0 . . . V6 that represent more and more of our aspects as follows:

• Simple averaging: V0(g) = Er Et r(t) where Er f(r) is the expectation of f(r) w.r.t. the lottery g
and Et f(t) is the expectation of f(t) w.r.t. some chosen discounting weights;

• Gini-Sen welfare of degree a = 3: V1(g) = Er Et1 Et2 Et3 min{r(t1), r(t2), r(t3)};
• Overall risk-averse welfare: V2(g) = Er1 Er2 min{Et r1(t), Et r2(t)};
• Fairness-seeking welfare of degree a = 3: V3(g) = Et1 Et2 Et3 min{Er r(t1), Er r(t2), Er r(t3)};
• Inequality- and overall risk-averse welf.: V4(g) = Er1 Er2 min{v4(r1), v4(r2)} with v4(r) = Et1

Et2 Et3 min{r(t1), r(t2), r(t3)};
• Inequality and overall risk index: I4(g) = 1 − V4(g)/V0(g);
• Generational risk averse and fair welfare: V5(g) = Et1 Et2 Et3 min{V5(g, t1), V5(g, t2), V5(g, t3)}

with V5(g, t) = Er1 Er2 min{r1(t), r2(t)};
• Generational risk and fairness index: I5(g) = 1 − V5(g)/V0(g); and
• All effects combined: V6(g) = V4(g)V5(g)/V0(g) = V0(g)[1 − I4(g)][1 − I5(g)]

The resulting evaluations for g1 . . . g4 can be seen in Table 1. We chose a higher degree of
inequality-aversion (a = 3) than the degree of risk-aversion (a = 2) so that V6(g2) > V6(g3) as desired.
Applied to our thought experiment, V6 can result in properly probabilistic and time-inconsistent
policy recommendations, as shown in Figure 3 for two example choices of η and discounting schemes.
An alternative way of combining inequality and risk aversion into one welfare function would be to
use the concept of recursive utility [25], which is, however, beyond the scope of this article.

Sustainability 2018, 10, x FOR PEER REVIEW  14 of 24 

policy recommendations, as shown in Figure 3 for two example choices of η and discounting 
schemes. An alternative way of combining inequality and risk aversion into one welfare function 
would be to use the concept of recursive utility [25], which is, however, beyond the scope of this 
article. 

 

Figure 3. (Left) Evaluation V6 for the case of η = 0.68, rectangular discounting with very short 
horizon 3 and choosing A for sure in generation 1, by probability of chosing A in generation 0, 
showing an optimal probability of approximately 82%. (Right) Optimal policy for the first 20 
generations according to V6 for the case of η = 0.97 and exponential discounting with δ = 0.9. 

Table 1. Comparison of the effects of inequality aversion, overall and generational risk aversion, and 
fairness on the evaluation of four simple reward sequence lotteries (RSLs). All effects are 
implemented in the Gini-Sen style (see main text for details), inequality aversion with a larger degree 
of a = 3, risk aversion and fairness with a lower degree of a = 2, which is reflected in the preference for 
the coin toss between the “no-inequality” reward sequences (0, 0) and (1, 1) over the coin toss 
between the “equal average” reward sequences (0, 1) and (1, 0). 

RSL V0: No Effects 
V1: Only 

Inequality 
Aversion 

V2: Only 
Overall Risk 

Aversion 

V3: Only 
Fair-ness 

V4: Inequality and 
Overall Risk 

Aversion 

V5: Generational Risk 
Aversion and 

Fairness 

V6: All Effects 
Combined 

g1: (0.5, 0.5)  
for sure 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

g2: coin toss 
between (0, 0)  

and (1, 1) 
0.5 0.5 0.25 0.5 0.25 0.25 0.125 

g3: coin toss 
between (0, 1)  

and (1, 0) 
0.5 0.25 0.5 0.5 0.125 0.25 0.0625 

g4: (0, 1) for sure 0.5 0.25 0.5 0.25 0.125 0.125 0.03125 

Summarizing the results of our analysis in the optimal control framework that treats humanity 
as a single infinitely-lived decision-maker, we see that there is no clear recommendation to either 
choose A or B at time 0 since depending on the degrees and forms of time preferences/time horizon 
and risk/inequality/fairness attitudes, either one of the policies “all-A” or “directly-B” may appear 
optimal, or it may even appear optimal to deterministically delay the choice for B by a fixed number 
of generations or choose A by a time-varying probability, leading to time-inconsistent 
recommendations. At least we were able to formally confirm quite robustly the overall intuition that 
risk aversion and long time horizons are arguments in favor of B while risk seeking and short time 
horizons are arguments in favor of A. Only the effect of inequality aversion might be surprising, 
since it can lead to either recommending a time-inconsistent policy of delay (if we restrict ourselves 
to deterministic policies) or a probabilistic policy of choosing A or B with some probabilities (if we 
restrict ourselves to time-consistent policies). In the next subsection, we will see what difference it 
makes that no generation can be sure about the choices of future generations. 

Figure 3. (Left) Evaluation V6 for the case of η = 0.68, rectangular discounting with very short horizon
3 and choosing A for sure in generation 1, by probability of chosing A in generation 0, showing an
optimal probability of approximately 82%. (Right) Optimal policy for the first 20 generations according
to V6 for the case of η = 0.97 and exponential discounting with δ = 0.9.

theoretical and methodological work 309

Reproduced from: J. Heitzig et al., A thought experiment on sustainable management of the earth system, Sustainability, vol. 10, no. 6, pp. 1-25, 2018,
doi: 10.3390/su10061947. Published under Creative Commons Attribution License 4.0 (CC BY).

https://doi.org/10.3390/su10061947


Sustainability 2018, 10, 1947 15 of 25

Table 1. Comparison of the effects of inequality aversion, overall and generational risk aversion,
and fairness on the evaluation of four simple reward sequence lotteries (RSLs). All effects are
implemented in the Gini-Sen style (see main text for details), inequality aversion with a larger degree
of a = 3, risk aversion and fairness with a lower degree of a = 2, which is reflected in the preference for
the coin toss between the “no-inequality” reward sequences (0, 0) and (1, 1) over the coin toss between
the “equal average” reward sequences (0, 1) and (1, 0).

RSL V0: No
Effects

V1: Only
Inequality
Aversion

V2: Only
Overall Risk

Aversion

V3: Only
Fair-ness

V4: Inequality
and Overall

Risk Aversion

V5: Generational
Risk Aversion
and Fairness

V6: All
Effects

Combined

g1: (0.5, 0.5)
for sure

0.5 0.5 0.5 0.5 0.5 0.5 0.5

g2: coin toss
between (0, 0)

and (1, 1)
0.5 0.5 0.25 0.5 0.25 0.25 0.125

g3: coin toss
between (0, 1)

and (1, 0)
0.5 0.25 0.5 0.5 0.125 0.25 0.0625

g4: (0, 1) for sure 0.5 0.25 0.5 0.25 0.125 0.125 0.03125

Summarizing the results of our analysis in the optimal control framework that treats humanity
as a single infinitely-lived decision-maker, we see that there is no clear recommendation to either
choose A or B at time 0 since depending on the degrees and forms of time preferences/time horizon
and risk/inequality/fairness attitudes, either one of the policies “all-A” or “directly-B” may appear
optimal, or it may even appear optimal to deterministically delay the choice for B by a fixed number of
generations or choose A by a time-varying probability, leading to time-inconsistent recommendations.
At least we were able to formally confirm quite robustly the overall intuition that risk aversion
and long time horizons are arguments in favor of B while risk seeking and short time horizons are
arguments in favor of A. Only the effect of inequality aversion might be surprising, since it can lead
to either recommending a time-inconsistent policy of delay (if we restrict ourselves to deterministic
policies) or a probabilistic policy of choosing A or B with some probabilities (if we restrict ourselves to
time-consistent policies). In the next subsection, we will see what difference it makes that no generation
can be sure about the choices of future generations.

3.2. Game-Theoretical Framework

While the above analysis took the perspective of humanity as a single, infinitely lived “agent” that
can plan ahead its long-term behavior, we now take the viewpoint of the single generations who care
about intergenerational welfare, but cannot prescribe policies for future generations and have to treat
them as separate “players” with potentially different preferences instead. For the analysis, we will
employ game-theory as the standard tool for such multi-agent decision problems. Each generation, t,
is treated as a player who, if they find themselves in state L, has to choose a potentially randomized
strategy, p(t), which is, as before, the probability that they choose option A. Since each generation
is still assumed to care about future welfare, the optimal choice of p(t) depends on what generation
t believes future generations will do if in L. As usual in game theory, we encode these beliefs by
subjective probabilities, denoting by q(t’, t) the believed probability by generation t’ that generation
t > t’ will choose A when still in L.

Let us abbreviate generation t’ by Gt’ and the set of generations t > t’ by G>t’ and focus on
generation t’ = 0 at first. Let us assume that V = V4, V5, or V6 with exponential discounting encodes
their social preferences over RSLs. Given G0′s beliefs about G>0′s behavior, q(0, t) for all t > 0, we then
need to find that x in [0, 1] which maximizes V(RSL(px,q)), where px,q is the resulting policy px,q

= (x, q(0, 1), q(0, 2), . . . ). If G0 believes G1 will choose B for sure (i.e., q = (0, . . . ) = “directly-B”)
and chooses strategy x, the resulting RSL(px,q) produces the reward sequence r1 = (1, 0, 0, . . . ) with
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probability xπ, r2 = (1, 0, 1, 1, . . . ) with probability 1 − x, and r3 = (1, 1, 0, 1, 1, . . . ) with probability
xη. Hence:

V4(RSL(px,q)) =
x2 [(1 − (1 − δ)δ2)3 η2 − (1 − δ)3η2 + 2(1 − δ)3η − 2(1 − (1 − δ)δ)3η − (1 − δ) + (1 − (1 − δ)δ)3]
+ 2x (−(1 − δ)3η + (1 − (1 − δ)δ)3η + (1 − δ)3 − (1 − (1 − δ)δ)3] + (1 − (1 − δ)δ)3.

Since the coefficient in front of x2 is positive, V4 is maximal for either x = 0, where it is (1 − δ + δ2)3,
or for x = 1, where it is (δ3 − δ2 + 1)3η2 + (δ − 1)3(η2 − 1), which is always smaller, so w.r.t. V4, x = 0
(choosing B for sure) is optimal under the above beliefs. For V5, we have V5(RSL(px,q), t) = 1 for t = 0,
(xη)2 for t = 1, (1 − x)2 for t = 2, and (1 − xπ)2 for t > 2. If x < 1/(1 + η), we have (xη)2 < (1 − x)2 <
(1 − xπ)2 < 1, while for x > 1/(1 + η), we have (1 − x)2 < (xη)2 < (1 − xπ)2 < 1. For x ≤ 1/(1 + η),
V5(RSL(px,q)) is again quadratic in x with a positive x2 coefficient with value 1 + (1 − δ)3 − (1 − δ2)3

at x = 0 and, again, a smaller value at x = 1/(1 + η). Additionally, for x ≥ 1/(1 + η), V5(RSL(px,q)) is
quadratic in x with positive x2 coefficient and a value of:

1 − δ(3 − 3δ + δ2 − η2[1 − δ + δ2][3 − δ(1 − δ + δ2)(3 − δ + δ2 − δ3)])

for x = 1, which is larger than the value for x = 0 if η is large enough and/or δ small enough. A similar
thing holds for the combined welfare measure V6, as shown in Figure 4, blue line, for the case η = 0.95
and δ = 0.805, where G0 will choose A if they believe G1 will choose B, resulting in an evaluation
V6 ≈ 0.43. The orange line in the same plot shows V6(RSL(px,q)) for the case in which G0 believes
that G1 will choose A and G2 will choose B if they are still in L, which corresponds to the beliefs
q = (1, 0, . . . ). Interestingly, in that case, it is optimal for G0 to choose A, resulting in an evaluation
V6 ≈ 0.42. Since the dynamics and rewards do not explicitly depend on time, the same logic applies to
all later generations, i.e., for that setting of η and δ and any t ≥ 0, it is optimal for Gt to choose A when
they believe Gt+1 will choose B and optimal to choose B when they believe Gt+1 will choose A and Gt+2

will choose B.
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Now assume that all generations have preferences encoded by welfare function V6 and believe
that all generations Gt with even t will choose A and all generations Gt with odd t will choose B.
Then it is optimal for all generations to do just that. In other words, these assumed common beliefs
form a strategic equilibrium (more precisely, a subgame-perfect Nash equilibrium) for that setting of
η and δ. However, under the very same set of parameters and preferences, the alternative common
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belief that all even generations will choose B and all odd ones A also forms such an equilibrium.
Another equilibrium consists of believing that all generations choose A with probability ≈83.7% which
all generations evaluate as only V6 ≈ 0.40, which is less than in the other two equilibria. The existence
of more than one strategic equilibrium is usually taken as an indication that the actual behavior is
very difficult to predict even when assuming complete rationality. In our case, this means G0 cannot
plausibly defend any particular belief about G>0

′s policy on the grounds of G>0′s rationality since G>0

might follow at least either of the three identified equilibria (or still others). In other words, for many
values of η and δ a game-theoretic analysis based on subgame-perfect Nash equilibrium might not
help G0 in deciding between A and B. A common way around this is to consider “stronger” forms of
equilibrium to reduce the number of plausible beliefs, but this complex approach is beyond the scope
of this article. An alternative and actually older approach [26] is to use a different basic equilibrium
concept than Nash equilibrium, not assuming players have beliefs about other players policies encoded
as subjective probabilities, but rather assuming players apply a worst-case analysis. In that analysis,
each player would maximize the minimum evaluation that could result from any policy of the others.
For choosing B, this evaluation is simply v(1, 0, 1, 1, . . . ), while, for choosing A, the evaluation can
become quite complex. Instead of following this line here, we will use a similar idea when discussing
the concept of responsibility in the next section, where we will discuss other criteria than rationality
and social preferences.

4. Solutions Based on Other Ethical Principles and Sustainability Paradigms

4.1. Responsibility

Rather than asking what combinations of uncertain welfare levels we should prefer for future
generations, one can also ask what responsibility we have regarding future welfare. We will sketch
here a certain simple theory of responsibility designed to be applicable to problems involving multiple
agents, uncertainty, and potential ethically-undesired outcomes (EUOs), as in our TE. We distinguish
two major types of responsibility, forward- and backward-looking responsibility, the latter having two
subtypes, factual and counterfactual responsibility. While forward-looking responsibility is about
still-existing possibilities, an agent or group of agents has to reduce the probability of future EUOs
(“responsibility to”), backward-looking responsibility (“responsibility for”) is about past possibilities
that would have reduced the probability of an EUO that actually occurred (factual responsibility,
e.g., Nagel’s unlucky drunken driver [27]) or could have occurred (counterfactual responsibility,
e.g., Nagel’s lucky drunken driver [27]). In all three types, the degree of responsibility is measured in
terms of differences of probabilities of EUOs. Rather than giving a formal definition, it will suffice to
discuss the details of this theory at the hand of several choices for what constitutes an EUO in our TE.

Let us start by considering that an EUO is simply a low welfare in generation 1. Then the degree of
forward-looking respectively of G0 is the absolute difference between the probability of low welfare in
generation 1 when choosing A rather than B, which equals η. In other words, G0 would have a degree
of η responsibility to choose A in order to avoid the EUO that G1 gets low welfare. If they choose
B instead, they will have a degree of factual backward-looking responsibility for G1

′s low welfare
equaling again η since this is the amount by which they could have reduced the probability of the
EUO. If they behave “responsibly” by choosing A, G1

′s welfare might also be low (with probability π),
but G0 would still not have backward-looking responsibility since they could not have reduced
that probability.

If the EUO was simply a low welfare in G2 rather than G1, the assessment of G0
′s responsibility

must consider the possible actions of G1 in addition to those of G0. If G0 chooses B, the probability of
the EUO is zero, while if they choose A, it depends on G1

′s choice. If G1 would choose B, the EUO has
probability 1 so that G0

′s choice would make a difference of 1, while if G1 would choose A, the EUO
has probability 1 − η2 < 1 and G0

′s choice would make a difference of only 1 − η2 < 1. In both cases,
however, they have considerable forward-looking responsibility to choose B since by that they can
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reduce the probability of the EUO significantly. If choosing B, no backward-looking respectively
accrues. If G0 and G1 both choose A and the collapse occurs at time 2, G1 has no factual responsibility
since they could not have reduced that probability, but G0 has factual responsibility of degree 1 − η2.
If G0 chooses A and G1 B, G1

′s factual responsibility is η as seen above, but G0
′s is even larger, since in

view of G1
′s actual choice, G0 could have reduced the probability from one to zero by choosing B

instead. Thus, G0 has factual responsibility of 1. It might seem counterintuitive at first that the sum of
the factual responsibilities of the two agents regarding that single outcome would be larger than 100%,
but our theory is actually explicitly designed to produce this result in order to show that responsibility
cannot simply be divided. Otherwise, each individual in a large group of bystanders at a fight in
public could claim to have almost no responsibility to intervene (diffusion of responsibility). Finally,
if both G0 and G1 choose B and no collapse happens, G0 still has counterfactual responsibility since the
collapse could have happened and G0 could have reduced that probability by 1 − η2. This distinction
between factual and counterfactual responsibility would also allow a discussion of Nagel’s concept of
moral luck in consequences [27] and responses to it, such as [28] but we will not go there here.

If the EUO is low welfare in G3, it becomes more complicated. By choosing B, G0 can avoid the
EUO for sure, but when choosing A they might hope G1 will choose B and the EUO will be avoided
for sure as well, in which case they might claim to have a rather low responsibility to choose B which
amounts only to π, the probability that G1 will have no chance of choosing B due to immediate collapse.
Common sense, however, shows that while wishful thinking regarding the actions of others might
affect one’s own psychological assessment of responsibilities, it cannot be the basis for an ethical
observer’s assessment of responsibility. Otherwise, even in a group of just two bystanders, neither one
would be ethically obliged to intervene since both could hope the other does. Here we even take the
opposite view and argue that G0

′s degree of forward-looking responsibility should equal the largest
possible amount by which they might be able to reduce the probability of the EUO, maximized over all
possible behaviors of the other agents. This means that rather than being optimistic about G1

′s action,
they need to be pessimistic about both G1

′s and G2
′s behavior. The worst that can happen regarding

the welfare of G3 when G0 chooses A is that G1 would choose A and G2, B. In that case, the EUO has
probability 1, so G0 would still be fully responsible (degree 1) to choose B in order to avoid the EUO.

Now what definition of EUO should we actually adopt in our TE? Two candidates seem natural,
either a low welfare in any generation should already constitute an EUO (in which case it cannot be
avoided by either A or B), or only an infinite number of low welfare generations, i.e., an eventual
collapse into state T, should constitute an EUO. In the latter case, each generation in L has 100%
forward-looking responsibility to choose B, and if they choose A instead, they will end up having
100% factual responsibility for the eventual collapse, regardless of the choices of later generations.
Summarizing, we argue that a theory of responsibility that avoids the diffusion of responsibility
and wishful thinking will deem B the responsible action in our TE since it avoids the worst for sure,
even though this makes G0 responsible for G1

′s suffering.

4.2. Safe Operating Space for Humanity

In the following we continue our analyses of the ethical aspects of the TE from the perspective of
the safe operating space (SOS) for humanity [2]. The SOS is located within planetary boundaries (PBs)
“with respect to the Earth system” which “are associated with the planet’s biophysical subsystems
and or processes” [2]. The SOS is a fairly new concept for environmental governance, encapsulating
several established concepts, such as the limits to growth [29,30], safe minimum standards [31–33],
the precautionary principle [34], and the tolerable windows concept [35,36]. We let our analysis guide
by the three “main” articles around the planetary boundaries and the SOS concepts [2–4], which have,
at the time of this writing, together well over ten thousand citations, so that a comprehensive review
of the SOS debate is beyond the possibilities of this article. We will, therefore, incorporate other papers
only selectively.
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One main difference to the approaches covered in the previous sections is the level of mathematical
formalization. While we do acknowledge that some attempts of mathematical formalization of a SOS
decision paradigm have been made [37], the original and most of the subsequent works do not provide
a mathematical operationalization.

First of all we assess whether our TE is a suitable model within which the SOS concept can
be applied at all. Rockström et al. [3] acknowledges that “anthropogenic pressures on the Earth
System have reached a scale where abrupt global environmental change can no longer be excluded”,
which “can lead to the unexpected crossing of thresholds that drive the Earth System, or significant
sub-systems, abruptly into states deleterious or even catastrophic to human well-being”. Therefore,
the authors “propose a new approach to global sustainability in which we define planetary boundaries
within which we expect that humanity can operate safely.” These lines resemble very well the situation
in our TE where the decision-maker faces either a transition from L to T or from L to S.

However, the authors of the three papers in question do not mention any unfavorable P-like
states on the way from L to S. Rockström et al. [2] states that “the evidence so far suggests that,
as long as the thresholds are not crossed, humanity has the freedom to pursue long-term social and
economic development.“ Emphasizing the long-term aspect, the last quote at least does not exclude
the possibility of unfavorable interim states P on the way to safe, long-term “shelter” states S.

Nevertheless, opposing to the view that the SOS can be applied to the decision problem in our TE,
the planetary boundaries’ “precautionary approach is based on the maintenance of a Holocene-like
state of the ES [Earth System]” [4]. This is emphasized because the “thresholds in key Earth System
processes exist irrespective of peoples’ preferences, values or compromises based on political and
socioeconomic feasibility, such as expectations of technological breakthroughs and fluctuations in
economic growth.” [3]. One could argue that a mere transition from state L to S has to be interpreted
as “destabilizing” [4]. However, this view disregards that our TE does not tell anything about the
Holocene-likeness of the states L, T, P, and S. One may very well interpret states L, P, and S as
Holocene-like. Further, as stated above, the ultimate justification for the planetary boundaries is to
avoid Earth system states “catastrophic to human well-being” [3]. It is the only precautionary principle
used by the PB approach that suggests staying within Holocene-like state.

Another opposition to the view that the SOS can be applied to the decision problem in our TE
may result from the fact that “the planetary boundaries approach as of yet focuses on boundary
definitions only and not as a design tool of compatible action strategies” [3]. The “PB framework as
currently construed provides no guidance as to how [ . . . ] the maintenance of a Holocene-like state
[ . . . ] may be achieved [ . . . ] and it cannot readily be used to make choices between pathways for
piecemeal maneuvering within the SOS or more radical shifts of global governance” [4]. We make two
observations from these quotes: First, the PB framework may not be used to guide how Holocene-like
states shall be maintained, but it can surely be used as a guiding principle that Holocene-like states
shall be maintained. Second, these quotes suggest that the authors assume that we are still currently
in a Holocene-like SOS, since they do not explicitly account for re-entering it. However, one of the
key messages of all three papers is that humanity has already crossed several of the nine planetary
boundaries. One could conclude that humanity has, therefore, left the SOS.

The ultimate question regarding our TE is which states of our TE correspond to the SOS.
Interpreting the T state as the catastrophic state that is to be avoided, four options seem plausible to
constitute the SOS: (i) S; (ii) P and S; (iii) L and S; (iv) L, P, and S. State S is clearly part of the SOS.
As mentioned above, the three papers avoid discussing P-like states. Therefore, both possibilities must
be considered: either P-like states belong to the SOS or they do not. Regarding whether state L belongs
to the SOS, [2] states: “Determining a safe distance [from the thresholds] involves normative judgments
of how societies choose to deal with risk and uncertainty”. This clearly reflects the circumstance that
real-world environmental governance always has to account for risks and uncertainties. However,
also in our TE we can associate the “risk” with the probability π of transitioning to state T under action
A. Thus, if our decision-maker judges the risk π to be acceptable, L belongs to the SOS.
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What are the consequences of assuming the SOS is composed of either of the sets (i)–(iv)?
(i) If only S belongs to the SOS, one should choose action B, take the suffering of the next generation
into account and finally end up in the SOS. There “humanity [can] pursue long-term social and
economic development“ [2]; (ii) If P, but not L, belongs to the SOS, the decision is still to take action B
since that moves them even faster into the SOS; (iii) If L, but not P, belong to the SOS and we interpret
the transition L→ P→ S as a “radical shift [ . . . ] of global governance” [4], the SOS concept “cannot
[ . . . ] be used to make choices between pathways” [4], i.e., would be of no help here. Denoting that
transition as “radical” can be justified since it temporarily leaves the SOS; Finally, (iv) assuming all
of L, P, and S belong to the Holocene-like SOS, the SOS concept still “cannot readily be used to make
choices between pathways for piecemeal maneuvering within the safe operating space” [4].

Overall, we conclude that whether or not the initial state L belongs to the SOS is essential for
whether the SOS concept can be used to guide decisions in our TE. If L does not belong to the SOS,
the decision problem is solved by taking action B. Otherwise the concept explicitly states that it cannot
give guidance facing the trade-off highlighted in our TE.

4.3. Sustainability Paradigms à la Schellnhuber

Schellnhuber [38,39] proposes a set of five sustainability paradigms as idealizations of decision
principles for governing the co-evolutionary dynamics of human societies and the environment
as a part of a broader control-theoretical framework for Earth system analysis (also referred to
as geocybernetics). The framework is introduced for deterministic systems and does not explicitly
accommodate for probabilistic dynamics in the original publications, although it can be generalized
to that case (as will be necessary in some of the interpretations of the sustainability paradigms for
the TE given below). It also assumes that each co-state of the system under study consists of societal
and environmental dimensions. In the context of our TE, the societal dimension corresponds to the
welfare associated to a state. Since the TE does not explicitly specify evaluations of the environmental
dimension, we assume here that it is mainly in line with the societal dimension, i.e., that it is “good”
in states L and S and “bad” in state T. Regarding state P, we will discuss both possibilities below.
The precise nature of this assignment does not impact most of the conclusions drawn below. In the
following, we discuss the implications of the sustainability paradigms of standardization, optimization,
pessimization, equitization, and stabilization introduced in [38] for our TE and relate them to the principles
evaluated above.

4.3.1. Standardization

When adhering to the standardization paradigm, decisions on actions follow prescribed
“environment and development” standards based on upper or lower limits on various system variables
or aggregated indicators. The standardization paradigm includes governance frameworks such as
the tolerable windows approach [36], climate guardrails and planetary boundaries [2,3] (see also
Section 4.2). Following a pure standardization paradigm may lead to problematic and unintended
outcomes, since system dynamics are not explicitly taken into account.

Several examples for concrete flavors of the standardization paradigm are of interest in analyzing
the TE. In the case of eco-centrism, only environmental standards are taken into account (requiring
a “good” environmental state for all time). If the environment is assumed to be in a good condition
in state P, then clearly following this eco-centric paradigm implies choosing action B. However,
if state P is interpreted as bad for the environment, then the eco-centric paradigm seems to imply
choosing A to conserve the local environment at least with probability η rather than degrading it for
certain, temporarily. In the case of a tolerable environment and development window, both societal and
environmental dimensions are taken into account (requiring a good environmental state and a high
societal welfare for all time). This variant of the standardization paradigm does not allow reaching a
decision on which action to choose, because both actions A and B violate the standards at some point.
A third example for a standardization paradigm is the maintenance of living standards: for all times a
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certain level of minimum wealth should be maintained (living standard may be measured by more
complex aggregated indicators in higher-dimensional models). A short-sighted society would choose
action A following this paradigm since the standard is fulfilled with probability η per generation.
Adopting a second-best interpretation requiring the standard to be met only after some time, a more
farsighted society would choose action B, meeting the standard when reaching a state with certainty S
in generation 2.

4.3.2. Optimization

The optimization paradigm is based on “wanting the best” [38] and selects actions accordingly to
maximize a given utility function. It is, hence, closely related to the rational choice framework and
its implications for the TE discussed in Section 3. Optimization can be performed under constraints
given by standards, resulting in a combination of the optimization and standardization paradigms.
As seen already in Section 3, adopting the optimization paradigm carries a risk related to the
considerable uncertainty on whether future generations will actually be willing or able to follow
the previously-determined optimal management sequence.

4.3.3. Pessimization

The pessimization paradigm is based on the principle of “avoiding the worst” and is,
hence, also referred to as an “Anti-Murphy strategy of sustainable development” [38]. It is a
resilience-centered paradigm that calls for excluding management sequences that could allow for
disastrous mismanagement by future generations. An example for a specific pessimization paradigm
is the minimax strategy that dictates to minimize the maximum possible damage caused by a
management sequence. The rationale is, hence, to hedge the damage that can be done by the
management choices of future generations. With respect to the TE, this calls for choosing action
B to avoid the worst outcome: to likely get trapped in the degraded state T forever caused by future
generations repeatedly choosing action A.

4.3.4. Equitization

The equitization paradigm is centered around avoiding inequalities of various kinds, be it
geographical or temporal. Focusing on the second aspect of inter-generational equity here, it describes
a quest for just allocation of choices in time to keep the space of management options open for
future generations. Extending upon the Brundtland definition of sustainable development focusing
on being able to meet the needs (welfare) of the current and future generations, the equitization
paradigm demands the “equality of environment and development options for successive global
generations” [38]. Since open and fairly distributed option spaces are key for allowing future
generations to adapt and transform to deal with previously unknown and unforeseeable perturbations
and challenges, the equitization paradigm is closely related to principles from resilience thinking.
If we interpret the choice between A and B in our TE as a kind of “development option” in the sense
of Schellnhuber, then the equitization paradigm seems to call for choosing A, since this preserves
options for the next generation with at least probability η. For option B, the generation in P and future
generations in S would have no options left after all. It is interesting to note that in our deliberately
simple and fully-known system described in the TE, following the equitization paradigm would,
therefore, keep the system in the risky state L and would not allow navigating to the desirable state
S. On the other hand, if we rather interpret “development options” as an aspect of high welfare,
clearly state S provides more options than T, so we would be back to the question of whether one
should sacrifice the options of one generation for the options of all later generations.

4.3.5. Stabilization

The stabilization paradigm describes the goal of steering the system towards a preselected state
or set of states that is considered sustainable. For example, it encapsulates the underlying intentions
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of the United Nations Sustainable Development Goals [40], and other political agreements of that
type, to inform and steer governance for sustainable development. In the TE, the stabilization clearly
paradigm demands to choose action B, since only then the desirable state S can be reached where high
wealth can be sustained for all time.

5. Discussion

When designing the thought experiment discussed in this article, the authors originally had the
intuition that most schools of thought would provide a relatively clear answer to the seemingly simple
question of whether the hypothetical generation finding themselves in situation L should choose
option A or B. Indeed, many individuals we discussed it with seemed to have a strong immediate
gut feeling as to what one “should” do in that situation. For example, when one of the authors asked
two practicing Buddhists, who have discussed the Buddhist worldview with each other for years,
about their opinion, both immediately announced the Buddhist position on this would be perfectly
clear. For the formally slightly similar trolley problem, a survey among professional philosophers
showed that only 24% of respondents would not take a position on that problem [41].

However, as it turns out in light of the above analyses, we could not have been more mistaken.
When asked to explain, the two Buddhists mentioned above argued very convincingly from their
respective interpretation of Buddhism, one for action A, but the other for action B. We had similar
experiences with people adhering to the schools of thought we chose to discuss in this article. As the
above analysis shows, neither the optimal control framework, welfare economics, game theory,
the concept of a safe operating space, or many of the discussed sustainability paradigms give a
really clear and unambiguous answer to the question, at least not without having to choose parameters
such as the right time horizon, level of inequality aversion, risk attitude, preference for fairness, etc.
In some cases, the ambiguity also seems to be due to difficulties in matching the terminology and basic
concepts of a framework for evaluation to the situation described in the TE. Even seemingly clear
concepts such as “options”, “inequality”, “risk”, etc. become complicated to apply and assess when
they are entangled in the way they are in our TE.

Overall, our impression is that much of the difficulties have to do with the strong presence of
probabilistic uncertainties and their strong correlations over time caused by the extreme form of
lock-in effects in our TE. Once choosing action B or once collapsing into state T, there is no turning
back, and some of our analysis depends on this extreme assumption. While the assumption might be
criticized as unrealistic, there is no denying that, also in the real world, choices such as a transition to a
decarbonized economy or events such as the GHG-emissions-induced tipping of a climatic tipping
element will have very long-lasting effects which, for the sake of an evaluation, might just as well be
assumed to be effectively irreversible. Still, future work on this and similar thought experiments should
also assess whether certain modifications, such as (i) the introduction of a small probability of being
able to return to state L from either T or S; (ii) exogenous or endogenous changes in the definition of
“welfare” over time; or (iii) status effects, such as anticipated posterior perception (“making history”),
to name only a few, would make a qualitative difference.

The presence of strong uncertainties is less debatable than that of irreversible lock-ins, thus, it is
somewhat surprising that when trying to apply modern concepts, such as some of the sustainability
paradigms discussed in Section 4, it seems that they are not really made for choice situations where
consequences involve high and long-lasting uncertainties, unclear causal relationships, and the possible
necessity of temporary reductions in welfare. In particular, regarding the latter aspect, our impression
is that discussing intermediate suffering is somewhat unpopular in the sustainability discourse.
Since potential trade-offs between intermediate suffering and long-term sustained welfare might exist
not only in our TE, but also in the real world, this calls for a debate among scholars and policy-makers
of how to handle this trade-off.

Still, we argue that a few patterns of evaluation emerged quite clearly across the different schools
of thought. Most prominently, but least surprisingly, a focus on the farther future and the long-term
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evolution clearly makes option B more attractive than A. Second, a strong preference for equality across
generations, whether expressed via a large coefficient of inequality aversion in a rationality-based
framework, or by choosing to follow the equitization paradigm, seems to make option A more
attractive overall since it distributes welfare, options, and risks more evenly over time. Readers who
perceive these results as rather unsurprising will hopefully consider them a kind of sanity check for our
setup. In addition to these intuitive results, there were also a few surprises, including the rather easy
occurrence of time-inconsistencies or probabilistic elements in optimal policies even in the single-agent
interpretation, caused by inequality aversion, or the occurrence of alternating recommendations to
choose A or B in consecutive generations in the multi-agent interpretation. The most interesting result
of our study, however, is probably the overall insight that even such a simple and seemingly clear
setup as the TE presented here can generate such a diverse and complex set of assessments even within
a single well-established framework, such as the welfare-function-based one. While the flexibility of
the welfare function approach due to its many possible specifications and continuous parameters may
be considered its main weakness, we believe there still remains to be found a convincing basic ethical
principle that would make a clearer recommendation and can be hoped to be accepted as overriding
all other approaches.

We, therefore, close with a few suggestions as to which additional approaches and which
modifications of the TE might be promising. Adding a clearer quantitative distinction between
the welfare levels in states L, T, P, and S might resolve certain ties in the welfare framework, but might
also distract from the basic qualitative problem by focusing too much on quantities. If one would
identify option A as the “default”, or rather “passive” choice, and B as more “active”, one could apply
concepts such as the Doctrine of the Double Effect [42], which have been used to study the trolley
problem and similar dilemmas. This, and similar additional details in the description of the TE might
also allow an assessment in terms of religious traditions and other moral codes.
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3.3 Dynamics of adaptive social-ecological networks

In this third section we present investigations of social-ecological
systems represented as complex networks [Lade et al., 2017].

The first paper, “The Dynamics of Coalition Formation on Com-
plex Networks” [Auer et al., 2015], is dedicated to analyse the for-
mation of self-organizing domains of cooperation (“coalitions”) on
an acquaintance network.

Another relevant social dynamics on networks is the spreading
of opinions, behaviours, decision making or social norms, coevolv-
ing with processes such as homophily that change the underlying
network structure. A prominent model is the so-called “adaptive
voter model” [Holme and Newman, 2006], used in numerous stud-
ies, for example investigating zealotry effects [Klamser et al., 2017].
In “Macroscopic description of complex adaptive networks coe-
volving with dynamic node states” [Wiedermann et al., 2015] we
studied decision making on local resource use and social learning
on an adaptive complex network which is dependent on the indi-
vidual dynamic state of each node and vice versa. This serves as a
stylised representation, the copan:EXPLOIT model, of the coevolu-
tion of renewable resources with the dynamics of harvesting agents
on a social network.

We close this section with “The physics of governance networks:
critical transitions in contagion dynamics on multilayer adaptive
networks with application to the sustainable use of renewable re-
sources” [Geier et al., 2019]. In this third exemplary modelling
approach, we extended the renewable resource layer and the re-
source user layer in the network from the previous contribution
by a third layer representing governance agents that can penalise
unsustainable resource use. We uncovered that a sustainable out-
come depends on parameters of each network layer and observed
interesting resilience trade-offs between an “eco-dictatorship” and
adaptive polycentric governance by multiple individual actors.
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Formation on Complex Networks
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Complex networks describe the structure of many socio-economic systems. However, in studies of 
decision-making processes the evolution of the underlying social relations are disregarded. In this 
report, we aim to understand the formation of self-organizing domains of cooperation (“coalitions”) 
on an acquaintance network. We include both the network’s influence on the formation of coalitions 
and vice versa how the network adapts to the current coalition structure, thus forming a social 
feedback loop. We increase complexity from simple opinion adaptation processes studied in earlier 
research to more complex decision-making determined by costs and benefits, and from bilateral 
to multilateral cooperation. We show how phase transitions emerge from such coevolutionary 
dynamics, which can be interpreted as processes of great transformations. If the network adaptation 
rate is high, the social dynamics prevent the formation of a grand coalition and therefore full 
cooperation. We find some empirical support for our main results: Our model develops a bimodal 
coalition size distribution over time similar to those found in social structures. Our detection and 
distinguishing of phase transitions may be exemplary for other models of socio-economic systems 
with low agent numbers and therefore strong finite-size effects.

Statistical physics provides a powerful means to conceptually study mechanisms of socio-economic sys-
tems and their associated transformations such as market restructuring, social upheavals and revolutions. 
Many socio-economic systems exhibit network structures1, and a number of studies show how network 
structures influence behaviour such as bilateral cooperation2. Much less work is done on the reverse 
effect that the network structure in turn adapts to behaviour3–5. While both processes are interesting in 
themselves, in the context of opinion dynamics it is actually the feedback loop of both network adapta-
tion and dynamics on the network which leads to the most interesting nonlinear effects. E.g., the seminal 
work of Holme6 presents a model in which a phase transition occurs that can be interpreted as a great 
transformation.

In this report, we transfer the methods of Holme6 from local social dynamics to a more complex 
form of mesoscopic social self-organization, namely that of multilateral cooperation (here called coali-
tions), whose interaction with network structures has not been studied before. In particular, we present a 
model of the coevolution of an adaptive network representing social acquaintance and a coalition struc-
ture which is a partition of nodes into coalitions of arbitrary size representing multilateral cooperation 
(Fig. 1). Instead of an exogenously given number of opinion groups as previously studied in the literature, 
the number of coalitions in our model evolves endogenosly as a process of self-organization from the 
boundedly rational behavior of the agents. Our model can be applied to socio-economic environments 
where cooperation promises economic or social advantages, and to study such diverse subjects as firm 
size distributions, fish cohorts, and political parties. Our methods to detect phase transitions are espe-
cially applicable to small real-world systems. However, in our case low sample sizes do not necessarily 
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indicate interaction processes with a low number of people since each agent might be composed of 
many individuals, already. A common economic situation for which cooperation is critical is the use of 
a common pool resource. It leads to nontrivial coalition formation dynamics because agents not only 
have an incentive to form a coalition but also to leave a coalition in order to profit from the efforts of the 
remaining coalition. Since one of the major current economic challenges, the transition to a low-carbon 
economy, is closely related to several common pool resources like the atmosphere and renewable energy 
sources, we focus on the application of our model to common pool resources in this article.

Results
In our model, each coalition rationally decides how much of the resource to exploit and gets a cor-
responding payoff that depends on all coalitions’ sizes and decisions. On this basis, individual agents 
rationally decide to form new coalitions with their acquaintances or merge or leave existing coalitions. 
Finally, they may also form new acquaintance links to members of their own coalition or break existing 
ones to members of other coalitions. The main control parameter in our model is the relative speed of 
acquaintance adaptation vs coalition formation, the adaptation rate φ, and the main feature of the result-
ing dynamics is the distribution of coalition sizes that evolves as an equilibrium over time.

For the case of agents exploiting a common pool resource7, we find a second order phase transition 
when adaptation versus coalition formation crosses its critical value, φ =  φc. For subcritical adaptation 
rates (see Methods for the description of the model and parameters), the coalition structure is dominated 
by very few macroscopic or even near-global coalitions. This leads to a peculiarly multimodal size distri-
bution that can also be observed in various real-world systems8–13, not only in socio-economic contexts 
but also in purely physical systems such as droplets14. In contrast, at the critical adaptation rate, a more 
heterogeneous but power-law-tailed size distribution with much smaller maximal coalitions emerges (see 
Figs 2 and 3).

Change in Coalition Size Distributions.  We see significant changes in the distribution from a few 
macroscopic coalitions to complex multimodal distributions, when the adaptation rate φ is changed. 
There are two extremes. For φ =  0 the dynamics are purely based on coalition formation and hence 
coalition sizes approach the initial component sizes. In contrast, for φ =  1 only network adaptation takes 
place: starting with a coalition structure of only singletons, this parameter setting immediately converges 
without any further changes taking place; from the beginning, there are no coalition partners to link 
with. For small φ the distribution has peculiar features: a linearly decreasing frequency for small coalition 
sizes s and one or two local maxima for larger coalition sizes. Its multimodal nature emerges endoge-
nously from the nonlinear dynamics of coalition formation. As a matter of fact, from empirical obser-
vations, multimodal distributions of social structures are well known, e.g. multimodal size distributions 
have been found in growth patterns of fish cohorts8,9 and droplet sizes14, in human communication10 and 
in firm and city size distributions of developing countries11–13.

For a typical size of coalition forming systems, N =  300 nodes, a look at the distribution of s in steps 
of Δ φ =  0.1 initially does not reveal any interesting artifacts such as power-laws. However, at values of φ 
close to one, the local maxima at the tails disappear, and for a critical adaptation rate φc ≈  0.97 coalition 
sizes show a power-law tail (Fig. 3c). The reason for such a high critical value are the more macroscopic 
effects of the coalition formation process as compared to the network adaptation process; it may involve 
hundreds of agents at once whereas network adaptation only affects three agents at a time (see Methods). 
In Fig. 4a, a higher resolution plot of maximum coalition size S vs. ϕ shows a turning point of this order 
parameter15, something we expect for a second-order phase transition. It is not very distinctive but this 
is expected due to finite size effects16. Samples of up to 500 nodes are rather small for statistical physics 
and an exponential progression of system sizes would be more revealing as network distances scale 
slowly with N. Still, we chose a linear progression in N because the coalition formation process causes 
high computational costs with rising N and agent numbers of up to several hundreds are quite realistic 
for many socio-economic systems17. Nevertheless, phase transitions appear, only the accompanying sin-
gularities are washed out or smoothed18 due to finite-size effects. Also, we expect only small finite-size 

Figure 1.  Scheme of coevolution. In each period, either one random cross-coalition links is replaced by 
an intra-coalitional link (adaptation with rate φ) or some random agent changes the coalition structure 
(coalition formation with rate 1 −  φ), where each two members of a coalition must be connected by a path 
in the network.
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Figure 2.  Acquaintance network with coalition structure (each color represents one coalition, black dots 
are singleton coalitions) for varying system size (columns: N = 300, N = 600 and N = 900) and adaptation 
rate (rows: φ = 0.97 and φ = 0.1). Note that some of the smaller network components consist of more than 
one coalition. Each network is the equilibrium result of one model run.
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Figure 3.  Left (a–c) log-log plot of frequency distribution of all coalition sizes s and right (d–f) histograms 
P(S) of maximum coalition size S in the consensus state for φ =  0.2, φ =  0.8 and φ =  0.97, respectively. 
N =  300 and k  =  3 (for 500 model runs).

corrections19 to critical scaling with an exponential progression to larger N which are insignificant in the 
context of socio-economic modeling. Thus, the detailed analysis of finite-size phase transitions may be 
of great use for further models in this context.
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Second-order Phase Transition.  From these plots alone, the type of phase transition (first- or 
second-order) is hard to identify because a finite sample size will give both first- and second-order tran-
sitions a similar appearance. However, the type of transition is revealed by the probability density func-
tion of the order parameter S. For a varying control parameter φ, first-order transitions have two peaks 
at fixed position with changing height20. Whereas for a second-order transition, a Gaussian peak contin-
uously changes its position—the maximum and mean values of S are moving to smaller values for 
increasing φ18 until the Gaussian converts to a heavy-tailed function at the critical point. In our case, for 
φ =  0.2 and φ =  0.8, the Gaussian curve fits relatively well, but for φ =  0.97 there is an obvious mismatch. 
For Fig.  3d with χ2 =  21.7, and for Fig.  3e with χ2 =  29.6, the Chi-squared test statistics is below the 
critical quantile, 30 10 05 19

2χ = .. ,
. This means that on the level 5% we cannot reject the hypothesis of a 

normal distribution. For Fig.  3f, χ2 =  242.2 exceeds the critical quantile 22 40 05 13
2χ = .. ,

. A long tail 
appears, featuring bigger coalition sizes that cannot be explained by a Gaussian distribution18. Both 
arguments underline the assumption of a continuous phase transition.

Quantification of the Scaling Relation.  Via the maximum of the coefficient of variation of S, VS, 
it is possible to identify the critical region (Fig.  4b). According to scaling theory, for different agent 
numbers, VS should peak at about the same value of φ, only slightly shifted from the critical point by 
const. ⋅  N−1/ν, where ν is a critical exponent21. In the region close to the expected critical point φc, we 
have estimated VS for several agent numbers and indeed all maxima appear approximately at φ =  0.97, in 
accordance with our earlier estimate. With this knowledge, it is possible to quantitatively grasp the criti-
cal dynamics. To determine the critical exponents, it is important to recall the classical scaling relation21 
and apply it to our model case, where φ takes the role of temperature and S the role of magnetization 
(see Methods for further explanation):

S N f N 1c
v
1( )φ φ= ( − ) , ( )

β
ν−

where β is another critical exponent. At first, it should be possible to find a scaling exponent z for which 
SNz intersects for all agent numbers in a single point (φc, f(0))22. Therefore, we vary z until a value φc is 
found where all curves cross. This is the case for z ≈  0.76. At this point z =  β/ν. In Fig. 4c, the result of 

Figure 4.  Plot of (a) order parameter S, (b) coefficient of variation VS and (c) S scaled with N−z over 
control parameter φ for different agent numbers N. (d) Data collapse close to the critical point φc. S scaled 
with N−z over (φ −  φc) scaled with Nν. All variables are averaged over 100 model runs.
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successfully scaling the order parameter is shown. After that, scaling (φ −  φc) by the factor N
1
ν  will lead 

to a data collapse in a region closely drawn around the critical point φc
22. This way, in Fig. 4d the critical 

exponent ν was found to be approximately ν =  (0.35)−1.

Discussion
What can we infer from these results? If the acquaintance network in our coalition formation model 
adapts only slowly to the coalition structure, the formation of a grand coalition is most probable. Only 
for really high adaptivity, a fast transition to a heterogeneous coalition structure appears because then the 
effect of coalition formation is suppressed by a permanent rewiring of the acquaintance links. Before it is 
even possible to find a neighbor coalition to unite with, at some earlier stage the link to this coalition was 
already removed. If adaptivity represents some kind of social punishment (deprivation of social contact 
between agents from different coalitions) then in this case punishment would actually be counterproduc-
tive. At high frequency it leads to the isolation of a high number of small and midsize coalitions forming 
independent network components. However, full cooperation provides the highest benefits to all agents 
in many socio-economic situations, including the common pool context of our study. From an outside 
perspective, e.g. consumers facing an oligopoly, it may however be desirable to keep coalitions (cartels) 
small. Of course, this phenomenon of coalition isolation is caused by our assumption that the total 
number of acquaintances stays constant over time which has been argued to be approximately realistic 
in social relations1. As this assumption has such large effect on the model outcome and implications, it 
would be most interesting to study different scenarios in future work. In the context of contemporary 
issues, our findings can be used to support transformation processes by fostering the persistence of social 
networks by lowering φ. Both our model and real-world systems may undergo non-equilibrium phase 
transitions (in equilibrium physics an isolated system maximizes its entropy whereas non-equilibrium 
phase transition are driven by an external force, e.g. a heat bath, or control parameter23) and therefore the 
investigation of socio-economic transformations can profit from conceptual models of decision-making 
processes. Less realistic is the investigation of agents in a fixed state after model convergence. However, 
after only a few time steps we observe the same basic appearance of coalition size distributions. E.g. in 
the subcritical case, we see a multimodal distribution with the local maxima migrating to greater values 
with evolving time (similar to14). Still, this aspect is part of ongoing work.

In our model, we have increased the level of complexity from simple opinion adaptation processes 
from earlier research to more complex decision making determined by costs and benefits, and from local 
social interaction to mesoscopic cooperation. Our approach gets support from empirical data. In our 
model, the fat-tailed and bimodal coalition size distributions develop over time, they are model-inherent. 
The distributions resulting from such processes of self-organization deliver measurable quantities to 
study such transformation processes. Future work should vary the payoff sub-model in order to rep-
resent different archetypical socio-economic situations than the common-pool setting. One may then 
compare them with firm size distributions12,13,17 from different economic sectors to identify the drivers 
of firm size growth. Other cases of multimodality in social systems were found in city size distributions 
of developing countries11 and fish cohorts8,9 possibly resulting from cooperative phenomena. However, 
even natural processes such as droplet growth give a similar picture: a power-law distribution for small 
droplets and a maximum for larger ones14. For the study of specific real-world systems, it might however 
be necessary to model heterogeneous agents. But most importantly, the observation of phase transitions 
with respect to network adaptivity in our model encourages follow-up work on the role that the relative 
speed of processes in social feedback loops has for transformation process.

Methods
We start with an Erdös-Rényi random acquaintance network and a coalition structure composed of one 
singleton “coalition” per agent (coalitions of size 1), representing no initial cooperation. Coalitions are 
collective decision-makers and the members of a coalition act as one player and therefore, each agent 
can only be a member of one coalition. Over time, any number of coexisting but disjoint coalitions may 
emerge, each of which has to be a connected set of nodes in the network, i.e., formally a coalition struc-
ture is a partition of the network nodes into connected sets24. Each coalition i generates a payoff flow Π x 
for each of its members x given by

s X s X s F1 2 1 2x i i i
2 2 2

Π = ( + / )/( + / ) − . ( )

In this, si is the size of coalition i, F a parameter representing the fixed costs of maintaining a coalition, 
and X the solution to the equation

X X s1 1 1 1
3j

j
2( )∑− / = / + / ,

( )
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where the sum is over all coalitions j (see the Supporting Information, SI, for an economic derivation of 
this equation from a common pool resource exploitation game). In each time-step of the model, either 
of two processes occur:

1.	 With probability φ, the network adapts to the coalition structure by rewiring one cross-coalitional 
link of a randomly chosen agent x to another randomly chosen member of x’s coalition (unless 
x is already linked to all her coalition members). This keeps the total number of links constant 
which is approximately true for many real-world social systems25.

2.	 Otherwise, i.e., with probability 1 −  φ, a randomly chosen agent x may change the coalition struc-
ture. The agent may either

(a).	� leave her coalition (in which case the rest of the coalition splits up into its connected 
components),

(b).	� merge her coalition with any combination of her neighbors’ coalitions (in which case this 
merger must be profitable to all affected nodes in terms of the underlying payoff model),

(c).	 or do nothing, 

depending on which of these moves results in the largest next time-step’s payoff for x.
Note that the amount of change caused by one instance of process 1 is restricted to only three nodes, 

while process 2 typically affects a much larger number of nodes in one step, especially when the involved 
coalitions are already meso- or macroscopic.

The model has converged when no agents are able to rewire their links or find it profitable to change 
the coalition structure any longer. In the corresponding steady state there may still be several coalitions 
in each connected component of the network (see Fig. 2). Thus, the order parameter defining order and 
disorder in this socio-economic context is not the network component size but the size of the largest coa-
lition, S. If we imagine assigning different coalitions to different spin directions, it is possible to draw an 
analogy to the magnetic spin model20. If all nodes are singletons, there are N different coalitions whose 
sizes does not exceed 1 (hence, S =  1). In the analogy, all spins would be pointing into different directions 
averaging out to a macroscopic magnetization of zero. The other extreme would be the state of a grand 
coalition where S =  N. Here, all spins would be pointing into the same direction resulting in a non-zero 
magnetization (the ferromagnetic state). The transition from one state of the order parameter to the other 
can be of first or second order. In our model, without network adaptation (for φ =  0) the largest coalition 
converges to a size S of the order of N. With increasing φ the coalition formation process is increasingly 
disturbed and S decreases. Therefore, the adaptation rate φ is the natural choice for the control parameter.

From the feedback loop between coalition and network structure we expect the dynamics of this 
model to be highly non-linear. We study these dynamics with varying control parameter φ, in particular 
the occurrence of non-equilibrium phase transitions. Phase transitions can be identified and character-
ized with the help of scaling theory which states characteristic system variables (order parameters) to be 
power-law distributed at the critical value of the control parameter21,23. A visualization of the coalition 
structure for different system sizes gives a first insight (Fig.  2). At the critical point, system patterns 
should not substantially change for different system sizes. As a quantification we accompany this graphi-
cal hint of finite-size scaling with the frequency distribution of all coalition sizes, s, that remain after the 
model has converged (Fig. 3a–c), which may take up to 106 time steps.
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In many real-world complex systems, the time evolution of the network’s structure and the dynamic state of
its nodes are closely entangled. Here we study opinion formation and imitation on an adaptive complex network
which is dependent on the individual dynamic state of each node and vice versa to model the coevolution of
renewable resources with the dynamics of harvesting agents on a social network. The adaptive voter model
is coupled to a set of identical logistic growth models and we mainly find that, in such systems, the rate of
interactions between nodes as well as the adaptive rewiring probability are crucial parameters for controlling the
sustainability of the system’s equilibrium state. We derive a macroscopic description of the system in terms of
ordinary differential equations which provides a general framework to model and quantify the influence of single
node dynamics on the macroscopic state of the network. The thus obtained framework is applicable to many
fields of study, such as epidemic spreading, opinion formation, or socioecological modeling.

DOI: 10.1103/PhysRevE.91.052801 PACS number(s): 89.75.Hc, 87.23.Ge, 89.65.−s, 89.75.Fb

I. INTRODUCTION

Complex network theory has proven to be a powerful tool
for studying properties, dynamics, and evolution of many
real-world complex systems [1,2]. Of particular interest is
the ability to investigate adaptive or temporal networks and
their respective dynamics [3–5]. Typical processes studied in
this field are epidemic spreading [6–8] or opinion formation,
e.g., based on the adaptive voter model [9,10]. Interactions
are modeled by randomly picking a pair of linked nodes and,
with fixed probabilities, either changing the state of one of
the two nodes or modifying their neighborhood structure by
adaptive rewiring. However, recent results have emphasized
that opinion formation and imitation processes in fact do not
take place with fixed probabilities but can depend on the payoff
or performance of different opinion-related choices made by
the agents or nodes involved [11–13].

In addition to the structure and dynamics of networks there
have been a variety of studies on the dynamics on networks,
where nodes in the network represent individual dynamical
systems and links indicate directed or symmetric interactions
between them [14,15]. It has been suggested that the interplay
between the dynamics of and on networks should be much
more thoroughly investigated, since the dynamics of each of
the coupled subsystems is expected to change significantly
when compared to their autonomous time evolution [3].

In this work, we propose a model that combines both
aspects. For this purpose we refine the adaptive voter model so
there is no fixed probability for pairs of nodes to either imitate
each other’s opinion or adaptively rewire their acquaintance
structure. Instead, each node also represents a dynamical
system which, for illustration, is chosen here to be simple and
easily understood if treated in an isolated fashion. In particular,

*marcwie@pik-potsdam.de

we choose a logistic growth model, which is a paradigm
for the dynamics of a bounded renewable resource [16].
Whenever interactions between nodes take place, the states of
the respective dynamical systems are also taken into account.
As a consequence, imitation processes depend explicitly on
the nodes’ states as well as on the current network structure.
At the same time each of the nodes’ opinions influences a
parameter of the local dynamical system.

The proposed model serves as a narrative for possibly
emerging dynamics in coevolutionary human-nature interac-
tions [17–19]. It complements conceptual studies on the effects
of economic growth on the ecospheric state [20,21] as well as
work on resource exploitation models that take into account
the coevolution of stylized resource dynamics with a similarly
paradigmatic population growth model [22,23]. The proposed
model, for the first time, takes into account individual pairwise
interactions of agents on a social network when studying the
stability and dynamics of such intertwined systems.

So far, in the context of sustainability science [24], studies
on the effect of different exploitation strategies on the state
of a certain ecospheric component have been carried out by,
e.g., studying the extraction of water in rivers by a network
of interconnected harvesters [25–27]. However, no systematic
analysis of the underlying network structure and resulting dy-
namics was performed. In addition, no network dynamics, such
as adaptation or imitation processes, were included in these
studies and the focus was mainly set on studying the state of the
ecosphere for different harvesting strategies that were evolving
deterministically in order to optimize all harvesters’ payoffs.

In contrast, imitation dynamics with high numbers of agents
or players have been studied in the context of evolutionary
game theory [12,13,28,29]. However, in no such cases were
the dynamics of resources or other externalities taken into
account and, hence, no coevolution of different subsystems
has been studied. Here, the proposed model serves to illustrate
the rich dynamics that may emerge from the coupling of these
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different subsystems, even though the complexity in each of
the subcomponents remains manageable.

After the introduction of all key components and processes
constituting the model in Sec. II we perform numerical
simulations of the system. In Sec. III we first study the case
of a static network where no adaptation is taking place. We
find that the system converges into either a state where all
logistic growth models, e.g., resources, converge into a state
of full depletion or into a state of positive stock. The latter is
to be interpreted as the more sustainable and, hence, desired
outcome of the model. We uncover that the likelihood to
converge into either of the two states is mainly determined
by the frequency of interactions between nodes.

In Sec. IV we then study the effect of network adaptation
and show that the stability of the system changes in dependence
on the choice of the adaptation frequency. Specifically we
deduce that for each interaction frequency there exists an
appropriate rate of network adaptation such that the system
can be guided into a sustainable state.

Finally, we derive a low-dimensional set of rate equations
for variables that approximate the model’s macroscopic state
in Sec. III B for the static and in Sec. IV for the adaptive
case. These equations are generally applicable to any study of
opinion formation or spreading if the probabilities of changes
in node states by imitation are appropriately chosen. Finally,
conclusion are drawn in Sec. V.

II. MODEL DESCRIPTION

Assume a temporal network G[V,L(t)] consisting of a fixed
set of N nodes V = {v1,v2, . . . ,vN } and an evolving set of
links L(t). It is represented by the time-dependent adjacency
matrix A(t). Each node vi represents a renewable resource
stock si(t) that obeys a logistic growth model and is harvested
with an effort level Ei(t) [16],

d

dt
si(t) = aisi(t)(1 − si(t)/Ki) − qisi(t)Ei(t). (1)

For this study, we set the growth rates ai = 1, capacities
Ki = 1, and catch coefficients qi = 1 for all i = 1, . . . ,N

and measure the time and stocks in dimensionless quantities.
Treating all stocks si as evolving under identical conditions is
a strong assumption of the model but allows us to solely focus
on the interplay between network and stock dynamics and its
dependence on a few key parameters.

The effort is a time-dependent quantity assigned to each
node vi which defines its current behavioral pattern and
changes through imitation of other nodes. On the one hand,
nodes can adopt a high effort level E+ > 1, causing each
stock to converge to a stable fixed point s+ = 0, implying full
depletion of the resource. Alternatively, nodes can choose a
low effort level E− ∈ (0,1) providing less harvest per unit time
initially but avoiding depletion of the resource stocks since
each individual stock si then converges to a stable positive
fixed point s− = 1 − E− > 0. The two possible choices of
effort level, E− (low) and E+ (high), are the same for all nodes
and are parameterized by �E ∈ (0,1) such that E− = 1 − �E

and E+ = 1 + �E. At each time t there are N−(t) nodes with
Ei(t) = E− and N+(t) = N − N−(t) nodes with Ei(t) = E+.
The effort then yields for each node vi an individual harvest
hi(t) = si(t)Ei(t), which constitutes the second term in Eq. (1).

From now onward we omit the explicit time dependence of the
stocks si , efforts Ei , the adjacency matrix A, and the number
of low- and high-effort nodes N± in our notation.

Initially, for each node vi , an individual waiting time Ti is
drawn at random from a Poissonian distribution with density

p(Ti) = T −1 exp(−Ti/T ), (2)

which is a typical choice for modeling interaction rates in
social systems [30]. T denotes the expected waiting time
between two interactions initiated by the same node vi . Starting
from this:

(i) The system as given in Eq. (1) is integrated forward in
time for the minimum of all current waiting times Ti . Then, for
the corresponding node vi (with the smallest Ti), a neighboring
node vj is drawn uniformly at random.

(ii) If the efforts Ei and Ej of vi and vj differ:
(a) With a rewiring probability 0 � φ � 1, vi breaks its

link with vj such that Aij = 1 becomes Aij = 0. Then a
new link between vi and another randomly drawn node vk

with the same effort level (Ei = Ek) is established such that
Aik = 0 becomes Aik = 1. This network adaptation process
mimics generally observed tendencies to form clusters of
individuals with similar behavior or social traits. Note that,
in contrast to earlier work, rewiring only takes place if a
randomly drawn neighbor vj of vi shows a different effort,
e.g., behavioral pattern [10].

(b) If vi does not adapt its neighborhood, imitation may
happen instead (with probability 1 − φ). The difference in
current harvest �hij = hj − hi is computed and the node vi

imitates the current effort level of vj with a probability given
by a sigmoidal function p(Ei → Ej ) = p(�hij ) which
generally is required to be monotonic and continuously
differentiable. Additionally, it must fulfill p(�hij ) → 0
for �hij → −∞ and p(�hij ) → 1 for �hij → ∞ and
p(0) = 0.5. This represents the increasing likelihood of
imitation processes to take place with an increase in the
expected payoff difference [13]. For our model we set
p(Ei → Ej ) = 0.5(tanh �hij + 1) which obeys all of the
above requirements.
(iii) A new waiting time Ti is drawn at random for vi

according to Eq. (2) and step (i) is repeated as long as the
model has not reached a steady state.

(iv) The model reaches (with probability one) a steady state
at some time tf when the network divides into one or more
components in each of which only one choice of effort level is
left.

Initially, the two possible effort levels are distributed evenly
among the nodes with ratios n−(0) = N−(0)/N = n+(0) =
N+(0)/N = 0.5. Initial stocks are set to si(0) = 1 for all
i = 1, . . . ,N . In the following, we consider initially Erdős-
Rényi random networks with N = 400 nodes and a linking
probability of ρ = k/(N − 1), where k = 20 is the average
degree of nodes in the network.

III. STATIC NETWORK

We first study the case of a static network structure with φ =
0 [hence, modeling step (ii)(a) is not implemented at first] and
simulate the model numerically for different combinations of
T and �E. From this, we derive a macroscopic approximation
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of the model constituted from a set of three coupled differential
equations and show its good agreement with the numerical
results.

A. Numerical simulations

Numerical simulations for different combinations of T and
�E provide insights into the system’s dynamics. Figure 1(a)
shows the fraction f−(tf ) of model runs that converge to a state
where all nodes show a low effort Ei(tf ) = E− ∀ i = 1, . . . ,N

(using an ensemble of n = 500 simulations). For small T

(fast interactions) there is a high probability for the system
to converge to a state where only nodes with a high effort level
E+ are present. In this case all resource stocks converge to
the stable fixed point s+ = 0 and become fully depleted. With
increasing T , the system’s expected equilibrium state under-
goes a phase transition in f−(tf ). For sufficiently large T (slow
interactions), the system is likely to converge to a state where
all nodes adopt the effort level E− and all stocks converge
to a stable fixed point s− = 1 − E− > 0. This indicates that
the rate of interactions between nodes plays a crucial role in
determining the system’s expected equilibrium state.

The resulting dynamics can be qualitatively understood
by considering the limiting cases of T → 0 and T → ∞.
In the first case, interactions between nodes are expected
to happen very fast. Given that initially all stocks carry the
same value si(0) = s0 we expect that for t � 1 the harvest
h− (h+) of nodes with low (high) effort follows h−(t � 1) ∝
E−s0 [h+(t � 1) ∝ E+s0]. This implies that the difference in
harvest between the two different types of nodes is expected
as h+(t � 1) − h−(t � 1) ∝ (E+ − E−)s0 = 2�Es0. If in-
teractions happen very fast, the system likely converges into
its equilibrium state at tf � 1. Since in this situation we expect
h+ > h−, nodes with low effort are more likely to imitate the
high effort rather than the other way around and, hence, we
expect f−(tf ) → 0 for T → 0 [as can be seen in Fig. 1(a)].

In contrast, for T → ∞, we expect updates between nodes
to happen preferably at times t � 1. In this case, the stocks of
nodes with high (low) effort can be assumed to have already
converged to a fixed point of s+ = 0 (s− = 1 − E+ = �E)

(a) (b)

FIG. 1. (Color online) (a) The fraction f−(tf ) of numerical sim-
ulations that converge to a state where all nodes show a low effort
level Ei(tf ) = E− ∀ i = 1, . . . ,N computed over n = 500 runs for
different choices of T and �E for a static network with φ = 0. (b)
The value n−0 of the stable fixed point for the fraction n− of nodes
with effort level E− computed from Eqs. (16)–(18). The dashed line
indicates the critical expected waiting time Tc which separates the
two regimes (predominance of nodes using E+ [yellow (light)] and
E− [red (dark)].

as interactions between nodes start to take place. Hence, the
difference in harvest is expected as h−(t � 1) − h+(t � 1) =
�E − �E2. Thus, for all �E ∈ (0,1) the harvest of low-effort
nodes exceeds that of nodes with high effort and the system is
likely to converge into a state where all nodes show the low
effort and, hence, f−(tf ) → 1 [red (dark) area in Fig. 1(a) for
high values of T ].

We note that h−(t � 1) − h+(t � 1) = �E − �E2 varies
with �E. Specifically, in the limiting cases �E = 0 and
�E = 1 we find that the difference h−(t � 1) − h+(t � 1) =
0 vanishes and, hence, the system becomes equally likely to
converge into either a state with only low-effort nodes or only
high-effort nodes present [see lower right corner and the shift
of the transition point towards higher T with increasing �E

in Fig. 1(a)].

B. Macroscopic approximation

Abstracting from pairwise microscopic interactions, we
now look at the system from a macroscopic point of view.
Assuming the network to be large and fully connected at first,
the time evolution of the system’s state can be characterized
by rate equations for three quantities: (1) the fraction of
nodes n− with effort level E−, (2) the mean resource stock
μ− = 〈si |Ei = E−〉i of nodes with effort level E−, and (3)
the mean resource stock μ+ = 〈si |Ei = E+〉i of nodes with
effort level E+. The fraction of nodes n+ with effort level E+
follows from n+ = 1 − n−.

The time evolution of n− is governed by nodes that
change from the low to the high effort level and vice versa.
In particular, in the time interval (t,t + dt) an infinitesimal
fraction of dn−→+ (dn+→−) nodes change their effort from
E− (E+) to E+ (E−), which decreases (increases) the fraction
of nodes with low effort n−,

dn− = dn+→− − dn−→+. (3)

The interactions between nodes that govern the rates of
changes in effort are driven by the following quantities:

(1) The expected waiting time T for a node vi to interact
with a randomly drawn neighboring node vj . Correspondingly,
the rate of node interactions is taken to be τ = 1/T .

(2) If a node vi interacts with its neighboring node vj ,
an imitation of effort only takes place if Ei �= Ej . Hence,
for a node vi with Ei = E− (Ei = E+) there is to define a
probability P +

− (P −
+ ) that a randomly drawn neighboring node

vj has Ej = E+ (Ej = E−). Since a large fully connected
network is assumed, this probability is given exactly by the
current fraction n+ (n−) of nodes with high (low) effort E+
(E−) and, hence, P +

− = n+ (P −
+ = n−).

(3) If a node vi with Ei = E− (Ei = E+) interacts with
a neighboring node vj with Ej = E+ (Ej = E−), there is a
probability p−→+ (p+→−) that vi takes up the effort level Ej

of vj . This probability is governed by the difference in harvest
�hij between vj and vi . For the macroscopic description, the
individual pairwise interactions are replaced by aggregated
quantities. Therefore p−→+ (p+→−) is computed as the
expected probability for a node vi with low (high) effort to
adopt the high (low) effort given that it interacts with a node
vj that currently has Ej = E+ (Ej = E−). This quantity is
then dependent on the expected stocks at nodes with low and
high effort, which is derived below in detail.
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This yields dn−→+ and dn+→− as the product of all three
factors introduced above,

dn−→+ = n−τn+p−→+dt, (4)

dn+→− = n+τn−p+→−dt, (5)

⇒ dn−
dt

= τn−n+(p+→− − p−→+). (6)

The two quantities still remaining to be evaluated are the
expected probabilities p+→− (p−→+) for nodes with a high
(low) effort level to change to the opposite level. It is obtained
as the expected probability for nodes in the network to take up
its neighbor’s effort,

p+→− = 〈p(Ej → Ek)|Ej = E+, Ek = E−〉j,k
= 0.5〈tanh(�hjk|Ej = E+, Ek = E−)〉j,k + 0.5
∼= 0.5〈�hjk|Ej = E+, Ek = E−〉j,k + 0.5

= 0.5(E−〈sk|Ek = E−〉k − E+〈sj |Ej = E+〉j ) + 0.5

= 0.5(E−μ− − E+μ+) + 0.5 (7)

p−→+ = 0.5(E+μ+ − E−μ−) + 0.5. (8)

Here we performed a linear expansion of the hyperbolic
tangent, tanh x = x + O(x3), assuming that differences in
harvest remain small.

The time evolution of either of the two average stocks μ−
and μ+ is governed by two terms. First, each individual stock
si follows the logistic growth model and so do the average
quantities. Second, the value of each of the two average stocks
changes according to the fact that the nodes modify their effort
from E− to E+ and vice versa during the time interval (t,t +
dt). This yields

dμ− = d〈sk|Ek = E−〉k
= 〈dsk|Ek = E−〉k
= dt 〈sk(1 − sk) − Eksk|Ek = E−〉k + δ−
= dtμ− − dt〈s2

k |Ek = E−〉k − dtE−μ− + δ−

= dt(μ−(1 − μ− − E−) − μ
(2)
− ) + δ− (9)

dμ+ = dt(μ+(1 − μ+ − E+) − μ
(2)
+ ) + δ+. (10)

Here μ
(2)
− and μ

(2)
+ denote the variances in the two types

of stocks. δ− (δ+) indicate the net change in the average
stock as nodes with high (low) effort change their effort to
the opposite choice during (t,t + dt). The fraction of nodes
dn+→− (dn−→+) that change their effort from E+ to E− (E−
to E+) during (t,t + dt) is assumed to be small compared
to the fraction of nodes which already hold the low (high)
effort, dn+→− � n− (dn−→+ � n+). Hence, the respective
contribution to the dynamics of μ− (μ+) as nodes change
their effort is also assumed to be small, dn+→−μ+ � n−μ−
(dn−→+μ− � n+μ+). This allows for a first-order expansion
of the stock’s time evolution, such that

μ− + δ− = (n− − dn−→+)μ− + dn+→−μ+
n− − dn−→+ + dn+→−

∼= (n− − dn−→+)μ− + dn+→−μ+
n− − dn−→+ + dn+→−

∣∣∣∣
(dn−→+,dn+→−)=(0,0)

+ −μ−(n− − dn−→+ + dn+→−) + ((n− − dn−→+)μ− + dn+→−μ+)

(n− − dn−→+ + dn+→−)2

∣∣∣∣
(dn−→+,dn+→−)=(0,0)

dn−→+

+ μ+(n− − dn−→+ + dn+→−) − ((n− − dn−→+)μ− + dn+→−μ+)

(n− − dn−→+ + dn+→−)2

∣∣∣∣
(dn−→+,dn+→−)=(0,0)

dn+→−

= n−μ−
n−

+ −μ−n− + n−μ−
n2−

dn−→+ + μ+n− − n−μ−
n2−

dn+→− = μ− + μ+ − μ−
n−

dn+→− (11)

⇒ δ− = (μ+ − μ−)n+τp+→−dt (12)

δ+ = (μ− − μ+)n−τp−→+dt. (13)

Putting this back into (9) and (10) yields

dμ− = dt(μ−(1 − μ− − E−) − μ
(2)
− ) + dt(μ+ − μ−)n+τp+→− (14)

dμ+ = dt(μ+(1 − μ+ − E+) − μ
(2)
+ ) + dt(μ− − μ+)n−τp−→+. (15)

In the scope of this work, in to order to close the set of equations that describe the systems dynamics, we assume the respective
variances μ

(2)
− and μ

(2)
+ to vanish. Taking into account higher moments in the dynamics of the stocks and investigate its influence

on the resulting fixed points remains as a task for future research.
In summary, we find a set of three coupled ordinary differential equations that define the time evolution of the static network

model:
dn−
dt

= τn+n−(p+→− − p−→+) (16)
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dμ−
dt

= μ−(1 − μ− − E−) + τ (μ+ − μ−)n+p+→− (17)

dμ+
dt

= μ+(1 − μ+ − E+) + τ (μ− − μ+)n−p−→+. (18)

C. Fixed points and stability

We obtain all fixed points Pi = (n−0,μ−0,μ+0) of the dynamical system given in Eqs. (16)–(18) as:

P1 =
(

n−0 = 0, μ−0 = 1 − E− − 0.5τ

1 + 0.5τE−
, μ+0 = 0

)
, (19)

P2 =
(

n−0 = 1, μ−0 = 0, μ+0 = 1 − E+ − 0.5τ

1 + 0.5τE+

)
, (20)

P3 =
[
n−0 =

2
(
E− 1−0.5τ

E−+E+
+ E+ − 1

)
τ
(

E+
E−

− 1
) , μ−0 = E+

1 − 0.5τ

E− + E+
, μ+0 = E−

1 − 0.5τ

E− + E+

]
, (21)

P4 =
⎡
⎣n−0 = 1, μ−0 = 1 − E−, μ+0 = −b

2a
+

√(
b

2a

)2

+ c

a

⎤
⎦ , (22)

P5 =
⎡
⎣n−0 = 1, μ−0 = 1 − E−, μ+0 = −b

2a
−

√(
b

2a

)2

+ c

a

⎤
⎦ , (23)

a = 0.5(−2 − E+τ )

b = 1 − E+ + 0.5τ [(1 − E−)E+ + E− − E2
− − 1]

c = 0.5τ (1 − E−)(E− − E2
− − 1).

In addition, there exists a manifold which also satisfies dn−
dt

= dμ−
dt

= dμ+
dt

= 0 and is defined by

Pα = (n−0 = α, μ−0 = 0, μ+0 = 0), α ∈ [0,1]. (24)

For all fixed points given above we compute the largest eigenvalue λ1 of the corresponding Jacobian matrix evaluated at the
respective point. Only the two fixed points P3 and P4 have a negative largest eigenvalue λ1 < 0 and, hence, are stable for choices
of parameters �E and T > 0.5 (note that, again, E− = 1 − �E, E+ = 1 + �E, and τ = 1/T ) (Fig. 2).

To investigate the system’s dynamics in the regime T < 0.5, the stability on the one-dimensional manifold defined by all
points that fulfill Eq. (24) is assessed. Analytically computing the three eigenvalues of the Jacobian matrix on the manifold as a
function of the parameter α yields

λ0 = 0, (25)

λ±(α) = 1 − E+ + E−
2

− τ

4
± 1

2

√
2αE+τ − 2αE−τ + E2+ − 2E+E− − E+τ + E2− + E−τ + τ 2

4
. (26)

A first observation is that λ+(α) � λ−(α) holds. Since λ0 = 0,
it is obvious that not all eigenvalues can be negative. However,
if λ0 = 0 is the largest eigenvalue of the system, all choices of
α for which λ+(α) � λ0 define a center manifold,

λ+(α) � 0 if α � 1
2 − T �E. (27)

Hence,

ν(α) = (n−0 = α,μ−0 = 0,μ+0 = 0)

α ∈ [
0, 1

2 − T �E
]

(28)

defines a center manifold where the system’s stability cannot
be assessed by linear stability analysis. A detailed study of
the system’s stability in this regime is beyond the scope
of this work and not necessarily needed to understand the
general dynamics of the macroscopic description proposed
here. Numerically integrating the system for choices of
parameters taken from the center manifold, however, reveals
good agreement between the microscopic and macroscopic
model representation (Fig. 1). An investigation by means of a
higher-order stability analysis might yield further insights into
the processes that cause both resource stocks μ−0 = μ+0 = 0
to be fully depleted in the regime of the center manifold.
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(a) (b)

(c) (d)

FIG. 2. (Color online) The largest eigenvalue λ1 for the two fixed
points P3 (a) and P4 (c) [see also Eqs. (21) and (22)] depending on
�E and T . The black area in (b) indicates the domain in parameter
space for which λ1 computed for P3 is negative and, hence, P3 is
stable. (d) shows the same properties for P4. The regimes for which
either of the two fixed points is stable are complementary. Further
it should be noted that for T < 0.5 neither of the two fixed points
is stable, but the center manifold as given in Eq. (28) exists in this
regime.

In conclusion, we note that for each choice of parameters
only one of the fixed points P3 and P4 can be the unique stable
fixed point of the system (Fig. 2). Figure 1(b) displays the value
of the stable fixed point’s n−0 component as a function of T

and �E. The results are in good agreement with the numerical
findings [Fig. 1(a)]. Due to the first-order approximation, the
transition from a predominance of nodes with E+ to nodes
with E− with increasing T is not as sharp as for the numerical
simulations. However, a good estimate for the critical value Tc

of T at which the transition takes place can be found by setting
n−0(Tc) = 0.5 in Eq. (21) which yields Tc(�E) = 1+�E2

2−2�E2

(dashed line in Fig. 1).

IV. ADAPTIVE NETWORK

In the following, we consider additionally network adapta-
tion processes with φ > 0 [hence, modeling steps (ii)(a) and
(ii)(b) both take place with a relative frequency depending on
the rewiring probability φ]. For all results presented from here
onward, the two available choices of effort levels are fixed by
setting �E = 0.5.

A. Numerical simulations

Numerical simulations with the same initial conditions
as in the static case for different combinations of φ and
T reveal a division of the parameter space into regimes of
different expected outcomes as the model reaches its steady
state [Fig. 3(a)]. In contrast to the static case nodes no longer
necessarily all carry the same effort as the model reaches its
equilibrium state, due to the possibility for the network to
fragment into smaller components. Hence, from now on f−(tf )
denotes the mean fraction of nodes with effort level E− as the
model reaches consensus. As for φ = 0, fast interactions (i.e.,

(a) (b)

FIG. 3. (Color online) (a) Mean fraction of nodes f−(tf ) with
effort level E− = 1 − �E = 0.5 for different choices of T and φ

obtained from an ensemble of n = 500 simulations as the system
reaches its steady state. (b) Value of the stable fixed point for the
fraction of nodes with effort level E− computed from the set of
differential equations (59)–(63).

low values of T ) lead to a large fraction of nodes carrying
E+. The transition between the two behavioral patterns with
increasing T remains sharp. However, depending on the choice
of φ, the value of the critical waiting time Tc, at which the
system transfers from a state with a predominance of nodes
with low effort to a state with a predominance of nodes
with high effort decreases with increasing φ. Conversely, this
implies that for all T � 0.3 there is an appropriate choice of
φ ∈ [φc1 ,φc2 ] so that all nodes are likely to adopt the effort level
E−. In the limiting case of φ = 1 the expected fraction of nodes
with E− equals the initial fraction n−(0) = 0.5 for all choices
of T due to the network’s fragmentation into components of
nodes sharing the same effort.

B. Macroscopic approximation

The macroscopic approximations (16)–(18) can be ex-
tended to also include the effects of network rewiring. For
this, we introduce two additional variables describing the
macroscopic state of the network. The time evolution of the
fraction of nodes n− with low effort is recalled [analogously
to Eq. (6)] as

dn−
dt

= τ (n+P −
+ p+→− − n−P +

− p−→+). (29)

Given that a node vi initializes an interaction and the randomly
drawn neighboring node vj employs a different effort, Ei �=
Ej , there exists the adaptive rewiring probability φ ∈ [0,1]
for vi to break its connection with vj and establish a link
with another randomly drawn node vk in the network that
is employing the same effort as vi (Ek = Ei) and is not yet
connected to node vi . With probability 1 − φ, imitation of
efforts takes place which has already been implemented in the
macroscopic description of the static network. To account for
the adaptive rewiring process, the interaction rate τ needs to
be refined such that it no longer represents the rate of node
interactions alone, but the rate of interactions which lead to
imitation,

τ = 1 − φ

T
. (30)
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Likewise the ratio ρ of all node interactions that lead to
adaptive rewiring needs to be defined. Since each node is
expected to interact at a rate 1/T it follows that

ρ = φ

T
. (31)

For adaptive rewiring to take place, the network cannot be fully
connected. Therefore, the previous definitions of P −

+ = n− and
P +

− = n+ for two nodes of different effort to interact no longer
hold for the derivations to be performed here.

The total number of M links in the network splits into M−
(M+) links connecting two nodes with low (high) effort and
M+− links connecting two nodes of different efforts, such that

M = Nk

2
= M− + M+ + M+− (32)

⇒ dM

dt
= dM−

dt
+ dM+

dt
+ dM+−

dt
= 0. (33)

Additionally, let

K−
− = 2M−

N−
(34)

denote for nodes with low effort the average number of
neighbors with the same effort. Likewise,

K+
− = M+−

N−
(35)

represents for nodes with low effort the average number of
neighbors with high effort. These two quantities constitute the
average degree of nodes with low effort as

K− = K−
− + K+

− = M+− + 2M−
N−

. (36)

Likewise, the average degree K+ of nodes with high effort is
obtained from

K+
+ = 2M+

N+
, (37)

K−
+ = M+−

N+
, (38)

K+ = M+− + 2M+
N+

. (39)

For a node vi currently having a low effort Ei = E− the
probability P +

− (vi) to draw a neighbor vj with different effort
at random is given as

P +
− (vi) = k+

−(vi)

k(vi)
, (40)

where k+
−(vi) is the number of neighbors of node vi that

employ the high effort and k(vi) denotes the degree of
node vi . Since for the macroscopic description the pairwise
microscopic interactions between nodes are approximated by
the average dynamics, we compute the average probability
P +

− for a node vi with low effort to interact with a node
employing the high effort. Since the network is initialized
as an Erdős-Rényi random network and it is further equally
likely for all nodes with the same effort to connect to or
disconnect from other nodes by random rewiring, we perform

a heterogeneous mean-field approximation and assume the
degree k(vi) to be the same for all nodes with low effort,
k(vi) = K− ∀ i ∈ {1, . . . ,N |Ei = E−} [31,32]. Thus

P +
− = 〈P +

− (vi)|Ei = E−〉i =
〈
k+
−(vi)

k(vi)

∣∣∣∣ Ei = E−

〉
i

=
〈
k+
−(vi)

K−

∣∣∣∣Ei = E−

〉
i

= K+
−

K−

= M+−
2M− + M+−

. (41)

Instead of the actual number of M links in the network we
define the corresponding per node link density

m = M

N
= M+−

N
+ M−

N
+ M+

N

= k

2
= m+− + m− + m+, (42)

which is independent of the number of nodes N . k denotes the
average degree of nodes in the network, which is set to k = 20
in accordance with the numerical simulations. The probability
for a node with low (high) effort to interact with a node of high
(low) effort is then given by

P +
− = m+−

2m− + m+−
, (43)

P −
+ = m+−

2m+ + m+−
, (44)

and is fully determined by the per node densities of links m+−,
m+, and m−.

Generally, the time evolution of the total number of links
between nodes of low effort is governed by imitation and
adaptation. First, we focus on the process of adaptation. Since
links between nodes of the same effort can only be established
but not removed via the process of adaptation, the contribution
of this process to the total number of links between low-effort
nodes M− only causes it to increase. This positive contribution
is

dM−
dt

∼ ρN−P +
− (45)

and is explained as follows: In each time interval (t,t + dt)
there is a total number of N− nodes which with probability ρ

initiate an interaction that leads to adaptive rewiring. Adaptive
rewiring then takes place if a randomly drawn neighbor vj

of the considered node vi employs a high effort. As defined
above, this happens with probability P +

− .
The second contribution to the time evolution of M− is

given by imitation, which takes place at rate τ . Generally, there
is one term causing an increase in links between nodes with
low effort and one term causing its decrease. First, assume
a node vi with Ei = E+ to imitate the low effort E− from
one of its neighboring nodes vj with Ej = E−. The number
of links between nodes of low effort then increases by the
number k−

+(vi) of all neighbors of node vi that employ the low
effort (Fig. 4). Again, by performing a heterogeneous mean-
field approximation and assuming the number of neighbors for
individual nodes to be represented by the respective average
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FIG. 4. (Color online) Illustration of the influence of the imita-
tion of effort on the different numbers of link types in the network.
A node vi with the high effort Ei = E+ [indicated in yellow (light)]
interacts with a node vj with low effort Ej = E− [red (dark)]. Node
vi may then imitate the effort of node vj , Ei → E−. The number of
links between nodes with low (high) effort M− (M+) then increases
(decreases) by the number k−

+(vi) [k+
+(vi)] of neighbors of vi that

show the low (high) effort.

number of neighbors, we set

k−
+(vj ) = K−

+ = M+−
N+

. (46)

Now, each of the N+ nodes with high effort interacts with a
node of low effort with probability P −

+ at rate τ . Then, with
probability p+→−, a node with high effort takes up the low
effort. This causes the number of links between pairs of nodes
with low effort to increase by the number of neighbors with
low effort of the formerly high-effort node,

dM−
dt

∼ τN+P −
+ p+→−K−

+ . (47)

A third term that governs the time evolution of M− is given
by its decrease caused by nodes with low effort that imitate the
high effort. If a node vi with the low effort Ei = E− interacts
with a node vj having the high effort Ej = E+ and vi then
imitates the effort of vj , the total number of links connecting
two nodes with low effort decreases by the number of vi’s
neighbors vk that are showing the low effort Ek = E− as well.
Following from an analogous argument as given above, this
number is given by k−

−(vi). Again we assume the number of
neighbors vk with Ek = E− of a node vi with Ei = E− to be
approximated by its average,

k−
−(vj ) = K−

− = 2M−
N−

. (48)

With rate τ each of the N− nodes with low effort interacts with
a node showing the high effort E+ with probability P +

− . With
probability p−→+ a node with low effort imitates the high
effort which causes a decrease in M− by the average number
of low-effort neighbors K−

− of the node that is imitating the
high effort,

dM−
dt

∼ −τN−P +
− p−→+K−

− . (49)

Putting together Eqs. (45), (47), and (49) gives the time
evolution of the number of links between nodes of low effort
as

dM−
dt

= τ (N+P −
+ p+→−K−

+ − N−P +
− p−→+K−

− )

+ ρN−P +
− . (50)

Plugging the definitions of K−
− [Eq. (34)] and K−

+ [Eq. (38)]
into Eq. (50) and normalizing with the total number of nodes
N yields the time evolution of the per node density of links
between nodes of low effort,

dm−
dt

= τ (P −
+ p+→−m+− − 2P +

− p−→+m−) + ρn−P +
− ,

(51)

which is again independent of N . Due to the symmetry of the
system, the time evolution of the per node density m+ of links
between nodes with high effort then immediately follows as

dm+
dt

= τ (P +
− p−→+m+− − 2P −

+ p+→−m+) + ρn+P −
+ .

(52)

For the time evolution of the average stock of nodes with
low and high effort μ− and μ+ we already found in Eqs. (9)
and (10) that

dμ− = dt(μ−(1 − μ− − E−) − μ
(2)
− ) + δ−, (53)

dμ+ = dt(μ+(1 − μ+ − E+) − μ
(2)
+ ) + δ+. (54)

The general forms of δ− and δ+ are [see Eq. (12) and (13)]

δ− = μ+ − μ−
n−

dn+→−, (55)

δ+ = μ− − μ+
n+

dn−→+. (56)

For the case of an adaptive network, dn+→− (dn−→+) is given
by the first (second) term in Eq. (29):

δ− = μ+ − μ−
n−

τn+P −
+ p+→−, (57)

δ+ = μ− − μ+
n+

τn−P +
− p−→+, (58)

with the probabilities P +
− and P −

+ [Eqs. (43) and (44)] as
defined above and p+→− and p−→+ being the same as for the
static model [Eqs. (7) and (8)].

To summarize, the set of five coupled differential equations
that represent the adaptive network model’s macroscopic
dynamics is given as

dn−
dt

= τ (n+P −
+ p+→− − n−P +

− p−→+), (59)

dm−
dt

= τ (P −
+ p+→−m+− − 2P +

− p−→+m−) + ρn−P +
− ,

(60)

dm+
dt

= τ (P +
− p−→+m+− − 2P −

+ p+→−m+) + ρn+P −
+ ,

(61)

dμ−
dt

= μ−(1 − μ− − E−) + τ
n+
n−

(μ+ − μ−)P −
+ p+→−,

(62)

dμ+
dt

= μ+(1 − μ+ − E+) + τ
n−
n+

(μ− − μ+)P +
− p−→+.

(63)
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It is important to note that in most previous works on adaptive
networks a closed set of macroscopic equations is obtained
by assuming that links in the network are drawn at random
and interactions take place between nodes that are connected
by them [6,33]. In this work nodes, not links, are randomly
drawn and initiate an interaction with neighboring nodes. This
subtle difference changes the effective time scale of the system.
Specifically, in our model only a maximum of N out of all M

links are affected by interactions between nodes during the
same time as all M links would be considered if interactions
take place by randomly drawing links in the network. In other
words, in our model it takes M/N times longer to achieve the
same number of updates, as one would obtain by considering
per-link interactions.

For the above system, the stable fixed point’s n−0 compo-
nent can be obtained numerically for different combinations of
φ and T [Fig. 3(b)]. The results are again in good agreement
with the numerical simulations and imply that for every
choice of T > 0 there actually exists an appropriate choice
of φ ∈ [φc1 ,φc2 ] so all nodes are likely to adopt the effort
level E−. The lower bound of the optimal rewiring probability
φc1 can be obtained by utilizing Eq. (21) and the linear
relationship between φc1 and T for a fixed rate of social
updates τ that lead to imitation as given in Eq. (30). We thus
find φc1 (T ,�E) = φc2 (1 − 2−2�E2

1+�E2 T ) ∀ 0 < T < 1+�E2

2−2�E2 and
φc1 (T ,�E) = 0 otherwise. The upper bound φc2 at which the
network fragments is obtained from a numerical bifurcation
analysis as φc2 ≈ 0.89. The result is in good agreement with
previous findings on the fragmentation threshold in adaptive
networks for similar average degree k [34,35]. We find,
however, that the computed fragmentation threshold φc2 is
larger than what is expected from the numerical simulations
[Fig. 3(a)]. This can either be due to the fact that moment
closure as well as mean-field approximations are known to
provide only rough estimates of the fragmentation threshold
[33] or because finite-size effects in the numerical simulations
cause the system to fragment for smaller values of φ than it
would be expected for the limiting case N → ∞ that is con-
sidered in the macroscopic approximations. A more detailed
study of the network fragmentation and the corresponding
threshold φc2 is a subject of future research.

C. Consistency between approximations

To illustrate the consistency of the set of differential
equations describing the static setting (16)–(18) and the
adaptive case (59)–(63), we set φ = 0 in the latter, compute
its fixed points numerically and compare them with the static
setting’s fixed points (21) and (22). Figures 5(a)–5(c) show the
different components of the stable fixed points as a function of
the control parameter T for a fixed �E = 0.5. The components
n−0, μ+0, and μ−0 align perfectly well for the static and the
adaptive case. The gray shaded area in Fig. 5(a) indicates the
center manifold (28) for which the system’s stability cannot
be assessed by standard linear stability analysis. However,
numerically integrating the set of differential equations yields
the expected behavior of n−(0) → 0 as T → 0. Figure 5(d)
displays again the n−0 component of the adaptive model’s
stable fixed point for φ = 0 and different combinations of T

and �E. The results match those of Fig. 1(b). Hence, the

(a)

(b)

(c)

(d)

FIG. 5. (Color online) [(a)–(c)] The dependence of the adaptive
(solid lines) and static model’s (transparent scatter) stable fixed point
on the expected waiting time T for fixed parameters φ = 0 and �E =
0.5. (d) The adaptive model’s stable fixed point’s n−0 component
indicating the fraction of nodes with effort E− in the consensus state
as a function of the two parameters T and �E for φ = 0. The dashed
line indicates the value of the critical waiting time Tc obtained from
the set of differential equations (16)–(18).

system of dynamic equations (59)–(63) can be interpreted as
a consistent generalization of Eqs. (16)–(18).

V. CONCLUSIONS

We have introduced a model to describe emerging structure
formation from the interplay of dynamics of and on networks
manifested by the coevolution of social dynamics on the
one hand and resource dynamics on the other hand. An
adaptive voter model has been coupled to a set of logistic
growth models, such that the state of the dynamic variables
influences the imitation (i.e., social trait adoption) processes
in the underlying social network which take place according to
differences in harvest or payoff. We have derived rate equations
for the system’s macroscopic variables and demonstrated that
the resulting system of differential equations yields stable fixed
points which are in good agreement with the results from
numerical simulations.

Our paradigmatic example illustrates that the interplay
between both types of network dynamics gives rise to a variety
of new phenomena, which have not been observed so far when
only studying either of the two aspects. We have mainly found
that the rate of interactions in the network determines the
expected linear stability of the growth model’s fixed points.
However, for each choice of interaction rate there exists an
appropriate range of the adaptive rewiring frequency so that
the expected fraction of, e.g., nodes with effort E− can be
maximized. Notably, the subset of differential equations (59)–
(61) provides a general description of imitation and adaptation
dynamics on a social network with binary states of nodes and
symmetric imitation rules. Hence, it is applicable to study
many other problems as long as the imitation probabilities
p−→+ and p+→−, which do not have to be constant for all
times, are chosen appropriately.

The proposed model also raises questions that need to be
addressed in future research. In the course of the macroscopic
approximation we have assumed all moments of higher order
in stocks and network structure to vanish such that the set of
differential equations could be closed. The results have been
shown to be in good agreement with numerical simulations.

052801-9

338 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reprinted paper with permission from M. Wiedermann, J. F. Donges, J. Heitzig, W. Lucht, and J. Kurths, Macroscopic description of complex
adaptive networks co-evolving with dynamic node states, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 91, no. 5, pp. 1-11, 2015,

doi: 10.1103/PhysRevE.91.052801. Copyright 2015 by the American Physical Society.

https://doi.org/10.1103/PhysRevE.91.052801


WIEDERMANN, DONGES, HEITZIG, LUCHT, AND KURTHS PHYSICAL REVIEW E 91, 052801 (2015)

However, a more in-depth analysis of whether the inclusion of
higher-order moments would enable us to reproduce the steep
transition between the two regimes of predominance of low-
or high-effort nodes remains a relevant research questions.
We also aim to estimate more thoroughly the critical waiting
time Tc at which the observed phase transition takes place
and therefore investigate the expected time at which the low
effort provides more harvest than the high effort given that
no interaction between the nodes took place so far. Finally,
we aim to obtain data from agricultural studies on, e.g., water
usage or harvest exploitation of resources to test the findings
and insights that we have obtained from our coevolutionary
model with respect to real-world phenomena.

ACKNOWLEDGMENTS

This work was carried out within the framework of PIK’s
COPAN project. M.W. was supported by the German Federal
Ministry for Science and Education via the BMBF Young In-
vestigators Group CoSy-CC2 (Grant No. 01LN1306A). J.F.D.
and W.L. acknowledge funding from the Stordalen Founda-
tion (Norway) via the PB.net initiative and BMBF (project
GLUES) and J.K. acknowledges the IRTG 1740 funded
by Deutsche Forschungsgesellschaft (DFG) (Germany) and
FAPESP. We thank R. V. Donner for helpful comments and
suggestions on the manuscript and R. Grzondziel and C.
Linstead for help with the IBM iDataPlex Cluster at the
Potsdam Institute for Climate Impact Research.

[1] R. Albert and A.-L. Barabási, Statistical mechanics of complex
networks, Rev. Mod. Phys. 74, 47 (2002).

[2] M. E. J. Newman, The structure and function of complex
networks, SIAM Rev. 45, 167 (2003).

[3] T. Gross and B. Blasius, Adaptive coevolutionary networks: A
review, J. R. Soc. Interface 5, 259 (2008).

[4] T. Gross and H. Sayama, Adaptive Networks (Springer, Berlin,
2009).
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[35] G. A. Böhme and T. Gross, Analytical calculation of fragmen-
tation transitions in adaptive networks, Phys. Rev. E 83, 035101
(2011).

052801-11

340 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reprinted paper with permission from M. Wiedermann, J. F. Donges, J. Heitzig, W. Lucht, and J. Kurths, Macroscopic description of complex
adaptive networks co-evolving with dynamic node states, Phys. Rev. E - Stat. Nonlinear, Soft Matter Phys., vol. 91, no. 5, pp. 1-11, 2015,

doi: 10.1103/PhysRevE.91.052801. Copyright 2015 by the American Physical Society.

https://doi.org/10.1103/PhysRevE.91.052801


Eur. Phys. J. Special Topics 228, 2357–2369 (2019)
c© EDP Sciences, Springer-Verlag GmbH Germany,

part of Springer Nature, 2019
https://doi.org/10.1140/epjst/e2019-900120-4

THE EUROPEAN

PHYSICAL JOURNAL
SPECIAL TOPICS

Regular Article

The physics of governance networks: critical
transitions in contagion dynamics on multilayer
adaptive networks with application to the
sustainable use of renewable resources
Fabian Geier1,2, Wolfram Barfuss3,4, Marc Wiedermann1,a,
Jürgen Kurths1,4,5, and Jonathan F. Donges3,6,b

1 Complexity Science, Potsdam Institute for Climate Impact Research, Member of the
Leibniz Association, Potsdam, Germany

2 Department of Physics, Ludwig Maximilians University, Munich, Germany
3 Earth System Analysis, Potsdam Institute for Climate Impact Research, Member of the

Leibniz Association, Potsdam, Germany
4 Department of Physics, Humboldt University, Berlin, Germany
5 Saratov State University, Saratov, Russia
6 Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden

Received 19 June 2019 / Received in final form 18 July 2019
Published online 28 October 2019

Abstract. Adaptive networks are a versatile approach to model phe-
nomena such as contagion and spreading dynamics, critical transitions
and structure formation that emerge from the dynamic coevolution of
complex network structure and node states. Adaptive networks have
been successfully applied to study and understand phenomena ranging
from epidemic spreading, infrastructure, swarm dynamics and opin-
ion formation to the sustainable use of renewable resources. Here, we
study critical transitions in contagion dynamics on multilayer adaptive
networks with dynamic node states and present an application to the
governance of sustainable resource use. We focus on a three-layer adap-
tive network model, where a polycentric governance network interacts
with a social network of resource users which in turn interacts with
an ecological network of renewable resources. We uncover that sus-
tainability is favored for slow interaction timescales, large homophilic
network adaptation rate (as long it is below the fragmentation thresh-
old) and high taxation rates. Interestingly, we also observe a trade-off
between an eco-dictatorship (reduced model with a single governance
actor that always taxes unsustainable resource use) and the polycentric
governance network of multiple actors. In the latter setup, sustainabil-
ity is enhanced for low but hindered for high tax rates compared to
the eco-dictatorship case. These results highlight mechanisms genera-
ting emergent critical transitions in contagion dynamics on multilayer
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adaptive networks and show how these can be understood and approx-
imated analytically, relevant for understanding complex adaptive sys-
tems from various disciplines ranging from physics and epidemiology
to sociology and global sustainability science. The paper also provides
insights into potential critical intervention points for policy in the form
of taxes in the governance of sustainable renewable resource use that
can inform more process-detailed social-ecological modeling.

1 Introduction

Adaptive networks are a flexible approach to model phenomena such as contagion and
spreading phenomena, critical transitions and structure formation that emerge from
the dynamic coevolution of complex network structure and node states [28,36,38].
Adaptive networks have been successfully applied to study and understand phenom-
ena ranging from epidemic spreading [37] and early warning signals for critical tran-
sitions therein [22], swarm dynamics [8,12], evolution of autocatalytic sets [31,32],
opinion formation [28] and spreading of behaviors such as smoking [5] to the
sustainable use of renewable resources and modelling social-ecological transforma-
tions [10,24,34,40]. Recently, adaptive dynamics have also been studied in multilayer
network models that allow for representing different types of nodes or agents and
their complex interconnections in a structured way [4,29,33].

Adaptive networks are also recognized as a promising approach to build a bridge
between theoretical physics and efforts to understand future trajectories of the Earth
system in the Anthropocene where human social dynamics have become a dominant
geological process [20,27]. By modelling complex social systems as adaptive multi-
layer networks embedded in land-use [1] or more comprehensive Earth system models
[11,19], methods from complex systems theory, nonlinear dynamics and statistical
physics can be applied to identify management options, critical transitions, tipping
points and critical intervention points towards sustainable development [23], map
out safe operating spaces for these systems [14,16,18], and more generally, analyze
complex co-evolutionary dynamics of human-environment systems including the evo-
lution of technological and knowledge systems [6,21]. Important recent challenges in
this field include the identification of sensitive intervention points for policy [13] and
adaptive multi-level governance strategies [15] that can help to overcome systemic
blockages and initiate the deep social-ecological transformations [34] needed to avoid
dangerous anthropogenic climate change and degradation of biosphere integrity [41].

While the control of adaptive network dynamics has already been studied in the
context of opinion formation influenced via zealotry [26], a stylized form of lobby-
ism, there is an increasing interest in studying modern polycentric, adaptive and
multi-level governance and management of social–ecological systems from a complex
systems perspective [15], creating bridges to the theory of governance networks from
political science [7]. In this paper, we derive and analyze an adaptive multilayer
network model to investigate the dynamics of an adaptive and polycentric gover-
nance network interacting with an adaptive social network of users of private renew-
able resources, extending upon the recently proposed and studied copan:EXPLOIT
model [24,40]. In the extended model, termed copan:TAXPLOIT in this paper,
governance nodes can either penalize associated unsustainable resource users by intro-
ducing taxes or can be indifferent to the level of resource exploitation (i.e., by not
introducing any tax). The trait of enforcing such an environmental tax can spread
contagiously on the governance network via social learning. Additionally, the gover-
nance network can adapt via homophilic rewiring. Analogously, in the resource user
layer the trait of sustainable or unsustainable resource exploitation can spread via
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Fig. 1. Schematic visualization of the interdependent three-layer model consisting of a
resource layer Gr, a user layer Gu and a governance layer Gg.

social learning and the users’ social network can adapt via homophilic rewiring as
well (Fig. 1).

We study this multilayer adaptive network system using numerical simulations
and analytical approximations. We particularly focus on analyzing the conditions
under which adaptive polycentric governance fosters the sustainable use of renewable
resources and increases the resilience and size of the sustainable safe operating space
of the system. We also identify critical transitions and tipping points, e.g. in the tax
rate parameter, that separate domains of sustainable and unsustainable outcomes in
parameter space.

We introduce the studied multilayer adaptive network model in detail (Sect. 2),
report and discuss results of numerical simulations and analytical approximations
(Sect. 3), and finish with concluding remarks (Sect. 4).

2 Model description

In the following we describe the multilayer adaptive network model of three layers
that is studied in this work. It consists of an ecological resource layer representing
a set of logistically growing resources, a user layer representing a set of agents har-
vesting these resources, and a governance layer representing agents superordinate to
agents in the user layer. Nodes in the governance layer can enforce taxes on certain
types of user behavior. The general setup of the model is summarized and visualized
in Figure 1.

2.1 Resource layer

The first layer Gr(V r) consists of a set V r of Nr mutually disconnected nodes si, i =
1, . . . , Nr each representing dynamics of logistic growth,

dsi
dt

= asi

(
1− si

K

)
, (1)
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where a denotes the growth rate and K denotes the maximum capacity. We use
identical a andK for all resource nodes for simplicity in this study, but heterogeneities
in these properties can yield interesting effects as well [40]. Note that from here on, we
use si to denote the current state of the resource but to also refer to the corresponding
node in Gr. Without loss of generality we can set a = K = 1 and, hence, express the
time t in terms of the inverse growth rate 1/a, and the resource stock si in terms
of the maximum capacity K. If undisturbed, si displays two fixed points si,0 = 0
(unstable) and si,0 = 1 (stable).

2.2 User layer

The second layer in our interdependent model Gu(V u, Lu
ij) represents a set V u of

Nu = Nr agents i = 1, . . . , Nu that harvest exactly one of the resources si with some
effort (or strategy) Ei along a link (i, si) ∈ Lur

i , where Lur
i denotes the set of directed

links pointing from Gu to Gr. Depending on the currently employed effort level, a
node i ∈ V u gains an instantaneous harvest hi = qEisi from the resource. Here, q
denotes the so-called catch coefficient or efficiency [30]. As we are only interested
in an intercomparison of efforts across agents, we measure the effort in units of that
efficiency by setting q = 1 [24]. Harvesting effectively reduces the amount of available
stock si to each node i and hence, equation (1) is adjusted to ultimately read

dsi
dt

= si (1− si)− Eisi. (2)

Each agent/node chooses between two values of effort level E− = 1−∆E and E+ =
1+∆E that cause the resource to either converge into a stable fixed point si,0 = ∆E
for E− and si,0 = 0 for E+. We therefore denote E− the sustainable and E+ the
unsustainable effort. In order to further reduce the number of free parameters we
set ∆E = 0.5 according to earlier studies [24,40] ensuring that at the fixed point
s∗ = ∆E the equilibrium harvest h0 = ∆E(1−∆E) is maximized.

Pairs of nodes i ∈ V u interact and update their strategies similarly to the adap-
tive voter model [4,28,29,36,38] with the process of pure imitation replaced by social
learning [2,3,24,40]. Therefore, edges Lu

ij in the user layer Gu indicate a connec-
tion (such as friendship or business relationships) between the nodes i along which
opinion formation takes place via the exchange of information on current harvesting
strategies Ei and corresponding harvest hi. To combine discrete opinion formation
with continuous resource dynamics, each node is assigned a unique waiting time Tu,i
according to a Poissonian distribution that is drawn randomly after each interaction
of that corresponding node i,

P (Tu,i) =
1

∆Tu
exp

(
− Tu,i

∆Tu

)
. (3)

Here, ∆Tu is understood as the average waiting time of nodes in the user layer. It
directly relates to the rate of interaction between the agents as compared to the
typical timescale of the resource dynamics. In that sense, a short waiting time corre-
sponds to more impatient agents while a high waiting time indicates comparatively
patient agents.

In each time step, node i with the smallest waiting time Tu,i becomes active and
all stocks si are integrated forward by Tu,i. Then, a random neighbor j of i is chosen
such that (i, j) ∈ Lu

ij . If the effort levels, i.e., strategies, Ei and Ej differ, there is
a probability φ for i to break its connection with j and homophilically establish a
new link to a formerly unconnected node n such that Ei = En. In addition, with
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probability 1− φ, i mimics the harvest strategy of j with a probability P (Ei → Ej)
depending on the difference in immediate harvest hi and hj ,

P (Ei → Ej) =
1

2
(tanh (hj − hi) + 1) . (4)

The hyperbolic function represents the monotonic increase in the likelihood for
social learning with an increase in the expected harvest differences [2,3]. After fin-
ishing one step, a new waiting time for i is drawn according to Eq. (3) and added to
the current Tu,i. This iteration scheme continues until the model reaches a consensus
state where either all nodes in Gu follow the same strategy Ei = Ej ∀ i, j = 1, . . . Nu

or Gu has fragmented into disconnected components consisting solely of nodes with
the same strategy. Overall, the user and resource layers follow the same dynamics as
encoded in the copan:EXPLOIT model [24,40], given that the governance layer is in
an indifferent state and, hence, exerts no influence on resource users (see below).

2.3 Governance layer

Social systems often obey a hierarchical structure [35] including, e.g., super- and
subordinate agents. To incorporate such effects, our model additionally consists of a
third layer Gg(V g, Lg

kl) which, for the sake of illustration, is denoted the governance
layer. This layer consists of Ng nodes k that are connected via a set of links Lg

kl
indicating an abstract form of, e.g. diplomatic relationships. Nodes k can be in one
of either two states Sk: S− (taxing) or S+ (indifferent), which are to some extent
analogous to the sustainable and unsustainable states of nodes in the user layer Gu.
Additionally each node i ∈ V u in the user layer is connected to exactly one node
k ∈ V g in the governance layer (implying that Ng ≤ Nu).

Nodes k ∈ V g also follow an opinion formation process along the lines of the
extended adaptive voter model as described above. Hence, for each node k ∈ V g we
draw waiting times Tg,i according to equation (3) and set an average waiting time
∆Tg unique to the governance layer Gg. As above, once node k becomes active, a
neighbor l that is connected with k is drawn uniformly at random. With probability
φ and if the states of the two nodes differ (i.e., Sl 6= Sk), k breaks its connection
with l and establishes a new link to a previously unconnected node n ∈ V g, such
that Sk = Sn. For the sake of reducing the number of free parameters, we employ
the same rewiring probability φ in Gu and Gg. In contrast to nodes i ∈ V u, a node
k ∈ V g does not harvest from its own resource stock, but instead accumulates the
harvests hi of all nodes i that k is connected to via interdependence links Lug

ik , such
that

hk =
∑

i∈V u|(i,k)∈Lug
ik

hi, k ∈ V g. (5)

Hence, the probability for a node k ∈ V g to update its state Sk to state Sl of one of
its neighboring nodes l then reads,

P (Sk → Sl) =
1

2
(tanh (hl − hk) + 1) . (6)

As in equation (4) the hyperbolic tangent represents the experimentally observed
increased likelihood for social learning as a function of the difference in cumulative
harvest [2,3]. If k is now in the taxing state, it favors the long-term sustainable
strategy E− and, hence, taxes those connected subordinate nodes i ∈ V u that are
employing the non-sustainable strategy E+ at a rate γ ∈ [0, 1]. γ effectively lowers
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the harvests of nodes i with Ei = E+ such that the probability for learning another
node’s effort level as given in equation (4) is modified to read

P (Ei → Ej) =
1

2
tanh (αjhj − αihi) +

1

2
(7)

where αi = (1 − γ) if Ei = E+ and the superordinate node k ∈ V g of i is in the
taxing state (the same holds for node j). Otherwise, we set αi = 1 (αj = 1). Thus,
governance nodes k in the taxing state punish unsustainable strategies of nodes i in
the user layer.

In order to ensure that the social learning process in both layers reaches consensus
at approximately the same time Tc we demand that

Tc = Xg∆Tg = Xu∆Tu, (8)

where Xg and Xu is the total number of pairwise interactions between nodes in Gg

and Gu, respectively. Assuming that only learning, no adaptation and no interac-
tion between the layers takes place, X• has previously been analytically derived as
X• = Nµ2

1/µ2 [39], where µn is the nth moment of the degree distribution and N
is the number of nodes in the respective network. As we initialize each layer as an
Erdős–Renýı random graph [25] with linking probability ρ (see Sect. 2.4) we obtain
a Poissonian degree distribution with µ1 = µ2 = Nρ. This yields

N2
g ρ∆Tg = N2

uρ∆Tu → ∆Tg = (Nu/Ng)2∆Tu. (9)

Hence, we can express the average waiting time ∆Tg for nodes k ∈ V g in the gover-
nance layer in terms of the average waiting time ∆Tu for nodes i ∈ V u in the user
layer Gu. This assumption also holds if one considers an adaptive network where only
rewiring and no change in node state (φ = 1) takes place. Then the time to reach
a fragmented state depends linearly on the number of edges that connect nodes of
different states. If one considers a random network topology with only two uniformly
distributed node states, this number of cross-links (and thus X•) again depends
quadratically on the number of nodes such that equation (9) also holds for this lim-
iting case. A further in-depth investigation of X• for cases of φ ∈ (0, 1) is beyond
the scope of this work. However, for the purpose of dimension reduction within this
study we assume equation (9) to approximately hold for those cases as well.

Also note, since we demanded Ng ≤ Nu it follows that ∆Tg ≥ ∆Tu, which is
consistent with the association of network layers to users and governance actors such
that governance processes commonly happen on a slower timescale than economic
resource use decisions.

2.4 Initial conditions and model setup

For the following analysis we initialize our model as three coupled Erdős–Renýı ran-
dom graphs with Nu = Nr = 500, Ng = 50, linking probability ρg = ρu = 0.05 for
the governance (Gg) and the user layer (Gu), and linking probability ρr = 0 for the
resource layer (Gr). Each node i ∈ V u in the user layer is connected to exactly one
randomly drawn node k ∈ V g in the governance layer. All stocks in the resource
layer are initially set to si(t = 0) = 1, ∀ i = 1, . . . , Nr. For each node in the user
layer, an initial effort of E+ or E− is drawn uniformly at random. The same holds
(if not specified otherwise) for the initial states of nodes in the governance layer. For
each combination of the taxrate γ, rewiring probability φ, and average waiting time
in the user layer ∆Tu, we perform Monte-Carlo simulations with M = 100 ensemble
members until at least the user layer reaches its consensus state.
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Fig. 2. Average fraction of sustainable users when unsustainable nodes are always taxed at
rate γ and no rewiring takes place (φ = 0). The dashed line gives the macroscopic critical
time ∆Tu,crit as given in equation (12). ∆Tu,crit decreases with increasing γ such that for a
sufficiently large taxation the critical update time approaches zero at γcrit.

3 Results and discussion

3.1 Social learning in the user layer

We start the analysis by considering a governance network Gg with only one node
that is in the taxing state. This means that effectively no learning dynamics take place
in the governance layer and all nodes in the user layer that employ the unsustainable
strategy (effort level E+) are automatically taxed at rate γ. We refer to this setup
as an “eco-dictatorship” in the following. Additionally, we first focus on the case
with no adaptation in either layer and hence, set φ = 0. Thus, we focus on a case
with solely social learning, i.e., an imitation of harvesting strategies, in the user
layer. The corresponding average fraction of sustainable users in the consensus state
depending on the choice of tax rate γ and user waiting time ∆Tu is displayed in
Figure 2. We mainly find that, for low tax rates γ and low user waiting times ∆Tu
the system is most likely to converge into a consensus state with all nodes employing
the unsustainable strategy (lower left corner of Fig. 2). This is caused by the fact
that for low values of ∆Tu most pairwise interactions take place before the resource
stocks of the unsustainable agents are depleted to a state where they yield less harvest
than those stocks of sustainable agents. In other words, for low ∆Tu the interaction
time-scale becomes much shorter than the time-scale of resource dynamics. With
increasing tax rate γ the system converges more likely into a sustainable state even
at comparatively low user waiting times ∆Tu as the effective harvest of unsustainable
agents is reduced more drastically. For very large tax rates γ and/or very large user
waiting times ∆Tu the system converges into a sustainable state as the resource
stocks of unsustainable agents are close to their stable fixed point at s∗ = 0 when
most pairwise interactions happen. On the other hand, high tax rates γ further
decrease the effective harvest of unsustainable agents such that an imitation of the
unsustainable strategy becomes less and less likely (Fig. 2). We additionally observe
that there exists a critical user waiting time ∆Tu,crit above which the system always
converges into a sustainable state regardless of the choice of tax rate γ. The same
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holds for γ itself as there seems to exist a critical value γcrit above which the system
also very likely converges into a sustainable state. In the following we aim to estimate
values of ∆Tu,crit and γcrit.

3.2 Analytical treatment of limiting cases

For the eco-dictatorship setup studied above, we approximate a critical update
time ∆Tu,crit at which the sustainable strategy E− becomes profitable in terms
of immediate harvest when compared to the unsustainable one (E+). For this we
assume that agents do not update their strategy at times t < ∆Tu,crit and hence
Ei(t) = Ei(0) ∀ t < ∆Tu,crit. In this case the temporal evolution of the correspond-
ing stocks is obtained by integrating equation (2) which yields:

s± (t) =
∓∆E

(∓∆E − 1)e±∆Et + 1
. (10)

Here s+(t) (s−(t)) denotes the stock for those agents that employ the unsustainable
(sustainable) strategy. If no interactions take place the two strategies yield the same
harvest h•(∆Tu,crit) at time t = ∆Tu,crit and, hence,

(1− γ)s+(∆Tu,crit)(1 + ∆E) = s−(∆Tu,crit)(1−∆E). (11)

Plugging in equation (10) yields

(1− γ)e−∆E∆Tu,crit + e∆E∆Tu,crit =
2− γ − γ∆E

1−∆E2
· (12)

This equation of the general form ae−x + ex = b is solved by using x =
ln
(

1
2

(
b±
√
b2 − 4a

))
. Figure 2 shows the critical user waiting time ∆Tu,crit as a func-

tion of the tax rate γ. We find that the approximated functional form of ∆Tu,crit(γ)
provides a boundary above which the sustainable strategy almost always succeeds.
As expected ∆Tu,crit approaches zero with increasing γ as higher tax rates reduce the
effective harvest of unsustainable agents and, hence, makes the sustainable harvest
profitable much earlier in time.

The critical tax rate γcrit, beyond which the sustainable resource use is always
maintained (for γ ≥ γcrit), can be derived by setting ∆Tu,crit = 0 in equation (12).
This yields

γcrit(∆E) = 2
∆E

1 + ∆E
(13)

and γcrit = 2
3 for ∆E = 0.5. This matches the numerically computed result of

γcrit ≈ 0.67 (Fig. 2, intersection of dashed grey line with the abscissa ∆Tu = 0).

3.3 Social learning in governance and user layer

After obtaining the results for a simplified governance layer with just one single
node (the eco-dictatorship), we now turn to the analysis of the full model by setting
Ng = 50 and, hence, allowing for social learning as described in Section 2.3 in the
governance layer as well. Additionally we allow for adaptive rewiring by setting the
rewiring probability to an intermediate value of φ = 0.4 (Fig. 3). Recall that this
implies that whenever two nodes of different state or strategy in either layer interact
there is a probability of φ for the link between those two nodes to be homophilically
rewired such that two nodes of the same strategy or state are connected afterwards.
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Fig. 3. If social learning happens in both, the user and the governance layer, rewiring at an
intermediate probability (here with φ = 0.4) induces a trade-off. In particular, the system
is more likely to become sustainable at low tax rates but less likely to become sustainable
at high tax rates as compared to a setting where unsustainable nodes are always taxed
(compare Fig. 2).

As a first general observation, we find that increasing the tax rate γ increases the
size of the sustainable regime, i.e., the system converges to a state with all nodes
employing the sustainable strategy at smaller user waiting times Tu (Fig. 3). Hence,
increasing the tax rate also increases the resilience of the entire system. We further
observe the absence of a critical tax rate γcrit and, hence, there is no γ for which the
system always converges into the sustainable state (compare Figs. 2 and 3). Hence,
social learning and network adaptation induce a trade-off (as compared to the case of
a single sustainable governance node) where the sustainable regime increases in size
for the case of small tax rates γ but decreases in size for larger tax rates γ (compare
again the size of the sustainable regimes between Figs. 2 and 3). This phenomenon
is explained in the following.

Since the governance layer now partly consists of nodes that are in the indifferent
state, there is a chance for unsustainable nodes in the user layer for not being taxed.
In that case, their harvest likely exceeds that of sustainable nodes in the beginning
of the simulation if the average user waiting time ∆Tu is small. At the same time,
even if unsustainable nodes are being taxed at a moderate rate their harvest might
exceed that of sustainable nodes if their corresponding stocks are still far away from
equilibrium, i.e., depletion. Hence, the increased size of the unsustainable regime at
larger tax rates can be attributed to the effect of social learning in the governance
layer.

For low tax rates we observe a decrease in the size of the unsustainable regime
as compared to the case of no social learning in the governance layer (Sect. 3.1)
and, more importantly, no network adaptation in either layer. It has been observed
already in earlier studies that adaptation fosters the tendency of the system to reach
the sustainable state as it allows nodes of the same strategy to form clusters [24].
This clustering of specifically the sustainable nodes allows them to avoid exposure to
the unsustainable strategy (E+) until the sustainable strategy (E−) has become more
profitable. From there on the sustainable strategy can spread through the network
and tip the entire system into a sustainable state even at lower user waiting times as
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Fig. 4. The average fraction of sustainable agents for different combinations of tax rate γ,
user waiting time ∆Tu and adaptation probability φ.

compared to the case with no adaptation (compare lower left parts of Figs. 2 and 3).
Hence, the decrease in the size of the unsustainable regime for lower tax rates is
mainly attributed to the presence of adaptation in both, the user and the governance
layer.

In summary, we find that social learning in the governance layer increases the size of
the unsustainable regime at high tax rates when compared to the case of an absence of
social learning. At the same time, adaptive rewiring increases the size of the sustain-
able regime at lower tax rates. In other words, at low tax rates network adaptation
and governmental social learning are preferred to drive the system into a sustainable
state, while at high tax rates social learning and adaptation are to be avoided.

3.4 Comprehensive analysis

We ultimately vary the three crucial parameters γ (tax rate), φ (adaptation/rewiring
probability) and ∆Tu (average user waiting time) to provide a comprehensive analysis
and to illustrate how the size of the sustainable regime depends on their particular
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choices (Fig. 4). We summarize our three main results below:

(i) First, we present results for three choices of average user waiting time ∆Tu = 0.5
(Fig. 4A), ∆Tu = 1.0 (Fig. 4B) and ∆Tu = 1.5 (Fig. 4C) and varying values
of γ and φ. For all three cases, we first observe that there exists a fragmen-
tation threshold at around φ ≈ 0.8 above which the final share of sustainable
nodes in the user layer roughly corresponds to the expected initial share of 0.5
(Figs. 4A–4C). In addition we find that for ∆Tu = 0.5 there exists an unsustain-
able regime for low tax rates γ and low rewiring probabilities φ as the myopic
agents do not foresee a potential collapse of their respective resource stocks when
being unsustainable or indifferent. However, the size of this regime decreases
in size with increasing γ (Fig. 4A) as the unsustainable strategy becomes less
profitable. With increasing the user waiting time to ∆Tu = 1.0 (Fig. 4B) or
∆Tu = 1.5 (Fig. 4C) the system converges into a sustainable state for almost all
choices of γ and φ as long as the rewiring rate is chosen such that the fragmenta-
tion threshold is not transgressed. Hence, we conclude that the larger the average
user waiting time, the more likely the system converges into a sustainable state
(as it is also reported in earlier studies [24,40]).

(ii) Next, we present the results for three choices of tax rate γ = 0 (no taxation),
γ = 0.5 (intermediate taxation) and γ = 1 (full taxation) and varying user
waiting time ∆Tu as well as rewiring probability φ (Figs. 4D–4F). For the case
of no taxation, i.e., no effect of the governance layer (Fig. 4D), the size of the
sustainable regime increases linearly with increasing φ until, again, the frag-
mentation transition is reached. This result is in accordance with earlier studies
that investigate the effect of social learning and adaptation in a system that is
only comprised of the user and the resource layer [24]. Increasing the tax rate
steadily decreases the size of the unsustainable regime (Figs. 4E, 4F), while the
linear dependence between the rewiring probability φ and the size of the regime
sizes persists. Remarkably, even for the case of full taxation (Fig. 4F) the unsus-
tainable regime remains to exist as for very low user waiting times ∆Tu the
unsustainable and indifferent strategies can spread through both layers as the
resource stocks deplete slower compared to the rate of social interactions.

(iii) Ultimately, we consider three cases of rewiring probabilities, i.e., φ = 0 (no
rewiring and only social learning), φ = 0.4 (intermediate rewiring) and φ = 0.8
(almost only rewiring at a rate close to the fragmentation threshold and few cases of
social learning), Figures 4G–4I. Note that Figure 4H shows the same results as the
previously discussed Figure 3. As already discussed in Section 3.3 social learning in
the governance layer causes the absence of a critical tax rate γcrit, that we observed
from the case of a single sustainable governance node, Figure 4G. However, allow-
ing for rewiring at an intermediate rate (Fig. 4H) again yields an increase in the
size of the sustainable regime. Further increasing the rewiring probability causes
the size of the sustainable regime to increase even further. However, as the system
approaches the fragmentation transition, the average fraction of sustainable users
is lowered due to the formation of isolated clusters of user and governance nodes
that solely employ the unsustainable/indifferent strategy (Fig. 4I).

In summary, we observe that the system is most likely to reach a sustainable
regime if a high tax rate γ and a rewiring probability φ close to (but still below)
the fragmentation transition are chosen. In other words, such a combination of
parameters maximizes the size of the sustainable regime. Given that an implementa-
tion of arbitrarily high tax rates is often not feasible, minimal/optimal tax rates could
be chosen for a given user waiting time ∆Tu and rewiring probability φ such that the
system is likely to converge into a sustainable state while putting the least amount of
pressure as possible onto users that show an undesired strategy (see e.g., Fig. 4A).
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4 Conclusion

In this article, we have developed a stylized model for polycentric hierarchical gover-
nance structures with a focus on investigating the preconditions for the sustainable
use of renewable resources. While resource users can employ either a sustainable or
non-sustainable harvesting strategy, policies are implemented via either taxation or
no taxation of non-sustainable resource use. The model design is targeted towards
a better systems understanding where governance actors’ and resource users’ inter-
actions are driven by the following two social processes: social learning of favorable
strategies and homophilic network adaptation, but take place on different hierarchical
scales.

Generally we find that sustainability is favored for slow interaction timescales,
large homophilic network adaptation (as long as it is below the fragmentation thresh-
old) and high taxation rates. For the case of an eco-dictatorship, where a single gov-
ernance actor taxes all non-sustainable behavior, we find the intuitive result that a
sufficiently large taxation rate always causes a sustainable outcome. In contrast, in the
fully process-driven model with social learning and homophilic network adaptation
among governance actors, we find a trade-off: sustainability is enhanced for low and
hindered for high tax rates compared to the results obtained for the eco-dictatorship.

This rather non-intuitive result highlights that the emergent outcomes of freely
co-evolving social processes can be preferable compared to those obtained with a
benevolent centralistic actor if low tax rates are a normative preference. In this
regard, our model serves as a stylized example to find minimal tax rates that still
guarantee an optimally sustainable outcome under polycentric governance structures,
given a social learning process with a certain network adaptation rate and interaction
timescale.

Possibly, our model could serve as a prototype for more detailed studies to be
targeted at the question of optimal carbon taxes rates [9]. It highlights how social
processes such as opinion formation may be combined with macro-economic opti-
mization techniques [19] in order to gain momentum on the road to the much needed
rapid decarbonization [17].
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de/copan) at the Potsdam Institute for Climate Impact Research (PIK). We are grateful for
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project ERA). Parameter studies were performed on the high-performance compute cluster
of PIK, supported by the European Regional Development Fund, BMBF, and the Land
Brandenburg. The authors thank Jobst Heitzig and Wolfgang Lucht for inspiring discussions.
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I. Sendina-Nadal, Z. Wang, M. Zanin, Phys. Rep. 544, 1 (2014)
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arXiv:1704.06135 (2017)

35. T. Parsons, An Outline of the Social System (University of Puerto Rico, Department of
Social Sciences, 1961)

36. T. Gross, B. Blasius, J.R. Soc. Interface 5, 259 (2008)
37. T. Gross, C.J. Dommar D’Lima, B. Blasius, Phys. Rev. Lett. 96, 208701 (2006)
38. T. Gross, H. Sayama, Adaptive networks (Springer, 2009)
39. V. Sood, S. Redner, Phys. Rev. Lett. 94, 178701 (2005)
40. W. Barfuss, J.F. Donges, M. Wiedermann, W. Lucht, Earth System Dyn. 8, 255 (2017)
41. W. Steffen, J. Rockström, K. Richardson, T.M. Lenton, C. Folke, D. Liverman, C.P.

Summerhayes, A.D. Barnosky, S.E. Cornell, M. Crucifix, J.F. Donges, I. Fetzer, S.J.
Lade, M. Scheffer, R. Winkelmann, H.J. Schellnhuber, Proc. Natl. Acad. Sci. 115, 8252
(2018)

theoretical and methodological work 353

Reprinted by permission from Springer Nature: Springer Nature, The European Physical Journal Special Topics, The physics of governance networks:
critical transitions in contagion dynamics on multilayer adaptive networks with application to the sustainable use of renewable resources, F. Geier et

al., doi: 10.1140/epjst/e2019-900120-4, Copyright EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature, 2019.

https://doi.org/10.1140/epjst/e2019-900120-4




theoretical and methodological work 355

3.4 Model simplification and approximation methods

In this last section of the third part of the reader we
showcase developments of simplification and approximation meth-
ods to get a deeper understanding of dynamics on complex net-
works.

In the first paper, “Macroscopic approximation methods for the
analysis of adaptive networked agent-based models: Example of
a two-sector investment model” [Kolb et al., 2020], we applied ap-
proximation methods known from statistical physics to derive a
set of ordinary differential equations that approximate the macro-
dynamics occuring in a multi-agent network model. As an exem-
plary model we focussed on a predominantly socio-economic one
this time. Similar approximation techniques have been used by
[Wiedermann et al., 2020] to derive macroscopic equations describ-
ing the spread of collective action from underlying microscopic
network processes.

In a more machine-learning oriented paper, we investigated the
behaviour of learning agents interacting with dynamic environ-
ments by approximating it by deterministic equations in “Deter-
ministic limit of temporal difference reinforcement learning for
stochastic games” [Barfuss et al., 2019]. We demonstrated the po-
tential of our method with the three well-established reinforcement
learning algorithms of Q-learning, SARSA learning, and actor-critic
learning.

Finally, “Dynamics of tipping cascades on complex networks”
[Krönke et al., 2020] focuses on the preconditions for the emergence
of tipping cascades on complex networks. In particular, we studied
the effects of network topology on the occurrence of such cascades.
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In this paper, we propose a statistical aggregation method for agent-based models with heterogeneous agents
that interact both locally on a complex adaptive network and globally on a market. The method combines three
approaches from statistical physics: (a) moment closure, (b) pair approximation of adaptive network processes,
and (c) thermodynamic limit of the resulting stochastic process. As an example of use, we develop a stochastic
agent-based model with heterogeneous households that invest in either a fossil-fuel- or renewables-based sector
while allocating labor on a competitive market. Using the adaptive voter model, the model describes agents
as social learners that interact on a dynamic network. We apply the approximation methods to derive a set
of ordinary differential equations that approximate the macrodynamics of the model. A comparison of the
reduced analytical model with numerical simulations shows that the approximation fits well for a wide range of
parameters. The method makes it possible to use analytical tools to better understand the dynamical properties
of models with heterogeneous agents on adaptive networks. We showcase this with a bifurcation analysis that
identifies parameter ranges with multistabilities. The method can thus help to explain emergent phenomena from
network interactions and make them mathematically traceable.

DOI: 10.1103/PhysRevE.102.042311

I. INTRODUCTION

Agent-based modeling is a computational approach to sim-
ulate systems composed of a large number of similar subunits
with many applications in ecology [1], business [2], sociology
[3], and economics [4,5]. Agent-based models (ABMs) are
used to study aggregate phenomena emerging from local
interactions [6]. These interactions can be structured by spatial
embedding of agents or by social networks [7–10]. In eco-
nomics, ABMs have been used to study, for example, business
cycles [11], market power [4], and trade [5].

ABMs are a promising alternative to dynamic stochastic
general equilibrium (DSGE) modeling, the current workhorse
of theoretical macroeconomics. DSGE models usually build
on the representative agent approach, i.e., they represent all
individuals of one type such as firms or consumers by one
representative decision maker.

*kolb@pik-potsdam.de

The representative agent approach implies that theoret-
ical macroeconomics reduces macroeconomic phenomena
to assumptions about a few different representative agents,
leaving out many explanatory mechanisms for fluctuations
in aggregate variables based on intragroup interaction and
heterogeneity [12]. Furthermore, DSGE models often assume
rational expectations, i.e., agents know the constraints and
dynamics of the entire economy, which has been criticized as
philosophically unsound and empirically unjustified [13]. But,
due to these assumptions, most DSGEs allow for a thorough
analytical analysis.

ABMs allow implementing various individual decision
models that are behaviorally more realistic than full economic
rationality. Agents are often assumed to be boundedly rational
and adapt their expectations, which is compatible with the Lu-
cas critique [14]. In ABMs, fluctuations in aggregate variables
arise not only from exogenous shocks as in DSGE models but
primarily from irregularities in local interactions. Therefore,
they offer an avenue for explaining various emergent phenom-
ena [15] studied in empirical macroeconomics.
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On the other hand, ABMs are often very detailed so that
an analytic treatment is unfeasible. Therefore, in ABMs, the
difficulties arising from the aggregation of heterogeneous
and interacting agents are usually solved computationally.
Because the model mechanisms are difficult to trace in the
‘black box’ of a computational model, the results of ABMs
are often difficult to interpret and cannot provide mathemati-
cally sound proofs of relationships between model variables.
Results may therefore be difficult to generalize [16]. There
has been some progress in the standardization of model de-
scriptions for ABMs [17], but the lack of standardization, e.g.,
of decision rules, makes the models difficult to compare [5,
p. 239]. Even though there are various techniques available
for comprehensive model analysis [18], a systematic model
exploration is uncommon and mostly limited to sensitivity
analysis with respect to crucial parameters.

Methods from theoretical physics have been applied suc-
cessfully to various problems in economics for many years
[19]. Here, aggregation methods from statistical physics can
bridge the gap between analytic macroeconomic models such
as DSGE approaches and agent-based computational models
(for a review of physics methods in social modeling, see Refs.
[20] and [21]). In contrast to macroeconomic models, these
approaches account for local interactions and use aggrega-
tion techniques to derive macrodynamics, providing a true
microfoundation of the resulting macromodel. These kinds of
approximation methods have found much interest in the fields
of financial economics, behavioral finance, and evolution-
ary game theory recently and have produced interesting and
promising results, e.g., to explain macroeconomic fluctuations
(e.g., [22]) and understand propagation of financial shocks and
the resulting systemic risk (e.g., [23]).

Many authors use mean-field approximations to aggregate
interactions between heterogeneous agents, e.g., making use
of stochastic differential equations or master or Fokker-Planck
equations [24–33]. Such approaches assume that each agent
pair interacts with the same probability. But many social
and economic interactions are structured and the structure
can be described by complex networks [34]. To also capture
the dynamics arising from structured interactions, so-called
moment closure methods take the microstructure of networks
into account when deriving macroscopic quantities (e.g., [35],
[36]). Thereby, they are able to show that often the network
structure, whether fixed or evolving, has a crucial influence
on the dynamics not only quantitatively but also qualitatively
in enriching the stability landscape and introducing additional
(meta-)stable dynamical regimes, e.g., due to effects related to
clustering and community structure.

Yet, most of the literature regards either the network be-
tween agents or the states of agents as static, implicitly as-
suming different time scales for dynamics of and processes in
the network. However, recent literature on opinion formation
processes and the spreading of social norms in the field of
computational social sciences suggests that both happen on a
comparable time scale and therefore cannot be treated sepa-
rately [7,37]. For such adaptive networks [7], moment closure
techniques have been introduced in the physics literature to
aggregate the feedback between complex adaptive network
dynamics and dynamics of single-node states [38–41]. Here,
we introduce these techniques to economic modeling and

combine them with approaches from macroeconomics where
interactions also happen globally via aggregated variables.

The technical challenges of analytic approximation meth-
ods for agent-based models has so far hampered their
widespread use in economics. But they have a huge poten-
tial in providing profound insights into dynamical proper-
ties of economic systems: First, they help to increase the
performance of computer simulations, making calculation of
single model runs much faster and therefore allowing for a
wider range of bifurcation and parameter analyses. Second,
in contrast to stochastic simulations, they make formal proofs
of relations between macroscopic variables possible. Third,
they allow the derivation of analytical expressions of relations
between model variables from the dynamic equations, which
is not possible from single simulation runs. This paper takes
a step forward in showcasing how such methods can be used
to combine interactions in complex adaptive networks with
macroeconomic modeling. It is therefore a contribution to
the integration of nonstandard behavioral assumptions into
macroeconomic models.

The agent-based model we introduce as an illustration of
these methods is designed to investigate low-carbon transi-
tions in an economy in the context climate economics and
features both local interactions on a network and system-level
interaction through markets. We use an adaptive network
approach for our model to demonstrate how the individual
approximation techniques mentioned above may be com-
bined. In our model, the network of interactions between
agents as well as the spreading of strategies between agents
in this interaction network happens on a comparable time
scale. In particular, we combine the different approximation
techniques mentioned above, namely, moment closure, pair
approximation, and large-system-limit approximations to de-
rive an aggregate description for the dynamics of our model
(for an overview of the different techniques, see [42]). The
model consists of heterogeneous households that interact and
learn from neighbors in a social network and a two-sector
productive economy. The households differ in their invest-
ment strategies: they invest their savings either in the “dirty”
or in the “clean” sector, each representing a separate capital
market through which the agents interact. Agents imitate the
investment strategy of acquaintances that are better off with
a higher probability. To the best of our knowledge this is the
first study that applies such a combination of approximation
methods in a model that combines structured local with global
interactions of heterogeneous agents in a socioeconomic set-
ting. By successfully applying approximation techniques for
adaptive networks to our model, we demonstrate that they
are useful for investigating economic relationships within
considerably complex models. Even though our reference
application is an economic one, this approximation method
can also be used to describe similarly structured models in
other fields of research such as social ecology, neuroscience,
and computational social science.

In the remainder of the paper, we first describe the de-
tails of the model (Sec. II). We then derive an aggregate
description of the model by applying three approximation
techniques: moment closure, pair approximation, and large-
system limit (Sec. III). We discuss commonalities and differ-
ences between computer simulations and the approximation
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approach. Before concluding, we illustrate how the derived
macroapproximation can be used in a bifurcation analysis to
better understand the qualitative properties of the nonlinear
model (Sec. IV).

II. MODEL DESCRIPTION

To illustrate the use of the methods that we put forward, we
develop a model of a stylized economy that captures the shift
from a fossil-fuel-based to a renewable-energy-based sector.
Decarbonization pathways consistent with the Paris agree-
ment require a rapid shift of investments away from fossil fuel
exploration and extraction to the development and deployment
of renewable energies [43]. However, the implementation of
climate policies is uncertain and expectations cannot be based
on self-consistent beliefs about the future. In conventional
macroeconomic models such shifts can only occur due to
price signals from either improvements in green technology,
increasing scarcity of fossil reserves, or carbon pricing. While
price signals are certainly important, movements advocating
for the divestment from fossil fuels point to the role of social
norms and practices regarding investment decision to initiate
and accelerate the energy transition [44]. To better understand
such culturally driven situations of socioeconomic change, it
is important to develop models that can incorporate endoge-
nous preferences [45,46] and aspects of bounded rationality
[47] such as imperfect foresight and information as well as
learning.

Our model is designed to incorporate social dynamics that
influence investment decisions [48,49]. In the context of cli-
mate economics and policy, the literature on social influence
and norms has pointed out that such mechanisms are a lever-
age point to induce rapid change in socioeconomic systems
[50–54]. The model focuses on two important mechanisms:
First, investment strategies are spread on a network, which can
be understood as a social learning process [55] influenced by
social norms [56]. Second, the network adapts endogenously
based on simple rules that model homophyly [57,58]. In the
following, we explain the different parts of our two-sector
model in detail.

A. Economic production

Our model as outlined in Fig. 1 consists of two sectors
for production and a set of heterogeneous households that
interact via a complex adaptive social network. The two
production sectors employ different technologies. The pro-
duction technology in one sector depends on the input of
an exhaustible (fossil) energy resource R that is used up in
the process, whereas the technology in the other sector does
not. We call them the dirty and the clean sectors accordingly.
We assume that physical capital is technology specific and
cannot be reallocated between the two sectors. Therefore,
the heterogeneous households in the model provide different
types of capital Kj as well as labor L to the sectors. We assume
that the technology in the dirty sector is fully developed
and adequately described in terms of a fixed technological
factor subsumed in the constant bd , the so-called total factor
productivity. For fossil fuels, price elasticities of demand, i.e.,
changes in demand in response to increasing or decreasing
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FIG. 1. Schematic of the model consisting of two production
sectors of which one depends on an exhaustible fossil resource stock
as well as a set of heterogeneous households that interact on an
adaptive complex network and use social learning to decide upon
which of two production sectors to invest in. Boxes and bubbles
denote modeled entities; arrows denote interactions. Numbers in
parentheses refer to equations that describe the specific part of the
model.

prices, are low in real economies [59–61], even with the
choice between alternative technologies factored in. We ap-
proximate this by assuming that the fossil resource cannot
be substituted by other production factors (capital, labor) in
the dirty sector. This is in line with critique of the commonly
assumed substitutability of natural resources in some widely
used production functions in neoclassical models [62–66].
However, we acknowledge that a shift in the output of eco-
nomic production from manufacturing to services can lead to
substitution of resources by capital and labor [67] and argue
that our model pictures this in a shift of economic production
from the dirty to the clean sector, which is described in the
following.

The clean sector represents a circular economy in which
the output of final goods depends on the machinery, knowl-
edge, and effort used in its production and is not limited
by resource scarcity on the time scale under consideration.
The technology C used in the clean sector is assumed to
be still in development and is therefore explicitly modeled.
Following [68], we model technological progress as learning
by doing according to Wright’s law [69,70]. We assume that C
is proportional to cumulative production but also depreciates
with a constant rate χ . Depreciation can be regarded as a
human capital effect that leads to knowledge depreciation
over time as in [71]. This is also in line with the empirically
observed decrease in learning rates for maturing technologies
[68]

Ċ = Yc − χC. (1)

Capital, labor, and technology or knowledge are assumed
to be mutual substitutes. To satisfy these requirements, we use
the following production functions:

Yc = bcC
γ Lαc

c Kβc
c , (2)
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Yd = min
(
bd Lαd

d Kβd

d , eR
)
. (3)

Subscripts c and d denote the clean and dirty sectors, respec-
tively, Lc and Ld are labor in the two sectors, α and β are the
elasticities of the respective input factors, bc and bd are the
total factor productivities, and Kc and Kd are the capital stocks
for the respective sector. Measuring unit production cost in the
number of working hours as in the original study [69], γ is
equivalent to the elasticity of learning by doing in the clean
sector as outlined in [71].

We assume an efficient usage of resources in the dirty
sector, such that

bd Lαd
d Kβd

d = eR, (4)

where 1/e is the resource intensity of the sector, i.e., the
amount of fossil resource needed for 1 unit of final product.
The usage of the fossil resource R depletes a geological
resource stock G with the initial stock G(t = 0) = G0:

Ġ = −R. (5)

In line with the assumptions common in the literature [72,73],
the cost of the fossil resource extraction and provision cR

depends on the resource flow R and the remaining fossil
resource stock G such that ∂cR/∂R > 0 and ∂cR/∂G < 0. We
chose the specific form to be

cR = bRRρ

(
G0

G

)μ

, ρ � 1, μ > 0, (6)

such that at some point ∂Yd/∂R < ∂cR/∂R to take into account
that some part of the resource is not economic, i.e., its
marginal cost exceeds its marginal productivity. We assume
perfect labor mobility and competition for labor between the
two sectors. This leads to an equilibrium wage w that equals
the marginal return for labor, i.e., the production increase from
an additional unit of labor,

w = ∂Yc

∂Lc
= ∂Yd

∂Ld
− ∂cR

∂Ld
, (7)

with the sum of labor in both sectors equal to a constant total
amount of labor:

Lc + Ld = L. (8)

As discussed before, we assume physical capital to be specific
to the technology employed such that it can only be used in
the sector in which it has been invested originally. This means
that there are separate capital markets for the two sectors.
We assume these capital markets to be fully competitive,
resulting in capital rents equal to marginal productivity, after
accounting for energy costs:

rc = ∂Yc

∂Kc
, (9)

rd = ∂Yd

∂Kd
− ∂cR

∂Kd
. (10)

B. Adaptive network model for investment decision making

We model households as boundedly rational decision mak-
ers [74–76]: Households take their investment decisions, i.e.,
whether to invest their savings in the clean or the dirty

sector, not by forming rational expectations [13,14] but by
engaging in social learning [55] to obtain successful strategies
[77] with reasonable effort. The outcomes of social learning
crucially depend on the structural properties of the complex
network of social ties among the households [78]. The strong
and still increasing polarization of some societies on climate
change issues suggests that social dynamics reinforce opposed
positions in the population [79–84]. In static network models,
such effects cannot be represented. Therefore, we model the
adaptive formation of the social network endogenously. A
well-established principle for the emergence of structured
ties in social networks is homophily, i.e., the tendency that
similar individuals get linked [57,85,86]. The following model
specification uses social learning in combination with endoge-
nous network formation based on homophily to model the
investment decisions of the households.

We model N heterogeneous households denoted with the
index i as owners of one unit of labor L(i) = L/N and capital
K (i)

c and K (i)
d in the clean and dirty economic sectors, respec-

tively. Households generate an income I (i) from their labor
and capital income which they use for consumption F (i) and
savings S(i). The rate at which households save their income
is assumed to be fixed and is given by the savings rate s:

I (i) = wL(i) + rcK (i)
c + rd K (i)

d , (11)

F (i) = (1 − s)I (i), (12)

S(i) = sI (i). (13)

A binary decision parameter oi ∈ [c, d] denotes the sector in
which the households decide to invest. As motivated above,
we model decision making that is driven by two processes:
social learning via the imitation of successful strategies and
homophyly towards individuals exhibiting the same behavior.

We describe households as the nodes in a graph of acquain-
tance relations that change according to the following rules.

(1) Households get active at a constant rate 1/τ .
(2) When a household i becomes active, it interacts with

one of its acquaintances j chosen uniformly at random.
(3) If they follow the same strategy, i.e., they invest in the

same sector, nothing happens.
(4) If they follow a different strategy, i.e., they invest in

different sectors, one of two actions can happen:
(a) Homophilic network adaptation: With probability

ϕ, the households end their relation and household i
connects to another household k, that follows the same
strategy.

(b) Imitation: With probability 1 − ϕ, household i en-
gages in social learning, i.e., it imitates the strategy of
household j with a probability pji that increases with their
difference in income.
We follow previous results on human strategy updating in

repeated interactions from [77] when we assume the imitation
probability as a monotonously increasing sigmoidal function
of the relative difference in consumption between both house-
holds:

p ji =
(

1 + exp

(
−a(F (i) − F ( j) )

F (i) + F ( j)

))−1

. (14)
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TABLE I. List of model parameters with their default values.
Note that the parameter values are set to mirror plausible values
observed in real-world economies but are not the result of a detailed
model estimation procedure.

Symbol Value Parameter description

N 200 Number of households
M 2000 Number of network links between the households
bc 1 Total factor productivity in the clean sector
bd 4 Total factor productivity in the dirty sector
bR 0.1 Initial resource extraction cost
e 1 Resource conversion efficiency
κ 0.06 Capital depreciation rate
χ 0.1 Knowledge depreciation rate
γ 0.1 Elasticity of knowledge in the clean sector
αc 0.5 Elasticity of labor in the clean sector
αd 0.5 Elasticity of labor in the dirty sector
βc 0.5 Elasticity of capital in the clean sector
βd 0.5 Elasticity of capital in the dirty sector
ϕ 0.5 Fraction of rewiring events in opinion formation
1/τ 1. Rate of opinion formation events
ε 0.05 Fraction of noise events in opinion formation
G0 1 000 000 Initial resource stock
L 100 Total labor
s 0.25 Savings rate
ρ 1 Exponent for resource flow in extraction cost
μ 2 Exponent for resource stock in extraction cost

As opposed to the absolute difference in the original study
[77], the probability in our model depends on relative differ-
ences. We set a = 8 to conform to their empirical evidence.
This dependence on relative differences in per-household
quantities is crucial for our method as we discuss at the end
of Sec. III D. We model strategy exploration as a fraction ε

of events that are random, e.g., rewiring to a random other
household or randomly investing in one of the two sectors.
Given the savings decisions of the individual households, and
assuming equal capital depreciation rates κ in both sectors,
the time development of their capital holdings is given by

K̇ (i)
c =δoics

(
rcK (i)

c + rd K (i)
d + wLi

) − κK (i)
c , (15)

K̇ (i)
d =δoid s

(
rcK (i)

c + rd K (i)
d + wLi

) − κK (i)
d , (16)

where δi j is the Kronecker delta. The total capital stocks in the
two sectors are made up of the sum of the individual capital
stocks

Kj =
N∑
i

K (i)
j = Nkj, (17)

where k j is the average per-household capital stock of a given
capital type.

We acknowledge the fact that different model specifi-
cations are possible and interesting. For instance, we only
consider fixed savings rates and the decision between two
capital assets and leave the analysis of the interesting possible
effects of households setting their savings rates individually
to another study [87]. However, we want to point out that
the approximation methods that we develop in the following

are highly useful to gain insights from different but similar
models that rely on complex adaptive interaction networks.

C. Numerical modelling and results

With the model specifications from Sec. II, the
parametrization in Table I, and appropriate initial conditions
for the dynamic variables, the model can be simulated
numerically. For this, we implemented the dynamics in
the multipurpose programming language PYTHON. The
implementation of the ABM as well as the numerical analysis
using the approximation methods described in the following
is available at the github software versioning service in [88].
In the following, we discuss the resulting aggregate dynamics.

Figure 2 displays an exemplary average evolution of our
model calculated as the mean of 100 simulation runs. The
simulation starts with initial conditions of abundant fossil
resources G and low clean technology knowledge stock C
[Fig. 2(b)] as well as equally low capital stocks in the clean
and dirty sectors Kc and Kd [Fig. 2(c)]. As we show later (see
Sec. IV), the rest of the initial configuration of the model is
rather irrelevant for the selected parameter values listed in
Table I, since there is only one stable dynamical equilibrium
as long as resource extraction costs are negligibly low. The
high initial capital rents rc and rd are a direct result of our
model assumptions and initial conditions, more precisely, the
assumption that capital rent equals marginal productivity in
Eqs. (9) and (10) and that of decreasing marginal productiv-
ity due to our choice of βi in combination with the initial
condition of low capital and a fixed labor supply. Also as
a direct consequence of these assumptions, the capital rents
rc and rd decrease over time as the capital stock is built up.
Initially (from t = 0 to t = 100), as a result of our choice of
total factor productivities bi and due to low fossil resource
extraction costs, capital productivity (and therefore capital
rent r) is higher in the dirty sector than the clean sector [see
Fig. 2(a)]. Consequently, the majority of households invest in
the dirty sector, which leads to a high capital stock Kd [Fig.
2(c)] and high production output Yd [Fig. 2(d)] in this sector.

Regarding the capital rents, we would expect the system
to move towards a dynamic equilibrium in which the capital
rent is equal in both sectors, i.e., rd = rc, if everything else
remained constant. However, we find that there is a persisting
difference between rc and rd between t = 50 and t = 100.
This difference can be explained by the exploration of invest-
ment strategies even if they perform worse, which brings the
shares of clean and dirty investors closer together. In terms of
the depicted variables this means that it brings nc closer to 0.5.

For t > 100 the depletion of the fossil resource leads to sig-
nificantly increasing resource extraction costs. Consequently,
the marginal productivity of dirty capital Kd decreases and
so does rd , leading to a peak in accumulation of capital in
the dirty sector around t = 100 [Fig. 2(c)]. Once the relative
return on capital in the clean sector increases, households start
to adopt a clean investment strategy visible in an increase in
nc in Fig. 2(a). When the fossil resource stock reaches its
economically exploitable share at around t = 200, the overall
productivity in the dirty sector reaches 0, leading to full
employment of all available labor in the clean sector. This
drives demand for capital in the clean sector up, accelerating
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(a) (b)

(c) (d)

FIG. 2. Example trajectory of the ABM. Solid lines represent mean results from 100 runs of the model. Gray areas around solid lines show
their standard deviation. Panels show capital rents in the clean and dirty sectors rc and rd as well as the fraction of households investing in the
clean sector nc in (a), knowledge and resource stock C and G in (b), output of the clean and dirty sectors Yc and Yd in (c), and capital stocks
Kc and Kd in the clean and dirty sector in (d). Initial conditions are G = G0, C = 1, K (i)

j = 1 for the economic subsystem. For the investment
decision process, the initial opinions of the N = 200 households are drawn from a uniform distribution. Their initial acquaintance structure is
an Erdős-Renyi random graph with mean degree k = 10.

the change from dirty to clean investment. As all households
except for the share caused by exploration are investing in
the clean sector, the system reaches an equilibrium with high
capital in the clean sector and low capital in the dirty sector.

Notably, we find an increasing variance in the fraction of
households investing in the clean sector before and around the
transition, which means that due to the stochasticity of the
social learning process the transition happens earlier for some
simulation runs than for others. Nevertheless, we find that
the inertia of the model resulting from the large accumulated
stock of capital that is specific to the dirty sector eventually
leads to an almost-complete depletion of the fossil resource.

The adaptation dynamics in our model can lead to a frag-
mentation of the network with stark economic consequences.
As the results in Appendix B show, an increased rewiring
rate ϕ in the network adaptation process leads to a strongly
delayed shift of investment from one sector to the other
during the transition, even though the incentive in terms of an
increased return rc for the investment in this sector is high.
This fragmentation is equivalent to a strong decline in the
fraction of active edges in the network, e.g., the fraction of
edges that connect households investing in different sectors of
the economy. This finding is consistent with a major result of

adaptive network modeling studies that show that adaptation
will lead to fragmentation of a network at high rewiring rates
ϕ [26,29,77,78,89]. Such network properties emerging from
adaptation dynamics have been studied, for example, in the
context of opinion dynamics, epidemics, and social-ecological
systems [7,40,91,92]. One could suspect that the slowdown in
the transition from one sector to the other results from the
decreased rate of imitation events as their frequency scales
with 1 − ϕ. However, the results in Appendix A show that this
effect is particular to the adaptive network model and cannot
be reproduced in a well-mixed system simply by adjusting
for the reduced frequency of imitation events. Appendixes
B and A discuss further differences between the full model
and special cases without adaptation as well as well-mixed
interaction.

III. APPROXIMATE ANALYTICAL SOLUTION

Structurally, the model described in Sec. II consists of a
set of coupled ordinary differential equations, (1), (5), (15),
and (16), with algebraic constraints (4), (7), (8), (9) and (10)
for the economic production process and a stochastic adaptive
network process for the social learning component that is
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described by rules 1 to 4 in Sec. II B. The state space of this
combined process consists of 2 degrees of freedom of the
knowledge stock and the geological resource stock as well as
2N degrees of freedom for the capital holdings of the set of
all individual households plus the configuration space of the
adaptive network process of the social learning component.
We denote the variables of this process by capital letters
(C, G, K (i)

j , . . . ). To find an analytic description of the model
in terms of a low-dimensional system of ordinary differential
equations, we approximate it via a pair-based proxy process,
a stochastic process in terms of aggregated quantities, thereby
drastically reducing the dimensionality of the state space. We
denote the variables of this process by capital letters with
overbars (X̄ , Ȳ , Z̄ , K̄ (k)

l , . . . ).
The derivation of this approximate process is done in

three steps: First, we solve the algebraic constraints to the
economic production process given by market clearing in the
labor market and efficient production in the dirty sector—
loosely following [93]. Second, we use a pair approximation
to describe the complex adaptive network process of social
learning in terms of aggregated variables, similarly to [91].
Third, we use a moment-closure method to approximate
higher moments of the distribution of the capital holdings of
the heterogeneous households by quantities related to the first
moments of their distribution. Finally, we take the limit of
infinitely many households (large-system or thermodynamic
limit) to obtain a deterministic description of the system.

A. Algebraic constraints

To calculate labor Lc and Ld as well as wages in the two
sectors, we use Eqs. (6) and (7) and for simplicity assume
ρ = 1 and μ = 2. We also assume equal labor elasticities in
both sectors αd = αc = α, resulting in

w = ∂Yd

∂Ld
− ∂cR

∂Ld

= ∂Yd

∂Ld
− ∂cR

∂R

∂R

∂Ld
= ∂Yd

∂Ld
− ∂cR

∂R

∂

∂Ld

Yd

e

= ∂Yd

∂Ld
− bR

G2
0

G2

∂

∂Ld

Yd

e
= bdαLα−1

d Kβd

d

(
1 − bR

e

G2
0

G2

)

(18)

for the dirty sector and

w = bcαLα−1
c Kβc

c Cγ (19)

for the clean sector. Combining these results via Eq. (8),
substituting

Xc = (
bcKβc

c Cγ
) 1

1−α , Xd = (
bd Kβd

d

) 1
1−α ,

XR =
(

1 − bR

e

G2
0

G2

) 1
1−α

, (20)

and solving for w yields

w = αLα−1(Xc + Xd XR)1−α. (21)

Plugging (21) into Eqs. (18) and (19) results in

Lc = L
Xc

Xc + Xd XR
, (22)

Ld = L
Xd XR

Xc + Xd XR
(23)

for labor in the two sectors, and plugging this into (4) leads to

R = bd

e
Kβd

d Lα

(
Xd XR

Xc + Xd XR

)α

(24)

for the use of the fossil resource. Using the results for Lc and
Ld together with Eqs. (9) and (10), the return rates on capital
result in

rc = βc

Kc
XcLα (Xc + Xd XR)−α, (25)

rd = βd

Kd
(Xd XR)Lα (Xc + Xd XR)−α. (26)

It is also noteworthy that if we assume constant returns to
scale with respect to capital and labor, e.g.,

βc = βd = 1 − α (27)

(even though it is not necessary for our method), this yields
zero profits in both sectors:

Yc = wLc + rcKc,

Yd = wLd + rd Kd + cR.

To sum up, we solved the algebraic constraints to the
ordinary differential equations describing the economic pro-
duction process resulting in the following equations:

Xc = (
bcKβc

c Cγ
) 1

1−α , Xd = (
bd Kβd

d

) 1
1−α ,

XR =
(

1 − bR

e

G2
0

G2

) 1
1−α

, (28a)

w = αLα−1(Xc + Xd XR)1−α, (28b)

rc = βc

Kc
XcLα (Xc + Xd XR)−α, (28c)

rd = βd

Kd
Xd XRLα (Xc + Xd XR)−α, (28d)

R = bd

e
Kβd

d Lα

(
Xd XR

Xc + Xd XR

)α

, (28e)

Ġ = −R, (28f)

K̇ (i)
c = sδoi,c

(
rcK (i)

c + rd K (i)
d + wL(i)

) − κK (i)
c , (28g)

K̇ (i)
d = sδoi,d

(
rcK (i)

c + rd K (i)
d + wL(i)

) − κK (i)
d , (28h)

Ċ = Yc − χC. (28i)

B. Pair approximation

To derive a macroscopic approximation of the social learn-
ing process described by rules 1 to 4 in Sec. II B, we make use
of a pair-based proxy process that is derived via pair approxi-
mation from the adaptive network process. This proxy process
is not equivalent but sufficiently close to the microscopic
process approximating it in terms of aggregated quantities
by making certain assumptions about the properties of their
microscopic structure. The aggregated quantities of interest
are the number of households investing in clean capital N (c),
the number of households investing in dirty capital N (d ), and
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the number of links between agents in the same group, [cc]
and [dd], as well as between the two groups, [cd]. Since
the total number of households N and links M are fixed,
these five variables reduce to 3 degrees of freedom, which we
parametrize as follows:

X̄ = N (c) − N (d ), Ȳ = [cc] − [dd], Z̄ = [cd]. (29)

These 3 degrees of freedom span the reduced state space of
the social process S̄ = (X̄ , Ȳ , Z̄ )T . The investment decision-
making process can then be described in terms of jump lengths

S̄ j and jump rates W (S̄, S̄ + 
S̄ j ) in this state space for the
different events j in the set � of all possible events. Their
derivation is illustrated by the example of a clean household
imitating a dirty household: The approximate rate of this event
is given by

Wc→d = N

τ
(1 − ε)(1 − ϕ)

N (c)

N

[cd]

[cd] + 2[cc]
pcd . (30)

In some more detail this results from
(i) N/τ , the rate of social update events, i.e., the rate of

events per household times the number of households.
(ii) (1 − ε), the probability of the event not being a noise

event.
(iii) (1 − ϕ), the probability of imitation events (versus

network adaptation events).
(iv) N (c)/N , the probability that each active household will

invest in clean capital.
(v) [cd]/(2[cc] + [cd]), the approximate probability of

interaction with a household investing in dirty capital. Here,
we approximate the distribution of dirty neighbors among
clean households with its first moment i.e., we act as if links
between clean and dirty households were evenly distributed
among all households.

(vi) pcd , the expected value of the probability that each
active household will imitate its randomly chosen neighbor,
depending on the difference in consumption between house-
holds investing in clean vs dirty capital as given in Eq. (14).
The expression is derived in detail as part of the moment
closure in Sec. III C.

The corresponding change in the state-space variables is a
little trickier. Since the event is a clean household imitating a
dirty household, we already know about one of the neighbors
of the household. As laid out in detail in, e.g., [38], the state
of the remaining neighbors in the full model is determined
by the frequency of higher-order network motifs, e.g., [dcd]
and [dcc]. The frequency of these higher-order motifs is
approximated by the expected value of the states of additional
neighbors as follows: summing over the excess degree of
node qc by drawing kc − 1 times from the distribution of
neighbors, which is, as before, approximated by an even
distribution of edges between same and different households
among all households. Again, this approximates the respective
full distributions with their first moments. If one wanted to
include higher-order effects in the network dynamics, one
could follow one of the various ways laid out in, e.g., [39].
Thus the probability that a neighbor is dirty, p(d ), or clean,
p(c), reads

p(c) = 2[cc]

2[cc] + [cd]
; p(d ) = [cd]

2[cc] + [cd]
. (31)

This results in an expected number of n(c) additional clean
neighbors and n(d ) additional dirty neighbors,

n(c) = (1 − 1/k(c) )
2[cc]

N (c)
, n(d ) = (1 − 1/k(c) )

[cd]

N (c)
, (32)

where k(c) is the mean degree, e.g., the mean number of
neighbors of a clean household in the network. With the
results from (32) the changes in the expected values of the
state space variables can be approximated as follows:


N (c) = −1,


N (d ) = 1,


[cc] ≈
(

1 − 1

k(c)

)
2[cc]

N (c)
,


[dd] ≈
(

1 − 1

k(c)

)
[cd]

N (c)
,


[cd] ≈ −1 +
(

1 − 1

k(c)

)
2[cc] − [cd]

N (c)
,

and summing up, the change in the state vector is approxi-
mately given by


S̄c→d ≈
⎛
⎝ −2

−k(c)

−1 + (
1 − 1

k(c)

) 2[cc]−[cd]
N (c)

⎞
⎠. (33)

In terms of the jump lengths 
S̄ and the rates W , the
dynamics of the pair-based proxy can be written as a master
equation for the probability distribution P in the state space of
S̄:

∂P(S̄, t )

∂t
=

∑
j∈�

P(S̄ − 
S̄ j, t )W (S̄ − 
S̄ j, S̄)

− P(S̄, t )W (S̄, S̄ + 
S̄ j ). (34)

C. Moment closure

To describe the capital structure in the model that consists
of 2N equations of the type of (15) and (16), we use the cohort
of N (c) households investing in clean and the cohort of N (d )

households investing in dirty capital and look at the aggregates
of their respective capital holdings:

K̄ (k)
l =

N∑
i

δoikK (i)
l . (35)

Here, the upper index in K̄ (k)
l indicates the shared investment

decision of the cohort of households as opposed to the index of
the individual household before. The lower index still denotes
the capital type. δoik is the Kronecker delta.

Later, we use the fact that in the limit of N → ∞ these
aggregates should converge to their expected values, e.g., the
first moments of their distribution with probability 1. The
time derivative of the aggregates defined in (35) is given by
the deterministic process of capital accumulation, (28g) and
(28h), as well as terms resulting from the stochastic process
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of agents switching their saving decisions:

˙̄K (c)
c =

˙̄K (c)
d =

˙̄K (d )
c =

˙̄K (d )
d =

(src − α)K̄ (c)
c + srd K̄ (c)

d + swL̄

− αK̄ (c)
d

− αK̄ (d )
c

srcK̄ (d )
c + (srd − α)K̄ (d )

d + swL̄︸ ︷︷ ︸
D(i)

l

+switching terms.

(36)
The switching terms for K̄ (c)

c result from agents changing their
saving decision, thereby moving their capital endowments
from the aggregate capital of the cohort of clean investors
to the aggregate of the cohort of dirty investors, and vice
versa. We assume that each household switching to the other
cohort is endowed with the mean capital of the cohort and that
their capital endowment is independent of the probability of
switching such that we can describe the switching terms as a
product of both factors. Then we can write down the changes
in capital stocks explicitly including the switching terms as a
simple stochastic differential equation,

dK̄ (k)
l = D(k)

l dt + K̄ ( j)
l

N ( j)
dN j→k − K̄ (k)

l

N (k)
dNk→ j,︸ ︷︷ ︸

switching terms

(37)

where the first term on the right-hand side refers to the change
in aggregates without switching, as given by the equations of
capital accumulation, (36), and the following terms denote
the influx and outflux of capital from the aggregate due to
households changing their savings decisions. dN j→k denotes
the stochastic process of households switching from one
opinion to another according to the rules outlined in Sec. II B.
In line with the pair approximation described in Sec. III B we
approximate them as

dN j→k =
∑

l∈� j→k

Wldt, (38)

where � j→k denotes the set of all events that result in a
household changing from cohort j to cohort k and Wl is the
rate of the respective event analogously to (30).

The imitation probability pcd in Eq. (30) is approximated
as the expected value of a linearized version of Eq. (14) when
drawing a pair of neighboring households i, j as specified.
More precisely, we perform a Taylor expansion of Eq. (14) in
terms of the consumption of the two interacting households
F (c) and F (d ) around some fixed values F (c)∗ and F (d )∗ up to
linear order. To maintain the symmetry of the imitation prob-
abilities with respect to the household incomes, we change
variables to 
F = F (c) − F (d ) and F = F (c) + F (d ) and ex-
pand around 
F = 0, F = F0, where F0 is yet to be fixed to a
value. In linear order this results in

pcd = 1

2
− a

4F0

F, (39)

pdc = 1

2
+ a

4F0

F. (40)

To make the approximation work in the biggest part of the
system’s state space, we set the reference point F0 to be the

middle of the sum of the estimated upper and lower bounds
for the attainable income of households investing in the clean
(dirty) sector. The minimum attainable income is assumed
to be 0. The maximum attainable income for a household
investing in the clean sector is assumed to be reached at
equilibrium given that all other households also invest in the
clean sector; e.g., we calculate F (c)∗ as half of an average
household income at the steady state of K̇c = sbcLαKβc

c Cγ −
δKc and Ċ = bcLαKβc

c Cγ − δC,

C∗ =
(

bcLαsβc

δ

) 1
1−βc−γ

, K∗
c =

(
bcLαs1−γ

δ

) 1
1−βc−γ

. (41)

Equivalently, we calculate F (d )∗ as half of an average house-
hold income at the steady state of K̇d = s(1 − bR

e )bd Kβd

d Pα −
δKd :

K∗
d =

(
sbd Lα

δ

(
1 − bR

e

))(
1

1−βd

)
. (42)

With these results, using the fact that we set βc = βd = α =
1/2, the reference point F0 is

F0 = 1

2

(
F (c)∗ + F (d )∗)

= 1 − s

2N
(r∗

c K∗
c + wL + r∗

d K∗
d + wL) (43)

= 1 − s

2N

((
sbcLα

δβc+γ

) 1
1−βc−γ

+ s

δ

((
1 − bR

e

)
bd Lα

)2
)

,

(44)

where r∗
c and r∗

d in (43) are the capital return rates, (9) and
(10), in the respective equilibria, (41) and (42).

Given this linear approximation of the imitation proba-
bilities, we approximate the consumption Fc and Fd of the
randomly selected households i and j as the household con-
sumption of the average household investing in clean and dirty
capital using the aggregated variables as introduced in (35). In
the large-system limit, this is equivalent to taking the expected
value over all households in the respective cohorts:

pcd = 1

2
− a

4F0

(
rc

(
K̄ (c)

c − K̄ (d )
c

) + rd
(
K̄ (c)

d − K̄ (d )
d

)

+w
L

N

(
N (c) − N (d )

))
, (45)

pdc = 1

2
+ a

4F0

(
rc

(
K̄ (c)

c − K̄ (d )
c

) + rd
(
K̄ (c)

d − K̄ (d )
d

)

+w
L

N

(
N (c) − N (d )

))
. (46)

With this approximation, we have now reached an approx-
imate description of the microscopic dynamics in terms of
stochastic differential equations for the aggregate variables.

D. Large-system limit

The description of the model in terms of Eqs. (28f), (28i)
(34), and (36) poses a significant reduction in complexity,
yet it is still a description in terms of a stochastic process
rather than in terms of ordinary differential equations, as
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typically used in macroeconomic models. To further reduce
it to ordinary differential equations, we do an expansion in
terms of system size, which in our case is given by the number
of households N . Therefore, following Van Kampen [94, p.
244], we introduce the rescaled variables

x = X

N
, y = Y

M
, z = Z

M
, k = 2M

N
(47)

and expand the master equation, (34), that describes the social
learning process in terms of a small parameter N−1. In the
leading order, the time development of the rescaled state
vector s = (x, y, z) is given by

d

dt
s = α1,0(s), (48)

where α1,0 is the first jump moment of W . In terms of the
rescaled variables s, α1,0 is given by

α1,0(s) =
∫


sW (s,
s)d
s, (49)

which in the case of discrete jumps in state space simplifies to

d

dt
s =

∑
j∈�


sjWj, (50)

where � is the set of all possible (discrete) events in the
opinion formation process.

As for the economic processes, we keep the aggregated
quantities (K̄ j

i ,C, G) fixed and formally go to a continuum of
infinitesimally small households. As people and also house-
holds, for that matter, are finite entities, a continuum of house-
holds makes no sense. But practically, this can be understood
as an interpretation of the heterogeneous households as a
weighted sample of a very large population of heterogeneous
individuals and increasing the sample size up to the point
where a continuum of households is a sufficiently good ap-
proximation of reality in terms of the model. The only element
in the approximation of the economic model that depends
on per-household quantities is the imitation probability, (14),
or rather its approximation, (39) and (40). Since we have
chosen this to depend on relative differences in income, their
dependence on the number of households N cancels out and
the limit of N → ∞ becomes trivial, resulting in the following
deterministic approximation for the capital endowments in
sector l of households investing in sector k described in
Eq. (37),

˙̄K (k)
l = D(k)

l + K̄ ( j)
l

N ( j)

∑
l∈� j→k

Wl − K̄ (k)
l

N (k)

∑
l∈�k→ j

Wl , (51)

where D(k)
l are the capital accumulation terms as given in (36)

and �l→k is the set of all opinion formation events, where a
household changes its opinion from l to k.

Together with Eqs. (28f) and (28i) the sets of equations
specified by (50) and (51) fully describe the approximate
dynamics of the original model as specified in Sec. II. The
full set of equations is given in Appendix C.

Our approximation reduces the full model to a set of first-
order differential equations with 9 degrees of freedom. For
comparison, the full model has 2N + 2 degrees of freedom
in the economic system plus the configuration space of the

social network component. The right-hand sides of the set
of differential equations are continuously differentiable and
depend on 12 parameters for the economic system and 2
parameters for the social network process. The state space
of the system is bounded between −1 and 1 in x and y and
between 0 and 1 in z as well as by 0 from below in the
variables of the economic system K̄ (k)

l , G, and C. As the
equations are bulky, it is recommended to use a computer
algebra system to work with them.

The freedom to choose equations for economic production
that are not scale invariant critically depends on the assump-
tion that household interaction only depends on relative dif-
ferences. For individual interaction that depends on absolute
differences, one can show that the large-system limit only
works if the system is scale invariant in terms of aggregated
quantities. Nevertheless, it would be possible to relax both
of these assumptions and to work with the pair-based proxy
process with the results explicitly depending on the number
of households, which in return could lead to interesting finite-
size effects.

E. Results of the model approximation

The results in Fig. 3 are to some extent complementary to
the results in Fig. 2 that we discussed in Sec. II C. Figure 3(d)
shows capital in both sectors belonging to households that
actually invest in these sectors, which is almost equivalent to
the variables in Fig. 2(d), as it makes up almost the entirety
of these capital stocks. This can be seen in Fig. 3(c): It
shows the capital of households in the sector in which they
do not currently invest, which is approximately an order of
magnitude smaller (note the different scale of the vertical axis
in the figure).

A comparison of the results of the approximation (dashed
lines) with those of the numerical simulation of the ABM
(solid lines) in Fig. 3 shows that the approximation exhibits
the same qualitative features, such as the trends, timing,
and order of magnitude of the displayed variables, as the
microscopic model. Particularly, these results show that for
the given parameter values the macroscopic approximation
is capable of reproducing very closely the quasiequilibrium
states before and after the transition from the dirty to the clean
sector, as it lies within the standard error of the ensemble of
ABM runs. Also, the approximation is reasonably capable of
reproducing the timing of and the transient states during the
transition. This is somewhat surprising since in other works,
macroapproximations were less well able to get the timing of
the transition right.

In the following, we discuss the existing differences be-
tween the results of the approximated model and the nu-
merical simulation results. For instance, we find that the
approximation estimates the transition from investment in
the dirty sector to investment in the clean sector a bit too
early [best visible in Fig. 3(a)]. The reason for this might
be the slight underestimation of the share of clean-investing
households, leading to a slight overestimation of the share
of dirty capital in the system, which is also visible in
Fig. 3(c).

We find a second obvious discrepancy between the mi-
cromodel and the approximation in the overestimation of
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(a) (b)

(c) (d)

FIG. 3. Trajectories of dynamic variables from the macro approximation and from measurement in ABM simulations. The results of ABM
simulations (solid lines) are obtained as an ensemble average of 50 runs, with standard errors indicated by gray areas. Initial conditions are
given by equal shares of the N = 200 households investing in both sectors and equal endowments in both sectors for all households. The initial
acquaintance network among the households is an Erdős-Renyi random graph with mean degree k = 10. Other initial conditions are C0 = 0.5
and G0 = 5 × 105. All other parameters are listed in Table I. The results from the macro approximation (dashed lines of the same colors) are
obtained by integration of the ODEs that are obtained from the large-system limit with fixed per-household quantities. The initial conditions are
drawn from the same distribution as previously for the ABM simulations, e.g., Nc, [cc], and [cd] are calculated from an Erdős-Renyi random
graph with mean degree k = 10.

dirty capital of clean investors (K (c)
d ) [Fig. 3(d)] during the

transition phase between t ≈ 150 and t ≈ 200. This can
be explained by the inequality in capital holdings among
households. In the approximation, all households investing in
dirty or clean capital are assumed to have the same income,
respectively. Therefore, the probability of changing their in-
vestment behavior will change for all of them at once during
the transition phase, leading to a rapid shift of dirty investors
changing to invest in clean capital but taking their dirty capital
endowments with them [hence the sharp peak in dirty capital
of clean investors during the transition phase; see Fig. 3(d),
upper dashed line].

Also, in the micromodel, households changing from a
dirty to a clean investment strategy take their—presumably
high—endowments in dirty capital with them. Therefore, the
endowments in dirty capital of households investing in the
clean sector are relatively widespread [see gray area around
the upper solid line in Fig. 3(d)]. This has effects on the
estimated timing of the transition too. In the micromodel,

the income of households is heterogeneous. Therefore, for
each of them the probability of changing their investment
behavior changes at different points in time, i.e., poorer
households are likely to switch earlier during the transition
than richer households. Together this leads to a slower, more
spread-out transition dynamic, the micromodel resulting in a
flatter peak in the dirty capital endowments of clean-investing
households.

Another effect at play during the transition is related to the
assumptions in Eqs. (31) and (32). Namely, all households that
invest in the same type of capital have the same distribution of
clean and dirty neighbors.

In the reality of the micromodel, however, these assump-
tions that are essential to the pair approximation may well be
wrong—especially so during a rapid transition. For example,
a household that has only recently changed its state has a
neighborhood that is atypical for its group and adapts only
slowly. Consequently, when many changes in the state of the
system happen in a short time, a significant proportion of the
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population is not well described by the assumed approximate
distribution.

A number of these effects that lead to discrepancies be-
tween the micromodel and the approximation can be mitigated
by higher-order moment closure for the distribution of hetero-
geneous agent properties or higher-order motif approximation
of the network dynamic.

For instance, a higher-order moment closure approxima-
tion that tracks the variance and skewness of the distribution
of capital endowments can also account for the likelihood
of capital endowments of agents that switch their investment
decision to be biased. This would presumably mitigate the
overestimation of dirty capital of clean investors [K (c)

d ] during
the transition as well as the underestimation of [K (c)

d ] before
the transition and therefore also estimate the timing of the
transition even more precisely.

Similarly, a higher-order motif approximation of the net-
work dynamic can describe the heterogeneity in the local dis-
tribution of opinions in the neighborhood of individual agents
and correct for the effects of this, especially during periods
of transient nonequilibrium dynamics in the approximated
model.

In the previous section we derived a set of ordinary
differential equations describing the stochastic dynamics of
an agent-based model in terms of aggregated variables in
the large-system limit. We intend this derivation to be a
prototypical example for a macroeconomic model with true
microfoundations based on heterogeneous agents, given that
their microscopic interactions are of similar complexity. As
such, it might also serve as a starting point for the application
and development of similar models for other kinds of social
dynamics. For example, an extension to continuous opinions
requiring a Fokker-Planck-type description would follow nat-
urally and would grant compatibility to a large body of models
for social influence (see Ref. [95], pp. 988 ff.).

IV. BIFURCATION ANALYSIS

The description of the model as a system of ordinary differ-
ential equations allows for the analytical analysis of emergent
model properties such as multistability, tipping, and phase
transitions. As a proof of concept application we subsequently
show the results of a bifurcation analysis.

A. Methods

Bifurcation theory is the analysis of qualitative changes of
dynamical systems under parameter variation, for example,
between a regime with a unique equilibrium (fixed point)
and a multistable regime. The parameter value at which a
qualitative change, for example, in the stability of an equi-
librium, occurs is called a critical value or bifurcation point.
Bifurcations are classified according to the changes in dy-
namical properties of the system [96,97]. Analytical methods
have limited scope to identify bifurcation points in nonlinear
systems. Methods like numerical continuation can handle
complex systems of ordinary differential equations like the
one derived in Sec. III [98]. Consequently, we use numerical
continuation from PyDSTool [99,100], a PYTHON package for
dynamical systems modeling and analysis [101].

A common bifurcation type that appears in our model
is the fold bifurcation, which is also known as saddle-node
bifurcation. This type is a local bifurcation in which a stable
fixed point collides with an unstable one and both disappear.

Varying two bifurcation parameters at the same time can
result in even richer qualitative changes in the dynamics. A
prevalent example of such a bifurcation is the cusp geometry
[97, p. 397]. A change in the second bifurcation parameter in
this geometry beyond a certain value results in the so-called
cusp catastrophe: the multistability of the system disappears
for all values of the first bifurcation parameter. As we show in
the following, the macroapproximation of our model indeed
exhibits a cusp bifurcation.

B. Discussion of results

A considerable advantage of the description of our model
in terms of ordinary differential equations (28f), (28i), (50),
and (51) over agent-based modeling is the fact that it allows
for the usage of established tools for bifurcation analysis. As
a proof of concept, we show some results in Fig. 4. Here, we
analyze the possible steady states of the system with abundant
fossil resources, e.g., the possible equilibrium states of the
model in the regime before the fossil resource becomes scarce
and acts as an external driver on the system, pushing it towards
clean investment. Therefore, we set the resource depletion
to 0, i.e., we keep the resource stock in Eq. (28f) constant,
G(t ) ≡ G0, such that the resource usage cost in Eq. (6) still
depends on resource use R but is not increased by deceasing
resource stock G. Thereby, we eliminate the rising resource
extraction cost as the constraint in (7) and (10) that eventually
halts production in the dirty sector. We choose the learning
rate γ as the bifurcation parameter, as we expect it to yield
interesting results. Generally, in nonlinear dynamical systems,
exponential factors are expected to have a strong influence
on dynamical properties. Therefore, changing these factors
is expected to lead to bifurcation behavior. Consequently, in
Figs. 4(a) and 4(c) we see that for certain learning rates γ the
macroscopic approximation exhibits a bistable regime limited
by two fold bifurcations with bifurcation points indicated by
LP1 and LP2. In this regime both low investment in the clean
sector together with high investment in the dirty sector and
low knowledge as well as high investment in the clean sector
together with low investment in the dirty sector and high
knowledge are stable states of the economic system. This
means that in this region economic outcomes are highly path
dependent. Starting with slightly different knowledge about
clean technologies may lead to widely differing adoption
levels of the technology in the long run.

Figure 5 shows an example of how this bifurcation struc-
ture of the dynamical system depends on other parameters.
When the total factor productivity in the dirty sector, bd ,
is varied the system undergoes a cusp bifurcation. Above a
certain value of bd the system exhibits bistability, whereas
below this value it does not.

Clearly, this choice of bifurcation parameters is only one
of many, and other choices may very well lead to interesting
results. However, we had to limit ourselves to this proof-
of-concept study since an extensive analysis of all possible
combinations would be well beyond the scope of this paper.
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FIG. 4. Bifurcation diagram: Continuation of the stationary solution of the macroscopic approximation without resource depletion, i.e.,
with Ġ = 0 instead of the rate R as given by Eq. (28f). The bifurcation parameter is γ , the elasticity of knowledge in the clean sector, which
also reflects the elasticity of learning by doing of the respective technology. The points labeled P1 and P2 are the beginning and end points of
the continuation line; points LP1 and LP2 are the bifurcation points of twofold bifurcations. The stable unstable manifold is indicated by the
dotted line; the stable manifold is indicated by the solid line. Note that the intersections of the curves in (b) and (d) do not actually mean that
the stationary manifold is not a bijective function of the bifurcation parameter γ but rather a result of the projection of the multidimensional
manifold onto the two-dimensional space.

Multistability of the economy would mean that policies
could make use of inherent dynamical properties of the system
to reach a desired state or bring the system onto a desired
pathway. For example, policy measures such as regulation or
taxes can help drive the system into another basin of attraction,
i.e., a region of the phase space in which trajectories approach
another equilibrium in the long term. To do so, the system
has to cross a separatrix, the boundary between two basins of
attraction. After this boundary is crossed, the policy measure
can be discontinued, and the system’s dynamics guarantee that
it reaches the new equilibrium. Figure 5 shows that such an

intervention could be complemented by an additional policy
measure, lowering the total factor productivity in the dirty
sector, effectively reducing the distance of the stable manifold
from the separatrix and thereby presumably making the first
measure less costly. Another possibility to take advantage
of the system’s inherent dynamical structure is to use its
hysteresis, i.e., to find policy measures that change the first
bifurcation parameter γ across a bifurcation point or to change
the second bifurcation parameter bd to move the bifurcation
point past the current state of the system (or a combination
of both), after which the system would fall to the other
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FIG. 5. Cusp bifurcation diagram: Stationary manifold from
Fig. 4(a) for different values of the total factor productivity in the
dirty sector bd . Red circles indicate the limit points of the one-
dimensional fold bifurcation separating the stable and the unstable
parts of the stationary manifold indicated by the solid and the dashed
line, respectively. For a critical value of bd ≈ 1.4 and γ ≈ 0.03034
the two limit points converge and annihilate each other. This codi-
mension 2 bifurcation with bifurcation parameters γ and bd is called
a cusp catastrophe. In our two-sector economic model, this results
in a lock-in effect in the dirty sector; i.e., below this point, there is
a smooth transition of production from the dirty to the clean sector
and above this point production in the dirty sector is continued even
though production in the clean sector would be more efficient.

branch of the stable manifold. Afterwards, the policy can be
discontinued and the system would remain in its new state. For
such considerations, tools from dynamical systems theory and
topology can be used to classify the phase space of the system
into regions with respect to the reachability of a desirable
state [93,102]. This allows designing temporary policies that
leverage the multistability of the socioeconomic system.

V. CONCLUSION

This paper combines a set of methods to overcome
shortcomings of current approaches to base macroeconomic
models on microfoundations. While representative agent ap-
proaches are unable to capture dynamics that emerge from
structured and local interactions of multiple heterogeneous
agents, computational agent-based approaches have the dis-
advantage that they make tractable model analysis difficult
and computationally challenging. We demonstrated that a
combination of approximation techniques allows finding a
macrodescription of a multiagent system in which hetero-
geneous agents interact locally on a complex adaptive net-
work as well as via aggregated quantities. In contrast to
previous analytic work, where the network structure was
either static [36], restricted to starlike clusters [23], or ap-

proximated by a mean-field interaction approach and hence
neglected [24,25,29,30,35], we explicitly treat the structure
of the adaptive complex interaction network with appropriate
approximation methods.

We develop a stylized two-sector investment model, in
which investment decisions are driven by a social imita-
tion process, to showcase the three approximations: First,
a pair approximation of networked interactions takes into
account the heterogeneity in interaction patterns. Second,
a moment-closure approximation makes it possible to deal
with heterogeneous attributes that characterize the agents.
Third, the large-system limit abstracts from effects due to the
finite population size. It is only possible to take this limit if
the model has at least one of the following properties: (i)
individual interactions depend only on relative rather than
absolute quantities such that the size of households can be
decreased while taking the number of households to infinity
or (ii) the economic production functions exhibit constant
returns to scale such that they scale linearly with the number
of households N . The resulting set of ordinary differential
equations captures the effect of local interactions at the system
level while still allowing for analytical tractability.

A comparison between a computational version of the
ABM and the macrodescription reveals that the approximation
works well for parameter values distinct from special cases
even if only accounting for first moments. Taking more mo-
ments into account would increase the accuracy but comes
at the cost of higher dimensionality and complexity of the
macroscopic dynamical system.

Our model shows that social imitation dynamics add inertia
to the investment decisions in the system that cannot be
captured by a representative agent approach. The imitation
process results in social learning such that agents tend to direct
their investments into the more profitable sector over time.
Because of this, the shift of investments from the dirty (fossil)
to the clean (renewable) sector is driven only by economic
factors, namely, increasing exploration and extraction costs
for the fossil energy resource. Thus, we conclude that neutral
imitation of better-performing peers is not a feasible mecha-
nism to initiate a bottom-up transformation of the economy.
Directed imitation, for example, driven by changes in social
norms, and supporting policies that make dirty production less
profitable are needed to initiate a transformation towards a
sustainable economy in the absence of fossil resource short-
age.

Finding a system of ordinary differential equations to
approximate ABMs is useful because it makes the analysis
of the dynamical properties of the model much easier. One
promising application here is bifurcation theory, as illustrated
in Sec. IV. Furthermore, it opens the possibility of mathe-
matically proving model properties such as the dependency
between different parameters and variables in the model.

In the context of climate economics and policy, the pro-
posed techniques are especially important because they allow
investigation of the interplay of learning agents adapting to
new policies and effects of shifts in values and preferences.
The resulting changes in individual behavior and their impact
on macroeconomic dynamics can be studied in a comprehen-
sive modeling framework. Large shifts in investments that are
required to reach the goals of the Paris agreement are likely to
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FIG. 6. Comparison of a microscopic model with adaptive network dynamics with a microscopic model with a fully connected network
for varying the rewiring rate ϕ. All other parameters are listed in Table I. Solid lines indicate results with network adaptation; dashed lines,
results with a fully connected network. Initial network topology is a Erdős-Renyi random graph.

profit from both policies that rely on price signals and policies
that target individual norm change, interaction, and behavior
not unlike those researched in, e.g., the public-health context
[86,103,104]. The presented techniques can help us to better

understand how such behavioral interventions would impact
the macrolevel dynamics of the economic system.

In this regard, there are several promising avenues to
develop the model and approximation techniques further: For

FIG. 7. Model trajectories with varying ϕ values. All other parameters are listed in Table I. Results are ensemble averages of 200 runs.
Initial network topology is a Erdős-Renyi random graph.
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example, instead of binary opinions, the social interaction
model can use continuous variables to represent gradual
opinions, drawing on a variety of models of social influence
(see Ref. [83], pp. 988 ff.). An approximation of the agent
ensemble would then need a Fokker-Planck-type description
rather than a master equation.

Our model could be extended to explicitly include policy
instruments such as a carbon tax and explore its impact on the
investment decisions of the heterogeneous agent population.
Another promising modification could include consumption
decisions in our two-sector model. Consumption decisions are
strongly influenced by social norms and interactions [105].
Their inclusion could inform the discussion about green con-
sumption as a potential mechanism for a bottom-up transfor-
mation towards a more sustainable economy.

Finally, the techniques proposed in this paper could be
used to approximate other systems that interact both lo-
cally in a network and in an aggregate way at the sys-
tem level, for example, social-ecological systems or neural
networks.
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APPENDIX A: COMPARING ADAPTIVE WITH FULLY
CONNECTED NETWORKS

We compare the dynamics of the micro model with adap-
tive network rewiring with the dynamics of the micro model
with a fully connected acquaintance network. The model
with a fully connected acquaintance network is equivalent to
a well-mixed model with pairwise interactions between all
agents. The results in Fig. 6 show that the well-mixed model
approximates the adaptive network model for ϕ = 0.5 quite
well. However, for increasing ϕ, the fragmentation increases
in the adaptive network model, indicated by the lower fraction
of links between agents with different savings decisions (clean
and dirty), [cd]/M. This cannot be captured by the fully
connected network model. As an economically observable
result, this leads to significantly slower tipping in the adaptive
network model.

APPENDIX B: EFFECTS OF THE REWIRING RATE ϕ ON
MODEL DYNAMICS

We analyze the effect of changes in the network rewiring
rate ϕ on the model dynamics. The results in Fig. 7 indicate
that for an increasing rewiring rate ϕ the model undergoes a
transition from a connected network state with a considerable
number of connections between agents investing in different
sectors to a fragmented network state in which such connec-
tions are effectively nonexistent. This transition is especially
apparent in the fraction of [cd] links in the network given
in Fig. 7(b). This fragmentation transition is well known for
adaptive voter-type models [39,41,89,90].

APPENDIX C: ODEs RESULTING FROM APPROXIMATION

The following are the full ordinary differential equations resulting from (50), (51), (28f), and (28i):

ẋ = −εx

τ
− pcd z(ε − 1)(φ − 1)(x + 1)

τ (y + 1)
+ pdcz(ε − 1)(φ − 1)(x − 1)

τ (y − 1)
, (C1)

ẏ = −m(pcd z(ε − 1)(φ − 1) − pdcz(ε − 1)(φ − 1) + 0.5ε(y − 1) + 0.5ε(y + 1))

τ

+ (x − 1)(0.25εz(x − 1) − 0.25ε(x + 1)(y + z − 1) + 0.5φz(ε − 1))

τ (y − 1)

+ (x + 1)(0.25εz(x + 1) + 0.25ε(x − 1)(y − z + 1) − 0.5φz(ε − 1))

τ (y + 1)
, (C2)

ż = −εm(2z − 1)

τ
− 0.5pcd z(ε − 1)(φ − 1)((x + 1)(y + 1) − 2(y − 2z + 1)(my + m − 0.5x − 0.5))

τ (y + 1)2

− 0.5pdcz(ε − 1)(φ − 1)((x − 1)(y − 1) − 2(y + 2z − 1)(my − m − 0.5x + 0.5))

τ (y − 1)2

+ (x − 1)(0.25εz(x − 1) − 0.25ε(x + 1)(y + z − 1) + 0.5φz(ε − 1))

τ (y − 1)

− (x + 1)(0.25εz(x + 1) + 0.25ε(x − 1)(y − z + 1) − 0.5φz(ε − 1))

τ (y + 1)
, (C3)
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K̇ (c)
c = K (c)

c (−δ + rcs) + K (c)
d rd s + Lsw − 0.5K (c)

c (x + 1)(pcd z(ε − 1)(φ − 1) + 0.5ε(y + 1))

τ (y + 1)

+ 0.5K (d )
c (x − 1)(pdcz(ε − 1)(φ − 1) − 0.5ε(y − 1))

τ (y − 1)
, (C4)

K̇ (d )
d = K (d )

d (−δ + rd s) + K (d )
c rcs + Lsw + 0.5K (c)

d (x + 1)(pcd z(ε − 1)(φ − 1) + 0.5ε(y + 1))

τ (y + 1)

− 0.5K (d )
d (x − 1)(pdcz(ε − 1)(φ − 1) − 0.5ε(y − 1))

τ (y − 1)
, (C5)

K̇ (c)
d = −K (c)

d δ − 0.5K (c)
d (x + 1)(pcd z(ε − 1)(φ − 1) + 0.5ε(y + 1))

τ (y + 1)

+ 0.5K (d )
d (x − 1)(pdcz(ε − 1)(φ − 1) − 0.5ε(y − 1))

τ (y − 1)
, (C6)

K̇ (d )
c = −K (d )

c δ + 0.5K (c)
c (x + 1)(pcd z(ε − 1)(φ − 1) + 0.5ε(y + 1))

τ (y + 1)
− 0.5K (d )

c (x − 1)(pdcz(ε − 1)(φ − 1) − 0.5ε(y − 1))
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Reinforcement learning in multiagent systems has been studied in the fields of economic game theory, artificial
intelligence, and statistical physics by developing an analytical understanding of the learning dynamics (often
in relation to the replicator dynamics of evolutionary game theory). However, the majority of these analytical
studies focuses on repeated normal form games, which only have a single environmental state. Environmental
dynamics, i.e., changes in the state of an environment affecting the agents’ payoffs has received less attention,
lacking a universal method to obtain deterministic equations from established multistate reinforcement learning
algorithms. In this work we present a methodological extension, separating the interaction from the adaptation
timescale, to derive the deterministic limit of a general class of reinforcement learning algorithms, called
temporal difference learning. This form of learning is equipped to function in more realistic multistate
environments by using the estimated value of future environmental states to adapt the agent’s behavior. We
demonstrate the potential of our method with the three well-established learning algorithms Q learning, SARSA
learning, and actor-critic learning. Illustrations of their dynamics on two multiagent, multistate environments
reveal a wide range of different dynamical regimes, such as convergence to fixed points, limit cycles, and even
deterministic chaos.
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I. INTRODUCTION

Individual learning through reinforcements is a central
approach in the fields of artificial intelligence [1–3], neuro-
science [4,5], learning in games [6], and behavioral game
theory [7–10], thereby offering a general purpose principle to
either solve complex problems or explain behavior. Also in
the fields of complexity economics [11,12] and social science
[13], reinforcement learning has been used as a model for
human behavior to study social dilemmas.

However, there is a need for improved understanding and
better qualitative insight into the characteristic dynamics that
different learning algorithms produce. Therefore, reinforce-
ment learning has also been studied from a dynamical systems
perspective. In their seminal work, Börgers and Sarin showed
that one of the most basic reinforcement learning update
schemes, Cross learning [14], converges to the replicator
dynamics of evolutionary games theory in the continuous time
limit [15]. This has led to at least two, presumably nonover-
lapping, research communities, one from statistical physics
[16–26] and one from computer science machine learning
[27–35]. Thus, Sato and Crutchfield [18] and Tuyls et al. [27]
independently deduced identical learning equations in 2003.

The statistical physics articles usually consider the deter-
ministic limit of the stochastic learning equations, assum-
ing infinitely many interactions between the agents before
an adaptation of behavior occurs. This limit can either be
performed in continuous time with differential equations
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[17–19] or discrete time with difference equations [20–22].
The differences between both variants can be significant
[21,23]. Deterministic chaos was found to emerge when learn-
ing simple [17] as well as complicated games [25]. Relaxing
the assumption of infinitely many interactions between be-
havior updates revealed that noise can change the attractor
of the learning dynamics significantly, e.g., by noise-induced
oscillations [20,21].

However, these statistical physics studies so far considered
only repeated normal form games. These are games where the
payoff depends solely on the set of current actions, typically
encoded in the entries of a payoff matrix (for the typical case
of two players). Receiving payoff and choosing another set
of joint actions is performed repeatedly. This setup lacks the
possibility to study dynamically changing environments and
their interplay with multiple agents. In those systems, rewards
depend not only on the joint action of agents but also on the
states of the environment. Environmental state changes may
occur probabilistically and depend also on joint actions and
the current state. Such a setting is also known as a Markov
game or stochastic game [36,37]. Thus, a repeated normal
form game is a special case of a stochastic game with only one
environmental state. Notably, Akiyama and Kaneko [38,39]
did emphasize the importance of a dynamically changing
environment; however, they did not utilize a reinforcement
learning update scheme.

The computer science machine-learning community deal-
ing with reinforcement learning as a dynamical system (see
Ref. [28] for an overview) particularly emphasizes the link be-
tween evolutionary game theory and multiagent reinforcement
learning as a well grounded theoretical framework for the
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latter [28–31]. This dynamical systems perspective is pro-
posed as a way to gain qualitative insights about the variety
of multiagent reinforcement learning algorithms (see Ref. [2]
for a review). Consequently, this literature developed a fo-
cus on the translation of established reinforcement learning
algorithms to a dynamical systems description, as well as
the development of new algorithms based on insights of a
dynamical systems perspective. While there is more work on
stateless games (e.g., Q learning [27] and frequency-adjusted
multiagent Q learning [32]), multiagent learning dynamics for
multistate environments have been developed as well, such as
piecewise replicator dynamics [34], state-coupled replicator
dynamics [33], or reverse engineering state-coupled replicator
dynamics [35].

Both communities, statistical physics and machine learn-
ing, share the interest in better qualitative insights into mul-
tiagent learning dynamics. While the statistical physics com-
munity focuses more on dynamical properties the same set
of learning equations can produce, it leaves a research gap
of learning equations capable of handling multiple environ-
mental states. The machine-learning community, on the other
hand, aims more toward algorithm development, but so far
have put their focus less on a dynamical systems understand-
ing. Taken together, there is the challenge of developing a
dynamical systems theory of multiagent learning dynamics in
varying environmental states.

With this work, we aim to contribute to such a dynamical
systems theory of multiagent learning dynamics. We present
a methodological extension for obtaining the deterministic
limit of multistate temporal difference reinforcement learning.
In essence, it consists of formulating the temporal difference
error for batch learning, and sending the batch size to infinity.
We showcase our approach with the three prominent learning
variants of Q learning, SARSA learning, and actor-critic (AC)
learning. Illustrations of their learning dynamics reveal multi-
ple different dynamical regimes, such as fixed points, periodic
orbits, and deterministic chaos.

In Sec. II we introduce the necessary background and
notation. Section III presents our method to obtain the de-
terministic limit of temporal difference reinforcement learn-
ing and demonstrates it for multistate Q learning, SARSA
learning, and actor-critic learning. We illustrate their learning
dynamics for two previously utilized two-agent two-action
two-state environments in Sec. IV. In Sec. V we conclude with
a discussion of our work.

II. PRELIMINARIES

We introduce the components (including notation) of our
multiagent environment systems (see Fig. 1), followed by
a brief introduction of temporal difference reinforcement
learning.

A. Multi-agent Markov environments

A multiagent Markov environment (also called stochas-
tic game or Markov game) consists of N ∈ N agents. The
environment can exist in Z ∈ N states S = {S1, . . . , SZ}. In
each state each agent has M ∈ N available actions Ai =
{Ai

1, . . . , Ai
M}, i = 1, . . . , N to choose from. Having an iden-

tical number of actions for all states and all agents is notational

convenience, no significant restriction. A joint action of all
agents is referred to by a ∈ A = A1 × · · · × AN , the joint
action of all agents but agent i is denoted by a−i ∈ A−i =
A1 × · · · × Ai−1 × Ai+1 × · · · × AN .

Environmental dynamics are given by the probabilities
for state changes expressed as a transition tensor T ∈
[0, 1]Z×M×...(N times)···×M×Z . The entry Tsas′ denotes the prob-
ability P(s′|s, a) that the environment transitions to state s′
given the environment was in state s and the agents have
chosen the joint action a. Hence, for all s, a,

∑
s′ Tsas′ = 1

must hold. The assumption that the next state only depends on
the current state and joint action makes our system Markovian.
We here restrict ourselves to ergodic environments without
absorbing states (cf. Ref. [35]).

The rewards receivable by the agents are given by the
reward tensor R ∈ RN×Z×M×...(N times)···×M×Z . The entry Ri

sas′
denotes the reward agent i receives when the environment
transits from state s to state s′ under the joint action a. Rewards
are also called payoffs from a game-theoretic perspective.

Agents draw their actions from their behavior profile X ∈
[0, 1]N×Z×M . The entry X i

sa = P(a | i, s) denotes the proba-
bility that agent i chooses action a in state s. Thus, for all
i and all s,

∑
a X i

sa = 1 must hold. We here focus on the
case of independent agents, able to fully observe the current
state of the environment. With correlated behavior (see, e.g.,
Ref. [2]) and partially observable environments [40,41], one
could extend the multiagent environment systems to be even
more general. Note that what we call behavior profile is
usually termed policy from a machine-learning perspective
or behavioral strategy from a game-theoretic perspective.
We chose to introduce our own term because policies and
strategies suggest a deliberate choice which we do not want
to impose.

B. Averaging out behavior and environment

We define a notational convention that allows a systematic
averaging over the current behavior profile X and the environ-
mental transitions T. It will be used throughout the paper.

Averaging over the whole behavioral profile yields

X〈◦〉 :=
∑

a

Xsa · ◦

:=
∑

a1∈A1

· · ·
∑

aN ∈AN

X 1
sa1 · · · X N

saN · ◦. (1)

Here ◦ serves as a placeholder. If the quantity to be inserted for
◦ depends on the summation indices, then those indices will
be summed over as well. If the quantity, which is averaged
out, is used in tensor form, then it is written in bold. If not,
then remaining indices are added after the right angle bracket.

Averaging over the behavioral profile of the other agents,
keeping the action of agent i, yields

X−i〈◦〉 :=
∑
a−i

X−i
sa−i · ◦

:=
∑

a1∈A1

· · ·
∑

aN ∈AN︸ ︷︷ ︸
excl. i

X 1
sa1 · · · X N

saN︸ ︷︷ ︸
excl. i

· ◦ . (2)

043305-2

theoretical and methodological work 377

Reprinted paper with permission from W. Barfuss et al., Deterministic limit of temporal difference reinforcement learning for stochastic games, Phys.
Rev. E, vol. 99, no. 4, pp. 1-16, 2019, doi: 10.1103/PhysRevE.99.043305. Copyright 2019 by the American Physical Society

https://doi.org/10.1103/PhysRevE.99.043305


DETERMINISTIC LIMIT OF TEMPORAL DIFFERENCE … PHYSICAL REVIEW E 99, 043305 (2019)

Environment

state transition

state set

state observation

reward

Agent

action set

joint action

from behavior pro file

FIG. 1. Multiagent Markov environment (also known as stochastic or Markov game). N agents choose a joint action a = (a1, . . . , aN ) from
their action sets Ai, based on the current state of the environment s, according to their behavior profile X i

sa = P(a|i, s). This will change the
state of the environment from s to s′ with probability Tsas′ and provide each agent with a reward Ri

sas′ .

Last, averaging over the subsequent state s′ yields

T〈◦〉 :=
∑

s′
Tsas′ · ◦ :=

∑
s′∈S

Tsa1...aN s′ · ◦. (3)

Of course, these operations may also be combined as TX〈◦〉
and TX−i〈◦〉 by multiplying both summations.

For example, given a behavior profile X, the resulting
effective Markov Chain transition matrix reads X〈T 〉ss′ , which
encodes the transition probabilities from state s to s′. From
X〈T 〉ss′ the stationary distribution of environmental states
σ(X) can be computed. σ(X) is the eigenvector corresponding
to the eigenvalue 1 of X〈T 〉ss′ . Its entries encode the ratios
of the average durations the agents find themselves in the
respective environmental states.

The average reward agent i receives from state s under
action a, given all other agents follow the behavior profile
X reads TX−i〈R〉i

sa. Including agent i’s behavior profile gives
the average reward it receives from state s: TX〈R〉i

s. Hence,
TX〈R〉i

s = ∑
a X i

sa · TX−i〈R〉i
sa holds.

C. Agent’s preferences and values

Typically, agents are assumed to maximize their expo-
nentially discounted sum of future rewards, called return
Gi(t ) = (1 − γ i )

∑∞
k=0(γ i)kri(t + k), where γ i ∈ [0, 1) is the

discount factor of agent i and ri(t + k) denotes the reward
received by agent i at time step t + k. Exponential discounting
is most commonly used for its mathematical convenience and
because it ensures consistent preferences over time. Other
formulations of a return use, e.g., finite-time horizons, average
reward settings, as well as other ways of discounting, such as
hyperbolic discounting. Those other forms require their own
form of reinforcement learning.

Given a behavior profile X, the expected return defines
the state-value function V i

s (X) := TX〈Gi(t ) | s(t ) = s〉i
s, which

is independent of time t . The operation TX〈. . . | s(t ) = s〉
denotes the behavioral and environmental average as defined
in Eqs. (1) and (3) given that in the current time step t
the environment is in state s. Inserting the return yields the
Bellman equation [42],

V i
s (X) = TX

〈
(1 − γ i )ri(t ) + γ iV i

s(t+1)(X)
∣∣s(t ) = s

〉i
s
. (4)

This recursive relationship between state values declares
that the value of a state s is the discounted value of the sub-

sequent state s(t + 1) plus (1 − γ i) times the reward received
along the way. Evaluating the behavioral and environmental
average TX〈 〉 and writing in matrix form we get:

Vi(X) = (1 − γ i ) · TX〈R〉i + γ i · X〈T〉 · Vi(X). (5)

The reward ri(t ) received at time step t is evaluated to reward
TX〈R〉i

s for state s, since the behavioral and environmental
average was conditioned on starting in state s(t ) = s. The
average subsequent state value V i

s(t+1)(X) from the current
state s can be expressed as a matrix multiplication of the
effective Markov transition matrix and the vector of state
values:

∑
s′ X〈T 〉ss′ · Vi

s′ (X).
A solution of the state values Vi(X) can be obtained using

matrix inversion

Vi(X) = (1 − γ i )(1Z − γ i
X〈T〉)−1

TX〈R〉i. (6)

The computational complexity of matrix inversion makes this
solution strategy infeasible for large systems. Therefore many
iterative solution methods exist [3].

Equivalently, state-action-value functions Qi
sa are de-

fined as the expected return, given agent i applied action
a in state s and then followed X accordingly: Qi

sa(X) :=
TX〈Gi(t ) | s(t ) = s, a(t ) = a〉i

sa. Even though this is the be-
havioral average over the whole behavioral profile, the re-
sulting object carries an action index because the operation
is conditioned on the current action to be a(t ) = a. They can
be computed via

Qi
sa(X) = (1 − γ i )TX−i〈R〉i

sa + γ i
∑

s′
X〈T 〉ss′ · V i

s′ (X). (7)

One can show that V i
s (X) = ∑

a X i
saQi

sa(X) holds for the
inverse relation of state-action and state values.

D. Learning through reinforcement

In contrast to the typical game-theoretic assumption of per-
fect information, we assume that agents know nothing about
the game in advance. They can only gain information about
the environment and other agents through interactions. They
do not know the true reward tensor R or the true transition
probabilities Tsas′ . They experience only reinforcements (i.e.,
particular rewards Ri

sas′ ), while observing the current true
Markov state of the environment.
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In essence, reinforcement learning consists of iterative be-
havior changes toward a behavior profile with maximum state
values. However, due to the agents’ limited information about
the environment, they generally cannot compute a behavior
profile’s true state and state-action values, V i

s (X) and Qi
sa(X),

as defined in the previous section. Therefore, agents use
time-dependent state-value and state-action-value approxi-
mations, Ṽ i

s (t ) and Q̃i
sa(t ), during the reinforcement learning

process.

1. Temporal difference learning

Basically, state-action-value approximations Q̃i
sa get itera-

tively updated by a temporal difference error Di
sa(t ):

Q̃i
sa(t + 1) = Q̃i

sa(t ) + αiDi
sa(t ), (8)

with αi ∈ (0, 1) being the learning rate of agent i. These state-
action propensities Q̃i

sa can be interpreted as estimates of the
state-action values Qi

sa.
The temporal difference error expresses a difference in

the estimation of state-action values. New experience is used
to compute a new estimate of the current state-action value
and corrected by the old estimate. The estimate from the
new experience uses exactly the recursive relation of value
functions from the Bellmann equation [Eq. (4)],

Di
sa(t ) = δss(t )δaa(t )

·
[

(1 − γ i )Ri
s(t )a(t )a−i (t )s(t+1) + γ i �i

s(t+1) (t )︸ ︷︷ ︸
estimate from new experience

− �i
s(t )(t )︸ ︷︷ ︸

old estimate

]
. (9)

Here s and a denote the state-action pair whose temporal
difference error is calculated. With s(t ), a(t ), etc., we refer
to the state, action, etc., that occurred at time step t . Thus,
the notation Ri

s(t )a(t )a−i (t )s(t+1) refers to the entry of the reward
tensor Ri

saa−is′ when at time step t the environmental state was
s [s(t ) = s], agent i chose action a [a(t ) = a], the other agents
chose the joint action a−i [a−i(t ) = a−i] and the next environ-
mental state was s′ [s(t + 1) = s′]. The �i

s(t+1)(t ) indicates the
state-value estimate at time step t of the state visited at the next
time step s(t + 1). �i

s(t )(t ) denotes the state-value estimate at
time step t of the current state s(t ). Different choices for these
estimations are possible, leading to different learning variants
(see below).

The Kronecker deltas δss(t ), δaa(t ) indicate that the temporal
difference error for state-action pair (s, a) is only nonzero
when (s, a) was actually visited in time step t . This denotes
and emphasizes that agents can only learn from experience. In
contrast, e.g., experience-weighted-attraction learning [9] as-
sumes that action propensities can be updated with hypotheti-
cal rewards an agent would have received if she had played
a different action than the current action. These two cases
have been referred to as full vs. partial information [16]. Thus,
the Kronecker deltas in Eq. (9) indicate a partial information
update. The agents use only information experienced through
interaction.

The state-action-value approximations Q̃i
sa are translated to

a behavior profile according to the Gibbs-Boltzmann distribu-

tion [1] (also called softmax),

X i
sa(t ) = exp

[
β iQ̃i

sa(t )
]

∑
b exp

[
β iQ̃i

sb(t )
] . (10)

The behavior profile X becomes a dynamic variable as
well. The parameter β i controls the intensity of choice or
the exploitation level of agent i controlling the exploration-
exploitation trade-off. In analogy to statistical physics, β i is
the inverse temperature. For high β i, agents tend to exploit
their learned knowledge about the environment, leaning to-
ward actions with high estimated state-action value. For low
β i, agents are more likely to deviate from these high-value
actions in order to explore the environment further with the
chance of finding actions, which eventually lead to even
higher values. Other behavior profile translations exist as well
(e.g., ε-greedy [1]).

2. Three learning variants

The specific choices of the value estimates � in the tempo-
ral difference error result in different reinforcement learning
variants.

a. Q learning. For the Q learning algorithm [1,3],
�i

s(t+1)(t ) = maxb Q̃i
s(t+1)b(t ) and �i

s(t )(t ) = Q̃i
s(t )a(t )(t ). Thus,

the Q learning update takes the maximum of the next state-
action-value approximations as an estimate for the next state
value, regardless of the actual next action the agent plays.
This is reasonable because the maximum is the highest value
achievable given the current knowledge. For the state-value
estimate of the current state, the Q learner takes the current
state-action-value approximation Qi

s(t )a(t )(t ). This is reason-
able because it is exactly the quantity that gets updated by
Eq. (8).

b. SARSA learning. For SARSA learning [1,3], �i
s(t+1)(t )=

Q̃i
s(t+1)a(t+1)(t ) and �i

s(t )(t ) = Q̃i
s(t )a(t )(t ), where a(t + 1) de-

notes the action taken by agent i at the next time step. Thus,
the SARSA algorithm uses the five ingredients of an update
sequence of state, action, reward, next state, and next action
to perform one update. In practice, the SARSA sequence has
to be shifted one time step backward to know what the actual
“next” action of the agent was.

c. Actor-critic learning. For AC learning [1,3], �i
s(t+1)(t )=

Ṽ i
s(t+1)(t ) and �i

s(t )(t ) = Ṽ i
s(t )(t ). Compared to Q and SARSA

learners, it has an additional data structure of state-value
approximations which get separately updated according to
Ṽ i

s (t + 1) = Ṽ i
s (t ) + αi · Di

sa(t ). The state-action-value ap-
proximations Q̃i

sa serve as the actor which gets criticized by
the state-value approximations Ṽ i

s .
Table I summarizes the values estimates � for these three

learning variants. Q and SARSA learning are structurally
more similar compared to the actor-critic learner, which uses
an additional data structure of state-value approximations Ṽ i

s .

III. DETERMINISTIC LIMIT

So far we gave a brief introduction to temporal difference
reinforcement learning. A more comprehensive presentation
can be found in Ref. [1]. In this section we will present
an extension to the methodology of interaction-adaptation
timescales separation to the general class of temporal
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TABLE I. Overview of the three reinforcement learning variants. Shown in the
columns are the value estimates for the next state �i

s(t+1)(t ) and the current state �i
s(t )(t )

for both ends of the batch size spectrum: K = 1 and K = ∞.

(a) K = 1 (b) K = ∞
�i

s(t+1)(t ) �i
s(t )(t ) �i

s(t+1)(t ) �i
s(t )(t )

Q learning maxb Q̃i
s(t+1)b(t ) Q̃i

s(t )a(t )(t ) maxQi
sa(X) 1

β i log X i
sa(t )

SARSA learning Q̃i
s(t+1)a(t+1)(t ) Q̃i

s(t )a(t )(t ) nextV i
sa(X) 1

β i log X i
sa(t )

AC learning Ṽ i
s(t+1)(t ) Ṽ i

s(t )(t ) nextV i
sa(X) /

difference reinforcement learning. In summary, we (i) give
a batch formulation of the temporal difference error, (ii)
separate the timescales of interaction and adaptation by send-
ing the batch size to infinity, and (iii) present a resulting
deterministic limit conversion rule for discrete time updates.
We showcase our method in the three learning variants
of Q, SARSA, and actor-critic learning. For the statistical
physics community, we present learning equations, capable
of handling environmental state transitions. For the machine-
learning community, we present the systematic methodology
we use to obtain the deterministic learning equations. Note
that these deterministic learning equations will not depend on
the state-value or state-action-value approximations anymore,
being iterated maps of the behavior profile alone.

Following, e.g., Refs. [18,19,22], we first combine Eqs. (8)
and (10) and obtain

X i
sa(t + 1) = X i

sa(t ) exp
[
αiβ iDi

sa(t )
]

∑
b X i

sb(t ) exp
[
αiβ iDi

sb(t )
] . (11)

Although it appears that only the product αiβ i matters for
a behavior profile update, the temporal difference error Di

sa
may depend only on the exploitation level β i, as we will show
below.

Next, we formulate the temporal difference error for batch
learning.

A. Batch learning

With batch learning we mean that several time steps of in-
teraction with the environment and the other agents take place
before an update of the state-action-value approximations and
the behavior profile occurs. It has also been interpreted as
a form of history replay [43] which is essential to stabilize
the learning process when function approximation (e.g., by
deep neural networks) is used [44]. History (i.e., already
experienced state, action, next state triples) is used again for
an update of the state-action-value approximations.

Imagine that the information from these interactions are
stored inside a batch of size K ∈ N. We introduce the
corresponding temporal difference error of batch size K :

Di
sa(t ; K ) := 1

K (s, a)

K−1∑
k=0

{
δss(t+k)δaa(t+k)

× [
(1 − γ i )Ri

s(t+k)a(t+k)a−i (t+k)s(t+k+1)

+ γ i �i
s(t+k+1) (t ) − �i

s(t )(t )
]}

, (12)

where K (s, a) = max[1,
∑K−1

k=0 δss(t+k)δaa(t+k)] denotes the
number of times the state-action pair (s, a) was visited. If the
state-action pair (s, a) was never visited, then K (s, a) = 1.
The agents interact K times under the same behavior profile
and use the sample average to summarize the new experience
in order to update the state-action-value approximations:

Q̃i
sa(t + K ) = Q̃i

sa(t ) + αiDi
sa(t ; K ). (13)

The notation Di
sa(t ) denotes a batch update of batch size 1:

Di
sa(t ) = Di

sa(t ; 1).

B. Separation of timescales

We obtain the deterministic limit of the temporal differ-
ence learning dynamics by sending the batch size to infinity,
K → ∞. Equivalently, this can be regarded as a separation
of timescales. Two processes can be distinguished during an
update of the state-action-value approximations �Q̃i

sa(t ) :=
Q̃i

sa(t + 1) − Q̃i
sa(t ): adaptation and interaction,

�Q̃i
sa(t ) = αiδss(t )δaa(t )·

adaptation︷ ︸︸ ︷[
(1 − γ i )Ri

s(t )a(t )a−i (t )s(t+1) + γ i �i
s(t+1) (t )︸ ︷︷ ︸

interaction

− �i
s(t ) (t )

]
.

(14)

By separating the timescales of both processes, we assume
that (infinitely) many interactions happen before one step of
behavior profile adaptation occurs.

Under this assumption and because of the assumed er-
godicity one can replace the sample average, i.e., the sum
over sequences of states and actions with the behavior profile
average, i.e., the sum over state-action behavior and transition
probabilities according to

1

K (s, a)

K−1∑
k=0

δss(t+k)δaa(t+k) →
∑

s′

∑
a−i

X−i
sa−i Tsaa−is′ . (15)

For example, the immediate reward Ri
s(t )a(t )a−i (t )s(t+1) in the

temporal difference error becomes TX−i〈R〉i
sa. The time t gets

resealed accordingly, as well.
Taking the limit K → ∞ in this way, we choose to stay

in discrete time, leaving the continuous time limit following
Refs. [18,19,25] for future work.
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C. Three learning variants

Next we present the deterministic limit of the temporal
difference error of the three learning variants of Q, SARSA,
and actor-critic learning. Inserting them into Eq. (11) yields
the complete description of the behavior profile update in
the deterministic limit. Table I presents an overview of the
resulting equations and a comparison to their batch size K = 1
versions.

1. Q learning

The temporal difference error of Q learning consists of
three terms: (i) Ri

s(t )a(t )a−i (t )s(t+1), (ii) maxb Q̃i
s(t+1)b(t ), and

(iii) Q̃i
s(t )a(t )(t ). As already stated, Ri

s(t )a(t )a−i (t )s(t+1) →
TX−i〈R〉i

sa under K → ∞. maxb Q̃i
s(t+1)b(t ) → maxQi

sa(X),
which is defined as

maxQi
sa(X) :=

∑
s′

∑
a−i

X−i
sa−i Tsaa−is′ max

b
Qi

s′b(X) (16)

using the deterministic limit conversion rule [Eq. (15)]. Be-
cause of the assumption of infinite interactions, we can here
replace the state-action-value approximations Q̃i

s(t+1)b with the
true state-action values Qi

s′b as defined by Eq. (7).
For the third term, we invert Eq. (10), yielding Q̃i

sa(t ) =
(β i )−1 log X i

sa(t ) + constis, where constis is constant in ac-
tions but may vary for each agent and state. Now, one can
show that the dynamics induced by Eq. (11) are invariant
against additive transformations in the temporal difference
error Di

sa(t,∞) → Di
sa(t,∞) + constis. Thus, the third term

can be converted according to Q̃i
s(t )a(t )(t ) → (β i )−1 log X i

sa(t ).
All together, the temporal difference error for Q learning in

the deterministic limit reads

qDi
sa(t,∞) = (1 − γ i )TX−i〈R〉i

sa

+ γ i maxQi
sa(X) − 1

β i
log X i

sa(t ). (17)

2. SARSA learning

Two of the three terms of the SARSA temporal differ-
ence error are identical to the one of Q learning, leaving
Q̃i

s(t+1)a(t+1)(t ), which we replace by

nextQi
sa(X) :=

∑
s′

∑
a−i

X−i
sa−i Tsaa−is′

∑
b

X i
s′bQi

s′b(X) (18)

using again the deterministic limit conversion rule [Eq. (15)]
and the state-action value Qi

s′b(X) of the behavior profile X
according to Eq. (7).

Thus, the temporal difference error for the SARSA learn-
ing update in the deterministic limit reads

sarsaDi
sa(t ; ∞) = (1 − γ i )TX−i〈R〉i

sa

+ γ i nextQi
sa(X) − 1

β i
log X i

sa(t ). (19)

3. Actor-critic learning

For the temporal difference error for AC learning we have
to find replacements for (i) Ṽ i

s(t+1)(t ) and (ii) Ṽ i
s(t )(t ). Applying

again Eq. (15) yields Ṽ i
s(t+1)(t ) → nextV i

sa, defined as

nextV i
sa :=

∑
s′

∑
a−i

X−i
sa−i Tsaa−is′V i

s′ (X), (20)

using Eq. (6) for the state value V i
s′ (X). This is the average

value of the next state given that in the current state the agent
took action a. One can show that nextV i

sa(X) = nextQi
sa(X)

from the SARSA update.
The second remaining term belongs to the slower

adaptation timescale or, in other words, occurs outside
the batch. Thus, our deterministic limit conversion rule
[Eq. (15)] does not apply. We could think of a conversion
Ṽ i

s(t )(t ) := ∑
a X i

saQ̃i
s(t )a(t )(t ) → (β i )−1 ∑

a X i
sa(t ) log X i

sa(t ).
However, the remaining term is constant in action, and there-
fore irrelevant for the dynamics, as we have argued above.
Thus, we can simply put Ṽ i

s(t )(t ) → 0.
All together, the temporal difference error of the actor-

critic learner in the deterministic limit reads

acDi
sa(t,∞) = (1 − γ i )TX−i〈R〉i

sa + γ i nextV i
sa(X). (21)

IV. APPLICATION TO EXAMPLE ENVIRONMENTS

In the following we apply the derived deterministic learn-
ing equations in two different environments. Specifically, we
compare the three well-established temporal difference learn-
ing variants (Q learning, SARSA learning, and AC learning)
in two different two-agent (N = 2), two-action (M = 2), and
two-state (Z = 2) environments: a two-state matching pennies
game and a two-state prisoner’s dilemma. Since the main
contribution of this paper is the derivation of the deterministic
temporal difference learning equations, we are not trying
to make a case with our example environments beyond a
systematic comparison of our learners. Therefore, we chose
environments that have been used previously in related lit-
erature [33–35,45]. Note also that we leave a comparison
between the deterministic limit and the stochastic equations
to future work, which would add a noise term to our equations
following the example of Ref. [20].

To measure the performance of an agent’s behavior profile
in a single scalar, we use the dot product between the station-
ary state distribution σ(X) of the effective Markov Chain with
the transition matrix X〈T〉 and the behavior average reward
TX〈R〉i. Interestingly, we find this relation to be identical to the
dot product of the stationary distribution and the state value
Vi(X):

σ(X) · TX〈R〉i = σ(X) · Vi(X). (22)

This relation can be shown by using Eq. (6) and the fact that
σ(X) is an eigenvector of X〈T〉.

In the following examples we will only investigate homo-
geneous agents, i.e., agents whose parameters will not differ
from each other. We will therefore drop the agent indices from
αi, β i, and γ i. The heterogeneous agent case is to be explored
in future work.

A. Two-state matching pennies

The single-state matching pennies game is a paradigmatic
two-agent, two-action game. Imagine the situation of soccer
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FIG. 2. Two-state matching pennies. Rewards are given in black

type in the payoff tables for each state. State-transition probabilities
are indicated by (blue) arrows.

penalty kicks. The keeper (agent 1) can choose to jump either
to the left or right side of the goal, and the kicker (agent 2)
can choose to kick the ball also either to the left or the right.
If both agents choose the identical side, then the keeper agent
wins; otherwise, the kicker wins.

In the two-state version of the game, according to Ref. [35],
the rules are extended as follows: In state 1 the situation is as
described in the single-state version. Whenever agent 1 (the
keeper) decides to jump to the left, the environment transitions
to state 2, in which the agents switch roles: Agent 1 now
plays the kicker and agent 2 the keeper. From here, whenever
agent 1 (now the kicker) decides to kick to the right side the
environment transition again to state 1 and both agents switch
their roles again.

Figure 2 illustrates this two-state matching pennies games.
Formally, the payoff matrices are given by

(
R1

111s′ , R2
111s′ R1

112s′ , R2
112s′

R1
121s′ , R2

121s′ R1
122s′ , R2

122s′

)
=

(
1, 0 0, 1
0, 1 1, 0

)

in state 1 and(
R1

211s′ , R2
211s′ R1

212s′ , R2
212s′

R1
221s′ , R2

221s′ R1
222s′ , R2

222s′

)
=

(
0, 1 1, 0
1, 0 0, 1

)

in state 2 for s′ ∈ {1, 2}. State transitions are governed by(
T1112 T1122

T1212 T1222

)
=

(
1 1
0 0

)
and

(
T2111 T2121

T2211 T2221

)
=

(
0 0
1 1

)
.

Thus, by construction, the probability of transitioning to
the other state is independent of agent 2’s action. Only
agent 1 has agency over the state transitions. By playing
a uniformly random behavior profile (X 1

11, X 2
11, X 1

21, X 2
21) =

(0.5, 0.5, 0.5, 0.5), both agents would obtain an average re-
ward of 0.5 per time step.

With Fig. 3 we compare the temporal difference error in
the behavior space sections for each environmental state at a
comparable low discount factor γ ∈ [0, 1) of γ = 0.1, as well
as learning trajectories for an exemplary initial condition for
two learning rates α ∈ (0, 1), a low one (α = 0.02) and a high
one (α = 0.8). Overall, we observe a variety of qualitatively
different dynamical regimes, such as fixed points, periodic
orbits and chaotic motion.

Specifically, we see that Q learners and SARSA learners
behave qualitatively similarly in contrast to the AC learners
for both learning rates α. For the low learning rate α = 0.02,
Q and SARSA learners reach a fixed point of playing both
actions with equal probability in both states, yielding a reward
of 0.5. Due to the low α, this takes approximately 600 time
steps. In contrast, the reward trajectory of the AC learners
appears to be chaotic. Figure 5 confirms this observation,
which we will discuss in more detail below.

FIG. 3. Three learners in two-state matching pennies environment for low discount factor γ = 0.1; intensity of choice β = 5.0. At the top,
the temporal difference errors for the Q learners [Eq. (17)], SARSA learners [Eq. (19)], and AC learners [Eq. (21)] are shown in two behavior
phase-space sections, one for each state. The arrows indicate the average direction the temporal difference errors drive the learner toward,
averaged over all phase-space points of the other state. Arrow colors (and shadings) additionally encode their lengths. Selected trajectories are
shown in the phase-space sections, as well as by reward trajectories, plotting the average reward value [Eq. (22)] over time steps. Crosses in
the phase-space subsections indicate the initial behavior (X 1

11, X 2
11, X 1

21, X 2
21) = (0.01, 0.99, 0.3, 0.4). Circles signal the arrival at a fixed point,

determined by the absolute difference of behavior profiles between two subsequent time steps being below ε = 10−6. Trajectories are shown
for two different learning rates α = 0.02 (light red) and α = 0.8 (dark blue). The bold reward trajectory belongs to agent 1 and the thin one to
agent 2. Note that the temporal difference error is independent from the learning rate α. A variety of qualitatively different dynamical regimes
can be observed.

043305-7

382 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reprinted paper with permission from W. Barfuss et al., Deterministic limit of temporal difference reinforcement learning for stochastic games, Phys.
Rev. E, vol. 99, no. 4, pp. 1-16, 2019, doi: 10.1103/PhysRevE.99.043305. Copyright 2019 by the American Physical Society

https://doi.org/10.1103/PhysRevE.99.043305


BARFUSS, DONGES, AND KURTHS PHYSICAL REVIEW E 99, 043305 (2019)

FIG. 4. Two-state matching pennies environment for high discount factor γ = 0.9; otherwise, identical to Fig. 3.

For the high learning rate α = 0.8, both Q and SARSA
learners enter a periodic limit cycle. Differences in the tra-
jectories of Q and SARSA learners are clearly visible. The
time average reward of this periodic orbit appears to be
approximately 0.5 for each agent, identical to the reward of
the fixed point at lower α. The AC learners, however, converge
to a fixed point after oscillating near the edges of the phase
space. At this fixed point agent 1 plays action 1 in state 1
with probability 1. Thus, it has trapped the system into state
2. In state 2, agent 1 plays action 2 and agent 2 plays action
1 with probability 1 and, consequently, agent 1 receives a
reward of 1, whereas agent 2 receives 0 reward. One might
ask, Why does agent 2 not decrease her probability for playing
action 1, thereby increasing her own reward? And, indeed, the
arrows of the temporal difference error suggest this change
of behavior profile. However, agent 2 cannot follow because
her behavior is trapped on the simplex of nonzero action
probabilities X 2

2a. For only M = 2 actions, X 2
21 = 1 thus can

no longer change, regardless of the temporal difference error.
Increasing the discount factor to γ = 0.9, we observe the

learning rate α to set the timescale of learning (Fig. 4). The
intensity of choice remained β = 5.0. A high learning rate
α = 0.8 corresponds to faster learning in contrast to a low
learning rate α = 0.02. Also, the ratio of learning timescales
is comparable to the inverse ratio of learning rates. For both
α, Q and SARSA learners reach a fixed point, whereas the AC
learners seem to move chaotically (details to be investigated
below). Comparing the trajectories between the learning rates
α, we observe a similar shape for each pair of learners.
However, the similarity of the AC trajectories decreases at
larger time steps.

So far, we varied two parameters: the discount factor γ ∈
[0, 1) and the learning rate α ∈ (0, 1). Combining Figs. 3 and
4, we investigated all four combinations of a low and a high
γ with a low and a high α. We can summarize that Q and
SARSA learners converge to a fixed point for all combinations
of discount factor γ and learning rate α, except when γ is
low and α simultaneously high. Actor-critic dynamics seem
chaotic for all combinations of α and γ .

To investigate the relationship between the parameters
more thoroughly, Fig. 5 shows bifurcation diagrams with the
bifurcation parameters α and γ . Additionally, it also gives the
largest Lyapunov exponents for each learner and each param-
eter combination. A largest Lyapunov exponent greater than
zero is a key characteristic of chaotic motion. We computed
the Lyapunov exponent from the analytically derived Jacobian
matrix, iteratively used in a QR decomposition according to
Ref. [46]. See Appendix for details.

The largest Lyapunov exponent for Q and SARSA learners
align almost perfectly with each other, whereas the largest
Lyapunov exponent of the AC learners behaves qualitatively
different. We first describe the behavior of the Q and SARSA
learner: For high learning rates α and low farsightedness
γ , Fig. 5 shows a periodic orbit with few (four) points
in phase space. Largest Lyapunov exponents are distinctly
below 0 at those regimes. Increasing the farsightedness γ

both learners enter a regime of visiting many points in phase
space around the stable fixed point (X 1

11, X 2
11, X 1

21, X 2
21) =

(0.5, 0.5, 0.5, 0.5). The largest Lyapuonv exponents are close
to zero. With increasing γ the distance around this fixed-
point solution decreases until the dynamics converge from a
farsightedness γ slightly greater than 0.5 onward. From there
the largest Lyapunov exponent decreases again for further
increasing γ . The same observations can be made along a
decreasing bifurcation parameter α, except that at the end,
for low α, the largest Lyapunov exponents do not decrease
as distinctly as for high γ .

The behavior of the actor-critic dynamics is qualitatively
different from the one of Q and SARSA. The placement of
the fixed points on the natural numbers grid suggests that the
AC learners get confined on one of the 16 (MNZ ) corners of
the behavior phase space. No regularity to which fixed
point the AC learners converge can be deduced. The largest
Lyapunov exponent is always above zero and experiences an
overall decreasing behavior. Similarly, for a decreasing bifur-
cation parameter α, the largest Lyapunov exponent tends to
decrease as well. Different from the bifurcation diagram along
γ , for low α the system might enter a periodic motion but only
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FIG. 5. Varying discount factor γ and learning rate α in two-state
matching pennies environment for intensity of choice β = 5.0 for
the Q learners (green crosses), the SARSA learners (blue dots), and
the AC learners (red triangles). On the left, the discount factor γ is
varied with learning rate α = 0.8, as indicated by the gray vertical
lines on the right. On the right, the learning rate α is varied with
discount factor γ = 0.1 as indicated by the gray vertical lines on the
left. The three top panels show the visited behavior points during
1000 iterations after a transient period of 100 000 time steps from
initial behavior (X 1

11, X 2
11, X 1

21, X 2
21) = (0.01, 0.99, 0.3, 0.4). Visited

points are mapped to the function 8X 2
21 + 4X 1

21 + 2X 2
11 + X 1

11 on the
vertical axes to give a fuller image of the visited behavior profiles.
The bottom panel shows the corresponding largest Lyapunov expo-
nents for the three learners. Overall, Q and SARSA learners behave
qualitatively more similarly than the actor-critic learners.

for some parameters α. No regularity can be determined at
which parameters α the AC learners enter a periodic motion.
A more thorough investigation of the nonlinear dynamics,
especially those of the actor-critic learner, seems of great
interest but is, however, beyond the scope of this article and
leaves promising paths for future work.

Concerning the parameter β, the intensity of choice, one
can infer from the update equations [Eq. (11) combined with
Eq. (19) and Eq. (21)] that the dynamics for the AC learners
are invariant for a constant product αβ. This is because the
temporal difference error of the actor-critic learners in the
deterministic limit is independent of β. Further, the dynamics
of the SARSA learners will converge to the dynamics of the
AC learners under β → ∞. Figure 6 nicely confirms these
two observations. Observing Table I is another way to see

FIG. 6. Varying intensity of choice β under constant αβ in a two-
state matching pennies environment for discount factor γ = 0.9. On
the left trajectories of the three learners [Q, green dashed; SARSA,
blue straight; AC, red dotted] are shown in the two behavior space
sections, one for each state. On the right, the corresponding reward
trajectories are shown. The initial behavior was (X 1

11, X 2
11, X 1

21, X 2
21) =

(0.01, 0.99, 0.3, 0.4). The bold reward trajectory belongs to agent 1
and the thin one to agent 2. One observes the deterministic limit of
actor-critic learning to be invariant under constant αβ and SARSA
learning to converge to AC learning under β → ∞.

this. Since the value estimate of the future state is identical
for SARSA and AC learning, letting the value estimate of the
current state vanish by sending β → ∞ makes the SARSA
learners approximate the AC learners.

As mentioned before, β controls the exploration-
exploitation trade-off. In the temporal difference errors of Q
and SARSA learning it appears in the term indicating the
value estimate of the current state −1/β i log(X i

sa). If this
term dominates the temporal difference error (i.e., if β is
small), then the learners tend toward the center of behavior
space, i.e., (X 1

11, X 2
11, X 1

21, X 2
21) = (0.5, 0.5, 0.5, 0.5), forget-

ting what they have learned about the obtainable reward.
This characteristic happens to be favorable in our two-state
matching pennies environment, which is why Q and SARSA
learners perform better in finding the (X 1

11, X 2
11, X 1

21, X 2
21) =

(0.5, 0.5, 0.5, 0.5) solution. On the other hand, if β is large,
then the temporal difference error is dominated by the current
reward and future value estimate. Not being able to forget,
the learners might get trapped in unfavorable behavior, as we
can see observing the actor-critic learners. To calibrate β it is
useful to make oneself clear that it must come in units of [log
behavior]/[reward].

B. Two-state prisoner’s dilemma

The single-state prisoner’s dilemma is another paradig-
matic two-agent, two-action game. It has been used to model
social dilemmas and study the emergence of cooperation. It
describes a situation in which two prisoners are separately
interrogated, leaving them with the choice to either cooperate
with each other by not speaking to the police or defecting by
testifying.
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FIG. 7. Two-state prisoner’s dilemma. Rewards are given in

black type in the payoff tables for each state. State-transition proba-
bilities are indicated by (blue) arrows.

The two-state version, which has been used as a test
environment also in Refs. [33–35], extends this situation
somewhat artificially by playing a prisoner’s dilemma in each
of the two states with a transition probability of 10% from
one state to the other if both agents chose the same action and
a transition probability of 90% if both agents chose opposite
actions.

Figure 7 illustrates these game dynamics. Formally, the
payoff matrices are given by

(
R1

111s′ , R2
111s′ R1

112s′ , R2
112s′

R1
121s′ , R2

121s′ R1
122s′ , R2

122s′

)
=

(
3, 3 0, 10

10, 0 2, 2

)

in state 1 and(
R1

211s′ , R2
211s′ R1

212s′ , R2
212s′

R1
221s′ , R2

221s′ R1
222s′ , R2

222s′

)
=

(
4, 4 0, 10

10, 0 1, 1

)

in state 2 for s′ ∈ {1, 2}, respectively. The corresponding state
transition probabilities are given by(

T1112 T1122

T1212 T1222

)
=

(
T2111 T2121

T2211 T2221

)
=

(
0.1 0.9

0.9 0.1

)
.

To be precise, the rewards in each state do not resemble
a classical social dilemma situation. This is because if both
agents would alternately cooperate and defect, both could
receive a larger reward per time step compared to always
cooperating. Hence, this stochastic game, as it was used in
Refs. [33–35], presents more a coordination than a coopera-

tion challenge to the agents. The multistate environment can
here function as a coordination device.

A behavior profile in which one agent exploits the other
in one state, while being exploited in the other state, would
result in an average reward per time step of 5 for each agent,
e.g., (X 1

11, X 2
11, X 1

21, X 2
21) = (0, 1, 1, 0).

However, for all three learning types with a midranged far-
sightedness (γ = 0.45) and an intensity of choice β = 5.0, the
temporal difference error arrows are pointing on average to-
ward the lower-left defection-defection point for each state in
behavior phase space (Fig. 8). To see whether the three learn-
ing types may converge to the described defect-cooperate–
cooperate-defect equilibrium, individual trajectories from two
exemplary initial conditions and for two learning rates α are
shown, a small one (α = 0.02) and a high one (α = 0.8).

We observe qualitatively different behavior across all three
learners. The Q learners converge to equilibria with average
rewards distinctly below 5, and the SARSA learners converge
to equilibira with average rewards of almost 5 for both learn-
ing rates α and both exemplary initial conditions. Both Q and
SARSA learners converge to solutions of proper probabilistic
behavior, i.e., choosing action cooperate and action defect
with nonvanishing chance. The actor-critic learners, on the
other hand, converge to the deterministic defect-cooperate–
cooperate-defect behavior described above for the initial con-
dition shown with the nondashed lines in Fig. 8 for both
learning rates α (shown in light red and dark blue). For
the other exemplary initial condition, shown with the dashed
lines, it converges to an all-defection solution in both states
for both α.

Interestingly, for all learners, all combinations of initial
conditions and learning rates converge to a fixed point so-
lution, except for the Q learners with a comparably high
learning rate α = 0.8, which enter a periodic behavior so-
lution for the initial condition with the nondashed line. The
same phenomenon occurred also in the matching pennies
environment for low farsightedness γ = 0.1, however, there
for both Q and SARSA learners. It seems to be caused by
the comparably high learning rate. A high learning rate over-
shoots the behavior update, resulting in a circling behavior

FIG. 8. Two-state prisoner’s dilemma environment for discount factor γ = 0.45; otherwise, identical to Fig. 3.
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FIG. 9. Varying discount factor γ in two-state prisoner’s dilemma environment for learning rate α = 0.2 and intensity of choice β = 5.0
for the Q learners on the left, the SARSA learners in the middle, and the actor-critic learners on the right. The four top panels for each learner
show the visited behavior points X 1

11, X 2
11, X 1

21, X 2
21 during 1000 iterations after a transient period of 5000 time steps from initial behavior

(X 1
11, X 2

11, X 1
21, X 2

21) = (0.5, 0.5, 0.5, 0.5) in blue pluses and from initial behavior (X 1
11, X 2

11, X 1
21, X 2

21) = (0.51, 0.49, 0.49, 0.51) in red crosses.
The bottom panels show the corresponding largest Lyapunov exponents for the two initial conditions. Above a critical discount factor γ all
learners find the high rewarding solution from the red crosses initial condition but do not do so from the blue pluses initial condition.

around the fixed point. As in Fig. 3, the time average reward
of the periodic orbit seems to be comparable to the reward
of the corresponding fixed point at lower α. Furthermore, we
observe the same time rescaling effect of the learning rate α

in Fig. 8 as in Fig. 4.
To visualize the influence of the discount factor γ on

the converged behavior, Fig. 9 shows a bifurcation diagram
along the bifurcation parameter γ for two initial conditions.
Pluses in blue result from a uniformly random behavior
profile of (X 1

11, X 2
11, X 1

21, X 2
21) = (0.5, 0.5, 0.5, 0.5), whereas

the crosses in red initially started from the behavior profile
(X 1

11, X 2
11, X 1

21, X 2
21) = (0.51, 0.49, 0.49, 0.51).

Across all learners, lower discount factors γ correspond
to all-defect solutions, whereas for higher γ the solutions
from the initial condition shown with red crosses tend toward
the cooperate-defect–defect-cooperate solution. For low γ ,
the agents are less aware of the presence of other states and
find the all-defect equilibrium solution of the iterated normal
form prisoner’s dilemma. The state transition probabilities
have less effect on the learning dynamics. Only above a
certain farsightedness do the agents find the more rewarding
cooperate-defect–defect-cooperate solution.

The observation from Fig. 8 is confirmed that the proba-
bility to cooperate (i.e., here X 1

11 and X 2
21) is lowest for the

Q learners, midrange for the SARSA learners, and 1 for the
actor-critic learners. One reason for this observation can be
found in the intensity of choice parameter β. It balances
the reward obtainable in the current behavior space segment
with the forgetting of current knowledge to be open to new
solutions. Such forgetting expresses itself by temporal differ-
ence error components pointing toward the center of behavior
space. Thus, a relatively small β = 5.0 can explain why
solutions at the edge of the behavior space cannot be reached
by Q and SARSA learners. The AC learners mis this forgetting
term in the deterministic limit and can therefore easily enter
behavior profiles at the edge of the behavior space.

Q and SARSA learners have a critical discount factor
γ above which the cooperate-defect–defect-cooperate high
reward solution is obtained and below which the all-defect
low reward solution gets selected. However, for increasing
discount factors γ up to 1, Q and SARSA learners experience
a drop in playing the cooperative action probability.

The actor-critic learners approach the cooperate-defect–
defect-cooperate solution in two steps. For increasing γ , first
the cooperation probability of agent 2 in state 2 (X 2

21) jumps
from zero to 1 while agent 1 still defects in state 1. Only after
a slight increase of γ does agent 1 then also cooperate in state
1 (X 1

11).
Interestingly, for the uniformly random initial behavior

condition shown with blue pluses, there is no critical discount
factor γ and no learners come close to the cooperate-defect–
defect-cooperate solution. Here, only for γ close to 1 do
all cooperation probabilities X i

s1 gradually increase. Further-
more, exactly at those γ , where the cooperate-defect–defect-
cooperate solution is obtained from the initial behavior condi-
tion shown with red crosses, the solutions from the uniformly
random initial behavior condition (blue pluses) have a largest
Lyapuonv exponent greater than 0. At other values of γ ,
the largest Lyapunov exponents for the two initial conditions
overlap. This suggests that the largest Lyapunov exponents
greater than zero may point to the fact that other, perhaps
more rewarding, solutions may exist in phase space. A more
thorough investigation regarding this multistability is an open
point for future research.

As we have argued above, the two-state prisoner’s dilemma
as it was used in Refs. [33–35] presents rather a coordina-
tion than a cooperation challenge to the agents. Figure 10
demonstrates that our learning dynamics are also capable of
solving a cooperation challenge in a stochastic game setting,
for which we adapt a two-state prisoner’s dilemma in anal-
ogy to Ref. [45]. Figure 10 confirms previous findings that
cooperation emerges only in the stochastic game, compared to
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FIG. 10. Cooperation challenge in a two-state prisoner’s
dilemma. Top panel shows a two-state prisoner’s dilemma game,
whose state games individually favor defection. Bottom panel shows
the level of cooperation SARSA learners with α = 0.016, β = 250
play after reaching a fixed point from the center of behavior space
(X i

sa = 0.5 for all i, s, a) for varying discount factors γ . Results for
Q and AC learners are similar. Cooperation levels are shown for the
full stochastic game as well as for each individual state game played
repeatedly. For sufficiently large farsightedness, cooperation can
emerge in the stochastic game, in contrast to the individual repeated
games.

playing each prisoner’s dilemma repeatedly [45]. Further, co-
operation only emerges for sufficiently large farsightedness γ .

V. DISCUSSION

The main contribution of this paper is the development
of a technique to obtain the deterministic limit of temporal
difference reinforcement learning. Through our work we have
combined the literature on learning dynamics from statistical
physics with the evolutionary game theory-inspired learning
dynamics literature from machine learning. For the statistical
physics community, we present learning equations capable
of handling environmental state transitions. For the machine-
learning community, we present the systematic methodology
we have used to obtain the deterministic learning equations.

We have demonstrated our approach with the three promi-
nent reinforcement learning algorithms from computer sci-
ence: Q learning, SARSA learning, and actor-critic learning.
A comparison of their dynamics in previously used two-agent,
two-action, two-state environments has revealed the existence
of a variety of qualitatively different dynamical regimes, such
as convergence to fixed points, periodic orbits, and determin-
istic chaos.

We have found that Q and SARSA learners tend to behave
qualitatively more similar in comparison to the actor-critic
learning dynamics. This characteristic results at least partly
from our relatively low intensity of choice parameter β, con-
trolling the exploration-exploitation trade-off via a forgetting
term in the temporal difference errors. Sending β → ∞, the
SARSA learning dynamics approach the actor-critic learning
dynamics, as we have shown. Overall the actor-critic learners
have a tendency to enter confining behavior profiles, due to

their nonexisting forgetting term. This characteristic leaves
them trapped at the edges of the behavior space. In contrast,
Q and SARSA learner do not show such learning behavior.
Interestingly, this characteristic of the AC learners turns out to
be favorable in the two-state prisoner’s dilemma environment,
where they find the most rewarding solution in more cases
compared to Q and SARSA but hinders the convergence to
the fixed point solution in the two-state matching pennies
environment. Thus, the most favorable level of forgetting
depends on the environment. In order to tune the respective
parameter β, our consideration that it must come in the unit of
[log behavior]/[reward] may be helpful.

We have demonstrated the effect of the learning rate α

adjusting the speed of learning by controlling the amount of
new information used in a behavior profile update. Thereby,
within limits, α functions as a time rescaling. However, a
comparably large learning rate α might cause an overshooting
phenomenon, hindering the convergence to a fixed point.
Instead, the learners enter a limit cycle around that point.
Nevertheless, the average reward of the limit-cycling behavior
was approximately equal to the one of the fixed point obtained
at lower α but took fewer time steps to reach. Thus, perhaps
other dynamical regimes than fixed points, such as limit cycles
or strange attractors, could be of interest in some applications
of reinforcement learning.

We have also shown the effect of the discount factor γ

adjusting the farsightedness of the agents. At low γ the
state transition probabilities have less effect on the learning
dynamics compared to high discount factors.

To summarize the three parameters α, β, and γ : The level
of exploitation β and the farsightedness γ control where the
learners adapt toward in behavior space, weighting current
reward, expected future reward, and the level of forgetting.
The learning rate α controls how fast the learners adapt along
these directions.

We hope that our work might turn out useful for the
application of reinforcement learning in various domains,
with respect to parameter tuning, the design of new algo-
rithms, and the analysis of complex strategic interactions
using meta strategies, as Bloembergen et al. [28] have pointed
out. In this regard, future work could extend the presented
methodology to partial observability of the Markov states of
the environment [40,41], behavior profiles with history, and
other-regarding agent (i.e., joint-action) learners (cf. Ref. [2]
for an overview of other-regarding agent learning algorithms).
Also, the combination of individual reinforcement learning
and social learning through imitation [47–50] seems promis-
ing. Such endeavors would naturally lead to the exploration
of network effects. It is important to note that only a few
dynamical systems reinforcement learning studies have begun
to incorporate network structures between agents [22,23].

Apart from these more technical extensions, we hope
that our learning equations will prove themselves useful
when studying the evolution of cooperation in stochastic
games [45]. With stochastic games one is able to explic-
itly account for a changing environment. Therefore, such
studies are likely to contribute to the advancement of the-
oretical research on the sustainability of interlinked social-
ecological systems [51,52]. Interactions, synergies, and trade-
offs between social [13,53] and ecological [54] dilemmas
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can be explored using the framework of stochastic games.
More realistic environments, modeling, e.g., the harvesting
of common-pool renewable resources [55,56] or the pre-
vention of dangerous climate change [57,58], for our learn-
ing dynamics are likely to prove themselves useful. Here, it
may be of interest to evaluate the learning process not only in
terms of efficiency but also how close it came to the optimal
behavior. Other paradigms than value optimization may also
be important [59], such as sustainability or resilience [60].

Python code for reproduction of the figures of this article
is available online at [61].
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APPENDIX: COMPUTATION OF LYAPUNOV EXPONENTS

We compute the Lyapunov exponents using an iterative
QR decomposition of the Jacobian matrix according to Sandri
[46]. In the following we present the derivation of the Jacobian
matrix.

Equation (11) constitutes a map f , which iteratively up-
dates the behavior profile X ∈ RN×M×Z . Consequently, we
can represent its derivative as a Jacobian tensor f ′(X) ∈
RN×M×Z×N×M×Z .

Let Ai
sa := X i

sa exp [αiβ iDi
sa(X)] be the numerator of

Eq. (11) and Bi
s := ∑

b Ai
sb its denominator, i.e., f =: A/B.

Hence,

f ′(X) = A′B − B′A
B2

(A1)

or, more precisely, in components,

df i
sa(X)

dX j
rb

=
dAi

sa (X)

dX j
rb

Bi
s(X) − dBi

s

dX j
rb

(X)Ai
sa(X)

[Bi
s(X)]2

. (A2)

A and B are known, and if A′ is known, then B′ is easily

obtained by dBi
s (X)

dX j
rb

= ∑
c

dAi
sc (X)

dX j
rb

. Therefore we need to com-

pute A′ for the three learner types Q, SARSA, and actor-critic
learning.

1. Q learning

Let us rewrite Ai
sa for the Q learner according to

Ai
sa := (

X i
sa

)(1−αi )
exp

[
αiβ iD̂i

sa(X)
]
, (A3)

where we removed the estimate of the current value from
the temporal difference error, leaving the truncated temporal

difference error as

D̂i
sa(X) := (1 − γ i ) TX−i〈R〉i

sa + γ i maxQi
sa(X). (A4)

Hence, we can write the derivative of A as

dAi
sa(X)

dX j
rb

= exp
[
αiβ iD̂i

sa(X)
][

(1 − αi )
(
X i

sa

)−αi dX i
sa

dX j
rb

+αiβ i
(
X i

sa

)(1−αi ) dD̂i
sa(X)

dX j
rb

]
.

(A5)

Since
∑

c X i
sc = 1, dX i

sa/dX j
rb can be expressed as

dX i
sa

dX j
rb

= δi jδsr (2δab − 1). (A6)

The derivative of the truncated temporal difference error
reads

dD̂i
sa(X)

dX j
rb

= (1 − γ i )
dTX−i〈R〉i

sa

dX j
rb

+ γ i dmaxQi
sa(X)

dX j
rb

. (A7)

Let us write the derivative of the reward as

dTX−i〈R〉i
sa

dX j
rb

=
∑

s′

∑
a−i

dX−i
sa−i

dX j
rb

Tsaa−is′Ri
saa−is′ (A8)

using Eq. (2) and Eq. (3), where the derivatives dX−i
sa−i/dX j

rb
need to be executed according to Eq. (A6).

For the derivative of the maximum next value we write
accordingly

dmaxQi
sa(X)

dX j
rb

=
∑

s′

∑
a−i

dX−i
sa−i

dX j
rb

Tsaa−is′ max
c

Qi
s′c(X)

+
∑

s′

∑
a−i

X−i
sa−i Tsaa−is′

d maxc Qi
s′c(X)

dX j
rb

.

(A9)

Let am := arg maxa Qi
sa(X), then

d maxc Qi
sc(X)

dX j
rb

= δaam
dQi

sa(X)

dX j
rb

(A10)

and

dQi
sa(X)

dX j
rb

= (1 − γ i )
dTX−i〈R〉i

sa

dX j
rb

+ γ i
∑

s′

dX〈T 〉ss′

dX j
rb

V i
s′ (X) + X〈T 〉ss′

dV i
s′ (X)

dX j
rb

.

(A11)

For the derivative of the effective Markov Chain transition
tensor we can write

dX〈T 〉ss′

dX j
rb

=
∑

a

dXsa

dX j
rb

Tsaa−is′ , (A12)

using Eqs. (2) and (3), where again the derivatives dXsa/dX j
rb

need to be executed according to Eq. (A6).
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For the derivative of the state value let us rewrite Eq. (6)
as V i

s = (1 − γ i )
∑

s′ M−1
ss′ TX〈R〉i

s′ with M := (1Z − γ i
X〈T 〉).

Thus,

dV i
s (X)

dX j
rb

= (1 − γ i )
∑

s′′

d
(
M−1

ss′′
)

dX j
rb

TX〈R〉i
s′′ + M−1

ss′′
dTX〈R〉i

s′′

dX j
rb

.

(A13)

To obtain the derivative of the inverse matrix M−1 we use
(M−1M )′ = 0 = (M−1)′M + M−1M ′ and therefore (M−1)′ =
−M−1M ′M−1. For M ′ we write

dMss′

dX j
rb

= −γ i dX〈T 〉ss′

dX j
rb

. (A14)

We obtain the derivative of the reward according to

dTX〈R〉i
s

dX j
rb

=
∑

s′

∑
a

dXsa

dX j
rb

Tsas′Ri
sas′ , (A15)

using Eq. (1) and Eq. (3), where the derivatives dX i
sa/dX j

rb
need to be executed according to Eq. (A6).

Now we can compute the Jacobian matrix for the Q learn-
ing dynamics in their deterministic limit.

2. SARSA learning

The computation of the Jacobian matrix for the SARSA
learning update in its deterministic limit is similar, except the
truncated temporal difference error reads

D̂i
sa(X) := (1 − γ i )TX−i〈R〉i

sa + γ i nextQi
sa(X) (A16)

instead of Eq. (A4). Hence,

dD̂i
sa(X)

dX j
rb

= (1 − γ i )
dTX−i〈R〉i

sa

dX j
rb

+ γ i dnextQi
sa(X)

dX j
rb

(A17)

and

dnextQi
sa(X)

dX j
rb

=
∑

s′

∑
a−i

dX−i
sa−i

dX j
rb

Tsaa−is′
∑

c

X i
s′cQi

s′c(X)

+
∑

s′

∑
a−i

X−i
sa−i Tsaa−is′

d
[ ∑

c X i
s′cQi

s′c(X)
]

dX j
rb

.

(A18)

The derivative of
∑

c X i
s′cQi

s′c(X) reads

d
[ ∑

c X i
s′cQi

s′c(X)
]

dX j
rb

=
∑

c

[
dX i

s′c

dX j
rb

Qi
s′c(X) + X i

s′c
dQi

s′c

dX j
rb

]
.

(A19)

All remaining terms have already been given in the previous
section for the Q learning Jacobian matrix.

3. Actor-critic learning

For the actor-critic learning update, Eq. (A3) reads

Ai
sa := X i

sa exp
[
αiβ iD̂i

sa(X)
]
, (A20)

with the truncated temporal difference error

D̂i
sa(X) := (1 − γ i )TX−i〈R〉i

sa + γ i nextV i
sa(X). (A21)

The derivative of the next value estimate is obtained by

dnextV i
sa(X)

dX j
rb

=
∑

s′

∑
a−i

dX−i
sa−i

dX j
rb

Tsaa−is′V i
s′ (X)

+
∑

s′

∑
a−i

X−i
sa−i Tsaa−is′

dV i
s′ (X)

dX j
rb

. (A22)

The derivative of the next value V i
s′ is given by Eq. (A13).

These are all terms necessary to compute the Jacobian matrix
for the actor-critic learning update.
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Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy,
and engineering. Tipping points are critical thresholds in system parameters or state variables at which a
tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be
modeled as networks of coupled multistable subsystems, e.g., coupled patches of vegetation, connected lakes,
interacting climate tipping elements, and multiscale infrastructure systems. In such networks, tipping events in
one subsystem are able to induce tipping cascades via domino effects. Here, we investigate the effects of network
topology on the occurrence of such cascades. Numerical cascade simulations with a conceptual dynamical model
for tipping points are conducted on Erdős-Rényi, Watts-Strogatz, and Barabási-Albert networks. Additionally,
we generate more realistic networks using data from moisture-recycling simulations of the Amazon rainforest
and compare the results to those obtained for the model networks. We furthermore use a directed configuration
model and a stochastic block model which preserve certain topological properties of the Amazon network to
understand which of these properties are responsible for its increased vulnerability. We find that clustering and
spatial organization increase the vulnerability of networks and can lead to tipping of the whole network. These
results could be useful to evaluate which systems are vulnerable or robust due to their network topology and
might help us to design or manage systems accordingly.

DOI: 10.1103/PhysRevE.101.042311

I. INTRODUCTION

In the last decades the study of tipping elements has
become a major topic of interest in climate science. Tipping
elements are subsystems of the Earth system that may pass
a critical threshold (tipping point) at which a tiny perturba-
tion can qualitatively alter the state or development of the
subsystem [1]. However, tipping points also occur in various
complex systems such as systemic market crashes in financial
markets [2], technological innovations [3], or shallow lakes
[4] and other ecosystems [5]. Understanding their dynamics
is thus crucial not only for climate science but also for other
disciplines that use complex systems approaches.

Many tipping elements are not independent of each other
[6]. In such cases, if one tipping element passes its tipping
point, the probability of tipping of a second tipping ele-
ment is often increased [7], yielding the potential of tipping
cascades [8] via domino effects with significant potential
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impacts on human societies in the case of climate tipping
elements [9]. In this study, we investigate the dynamics of
complex networks of interacting tipping elements. A tipping
element is described by a differential equation based on the
normal form of the cusp catastrophe, which exhibits fold
bifurcations and hysteresis properties. The interactions are
accounted for by linear coupling terms. Many environmental
tipping points can be described as fold bifurcations [10] and
prototypical conceptual models that exhibit fold bifurcations
have been developed for the thermohaline circulation [11],
the Greenland ice sheet [12], and tropical rainforests [13]
among others. Coupled cusp catastrophes have been studied in
detail for two or three subsystems [6,14,15] or in combination
with Hopf bifurcations [16]. On the other hand, threshold
models for global cascades on large random networks have
been investigated [17].

Here, we study cascades in complex systems with continu-
ous state space that are moderate in size yet large enough for
statistical properties of the complex interaction networks to
become relevant. Cascades in complex systems with continu-
ous state space have been investigated, for example, for power
grids [18,19]. We use a paradigmatic coupled hysteresis model
based on the normal form of the cusp catastrophe. Employ-
ing different network topologies such as Erdős-Rényi (ER),
Watts-Strogatz (WS), and Barabási-Albert (BA) networks as
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well as networks generated from moisture-flow data on the
Amazon rainforest, we investigate the effect of topological
properties of the network. We find that networks with a
large average clustering coefficient are more vulnerable to
cascading tipping and discuss how this is connected to the
occurrence of small-scale motifs such as direct feedback and
feed-forward loops. We consistently observe that networks
with spatial organization like the small-world and Amazon
networks are more vulnerable than strongly disordered net-
works.

II. THE MODEL

A. System

In our conceptual model, a tipping element is represented
by a (real) time-dependent quantity x(t ) that evolves accord-
ing to the autonomous ordinary differential equation

dx

dt
= −a(x − x0)3 + b(x − x0) + r, (1)

where r is the control parameter and a, b > 0. The parameters
a and b control the strength of these effects, respectively,
and x0 controls the position of the system on the x axis.
The equation thus has one stable equilibrium for |r| > rcrit

and a bistable region for −rcrit < r < rcrit (see the bifurcation
diagram depicted in the box in Fig. 1).

We describe the characteristic behavior of Eq. (1): If the
system state is initially in the lower stable equilibrium (x ≈ 0)
and r is slowly increased, eventually at r = rcrit a tipping
point is reached and a critical transition to the upper stable
equilibrium (x ≈ 1) occurs. If r is afterwards decreased, the
system state stays on the upper branch and, only at r = −rcrit ,
tips down to the lower branch again. Equation (1) is a minimal
model for ecosystems with alternative stable states and hys-

FIG. 1. Illustration of a tipping network. Each node represents
a tipping element with a corresponding state variable xi. A directed
link corresponds to a positive linear coupling with strength d . The
effective control parameter r̃i of a node depends on the state of the
nodes it is coupled to. The equilibria with respect to the effective
control parameter are qualitatively illustrated in the box.

teresis [5] but can also be used to conceptualize other systems
with similar properties such as the thermohaline circulation
and ice sheets [12,20].

Next, we consider a directed network of N interacting
tipping elements as a linearly coupled system of ordinary
differential equations,

dxi

dt
= −a(xi − x0)3 + b(xi − x0) + ri + d

N∑
j=1, j �=i

ai jx j

︸ ︷︷ ︸
r̃i (x1,x2,...,xN )

,

(2)

where d > 0 is the coupling strength and

ai j =
{

1 if there is a directed link from element j to element i,
0 otherwise. . (3)

For simplicity, we use the same parameters a and b for all
tipping elements in the network. An illustration of such a
system with several tipping elements is depicted in Fig. 1.
Similar systems have been studied with diffusive coupling
focusing on hysteresis effects [21].

We briefly review the behavior of two tipping elements
with unidirectional coupling (X1 → X2) [6]. The elements
of the adjacency matrix are a21 = 1 and a12 = 0, which
means that element 1 has an effect on element 2 but there
is no effect in the other direction. As r1 is slowly increased,
it approaches its tipping point at rcrit and eventually tips
from x− to x+. The effective control parameter r̃2 is thus
increased by �r̃ = d (x+ − x−). For r2 = 0, a tipping event
in the second element is induced if �r̃ > rcrit and there-
fore if the coupling strength exceeds a critical threshold of
dc = rcrit

x+−x−
.

B. Network models

To investigate the effect of the network topology on tipping
cascades we use different network models: We use three
well-known models, the Erdős-Rényi model [22], the Watts-
Strogatz model [23], and the Barabási-Albert model [24]. We
slightly extend the latter two models such that we are able to
generate and compare directed networks with a controllable
average degree 〈k〉 = 〈kin + kout〉. Furthermore, we use mod-
els to control the reciprocity and average clustering coefficient
as well as a directed configuration model and a stochastic
block model. All network models are briefly discussed in the
following paragraphs.

(i) The ER model is a simple random network model,
where a directed link between two elements i and j is added
with probability p. The resulting average degree is 〈k〉 ≈
p(N − 1).
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(ii) The WS model is usually used to generate networks
with large clustering coefficients but small average path
lengths to resemble the small-world phenomenon [25]. We
implement a directed WS model as follows: Initially, a reg-
ular network is generated where each node i is connected
in both directions to its m nearest neighbors, e.g., nodes
i + 1, i − 1, . . . , i + m

2 , i − m
2 . Therefore, m has to be an

even integer and the average degree of the resulting regular
network is equal to m. In order to generate networks with
arbitrary average degree, m is chosen such that the average
degree of the resulting regular network is larger than the
desired average degree. Then, until the average degree of
the network matches the desired average degree, links are
randomly deleted. Finally, each of the remaining links is
rewired with probability β, similar to the usual WS model
[23]. With increasing rewiring probability β the generated
network becomes more and more random.

(iii) The BA model is used to generate scale-free networks,
i.e., networks with a power-law degree distribution. We im-
plement a directed BA model as follows: We start with two
bidirectionally coupled nodes. Every additional node is in
both directions connected to an already existing node i with

probability p = kin
i +kout

i∑
m,n amn

. When the specified network size N is

reached, the average degree 〈k〉 ≈
∑

m,n amn

N is compared to the
desired average degree. If the average degree is smaller than
the desired average degree, links between randomly selected

nodes i and j are added with probability p = kin
i +kout

i +kin
j +kout

j

2
∑

m,n amn

until the average degree matches the desired average degree.
Otherwise, if the average degree is greater than the desired
average degree, links are randomly deleted as in the WS
model.

(iv) To generate networks with arbitrary reciprocity R, we
initially generate an ER network where all links are reciprocal
(R = 1). Afterwards, links are randomly chosen and rewired
until the desired reciprocity is achieved.

(v) The procedure to generate networks with arbitrary
average clustering coefficent C is similar. Initially a network
with only reciprocal triangles between three randomly chosen
nodes is generated. Afterwards links are randomly chosen and
rewired again until the desired average clustering coefficient
is achieved. That way, we are able to generate networks with
an average clustering coefficient between C = 0.05 and C =
0.35. Note that the reciprocity is also large for networks with
a large average clustering coefficient.

(vi) A directed configuration model can be used to generate
networks with arbitrary average in and out degree. Links are
randomly assigned to node pairs where the corresponding in
and out degree has not been reached before [26].

(vii) Finally, stochastic block models (SBMs) are used
to generate networks with community structures. For each
(directed) combination of communities there is a separate link
probability, which is usually high within the community and
low between two communities [27].

C. Simulation procedure

We use the system given in Eq. (2) and conduct cascade
simulations on different network topologies. The parameters
of the equation are chosen such that rcrit = 0.183 and for
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FIG. 2. Cascade simulations on ER networks of different sizes,
an average degree of 〈k〉 ≈ 5, and a coupling strength of d = 0.2.
The time evolution of the fraction of tipped elements is shown.

r = 0 the two stable equilibria are x− = 0 and x+ = 1 for
all elements. The resulting parameters are a = 4, b = 1, and
x0 = 0.5. Consider a network with N tipping elements and a
topology that is described by the adjacency matrix A = (ai j ).
Initially, ri = 0 and xi = 0 for all i = 1, . . . , N . The algorithm
of a cascade simulation is the following:

(1) Choose a random starting node m of the network.
(2) Slowly increase rm (rm → rm + �r).
(3) Let the system equilibrate, e.g., integrate the ODE

system until ẋi < ε for all i = 1, . . . , N .
(4) Check whether at least one element tipped. If not, jump

back to step 2. Otherwise, count the total number of tipped
elements.

The algorithm stops when the starting node m tips, which
is always the case. We normalize the total number of tipped
elements (minus 1 for the starting node) by the number of
nodes that can be reached on a directed path from the starting
node (the size of the out component). We call the resulting
number cascade size L. Note that due to the normalization a
small disconnected component where all elements tip is also
considered as a cascade with size L = 1 even though only
a small number of elements was tipped. The ODE system
was integrated with the function scipy.integrate.odeint
from the SCIPY python package [28]. In all simulations, �r =
0.01 and ε = 0.005 were used. Examples of tipping cascades
with size L = 1 are shown in Fig. 2 for ER networks with
different-sized N .

III. RESULTS AND DISCUSSION

A. Cascades on generic network topologies

We start with cascade simulations on networks generated
with the ER model. For any parameter combination we gen-
erate 100 different networks and simulate one cascade on
each network. We use the average cascade size from these
simulations as a measure of the vulnerability of the corre-
sponding network structure, ranging from robust (〈L〉 = 0) to
highly vulnerable (〈L〉 = 1) networks. The dependence of the
average cascade size with respect to the coupling strength is
shown in the upper panel in Fig. 3 for random networks with

042311-3

394 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reprinted paper with permission from J. Krönke et al., Dynamics of tipping cascades on complex networks, Phys. Rev. E, vol. 101, no. 4, pp. 1-19,
2020, doi: 10.1103/PhysRevE.101.042311. Copyright 2020 by the American Physical Society

https://doi.org/10.1103/PhysRevE.101.042311


JONATHAN KRÖNKE et al. PHYSICAL REVIEW E 101, 042311 (2020)

0.10 0.12 0.14 0.16 0.18
d [arb. units]

0.0

0.5

1.0

〈L
〉

Network size N

8

16

32

64

128

256

512

1024

101 102 103

N

0.12

0.15

0.18

d
c
[a
rb
.
u
n
it
s]

FIG. 3. Network size dependency of critical coupling strength in
ER networks with 〈k〉 ≈ 5. Upper panel: Average cascade size with
respect to the coupling strength in the transition region. Each average
is calculated from 100 cascade simulations on different randomly
generated networks with N = 100. Error bars indicate the standard
error. Lower panel: Approximate critical coupling strength (coupling
strength where 〈L〉 ≈ 0.5) with respect to the network size N . The
dashed line indicates the critical coupling strength dc ≈ rcrit = 0.183
for a simple unidirectional coupling of two elements.

a fixed average degree 〈k〉 ≈ 5. For low coupling strengths
(d � 0.1) the network is not affected by the externally induced
tipping of one element and the average cascade size remains
0. With increasing coupling strength, a transition from robust
to vulnerable networks is observed. From the analysis of the
unidirectional system, a sharp transition at d ≈ rcrit would be
expected for all networks. However, only for N → ∞ does
the transition become more and more steep and approximately
approach rcrit . For networks of finite size, the onset of the tran-
sition is shifted to lower coupling strengths with decreasing
network size. We hypothesize that the reason for this is two
effects: The first effect is the destabilization of the system by
feedback loops (X1 � X2), which can lead to a decrease in the
tipping point rcrit of certain nodes. The second effect is due to
the gradual change in the state of a tipping element X3 that is
coupled to another element (X1 → X3). When the element X1

tips, the state of the element X3 will be slightly altered even if
it does not tip. If it is coupled to another element X2, however
(X2 → X3), the effective control parameter of element X3 will
be slightly increased, by an increment of the order �r̃ ∼ d2.
Therefore an additional indirect coupling with one intermedi-
ate node, called a feed-forward loop, will decrease the critical
coupling strength dc of the target node. But how can the size
dependence of the critical coupling strength be explained?
The reason for this is the following: With increasing network
size while fixing the average degree, the relative density of
the motifs decreases, and thus, for N → ∞, the destabilizing
effect of the motifs vanishes. Therefore, the critical coupling
strength dc approaches the critical coupling strength of a
unidirectionally coupled system. If, in contrast, we fixed the
link density, the relative density of motifs would increase and
thus the critical coupling strength would probably decrease
with increasing network size.

FIG. 4. Dependence of the transition region on the reciprocity R
(left panel) and on the clustering coefficient C (right panel). Each
average is calculated from 100 cascade simulations on different
randomly generated networks with N = 100.

To test this hypothesis, cascade simulations on networks
with different reciprocities and average clustering coefficients
are conducted. The reciprocity is the number of reciprocated
links (ai j = a ji = 1) divided by the total number of links
in the network. Thus, the reciprocity measures the relative
amount of feedback loops in the tipping network. The average
clustering coefficient is the number of triangles a node is part
of divided by the potential number of triangles averaged over
all nodes [29]. Therefore, the average clustering coefficient is
strongly related to the number of feed-forward loops. Simu-
lation results for different reciprocities R can be seen in the
left panel in Fig. 4. As expected, for networks with a high
reciprocity, the transition region is shifted to lower coupling
strengths. As can be seen, however, the dependence on the
reciprocity is rather weak. Simulation results for networks
with different average clustering coefficient C are shown in
the right panel in Fig. 4. It can be clearly seen that the vulner-
ability to tipping cascades is significantly increased for high
average clustering coefficients. There are eight motifs that
contribute to the average clustering coefficient in a directed
network, two (indirect) feedback loops and six feed-forward
loops [30]. We suspect that the effect of indirect feedback
loops is smaller than the effect of direct feedback loops for
d < 1. Therefore, we conclude that feed-forward loops are
mainly responsible for the increased vulnerability of networks
with large average clustering (see Fig. 4).

We also observe a transition of the average cascade size
when the coupling strength is held constant at d = 0.15 and
the average degree is varied (Fig. 5). In this case the transition
is shifted to higher average degrees when the network size
increases, because a higher average degree is necessary to
yield the same relative density of destabilizing motifs.

Cascade distributions for 〈k〉 ≈ 5 and selected coupling
strengths at the onset, in the center, and at the end of the
respective transition region are shown in Fig. 6. We find
a bimodal distribution of very small cascades (L ≈ 0) and
very large cascades (L ≈ 1). For networks with small-world
and scale-free topology generated with the WS model with
β = 0.1 and the BA model, respectively, we observe similar
transitions of the average cascade size. For the scale-free
topology, the large cascades are distributed around an average
size 〈L〉 < 1. This can be explained by the preferential attach-
ment mechanism. Through this mechanism a large number of
weakly connected elements develop which can only be tipped
when the coupling strength is very high (d � rcrit).
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randomly generated networks with N = 100. Error bars indicate the
standard error in both panels. Lower panel: Approximate critical
average degree (average degree where 〈L〉 ≈ 0.5) with respect to the
network size N .

Now we focus on the effect of the network topology. For
all network models, the transition from robust to vulnerable
networks is shifted to lower coupling strengths when the aver-
age degree is increased (Fig. 7). The topology of the network

0

100
d = 0.14 d = 0.16

Random

d = 0.18

0

100
d = 0.120 d = 0.135

Small-World

d = 0.150

0 1
0

100
d = 0.085

0 1

d = 0.095

Scale-Free

0 1

d = 0.105

Cascade size L

N
u
m
b
er

FIG. 6. Distributions of cascade sizes L for different network
topologies. A random topology generated with the ER model (first
row), a small-world topology generated with the WS model and β =
0.1 (second row), and a scale-free topology generated with the BA
model (third row). Each distribution is an average of 10 distributions
with 100 cascade simulations on different networks with N = 100
and 〈k〉 ≈ 5. The (almost-invisible) error bars indicate the standard
error across the 10 distributions. Three coupling strengths for each
network topology are shown: one where almost no cascades occur;
one where in about half of the simulations cascades are triggered;
and one where in almost all simulations cascades are triggered.
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FIG. 7. Average cascade size 〈L〉 with respect to average degree
〈k〉 and coupling strength d for three network topologies. Random
networks generated with the ER model (left), small-world topology
networks generated with the WS model and β = 0.1 (center), and
scale-free networks generated with the BA model (right). Each
average is calculated from 100 cascade simulations on different
randomly generated networks with N = 100.

has a significant effect on this shift of the transition region for
sparse networks (〈k〉 ≈ 5). For networks with small-world and
scale-free topology, the transition is shifted to lower coupling
strengths compared to the simple random topology generated
with the ER model. For the scale-free topology the transition
width is also significantly increased for 〈k〉 ≈ 5. For denser
networks (〈k〉 � 19), the differences between the network
topologies are less pronounced.

We further investigate in which way the rewiring in the WS
model decreases the vulnerability of the network. In Fig. 8
the shift of the transition region to higher coupling strengths
with respect to the rewiring probability β can be clearly seen.
The increase in the critical coupling strength mainly occurs
between β = 0.1 and β = 1. The lower panel in the figure
again demonstrates how this corresponds to the decay of the
average clustering coefficient C. Thus, we again conclude
that tipping networks with an increased average clustering
coefficient such as small-world networks (but also spatially
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FIG. 8. Shift of the transition (upper panel) and average clus-
tering coefficient C (lower panel) with increasing rewiring proba-
bility β for WS networks with N = 100 and 〈k〉 ≈ 5. The shift of
the transition towards higher coupling strengths for high rewiring
probabilities corresponds to the decrease in the average clustering
coefficient. The extent of the small black circles in the lower panel
exceeds the standard error, which is therefore not visible.
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structured networks [31]; see Sec. III B) are especially vulner-
able to cascades and that the average clustering coefficient is
a good indicator of the vulnerability of a network topology.

B. Cascades on spatial network topologies
from moisture-flow data

To investigate the effects of spatial organization of the
network on vulnerability with respect to tipping cascades,
we apply our model to network topologies generated from
data of atmospheric moisture flows between different forest
cells in the Amazon. On a local scale, the Amazon may
exhibit alternative stable states between rainforest and sa-
vanna, with tipping points between them depending on rainfall
levels [32–35]. Models that capture the basic mechanisms
also reveal a bifurcation structure with hysteresis and saddle-
node bifurcations with rainfall level as the control parameter,
comparable to our conceptual model [36]. On a regional
scale, the forest enhances rainfall through the “transpiration”
of groundwater to the atmosphere; local-scale tipping may
thus increase the vulnerability of remote forest patches by
allowing less local precipitation to be passed on to other
patches because the transpiration capacity of savanna is lower
than that of forest. Therefore, the Amazon can be thought of as
a spatial network of local-scale tipping elements. Note that the
Amazon as a whole is often viewed as a tipping element [37].
In our framework, vulnerable regimes where tipping of single
cells induces large cascades correspond to such threshold be-
havior of the large-scale Amazon system. Complex-network
approaches such as a cascade model inspired by the Watts
model [17] have been applied to observation-based data on
Amazon forest patches [38]. Here we analyze the effect of
the network structure of transpired-moisture flows for the
Amazon that were calculated by Staal et al. [39], aggregated
to a single year (2014) on 1◦ spatial resolution.

As our analysis is focused on the effect of the network
topology, we neglect the actual moisture-flow values and use
a homogeneous coupling strength analogous to the above
simulations. This makes the simulation results less realistic
and applicable, however, we do not aim to draw conclusions
about the Amazon system. Rather, we want to compare the
network topology to common random networks and identify
topological effects on the vulnerability of tipping networks
with respect to tipping cascades.

To generate and compare networks with arbitrary average
degree, similar to the random network topologies above, we
calculate a moisture-flow threshold from a specified average
degree. Only when the moisture flow between two cells ex-
ceeds the threshold are these cells connected with a link in the
corresponding direction. If a large average degree is specified,
the threshold becomes small and the resulting network will
be dense. That way we are able to generate networks with an
arbitrary average degree from the data. An example network
with 〈k〉 = 5 is depicted in Fig. 9.

The average cascade size is calculated by conducting one
cascade simulation with each node of the generated network
as the starting node and averaging over the cascade size. We
generate networks from data with a 1 × 1◦ grid (N = 567)
and with a 2 × 2◦ grid (N = 160) and 〈k〉 = 5. The average
cascade size of ER networks with the same size is shown for
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FIG. 9. Spatially organized network generated from atmospheric
moisture-flow data (2 × 2◦-grid resolution) of the Amazon rainfor-
est. The threshold is chosen such that 〈k〉 = 5. Total rainfall values
for each node in 2014 are shown in the background.

comparison (upper panel in Fig. 10). For the Amazon network,
the onset of the transition from robust to vulnerable networks
is shifted to the lower coupling strength of d ≈ 0.08 compared
to the ER network. In contrast to the ER networks there is
no strong size dependency. However, a small shift to lower
coupling strengths is observed.

Additionally to the Amazon moisture-flow network ob-
tained by thresholding, we generate networks with a directed
configuration model [26] and a stochastic block model [27] to
isolate the effects of the degree sequence and the community
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FIG. 10. Average cascade size 〈L〉 with respect to coupling
strength for different networks with an average degree of 〈k〉 = 5.
Upper panel: Results for the networks generated from the moisture-
flow data with 1 × 1◦-grid resolution (567 nodes) and 2 × 2◦-grid
resolution (160 nodes). For comparison, simulation results for ER
networks with the same network sizes are shown. Lower panel:
Simulation results for a directed configuration model and a stochastic
block model are compared with the results of the Amazon network
and the ER networks with N = 160 for all networks. Error bars indi-
cate the standard error. Note that the standard errors for the original
moisture-flow networks are smaller than for the other network types.
The reason is that all moisture-flow simulation results are based on
the same network, whereas the other results are based on different
randomly generated networks.
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FIG. 11. Distribution of cascade sizes analogous to the above
distributions for different networks generated from moisture-flow
simulations of the Amazon rainforest (N = 160). Note that there is
no standard error indicated (error bars) for the original moisture-flow
networks, as there is only one distribution due to the deterministic
network generation procedure.

structure of the network, respectively. For the directed
configuration model, we specify the joint degree sequence
of the Amazon network. For the SBM, we apply a Girvan-
Newman algorithm to the original Amazon network [40].
The algorithm progressively removes edges with the highest
edge betweenness, i.e., those rare links that connect separate
communities. When the network breaks into two components,
we calculate the elements of the probability matrix (fraction of
links over possible links for the corresponding combination of
components). With the probability matrix and the component
sizes, we then generate a random network with the SBM.

In the lower panel in Fig. 10, the transition of the con-
figuration model and the SBM is compared to the original
Amazon network and the ER network with N = 160. Al-
though the vulnerability of the network is increased in both
cases compared to the ER model, neither of the topological
properties alone, degree sequence or community structure,
sufficiently explains the early onset of the transition in the
original Amazon network.

Cascade distributions for the coarse resolution (2 × 2◦
grid) are depicted in Fig. 11. They show that already for
values of d ≈ 0.1, cascades with two typical cascade sizes
occur for the original Amazon network. With increasing
coupling strength the frequency of these cascades increases
and the cascade size is shifted to higher values. Comparing
this observation to the network in Fig. 9 suggests that these
cascades correspond to the two subclusters in the north and
southwest regions of the Amazon rainforest. These subregions
form clusters that are much more strongly connected than
the rest of the network and are thus much more vulnerable
to tipping cascades. Interestingly, separate tipping of sub-
clusters is not observed for the networks generated with the
SBM, implying that some relevant topological property of
the spatially structured Amazon network, for example, the
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FIG. 12. Average cascade size 〈L〉 with respect to average de-
gree and coupling strength for different networks generated with
moisture-flow simulations of the Amazon rainforest (N = 160).

anisotropy of the link direction due to atmospheric wind
patterns, might still be missing. The robust and vulnerable
regimes of the networks are shown in Fig. 12. Consistent with
the above results, we observe a shift of the transition to lower
coupling strengths with increasing average degree 〈k〉 where
the transition is smooth for the Amazon network and steep for
the configuration model and the SBM. Similarly to the random
network topologies, the differences are only relevant for the
sparse regime below 〈k〉 � 19.

IV. CONCLUSION

The aim of our study was to assess the effect of the network
topology on the vulnerability of tipping networks to cascades.
This is not only important for understanding the effect that
the tipping of potential tipping elements in the climate system
might have on the complete Earth system, but also of high
relevance for other fields that use complex system approaches.
We found that networks with large average clustering coeffi-
cients and spatially structured networks are more vulnerable
to tipping cascades than more disordered network topologies.
This implies that the risk of a cascade’s being triggered could
be surprisingly high for real-world networks where large
clustering is common. Furthermore, we found that the effect
of the network topology is relevant only for relatively sparsely
connected networks. The analysis of the Amazon network
suggests that the structure of the forest-climate system in the
Amazon might yield subregions that are especially vulnerable
to tipping cascades. A detailed study using actual moisture
flows could investigate the question whether the Amazon rain-
forest consists of separate subregional-scale tipping elements.
Generally, heterogeneity in the parameters, for example, the
temporal and spatial scales or the coupling strengths of the
ODE system stated in Eq. (2), could have a further influence
on the results [41].
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4
Analyses and studies of concrete cases and contexts

This fourth section moves from rather conceptual to more
realistic real-world dynamics. We present analyses of concrete
cases and contexts which create an empirical complement for our
theoretical work.

A distinct understanding of social-ecological interactions is cru-
cial to represent more realistic dynamics in World-Earth models.
The subsection “Detecting complex social-ecological interactions in
empirical data” (Sect. 4.1) presents our investigations and method
developments on interaction dynamics in large-scale real-world
data.

Interaction dynamics and social tipping are general concepts
which occur in various areas. In the subsection on “Special cases
of socio-economic dynamics and social tipping” (Sect. 4.2), the se-
lected papers present specific nonlinear dynamics and positive
feedback mechanisms emerging in complex socio-economic systems
that are relevant for overall Earth system dynamics and sustainabil-
ity.

In the last subsection, “Earth system analysis and planetary
boundary interactions” (Sect. 4.3), we focus on coevolutionary inter-
actions of attempts of Earth system stewardship and biogeophysical
Earth system dynamics within the planetary boundaries.
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4.1 Detecting complex social-ecological interactions in empir-
ical data

In this first section we present investigations of interaction
dynamics in large-scale real-world data.

We begin with a commentary paper on “Socio-economic data for
global environmental change research” [Otto et al., 2015] in which
we emphasize the need for subnational socio-economic datasets.
Their existence is critical to assess the impacts of global environ-
mental change and improving adaptation responses.

In particular, more data is needed on humanity’s biggest emit-
ters: the super-rich. In “Shift the focus from the super-poor to the
super-rich” [Otto et al., 2019], we commented on this issue. In ad-
dition, we argued that more carbon mitigation policies are needed
targeting the super-rich.

We continue with an examination of a prominent example of
social-ecological interactions: the potential exacerbation of armed
conflict by anthropogenic climate change and, in particular, by
climate-related natural disasters. In “Armed-conflict risks enhanced
by climate-related disasters in ethnically fractionalized countries”
[Schleussner et al., 2016], we applied an event-coincidence analysis
[Donges et al., 2016] based on data on armed conflict outbreaks and
climate-related natural disasters.

We conclude with a complementary methodology, discussed in
“Dose-response function approach for detecting spreading pro-
cesses in temporal network data” [Donges, J. F. and Lochner, J.
et al., 2021]. This work puts forward a methodology for the anal-
ysis of contagion dynamics in temporal complex networks based
on dose-response functions and hypothesis testing using surrogate
data sets.
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been made. While such flexibility helped 
secure participation from all countries, the 
lack of detailed emissions information is 
problematic for understanding the impact 
of INDCs towards meeting global climate 
goals. Without this information, determining 
overlap between national, non-state, and 
subnational actions could become more 
difficult. Vague metrics may also provide 
cover for low ambition. Early analysis of 
the INDCs shows that current pledges are 
only half of what is needed to limit global 
temperature rise to 2 °C (ref. 16).

Leave room for innovation. At the same 
time, the criteria for inclusion should 
not be too strict. Some proponents argue 
for the integration of subnational and 
non-state actions into the UNFCCC. 
Others caution that this integration would 
prevent innovation and risk-taking among 
new actors. A major contributor to the 
Summit’s success in engaging a diversity of 
participants was the flexibility afforded to 
the content of commitments. The Summit’s 
openness brought in businesses and other 
actors who would have been otherwise 
hesitant to commit at such a high-level 
forum. Meetings like this could play a key 
role in fostering new thinking and ideas 
for addressing climate change, as they have 
lower costs of failure than a formal process 
such as the UNFCCC. Any framework 
that includes non-state and subnational 

participants must achieve a delicate balance 
between establishing a bar that boosts 
ambition but is not so high as to deter 
critical actors from joining. 

States are no longer the only actors 
tackling climate change. The Summit 
represents a new mode of elevating the 
groundswell of non-state and subnational 
action into official political channels. 
This integration is crucial to making a 
fragmented climate governance system 
effective. Tenuous financing and uncertain 
implementation, however, mean that the 
Summit’s commitments have a high risk of 
failure, potentially damaging the credibility 
of future non-state and subnational efforts. 
To avoid such a pessimistic conclusion, new 
methods of pledging and accountability, as 
well as innovative modes of governance, are 
needed to seriously engage new actors.� ❐
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COMMENTARY: 

Socio-economic data for global 
environmental change research
Ilona M. Otto, Anne Biewald, Dim Coumou, Georg Feulner, Claudia Köhler, Thomas Nocke, Anders Blok, 
Albert Gröber, Sabine Selchow, David Tyfield, Ingrid Volkmer, Hans Joachim Schellnhuber and Ulrich Beck

Subnational socio-economic datasets are required if we are to assess the impacts of global environmental 
changes and to improve adaptation responses. Institutional and community efforts should concentrate on 
standardization of data collection methodologies, free public access, and geo-referencing.

There is a scalar mismatch between 
social scientists focusing on the 
nation-state and climate scientists 

operating at the global level1. From the 
natural science perspective, climate 
change is an egalitarian and cross-border 
phenomenon, and research results are 

routinely analysed beyond national borders. 
The social sciences, however, have evolved 
historically within nation-states, and 
the production of data is mostly framed 
according to nation-state boundaries; 
this includes international comparisons. 
Overcoming this ‘methodological 

nationalism’ requires both cosmopolitan and 
subnational data2.

Cosmopolitan data are needed to grasp 
the interconnectivity and interdependence 
of global, national and local issues. To 
obtain data at a subnational scale, for 
example on water use in different sectors 
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and water prices, scientists usually have 
to visit the region and literally photocopy 
the information from local administrative 
organizations3. Such a process is time-
consuming; also, data pooled from different 
countries and administrative units often 
use different methodologies and definitions 
and therefore must be standardized before 
use4. In contrast, the impacts of global 
environmental changes occur within 
climatological and geo-ecological units 
rather than administrative boundaries. Thus, 
the social impacts of global environmental 
changes may not be detectable by studying 
national averages.

In an illustration of this problem, we 
compare national and spatially explicit 
hunger indicators, and show that hunger 
is not equally distributed within national 
borders but is spatially concentrated in 
certain areas (Fig. 1). In many such areas, 
such as the Chad Lake Basin on the borders 
of Niger, Nigeria, Chad and Cameroon, for 
example, food production is threatened by 
decreasing and uncertain water availability5. 
The local effect of droughts on hunger 
occurrence or any other climate-induced 
socio-economic trend visible at the river-
basin level is likely to disappear in averages 
at national level. At least 261 of the world’s 
major rivers are shared, with 176 flowing 
through two countries, 48 through three 
countries, and 37 through four or more 
countries6. Although there are several 
programmes designed to exchange data 
within river basins, these primarily focus 
on hydrological data rather than socio-
economic data7.

Stationarity in social sciences
To assess climate impacts and to develop 
strategies for adaptation and other global 
challenges, a different approach to data 
gathering and management is needed. 
Currently, most resources, externalities  of 
economic activities and populations are not 
restricted to national borders; they become 
increasingly interconnected, and large and 
rapid shifts in these factors may occur. As an 
example, annually more people are reported 
to be displaced by natural disasters than by 
conflicts. By 2050, between 25 million and 
one billion people are projected to be forced 
to migrate because of climate change and 
other environmental factors8. Such estimates 
are mostly based on the physical occurrence 
of natural disasters, on which data exist. But 
there is no systematic database on current 
environmentally induced cross-border 
migration, nor on the number of people 
displaced by slowly occurring environmental 
changes8, and no data on transit migration. 
The stationarity of data gathering has to 
be overcome9,10 in social sciences, and the 

changes in our societies need to be reflected 
by use of new methods and new categories in 
socio-economic statistics.

In natural climate science, this process 
was initiated with the establishment of the 
International Meteorological Organization 
in the 1870s, succeeded by the World 
Meteorological Organization in 1951. These 
organizations instigated the consolidation 
and exchange of national weather data. It 
took many decades, however, to overcome 
national (military and commercial) interests 
and the inertia of installed infrastructure, 
and to standardize meteorological data on 
a global scale11. In fact, it is only since the 
start of the satellite age in the 1960s that an 
infrastructure for generating global weather 
and climate data has emerged.Today, climate 
scientists have access to snapshots of the 
state of the atmosphere every 6 hours, real-
time information on the extent of Arctic 
sea-ice, continuously updated global data, 
and much more. They can also make use of 
records of temperature and precipitation 
that stretch as far back as the late nineteenth 
century, with near-global coverage. These 
datasets have proved invaluable for our 

understanding of climate change and of the 
role of natural variability and anthropogenic 
forcing, including attribution of extreme 
weather events12,13. Furthermore, they have 
triggered global ‘system thinking’, both 
in and outside the scientific community, 
highlighting the limits to our planetary 
resources.

A new paradigm in data gathering
Data and information to aid in the 
understanding of complex problems are key 
to the successful governance of common 
pool resources, including global commons14. 
To address urgent questions related to the 
world’s foremost challenges, the social 
sciences and institutions gathering data will 
have to react and adapt more quickly to 
global challenges. Given current information 
and communication technologies, 
including the Internet, crowd sourcing and 
geographical information systems, and the 
fact that most national datasets are already 
digitized, this should be technically possible 
in a relatively modest time span. Available 
global geo-referenced databases, for example 
on demographic and economic indicators, 

GHI

SEHI

Hunger index
Extremely alarming
Alarming
Serious
Moderate
Low
Industrialized country
No data

Figure 1 | A comparison of the Global Hunger Index (GHI) and the Spatially Explicit Hunger Index (SEHI). 
The global hunger index (GHI) provided by the International Food Policy Research Institute (IFPRI)6 
combines three equally weighted indicators: a national average of the proportion of people that are 
undernourished, and two subnational indicators — the percentage of underweight children younger than 
five, and the mortality rate of children younger than five7,8. In our spatially explicit hunger index (SEHI), 
we replace the national average of the proportion of people that are undernourished used by IFPRI by a 
subnational (0.5°) indicator, provided by the Food and Agriculture Organization9, on the prevalence of 
stunting among children under five. The SEHI reveals that patterns of hunger are not bounded by national 
borders. The data are assembled for varying years from 2000 to 2011.
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show that such efforts are possible (see 
Table 1). But these databases are only 
available for restricted time periods, and the 
highest spatial resolution available is usually 
the national level, often with many missing 
countries or ambiguous values. For example, 
the OECD and World Bank report different 
life expectancy values for the same countries 
over the same time period.

Homogenization of data collection 
methodologies, free public access to data 
at a subnational scale, together with geo-
referencing of socio-economic data should 
be given the highest priority. Existing 
international organizations dealing with 
global environmental and social challenges 
could take a lead in this process.

Currently most international socio-
economic data is collected by the United 
Nations Statistics Division (UNSD), to 
which data are supplied by National Statistics 
Offices through UNSD questionnaires 
and censuses15. The United Nations 
provides mandates to other international 

organizations such as the World Bank or 
the World Health Organization (WHO) 
to deal with specific data challenges such 
as on poverty or health. One possible 
move towards improving the subnational 
data accessibility would be to ask national 
statistical offices to add subnational 
entries in the UNSD questionnaires. The 
subnational level agreed on would have to 
be large enough to protect the anonymity 
of respondents, yet explicit enough to 
enable the disaggregation of national data. 
For example, the spatial resolution of 0.5° 
that corresponds to an area of 50 km2 
at the Equator (and is roughly the area 
administered by local governments in many 
modern nations) could be a suitable solution.

A short unpublished survey that we 
carried out among employees in statistic 
divisions of international organizations 
highlighted that implementing the 
above changes would require more data 
scientists and different data management 
strategies. It was also pointed out that 

providing homogenized subnational-level 
data, especially in low-income countries, 
would require substantial improvements 
to the local data collection infrastructure. 
These are important challenges that would 
have to be overcome by international 
agreements and the reallocation of funding 
necessary for improving data infrastructure 
and management.

In addition, bottom-up and crowd data 
pooling initiatives should be encouraged. 
There are numerous regional case studies 
and research involving household surveys 
being carried out all over the world, 
and good scientific practice codes could 
encourage standardization of data gathering 
and data accessibility. Improved information 
exchange and information access can 
help to generate a better understanding 
and awareness of the interconnectedness 
between global environmental changes and 
social impacts, and through this, increased 
adaptation capacity at the global and 
local levels.� ❐

Table 1 | Examples of existing global data sources relevant for researching social impacts of global environmental changes.

Indicator Source Lowest resolution level Available years of observations
General demography
Population density Center for International Earth Science 

Information Network (CIESIN)
2.5ʹ × 2.5ʹ grid 2005, 2010, 2015

Population number, mortality, 
fertility

UN Population Division National 1949–2012

Life expectancy WHO, OECD, World Bank National 1960–2012
Infant mortality rate CIESIN Subnational, 0.25° × 0.25° grid 2000
Education
Literacy, school enrolment (by 
gender and age)

UN Gender Statistics National 1990–2010, many missing observations

School enrolment World Bank National 1970–2012, many missing observations
Economic
GDP per capita Geographically Based Economic 

Database (G-Econ)
Subnational, 1° × 1° grid 2005

Food price Food and Agriculture Organization For several countries subnational at the 
province level, otherwise national

Monthly 2000 to present

Migration
Persons of concern for UNHRCa United Nations Human Rights Council 

(UNHRC)
Subnational at the province level 2000–2012, many missing 

observations
Asylum-seekers UNHRC National 2000–2012
International migrant stock UN Population Division National 1990–2010
Poverty
Poverty rates in different age groups OECD National 1983–2011, many missing observations
Percentage of the population living 
on less than US$2.00 a day

WB National 1980–2012, many missing observations

Child malnutrition CIESIN 2.5ʹ × 2.5ʹ grid 2005
Behaviour and perceptions
Perceived seriousness of global 
warming

World Value Survey National 2009

Ecological footprint Global Footprint Network National 1961–2007
aPersons of concern for UNHRC including refugees, asylum-seekers, returned refugees, internally displaced persons (IDP), returned IDPs, stateless persons and others.
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COMMENTARY:

Local science and media 
engagement on climate change 
Candice Howarth and Richard Black

Climate scientists can do a better job of communicating their work to local communities and reignite 
interest in the issue. Local media outlets provide a unique opportunity to build a platform for scientists 
to tell their stories and engage in a dialogue with people currently outside the ‘climate bubble’.

Surveys, including those carried out 
regularly by the UK’s Department of 
Energy and Climate Change (DECC), 

show that a majority of the British public 
accept that climate change is happening, 
are concerned about it, and favour action 
to reduce greenhouse-gas emissions1. 
However, public acceptance of climate 
change has reduced over the past five 
years. This may be connected with a lack 
of appreciation of the scientific consensus, 
which by several measures exceeds 90% 
(ref. 2). In 2014, a ComRes survey of 
2,000 members of the British public, 
commissioned by the Energy and Climate 
Intelligence Unit, found that only 11% of 
respondents appreciated the extent of the 
scientific consensus on climate change; 
nearly half (47%) did not think there was a 
consensus at all3. Although the DECC (and 
other) surveys regularly show high levels of 
support for renewable energy technologies 
such as wind and solar power, the ComRes 
survey found that only 5% of the population 
knows that support is this high; more than 

half of the population (63%) thinks that the 
public is opposed.

The methods by which people receive, 
interpret and understand information on 
climate change is important as it affects 
their resulting actions4. The importance 
and relevance of place attachments in 
understanding human responses to climate 
change is known5, and by incorporating 
elements of ‘daily life’ (which by definition is 
lived at a local level), media portrayals can 
enable climate science and governance to be 
interpreted through a local, everyday lens6.

Yet the communication of climate change 
historically has been generic, untailored 
and untargeted. A transition to a situation 
in which public engagement on climate 
change goes beyond information provision 
and instead adopts a more active approach 
underpinned by constructive dialogue 
between scientists and the media could 
therefore be fruitful. Increasing engagement 
on the local dimensions of climate change 
could facilitate this and enable a stronger 
connection to the issue.

The 2013–2014 winter saw a sequence 
of serious flooding events across much of 
the UK. Both a survey commissioned by 
Avaaz at the height of the floods7 and the 
ComRes survey six months later, suggested 
that these events affected public opinion on 
climate change. In the first, nearly half of 
respondents said they believed the floods 
were linked to climate change. In the second, 
half said that the floods had increased their 
belief in climate change, and a quarter said it 
increased their belief in human agency. The 
flooding was a major story on national and 
regional media for weeks and the subject of 
intense political discourse, and these studies 
could not untangle the question of whether 
local or national factors were involved in 
people making the weather-climate link. 
However, a study on the 2012 floods in 
Wales8 indicated that local experience 
is important; people directly exposed to 
flooding were more likely to accept evidence 
for climate change, and to believe that 
their own actions could have an impact by 
reducing carbon emissions.
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Shift the focus from the super-poor to the  
super-rich
Carbon mitigation efforts often focus on the world’s poorest people, dealing with topics such as food and energy 
security, and increased emissions potential from projected population, income and consumption growth. However, 
more policies are needed that target people at the opposite end of the social ladder — the super-rich.

Ilona M. Otto, Kyoung Mi Kim, Nika Dubrovsky and Wolfgang Lucht

In 2017, there were just over 36 million 
adults classified as High Net Worth 
Individuals (net assets above US$1 

million), and there were 148,000 classified 
as Ultra High Net Worth Individuals (net 
assets above US$50 million)1. The super-
rich are, on the one hand, the most visible 
social group in terms of their presence 
in mass culture, social media, politics 
and business, and on the other hand, the 
most hidden social group in terms of 
the availability of data on their income, 
lifestyles, resource use, consumption 
patterns, mobility and social networks. It 
seems as though we know a lot about them 
from watching television and soap operas, 
and reading glossy magazines.

However, once we try to obtain more 
concrete data about this social group, there 
is practically nothing available and in 
practice very few people personally know 
someone belonging to the super-rich. For 
example, the supposedly representative 
survey of the German population on per 
capita consumptions of natural resources 
largely omits the most-wealthy respondents; 
it includes only 3.5% of respondents that 
reported income above €​5,000 per month 
(ref. 2). According to the German Statistical 
Office, however, 15.1% of households in 
Germany have a monthly income in the 
range €​5,000–18,000 (ref. 3).

Affluent people can more easily 
disconnect themselves from the realities 
of climate change and climate extremes4, 
and are in general the least affected by 
natural disasters, against which they can 
shield themselves more effectively; their 
extreme mobility gives them options to 
avoid dangerous environmental situations 
and they have greater economic capacity 
and better accessibility to recovery systems. 
This perhaps explains why the most wealthy 
have been largely ignored in climate change 
research, which instead frequently focuses 
on the poor, who are the group most 
affected by, and most vulnerable to, climate 
change impacts.

However, given their notable affluence in 
lifestyle and consumption when compared 
to the poor, a better understanding of 
the super-rich could be an important 
contribution to climate mitigation options. 
The lifestyles and consumption patterns 
of the super-rich strongly influence the 
globally growing middle classes, who 
emulate upper-class consumption styles to 
distinguish themselves from lower classes5. 
In addition, the super-rich have a great 
impact on technological innovation and 
could actively support zero carbon and 
renewable energy technologies. The world’s 
billionaires have driven almost 80% of the 
40 main breakthrough innovations over the 
last 40 years (ref. 6). Moreover, consumption 
choices of the wealthiest could support 
market penetration of new technologies that 
are still not affordable for the middle classes.

Here we estimate the greenhouse gas 
emissions of the super-rich to suggest the 
carbon savings that could be obtained by 
targeting this group, and we reflect on how 
this could be achieved.

Emissions of the super-rich
There are just a few scientific publications 
analysing lifestyles and associated 
greenhouse gas emissions of the super-rich, 
that is, their personal lifestyle emissions 
rather than those of the investment assets 
they may additionally hold or control as 
a part of their wealth, and none based on 
representative surveys. According to some 
estimates, the average lifestyle consumption 
carbon footprint of someone in the richest 
1% could be 175 times that of someone in 
the poorest 10% (ref. 7).

We conducted lifestyle consumption 
surveys with four interviewees including 
three super-rich people and a pilot operating 
a private jet that is hired by private wealthy 
customers. From this data, we have averaged 
the results from four online carbon-footprint 
calculators to estimate the carbon emissions 
corresponding to the lifestyles reported by 
our interviewees (see Table 1).

The households that we interviewed are 
each believed to hold over US$1 million in 
investment assets excluding their primary 
residence and personal items; two families 
were living in South Korea and one in the 
United States. The pilot had customers 
primarily from Central Europe. He provided 
us with the average annual distance and 
number of flights of his customers. Our 
survey focused on emissions from private 
motor vehicles, air travel, household 
energy use and spending on food and 
education. These activities arguably cover 
about 70–80% of carbon emissions from 
individual consumption8.

Our results suggest that a typical super-
rich household of two people produces a 
carbon footprint of 129.3 tCO2e per year. 
Motor vehicle use generates approximately 
9.6 tCO2e per year, with household energy 
emitting 18.9 tCO2e per year, secondary 
consumption 34.3 tCO2e per year, and 66.5 
tCO2e per year generated by the leading 
emission contributor: air travel (Fig. 1). Our 
carbon emissions estimates are substantially 
lower than those provided by Chancel and 
Piketty9 in an analysis based on national 
GDP and emission data for the years 1998–
2013, but amount to around ten times that 
of the global per-person average. Calculating 
the emissions from 0.54% of the wealthiest 
of the global population, according to our 
estimates, results in cumulative emissions 
equal to 3.9 billion tCO2e per year. This is 
equivalent to 13.6% of total lifestyle-related 
carbon emissions. In comparison, the world’s 
poorest 50% are responsible for about 10% of 
lifestyle consumption emissions7.

Room for reduction
There is a largely untapped potential to 
reduce carbon emissions by altering the 
way of life of the super-rich. For example, 
reducing the carbon footprint of this  
group by about 20% could be achieved by 
turning their residences into zero carbon 
homes with decentralized renewable energy 
production and using electric vehicles for 
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both energy storage and land transport. 
Some secondary consumption emissions 
could be avoided by choosing more durable 
goods and reducing consumption. Frequent 
air travel is a primary contributor to hugely 
above-average emissions of the super-rich 
that could be substantially reduced by 
avoiding using private jets and just flying 
less. Changes in behaviour of the super-rich 
to reduce their emissions may also have 
important down-stream benefits, as their 
lifestyles are the sources of inspiration for 
the consumption behaviour of the rest of  
the population.

Some of the wealthiest people are 
known to already actively engage in 
climate protection. For example, Bill 
Gates supports and invests in combatting 
climate-change-related problems, through 
the Bill & Melinda Gates Foundation. Otto 
Group as well as the Bosch Company are 
associated with foundations that actively 
support environmental and sustainability-
oriented research and education. Stordalen 
Foundation has invested in a wide range 
of cutting-edge research and public 
engagement for sustainability. Other super-
rich have been planting trees in an effort to 
offset their carbon footprints10. Nevertheless, 
these examples are far from typical, and 
it is the unengaged majority of the super-
rich that requires attention if substantial 
emissions reductions are to be achieved.

Policies must target the super-rich
The wealthiest are not much affected by  
the mitigation policies in which nation 
states are the main actors as well as the 
main sources of funding. The current 
climate mitigation efforts focusing on 
afforestation, energy supply and demand, 
transportation and buildings11 correlate 
only weakly with the sectors driving the 
world’s biggest fortunes (finance and 
investment, fashion and retail, and real 
estate12). Heavy environmental taxation, as 
commonly discussed, is unlikely to effect the 

consumption behaviour of the super-rich, 
who can afford to continue polluting4.

Policies that more aggressively force 
carbon-footprint reduction of the super-rich 
may be pursued as a part of a comprehensive 
portfolio of mitigation. Examples of policies 
that are currently being discussed include 
compulsory restrictions on household and 
individual emissions, and building code 
regulations13. Those specifically targeting 
the wealthiest could include obligatory 
installation of renewable energy facilities on 
houses and apartments above a certain size. 
Importantly, in contrast to the poorest in 
the community, the richest have the agency 
and power needed to change their lifestyles 
to meet policy requirements without 
compromising quality of life. The leadership 
of the super-rich in adopting renewable 
energy technologies could generate positive 
knowledge and technology diffusion spill-
over effects, making such technologies more 
attractive and more affordable for other 
social groups.

In addition, new and more sophisticated 
policy instruments are needed. Some 
authors propose introducing an inheritance 
tax14,15 that could be an additional source of 
funds for climate mitigation. In 2017 alone, 
44 heirs inherited more than a billion dollars 
each, totalling US$189 billion (ref. 6). For 
comparison, the four largest multilateral 
climate funds, the Green Climate Fund, 

Table 1 | Summary of survey data collected on the monthly consumption habits reported by four interviewees. The averaged results from 
four different carbon-footprint calculators were used to estimate the emissions of a typical super-rich household.

Interviewee A Interviewee B Interviewee C Interviewee D

Business sector Investment
Real estate

Trade Aviation Investment
Finance

Household size 1 1 – 5 (and 2 babysitters)

Motor vehicles 2
Discovery Sport
Mercedes E Coupe

3
Mercedes C63
GranTurismo
Hyundai Genesis (excluded from 
data)

– 2
Large sedans

Driving milesa Discovery Sport: 800 miles
Mercedes E Coupe: 400 miles

Mercedes C63: 1,000 miles
GranTurismo: 600 miles

- Car 1: 1,564 miles
Car 2: 1,279 miles

Air travelb Short: 5
Medium: 2
Long: 1

Short: 0
Medium: 10
Long: 0

Total distance: 
4,143 miles

Short: 0
Medium: 0
Long: 2

Houses 2 (Republic of Korea)
1: 280m2

2: 185m2

2 (Republic of Korea and 
Thailand)
1: 185m2

2: 560m2

– 2 (United States)
1: 500m2

2: 500m2

Secondary – – – Cultural activities: US$2,000
Food: US$2,500
Education: US$2,083–5,000

Carbon footprintc (tCO2e per year) 73.3 84.7 177.4 105.6
aDriving mileage expressed in miles for two most frequently used cars. bA one-way flight is counted as 1. cThe average result of calculating the carbon footprint with four different carbon footprint calculators: 
CoolClimate Network (http://coolclimate.berkeley.edu/calculator); Carbon Footprint (https://www.carbonfootprint.com/calculator.aspx); myclimate (http://www.myclimate.org/); Korean Carbon Footprint 
(http://www.kcen.kr/tanso_20120314/main.html).
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Fig. 1 | The estimated carbon footprint of a 
typical super-rich household of two people. 
Data were derived from four consumption habit 
surveys, and show the average of four carbon-
footprint calculators for each of four consumption 
categories. Total emissions are approximately 
129.3 tCO2e per year.

Nature Climate Change | VOL 9 | FEBRUARY 2019 | 82–87 | www.nature.com/natureclimatechange

analyses and studies of concrete cases and contexts 409

Reprinted by permission from Springer Nature: Springer Nature, Nature Climate Change, Shift the focus from the super-poor to the super-rich, I. M.
Otto et al., doi: 10.1038/s41558-019-0402-3, Copyright 2019, Springer Nature Limited.

https://doi.org/10.1038/s41558-019-0402-3


84

comment

Adaptation Fund, Climate Investment Funds 
and Global Environment Facility, approved a 
total of US$2.78 billion of project support in 
2016 (ref. 16).

Next steps
Any form of policy targeted at the super-
rich is bound to meet with strong resistance. 
The rich are over-represented in national 
governments and there are strong ties 
between the wealthy and the political elites. 
Therefore, it is important to raise awareness 
about these issues and to build social 
pressure on the super-rich and political elites 
all over the world.

More research is also needed to 
understand the motives that might drive 
the wealthy to become environmentally 
engaged in their private life as well as in 
their business operations. For example, 
major investors could be encouraged to 
exert influence on the fossil-fuel sector by 
divesting their assets and reinvesting their 
money in renewables, however, one would 
have to understand first which arguments 
and communication channels should be 
used to successfully reach this group.

Finally, more efforts are needed to 
educate the rich. The impacts of unmitigated 
climate change on ecosystems, agricultural 
production and water availability in the 

twenty-first century will lead to large-scale 
population displacements, disruption of 
international trade networks, food shortages 
and an increasing number of conflicts over 
basic resources17. The manifold consequences 
for human security and health suggest that 
no amount of money would guarantee the 
safety, or even survival, of our generation’s 
offspring, including those from super-rich 
families. Such a message should reach the 
world’s most wealthy and most powerful. ❐
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Grounding nature-based climate solutions in 
sound biodiversity science
The current narrow focus on afforestation in climate policy runs the risk of compromising long-term carbon 
storage, human adaptation and efforts to preserve biodiversity. An emphasis on diverse, intact natural  
ecosystems — as opposed to fast-growing tree plantations — will help nations to deliver Paris Agreement  
goals and much more.

Nathalie Seddon, Beth Turner, Pam Berry, Alexandre Chausson and Cécile A. J. Girardin

The idea that natural ecosystems can help 
us fight both the drivers and impacts 
of climate change has been gaining 

traction over the past few years, including 
recent emphasis in the IPCC Special Report1. 
In particular, the Paris Agreement on climate 
change calls on all parties to acknowledge 
“the importance of ensuring the integrity 
of all ecosystems, including oceans, and the 
protection of biodiversity, recognized by 
some cultures as Mother Earth”, and 66% 
of signatories to the agreement commit to 
‘green’ or ‘nature-based solutions’ in their 

climate pledges (see Nature-Based Solutions 
Policy Platform; www.nbspolicyplatform.org) 
(Box 1). Such recognition of nature’s value 
— in particular through policies promoting 
forests as carbon sinks — was hard-won 
by negotiators and non-state actors and is 
vitally important. However, we are concerned 
by aspects of the narrative reaching 
policymakers, and call on scientists studying 
biodiversity and ecosystem functions and 
services to fully engage with and inform 
the process by which high-level pledges are 
translated into on-the-ground actions.

A focus on forests
When it comes to high-level multilateral 
pledges for nature, the current focus is on 
forests. The Bonn Challenge — launched by 
the International Union for Conservation 
of Nature (IUCN) and Germany in 2011 
and currently involving 56 nations — is a 
global effort to restore 150 million hectares 
of deforested and degraded land by 2020 and 
350 million hectares by 20302; the New York 
Declaration on Forests — signed in 2014 
by 37 governments, 63 non-governmental 
organizations, 53 multinational companies 
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Social and political tensions keep on fueling armed conflicts around
the world. Although each conflict is the result of an individual
context-specific mixture of interconnected factors, ethnicity appears
to play a prominent and almost ubiquitous role in many of them.
This overall state of affairs is likely to be exacerbated by anthropo-
genic climate change and in particular climate-related natural disas-
ters. Ethnic divides might serve as predetermined conflict lines in case
of rapidly emerging societal tensions arising from disruptive events
like natural disasters. Here, we hypothesize that climate-related
disaster occurrence enhances armed-conflict outbreak risk in ethni-
cally fractionalized countries. Using event coincidence analysis, we
test this hypothesis based on data on armed-conflict outbreaks and
climate-related natural disasters for the period 1980–2010. Globally,
we find a coincidence rate of 9% regarding armed-conflict outbreak
and disaster occurrence such as heat waves or droughts. Our anal-
ysis also reveals that, during the period in question, about 23% of
conflict outbreaks in ethnically highly fractionalized countries robustly
coincide with climatic calamities. Although we do not report evidence
that climate-related disasters act as direct triggers of armed conflicts,
the disruptive nature of these events seems to play out in ethnically
fractionalized societies in a particularly tragic way. This observation
has important implications for future security policies as several of the
world’smost conflict-prone regions, including North and Central Africa
as well as Central Asia, are both exceptionally vulnerable to anthro-
pogenic climate change and characterized by deep ethnic divides.

climate-related natural disasters | ethnic fractionalization | armed conflicts |
event coincidence analysis

Climate-related natural disasters are among the most impor-
tant environmental stressors affecting the development of

human societies. Climatic changes—and most prominently the
succession of severe natural disasters—have been recognized as
an important potential driver for the collapse of complex soci-
eties (1). However, not the climatological events per se, but so-
cietal vulnerability to its consequences in conjunction with other
stressors has led to societal disintegration, armed conflicts, and
eventually societal collapse during historic and prehistoric times
(2–8). Today, armed conflicts are still among the biggest threats
to human societies, and the identification of underlying pro-
cesses and potential drivers is an area of intense scientific re-
search. Several potential risk enhancement factors for conflict
outbreak have been identified, including poverty (9), income
inequality (10), weak governance (11), or a preexisting history of
conflicts (12). Hypotheses relating to conflict feasibility based on
financial assets from natural resource exploitation have also
been discussed (13, 14). Additionally, there is a growing body of
literature that reports robust indications that ethnic fractional-
ization is one of the key determinants of armed-conflict outbreak
risk (10, 14–17). Although not necessarily rooting in ethnic ten-
sion, nearly two-thirds of all civil wars since 1946 have been fought
along ethnic lines (18). This prominent role of ethnicity in conflicts
might be related to selective access to political power or re-
sources that are often divided along ethnic lines (19), as well as to a
high and rapid ethnic mobilization potential (20) arising from

geographical clustering of ethnic groups and strong interethnic
social ties (21). These two factors may contribute to societal fis-
sures along ethnic boundaries in case of rapidly emerging societal
tension stemming from disruptive events such as natural disasters.
In addition, it seems plausible that ethnic groups can be impacted
very differently by natural disaster occurrence. The prevalent geo-
graphic clustering might be reinforced by other factors such as
ethnically specific livelihoods (e.g., pastoral or riverine communi-
ties) or socioeconomic discrimination resulting in an ethnicity-
dependent differential vulnerability to natural disasters (22).
In our analysis, we investigate the hypothesis that climate-

related natural disasters (in the following referred to as disasters)
enhance the risk of an emergence or violent outbreak of armed
conflicts particularly in ethnically fractionalized societies. We
explicitly address the impact of such disasters in terms of the
resulting economic damage relative to national gross domestic
product (GDP), making use of a high-quality database developed
for commercial purposes of the reinsurance sector (Materials and
Methods). Thereby, we explicitly define disasters with respect to
their economic impact instead of the associated climatic variables.
To test for statistical interrelationships between these damage
events and the timing of armed conflicts, we use event coincidence
analysis (ECA; see refs. 23 and 24, and Fig. 1 and Materials and
Methods), a method that is conceptually related to event syn-
chronization (25) and similar approaches that are widely used in
the neurosciences for studying neuronal spike trains (26). ECA
provides a generally applicable tool for explicitly testing the
statistical significance of interdependences between sequences of
events and has been proven useful in analyzing relations between

Significance

Ethnic divides play a major role in many armed conflicts around
the world and might serve as predetermined conflict lines
following rapidly emerging societal tensions arising from dis-
ruptive events like natural disasters. We find evidence in global
datasets that risk of armed-conflict outbreak is enhanced by
climate-related disaster occurrence in ethnically fractionalized
countries. Although we find no indications that environmental
disasters directly trigger armed conflicts, our results imply that
disasters might act as a threat multiplier in several of the
world’s most conflict-prone regions.
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event time series such as regime shifts in African paleoclimate
and the appearance and disappearance of hominin species dur-
ing the Plio-Pleistocene (23), plant growth response to climatic
extremes (27, 28), or the role of flood events as triggers of epi-
demic outbreaks (24).
ECA allows to quantify the strength and robustness of statistical

interrelationships between event series of natural disasters and
armed-conflict outbreaks in two complementary ways (Materials
and Methods): (i) the “risk enhancement test” is based on the
“aggregated precursor coincidence rate” (24) measuring the frac-
tion of conflicts that co-occurred with or were preceded by at least
one disaster exceeding a certain damage level in the same country
and that occurred at most at time ΔT before the conflict started
(Fig. 1). In this case, a robust coincidence rate would indicate that
disaster occurrence is a risk-enhancing factor for armed-conflict
outbreak, based on a retrospective analysis with the condition that
such an outbreak has occurred. (ii) In turn, the “trigger test” relies
on the “aggregated trigger coincidence rate” (24) measuring the
fraction of disasters exceeding a prescribed damage level in a
country group that co-occurred with or were followed by at least
one conflict that occurred at most a time ΔT after the disaster
onset in the same country. This analysis allows to assess more ex-
plicitly than the risk enhancement test whether disasters may act as
a direct trigger to armed-conflict outbreaks in the database under
consideration. Statistical significance is tested with respect to an
appropriately chosen null model (Materials and Methods), and we
vary the economic damage threshold for identifying disasters to test
for the effect of the event severity on the coincidence rate and
significance as well as different disaster types (climatological, me-
teorological, and hydrological disasters; SI Appendix, Table S1).

Besides testing for a global relation between natural disaster
occurrence and armed-conflict outbreak, we performed our
analysis on a group of 50 countries with the highest ethnic frac-
tionalization (EF) following a well-established ethnic fractional-
ization index (29) (results for different group sizes are given in SI
Appendix). Additionally, we grouped countries according to
alternative hypotheses such as multiple conflict outbreaks (CONFL,
see ref. 12) and income inequality measured by the Gini coefficient
(GINI, 50 countries with highest inequality; see Fig. 2 for the
country classification). We furthermore analyzed other country
groupings such as countries with high religious fractionalization,
low levels of overall development, low literacy rates, abundant
absolute poverty, high dependency on agricultural production, high
corruption levels, or countries markedly affected by the El Niño
Southern Oscillation (SI Appendix, Table S3). It is important to
highlight that such a country grouping approach does not allow for
a robust assessment of the relevance of different factors for the risk
of armed-conflict outbreak generally, but rather indicates specific
vulnerability to climate-related natural disaster impacts.

Results
In the following, we present the results of ECA of armed-conflict
outbreaks listed in the UCDP/PRIO conflict dataset (30, 31) with
natural disasters based on the NatCatSERVICE database from
Munich Re over the period from 1980 to 2010 (32). We find no
statistically significant precursor coincidence rates for the risk en-
hancement test at the global scale and all disaster types, except for
the most devastating disasters that caused damage above 10% of
annual country GDP (compare Fig. 3). As the database contains
only about 40 events of this damage class globally (SI Appendix,

Fig. 1. Illustration of the methodological approach of event coincidence analysis for the risk enhancement test based on armed-conflict occurrence. An
armed-conflict outbreak (orange) is counted as coincident with a natural disaster (green), if it co-occurs with or is preceded by such an event exceeding a
prescribed damage threshold within a given coincidence interval ΔT.

Fig. 2. Mapping of countries according to different analysis criteria including countries with more than one conflict (CONFL), the 50 countries with the
highest Gini coefficient (GINI), as well as the 50 countries with the highest ethnic fractionalization (EF).
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Table S2), however, no robust conclusions can be drawn for this
category. To the contrary, our analysis reveals robust precursor
coincidence within the same month for EF largely independent of
the damage threshold resulting in a maximum coincidence rate of
about 23% for all disaster types, which corresponds to 23 conflict
outbreaks in total (see SI Appendix, Table S4, for an overview of
the number of conflict outbreaks per country grouping). This
finding is largely robust with regard to the arbitrarily chosen
size of the country grouping (SI Appendix, Fig. S1). The results for
the GINI, CONFL, as well as alternative country groupings (SI
Appendix, Fig. S2) do not differ substantially from the global as-
sessment. Despite existing linkages between some of the afore-
mentioned factors and EF (compare Fig. 2), none of these country
groupings yields results of similar robustness. In addition, we an-
alyzed immediate and longer-term responses to disaster impacts
(SI Appendix, Fig. S3). Although we find significant precursor
coincidence rates for an extended coincidence interval of up to
3 months before the conflict outbreak, our analysis does not reveal
significant effects for longer intervals.
A different picture emerges when different types of disasters

are treated separately (see SI Appendix, Table S1, for further
details on the event type classification). About 9% of all global
armed-conflict outbreaks (21 in total) significantly coincide with
a climatological disaster (drought or heat wave) in the same
country even without applying a disaster damage threshold (7%
for the EF country grouping). For hydrological events, only those
with strongest impact yield statistically significant results, albeit
at a low precursor coincidence rate. Also, we only find significant
precursor coincidence for meteorological disasters for EF with a
low coincidence rate.
The same analysis has been performed for the trigger test

quantifying to what degree armed-conflict outbreaks coincide with
or follow disasters (Fig. 4). Again, we find the signal for coinci-
dences within the same month and climatological disasters to be
most robust with the largest statistically significant coincidence
rate for the EF country group. However, trigger coincidences have
only been identified for 2.5% of all climatological events and
about 2% of all disasters above a 1% relative GDP threshold for
the EF country grouping and are not robust at the global scale.

Discussion
The question whether or not climate-related factors have signifi-
cantly contributed to recent armed-conflict outbreaks has been
heavily disputed in the scientific literature (33–38). Although a
sequence of studies has suggested that a large number of out-
breaks of armed conflicts in modern as well as premodern times
have been associated with climatic variability (33, 36, 37, 39–41),
the robustness of these findings and underlying mechanisms are
controversially discussed (10, 37, 42, 43). Other literature that
assessed the influence of climate signals on armed-conflict out-
break risk did not report a robust connection (9, 44, 45).
A clear shortcoming of most studies investigating the relation

between climate change and armed conflicts is that they focus
solely on meteorological indices such as temperature or pre-
cipitation time series (9, 39–42, 46), thereby neglecting the cru-
cial importance of vulnerability and exposure for the impacts of
climate hazards (35, 47). This might be one reason for the sub-
stantial disagreement on the matter in the literature. Moving
beyond purely meteorological indices toward the development of
composite indices accounting for vulnerability and exposure to
climate change, as well as conflict risk provides a promising way
forward to reconcile this debate (48, 49).
Our ECA approach, based on disaster occurrence characterized

by the economic impact of a climate-related event instead of a
meteorological index, accounts to some extent for the effects of
vulnerability and exposure. However, some potential caveats need
to be considered. Economic losses as measured relative to GDP are
of limited relevance in assessing disaster impacts in the most vul-
nerable countries, as disaster-related losses are difficult to quantify
and loss of lives and livelihoods may substantially outweigh eco-
nomic losses. At the same time, damages by disasters that are not
directly affecting economic assets but rather living conditions and
subsistence agriculture, such as droughts, are difficult to quantify in
economic terms (32). These shortcomings of the economic indica-
tors may explain why we find robust significant relationships down
to low damage threshold levels as well as the apparent insensitivity
to the threshold level for climatological events (compare Fig. 3). A
second shortcoming is associated with the country-level resolution
of our study that can impede the assessment of potential relations

Fig. 3. Results of ECA for the risk enhancement test: the percentage of armed-conflict outbreaks that coincide with a climate-related natural disaster within
the same month (Materials and Methods). We resolve different country groupings, disaster types (color coding), and disaster damage levels. Damage levels
are indicated by segments of the individual bars and are assessed relative to the country’s GDP in the year of the event. Segmenting starts with zero threshold
from the top and the number of segments with nonzero coincidences can differ between country groupings and disaster types. Filled segments indicate
coincidence rates that are significant at the 95% level. Results shown are for coincidences between events occurring within the same month (see SI Appendix,
Fig. S3 for results for coincidence intervals of up to 12 months).
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between disasters and armed-conflict outbreaks happening in dif-
ferent parts of the country. Although a higher resolution would
indeed improve our analysis, the current country aggregation does
not undermine the validity of our test as a larger number of pos-
sibly disconnected disasters and armed-conflict outbreaks on a
country level will only lead to higher significance thresholds (Ma-
terials and Methods) and, consequently, to a more conservative test.
The results for the different country groupings depend not only on

the ad hoc selection of group sizes (although our findings for EF are
largely robust for different group sizes; compare SI Appendix, Fig.
S1) but also on the index chosen. Although widely used, the classi-
fication following general indicators such as GINI or EF has led
to inconsistent results in the conflict literature and it has been shown
that theoretically informed country profiles combining multiple
factors and relating them to dimensions of power sharing are much
better predictors of armed-conflict outbreaks (10). Specifically, dis-
criminatory political and power-sharing systems along ethnic
boundaries have been found to be of key relevance (10). Thereby, a
refinement of our analysis based on indices reflecting ethnic in-
clusiveness in power sharing might be promising for further research.
Commonly, high ethnic separation on a country level coincides

with other potential sources of conflict such as economic in-
equality or poverty, which makes it difficult to disentangle their
specific effects (50). However, the results for alternative group-
ings (e.g., for inequality, poverty, and conflict proneness) are
much less robust than those for EF, despite a substantial overlap
in the actual country groupings (compare Fig. 2). Although the
country grouping approach as applied here does not allow for a
direct quantification of the driver’s importance, our results imply
that the mechanisms specific to EF and conflict outbreak dis-
cussed above may play a significant role for armed-conflict out-
break following a natural disaster (18). Thereby, it is not the
domain-specific factors, EF, or natural disasters occurrence
alone, but their interplay that results in enhanced risk of armed-
conflict outbreak. Besides our robust findings of risk enhancement,
we report no further indications that natural disasters are causing
armed-conflict outbreaks in a more direct manner (based on the
trigger test). Thereby, our results do not support attempts of single-
factor attribution of conflict outbreaks to disaster occurrence.

Unlike development-related factors such as poverty and in-
equality, ethnic fractionalization of societies cannot be overcome via
economic development alone. As a consequence, country-specific
risks may prevail over the next decades independently of the
countries’ state of development, if no robust progress in ethnic in-
clusiveness regarding power sharing is achieved (10). Among the
most fractionalized countries are many African as well as Central
Asian nations (compare Fig. 2), which makes these regions poten-
tial hot spots of armed-conflict outbreak risk enhancement due to
climate-related natural disasters. Climate projections indicate a
substantial increase in extreme event hazards in these regions and
most of the affected countries are also characterized by high vul-
nerability and low adaptive capacity, which renders them particu-
larly susceptible to high-impact climate-related natural disasters
(51, 52). Projections of overall conflict risk up to 2050 based on a
multifactorial analysis also find these regions to be particularly
endangered (12), which highlights the relevance of our findings
in the wider context of conflict prevention and development.
The robust finding of armed-conflict outbreak risk enhancement

for climatological events globally points towards increased risks due
to a projected drying trend in already drought-prone regions such as
Northern Africa and the Levant (53). Recent analyses of the soci-
etal consequences of droughts in Syria and Somalia indicate that
such climatological events may have already contributed to armed-
conflict outbreaks or sustained conflicts in both countries (54–
57). Similarly, a prolonged drought might have contributed
negatively to the ongoing conflicts in Afghanistan (58). Further
destabilization of Northern Africa and the Levant may have
widespread effects by triggering migration flows to neighboring
countries and remote migrant destinations such as the European
Union. Although not highly ethnically fractionalized following the
ad hoc threshold classification applied here, ethnic identities also
appear to play a prominent role in the ongoing civil wars in Syria
and Iraq (18). It is clear that the roots of these conflicts, as for
armed conflicts in general, are case specific and not directly as-
sociated with climate-related natural disasters. Nevertheless, such
disruptive events have the potential to amplify already existing
societal tensions and stressors and thus to further destabilize
several of the world’s most conflict-prone regions (12, 31).

Fig. 4. Results of ECA for the trigger test based on the occurrence of disasters that coincide with an armed-conflict outbreak within the same month
(Materials and Methods). Results for four different country groupings are resolved in four individual panels, whereas results for different disaster types are
indicated by the color coding. Coincidence rates are displayed for different damage threshold levels by individual bars with increasing damage threshold from
left to right. For some threshold levels, the trigger coincidence rate is zero. Filled segments indicate coincidence rates that are significant at the 95% level.
Note that the coincidence rates are one order of magnitude smaller than for the risk enhancement test depicted in Fig. 3.
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Materials and Methods
Data Sources.
Natural disaster database. The analysis of disaster damages is based on the
NatCatSERVICE database from Munich Re (32) developed for the private
sector, which is available upon request from the Munich Re NatCatSERVICE.
This database provides state-of-the-art estimates of economic damages
connected to natural hazards. The database comprises the 1980–2010 period
and gives estimates for total economic damages based on internal estimates
and third-party sources. It contains about 18,000 climate-related events for that
period. Damage events are classified according to the nature of the underlying
natural hazard and include also geophysical events such as earthquakes, which
are excluded from our analysis (see SI Appendix, Table S1 for an overview on
the climate-related natural hazards and their classification). To account for
country-specific economic conditions, the absolute damages are considered
relative to the countries’ annual GDP (International Monetary Fund database;
https://www.imf.org/external/data.htm), which allows for the analysis of cli-
mate-related natural hazards dependent on their destructiveness in economic
terms. All damages are deflated to 2010 US dollars.
Armed-conflict database. Data on armed conflicts are taken from the openly
available UCDP/PRIO Armed Conflict Dataset (30, 31) (www.pcr.uu.se/research/
ucdp/datasets/ucdp_prio_armed_conflict_dataset/). This dataset counts all in-
cidences with more than 25 battle-related deaths globally, both interstate and
intrastate conflicts. Conflict outbreaks are counted on a yearly basis, for each
dyad of conflicting parties (either interstate or intrastate). For ongoing con-
flicts, each new outbreak is included when preceded by at least 24 months of
nonconflict. Interstate conflicts are treated separately and coincidences are
counted if at least one of the countries has been hit by a disaster within the
coincidence interval and above the damage threshold. Conflicts involving
multiple countries (such as US-led coalitions in Afghanistan and Iraq in the
2000s) are excluded. The dataset includes 241 conflict outbreaks over the
1980–2010 period for both interstate and intrastate conflicts globally.
Country classification. The country classification in terms of ethnic as well as
religious fractionalization is based on indices developed by Alesina et al. (29)
and the Gini coefficient is based on World Bank data and averaged over the
1980–2010 period (World Bank database; data.worldbank.org/indicator/).
For both indices, the 50 countries with the highest values are used. For
further country classifications, see SI Appendix, Table S3.

Method Description: ECA. ECA is a method tailored for quantifying and testing
statistical interrelationships between event series while allowing to specify ex-
plicitly the coincidence interval, lag, and directionality (in terms of precursor and
trigger coincidences) of these interrelationships (24). In this study, we perform
two coincidence tests: (i) the risk enhancement test, which is based on armed-
conflict outbreak and tests for coincidences of natural disasters co-occurring
with or preceding conflict events, and (ii) the trigger test based on climate-
related natural disaster occurrence, which tests for coincidences with armed-
conflict outbreaks following or co-occurring with a disaster event (24). Both
tests differ with regard to the considered set of countries and the definition of
the coincidence interval, but otherwise the same methodology is applied. We
analyze countrywise coincidences between armed-conflict outbreaks at times
tc,ki (i= 1, . . . ,Nc,k) and disaster events at times td,kj ð«Þ (j= 1, . . . ,Nd,kð«Þ) within
a coincidence interval ΔT (Fig. 1) for a group of countries G, where k∈G is a
country index. Nc,k and Nd,kð«Þ denote the numbers of armed conflicts and
disasters for a given country k, respectively. The disaster events are filtered by a
damage threshold « measured in units relative to annual GDP.

The risk enhancement test is based on the aggregated precursor coincidence
rate rGp ðΔT , «Þ (24) measuring the fraction of conflicts in country group G that
were preceded by at least one disaster of the strength of at least « in the same
country and that occurred at most at time ΔT before the conflict started:

rGp ðΔT , «Þ=

P
k∈G

PNc,k

i=1 Θ
hPNd,k ð«Þ

j=1 1½0,ΔT �
�
tc,ki − td,kj ð«Þ

�i

P
k∈GNc,k

, [1]

where Θð·Þ is the Heaviside function [here defined as ΘðxÞ= 0 for x ≤0 and
ΘðxÞ= 1 otherwise] and 1Ið·Þ, the indicator function of the interval I [defined

as 1IðxÞ= 1 for x ∈ I and 1IðxÞ= 0 otherwise]. Note that, according to this
definition, multiple disasters preceding a given conflict within the co-
incidence interval are counted only once. In turn, the trigger test is based on
computing aggregated trigger coincidence rates (24):

rGt ðΔT , «Þ=

P
k∈G

PNd,k ð«Þ
j=1 Θ

hPNc,k

i=1 1½0,ΔT �
�
tc,ki − td,kj ð«Þ

�i

P
k∈GNd,kð«Þ

, [2]

measuring the fraction of disasters of a strength of at least « in country group
G that were followed by at least one conflict that occurred at most a time ΔT
after the disaster onset in the same country.

The temporal resolution of the analysis is limited to monthly values, which
accounts for both dating uncertainties in the conflict database as well as in
disaster onsets (as in, e.g., droughts). For temporally extended disaster events,
the start date is used. Although certain events such as heat waves and in
particular droughts can last for several months, an analysis using the end
dates of such temporally extended disasters (not shown) does not exhibit
significant coincidence rates. To assess the statistical robustness of our
findings, independent Poisson processes are assumed for both the disaster as
well as the conflict outbreak event series at the individual country level,
conserving the event rates Nc,k=T and Nd,kð«Þ=T, respectively (23). Here,
T denotes the total time span covered by both event series. The corresponding
null hypothesis (NH) to be tested is that the observed coincidence rates for a
group of countries G occur due to chance alone. To perform this test, Monte
Carlo simulation is applied for generating M pairs of surrogate event series.
Event rates for each country k∈G are conserved by uniformly and in-
dependently drawing Nc,k ,Nd,kð«Þ event timings from the considered period
1980–2010 to compute a test distribution of coincidence rates pðrGÞ using
Eqs. 1 and 2. For each considered country grouping, M= 1,000 ensemble mem-
bers are generated and a 95% significance level is applied for the rejection of the
NH of coincidence rates arising due to chance alone. No significance assessments
are made, if the absolute number of coincidences counted is smaller than 2.

A variety of approaches related to ECA is applied in the neurosciences for
investigating statistical interrelationships between neuronal spike trains (26).
Among others, event synchronization (25) has been widely used for studying
climatological extreme events in various contexts (60, 61). Donges et al. (24)
provide amore detailed discussion of ECA in comparisonwith related approaches.

It should be noted that the statistically significant coincidence rates observed
in this study could in principle be due to a hidden common cause that affects the
timing of both climate-relateddisasters and armed-conflict outbreaks. Although
theexistenceof such a root cause cannot be ruledout apriori, there is noobvious
hypothesis available on what a hidden common cause or common driver could
be in the setting of our study. If event or other data on candidate processes is
available, extensions of ECA such as conditional ECA could be applied to study
common driver effects (62). Alternatively, recurrence-based methods proposed
for discovering hidden common causes in the case of bivariate standard time
series (63) could be adapted for event time series in future research.

The software (Python scripts) and openly available data used for performing
the analysis presented in this paper have been made available at www.pik-
potsdam.de/research/publications/pnas/Schleussner_et_al_2016_PNAS_scripts.zip.
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Abstract. Spreading or complex contagion processes on networks are an important mechanistic
foundation of tipping dynamics and other nonlinear phenomena in complex social, ecological and
technological systems. Increasing amounts of temporal network data are now becoming available
to study such spreading processes of behaviours, opinions, ideas, diseases, innovations or tech-
nologies and to test hypotheses regarding their specific properties. To this end, we here present a
methodology based on dose-response functions and hypothesis testing using surrogate data sets.
We demonstrate this methodology for synthetic temporal network data generated by the adaptive
voter model. Furthermore, we apply it to empirical temporal network data from the Copenhagen
Networks Study. This data set provides a physically-close-contact network between university stu-
dents participating in the study over the course of three months. We study the potential spreading
dynamics of the health-related behaviour “regularly going to the fitness studio” on this network.
Based on a hierarchy of surrogate data models, we find that the empirical data neither provide sig-
nificant evidence for an influence of a dose-response-type network spreading process, nor significant
evidence for homophily. The empirical dynamics in exercise behaviour are likely better described by
individual features such as the disposition towards the behaviour, and the persistence to maintain
it, as well as external influences affecting the whole group, and the non-trivial network structure.
The proposed methodology is generic and promising also for applications to other data sets and
traits of interest.

1 Introduction

Spreading and contagion processes shape the dynamics of diverse complex ecological, societal and technological
systems studied in many fields of research [1–3]. Examples include biological infections [4, 5] such as the spreading of
the COVID-19 pandemic [6], cascading failures in interdependent infrastructure systems [7], diffusion of innovations
and technologies [8–10], social norms [11] and other social, political and technological innovations relevant for
sustainability transition and rapid decarbonisation [12–15], political changes [16], or religious missionary work [17,
18]. These spreading processes on complex networks often give rise to nonlinear dynamics and the emergence of
macroscopic phenomena, such as phase transitions and tipping points that separate qualitatively different dynamical
regimes [19]; for example, a transition between regimes where a local infection or innovation is locally contained, and
those where it spreads globally to a large part of the network [1, 2, 10, 20, 21]. Furthermore, spreading processes
can interact with the underlying complex network structures, e.g. through the process of homophily, giving rise to
complex coevolutionary feedbacks between dynamics on and structure of these networks [22–25]. Better understanding
of such complex spreading processes, based on improved methods for data analysis and modelling, is highly relevant
for finding robust approaches to influence, manage, govern or control their dynamics. This way, harmful impacts may
be avoided, or desirable outcomes reached, e.g. for containing pandemic outbreaks [6, 26, 27], preventing cascading
failures in power grids [7, 28], or fostering the spreading of social-cultural-technological innovations towards a rapid
sustainability transformation [12–14, 19].
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In recent years, temporal network data has become more abundantly available from social media platforms such
as Facebook and Twitter, or long-term health studies such as the Framingham Heart Study that have been leveraged
for studying spreading and contagion processes, e.g. in the dynamics of obesity [29], smoking [30], happiness [31],
loneliness [32], alcohol consumption [33], depression [34], divorce [35], emotional contagion [36] and political mo-
bilisation [37]. So far such studies of empirical temporal network data mainly relied on standard statistical methods
such as generalised linear models, generalised estimating equations or spatial autoregressive models. However, these
methods are typically not well-equipped to deal with network dependencies [38]. Furthermore, analogous to the
problem of identifying causal associations in multivariate time series data [39, 40], there are challenges in extracting
possible causal effects induced by contagion processes, and in separating their imprints from other mechanisms such
as homophilic rewiring of network structure, common external forcing from the system’s environment and other
confounding effects. After all, most studies rely on observational data and not on controlled experiments [38].

Here, we contribute to this field by developing a methodology for the analysis of complex spreading processes in
temporal network data sets based on dose response functions (DRFs) that have been used in the theoretical description
of simple and complex contagion processes [2, 20]. Among others, they have been applied to the study of behavioural
contagion in animal systems such as startling cascades in fish schools [41] and the spread of information on social
media networks [42]. Dose response functions encode a network nodes’ probability of being infected with a new trait,
given the level of exposure to this trait in its network neighbourhood. We propose an algorithm including Gaussian
filtering to robustly estimate DRFs from synthetic and empirical temporal network data, including the possibility of
propagating various types of uncertainties. In order to test for the possibility of an actual causal spreading process
being involved in generating the data, and to identify confounding effects, we also develop a hierarchy of temporal
network surrogate models. They enable us to investigate which features and structures in the data are possibly
sufficient to explain the obtained dose response functions.

We apply this methodology to synthetic data from the adaptive voter model as a proof-of-concept, and to
empirical observational temporal network data from the Copenhagen Networks Study. Based on the latter we analyse
the spreading dynamics of the illustrative behaviour of “regularly going to the fitness studio” on a physically-close-
contact network between university students participating in the study over the course of three months. We do not
find robust evidence of a causal spreading process underlying the observed dynamics. This suggests that possible
social contagion effects in this context are very limited, and dominated by other factors or shadowed by excessive
noise. This is in agreement with findings from health behaviour psychology [43]. Hence, this first application study
suggests that the proposed methodology is generic and promising for investigations of other data sets and possibly
spreading traits of interest.

This paper is structured as follows: we first introduce the synthetic and empirical temporal network data sets,
obtained from the adaptive voter model and the Copenhagen Network Study, respectively (Sect. 2). In a next step,
we describe the methodology developed here for data analysis, including estimating dose response functions and
generating surrogate data sets for testing hypotheses on underlying data generating processes (Sect. 3). Finally,
we report results obtained for the synthetic and empirical data sets (Sect. 4), discuss these findings and conclude
(Sect. 5).

2 Data

Here we describe the data sets used in this study to test our proposed dose-response function methodology. The data
has the form of temporal networks (Sect. 2.1), it includes synthetic temporal network data generated by the adaptive
voter model (Sect. 2.2) and empirical temporal network data from the Copenhagen Networks Study (Sect. 2.3).

2.1 Temporal social networks

The data sets investigated in this work are structured as temporal networks G(t) with a fixed number of nodes N
and a time-dependent set of links described by the adjacency matrix Aij(t), where i, j ∈ {1, . . . , N} [44], sampled
at discrete time steps t. In addition, node traits oi(t) are time-dependent as well, for example encoding changing
opinions or behaviours.

2.2 Synthetic temporal network data: adaptive voter model

One prototypical model of temporal network dynamics is the adaptive voter model (AVM) [22] that incorporates core
processes in social systems, i.e., homophily [45] and social learning of traits [46]. As such, the AVM can be interpreted
as a straightforward generalisation of the so-called voter model [47] to any prescribed initial social network topology
and the ability of the represented individuals to deliberately change their neighbourhood structure. It thereby aims to
explain the emergence of like-minded communities within a larger social network and the extent to which individuals
(i) become like-minded because of shared social ties or (ii) form such social ties because they are like-minded.

Specifically, the model considers a temporal network G(t) with a fixed number of N nodes and M links. Each
node vi holds one of Γ opinions or traits oi that are initially distributed at random among them. The M links are
initially distributed uniformly at random as well, thus mimicking the configuration of an Erdős–Rényi graph. At each
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Fig. 1: Temporal network snapshots throughout a typical day during the first semester of the Copenhagen Networks
Study. Each dot represents an individual, colour coded according to cluster size from single nodes (dark blue) to large
clusters (dark red). Node clusters evident in the snapshots correspond to students engaging in joint activities, such
as lectures or eating lunch in a cafeteria.

discrete time step t, a single node vi with opinion or trait oi is randomly chosen. If its degree ki, i.e. the number of
directly connected neighbours, is non-zero, either of two processes takes place:
1. Homophilic rewiring. With fixed probability ϕ we select one of the edges that are attached to vi and move its

other end to a randomly selected node vk that holds the same trait ok as vi, and is not connected to vi yet. vi

thereby adapts its neighbourhood structure to align more with its own trait oi.
2. Social learning : Otherwise, with fixed probability 1 − ϕ we pick a random neighbour vj of vi and set vi’s trait

equal to that of vj , i.e., vi ← vj . Hence, vi imitates the trait ok of vk to become more alike to its immediate
neighbourhood.

The model reaches a steady state once only one trait per connected network component remains. In this case, no
additional updates to the nodes’ states or their neighbourhood structure are possible. The fixed probability ϕ is a
model parameter that allows to scale the relative frequencies of imitation and adaptation events. For ϕ = 0 only
imitation, and for ϕ = 1 only adaptation takes place. The model displays a phase transition at intermediate values of
ϕ where the system’s steady state qualitatively shifts from a large connected component of a single remaining trait
to a fictionalised configuration of multiple disconnected components that each show distinct predominant traits [22].

In our specific study we set the number of nodes to N = 850, the number of edges toM = 5724 and the number
of traits to Γ = 2 to ensure consistency with the empirical data from the Copenhagen Networks Study (CNS), see
below.

2.3 Empirical temporal network data: Copenhagen Networks Study

In the following, we present the Copenhagen Networks Study as our main empirical data source (Sect. 2.3.1) and
describe the methodology used for extracting a temporal social network with time-dependent node traits from this
data set (Sect. 2.3.2).
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2.3.1 Description of data sources

The data analysed here originates from the Copenhagen Networks Study (CNS) [48, 49]. CNS was carried out from
2012–2016 and focused on collecting temporal network and demographic data on a densely interconnected cohort of
nearly 1000 individuals. In order to collect the temporal network information, the study handed out state-of-the-art
smartphones to consenting freshman students at the Technical University of Denmark. Specifically the study collected
information on networks of physical proximity (using Bluetooth signals), phone calls, text messages, and online social
networks. In addition to the network data, the study also collected information on the participants’ mobility, using the
phones’ GPS sensors – and demographic and personality data, using questionnaires. The study was approved by the
Danish Data Protection agency, the appropriate legal entity in Denmark. In terms of research, data from CNS have
been used in a number of contexts e.g. epidemiology [50–52], mobility research [53, 54], network science [55, 56],
studies of gender-related behaviour [57], and education research [58, 59].

In addition to the data from the Copenhagen Networks Study, and in view of our aim to investigate the illustrative
behaviour “regularly going to the fitness studio”, a data set was generated with the locations of fitness studios in the
vicinity of Copenhagen. The studios were selected from the locations provided by Open Street Map [60] and listed
with the keys ’leisure=fitness_center’ or ’sport=fitness’. A comprehensive list of all considered studios can be found
in Appendix A.

2.3.2 Generation of empirical temporal social network

The empirical temporal social network is generated as a physically-close-contact network between the study’s par-
ticipants. A network edge is created when two participants are in close proximity to each other at a time t. The
network’s adjacency matrix Aij(t) is then defined as

Aij(t) =
{

1 , |sij(t)| > 80 dBm
0 , otherwise , (1)

where time t is in units of days and sij(t) is the maximum Bluetooth signal strength between participants i and j
measured during day t. The threshold 80 dBm corresponds to a distance of about 2m and maximises the ratio of
social interactions to transient and unimportant connections [61].

In order to minimise noise from the beginning and end periods of data collection, in this study we focus on the
period from the first of February 2014 to the end of April 2014, which corresponds to the spring semester and is
in the middle of the “SensibleDTU 2013” data collection, the second deployment of CNS. Furthermore, a minimum
level of social interaction is essential for our study. Therefore, participants who had no or very few contact events
were removed from the data set. An average level of four was set as the lower limit. Additionally, to minimise noise
from participants who do not interact with others for a finite amount of time (e.g. because they have left campus or
spend time with people not participating in the study), we filter the participants by their average node degree in the
recent past:

k̄i(t) =

t∑
t′=0

ki(t′) · e−(t−t′)2/(2t2
k)

t∑
t′=0

e−(t−t′)2/(2t2
k

)
, (2)

where ki is the nodal degree and we have chosen as weight a one-sided Gaussian kernel e−(t−t′)2/(2t2
k) with a

characteristic time of tk = 7 days. Hence, the average k̄i(t) can be understood as the number of contact events in
approximately the last week. We set the lower bound to k̄i(t) = 1/7, which optimally minimises noise.

In order to investigate possible spreading dynamics of the illustrative behaviour “regularly going to the fitness
studio”, we match stop-locations with the locations of fitness studios (Appendix A). Here, stop-locations are coordi-
nates generated from the GPS data, where the participants spent at least 15 minutes [62]. The accuracy chosen for
matching is 10m, which corresponds to the precision of GPS [63]. Hence, we record for each node i at time t the
behaviour

bi(t) =
{

1 , if node i visited a studio at day t
0 , otherwise . (3)

To distinguish between students who go to the studio occasionally and students who go regularly, we introduce the
smoothed behaviour

b̄i(t) =
t∑

t′=0
bi(t′) · e−(t−t′)2/(2t2

b) , (4)

with the characteristic time tb = 7 days. The one-sided Gaussian kernel e−(t−t′)2/(2t2
b) is chosen to favour current

behaviour occuring close to time t, where the kernel reaches values close to one. Conversely, it suppresses past
behaviour. Thus, b̄i(t) can be interpreted as the typical behaviour in the last seven days.
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Finally, for each point in time t we split the participants into two groups: (i) students going occasionally or
not at all to the fitness studio b̄i(t) < γ and (ii) students going regularly to the studio b̄i(t) ≥ γ and generate a
time-dependent trait oi(t) for each node in the network,

oi(t) =
{

1 , b̄i(t) ≥ γ
0 , otherwise . (5)

As threshold, γ = 1 is chosen, motivated by a clear edge in the cumulative distribution of b̄(t) plotted in Fig. 2.
The edge is visible at b̄(t) ≈ 1 for all t, with values of b̄(t) > 1 occurring less frequently than b̄(t) < 1 . This suggests
that it is reasonable to separate participants between those who go to gyms regularly γ ≥ 1, and those who go only
occasionally γ ≤ 1. The former will be referred to as “active” nodes, and the latter as “passive” nodes.

Fig. 2: Cumulative distribution of the smoothed behavioural function b̄(t) plotted as a heat map over the period of
the entire “SensibleDTU 2013” data collection. Our study analyses the three month subperiod from February to April
2014. A clear edge is visible at b̄(t) ≈ 1 for all t, with values of b̄(t) > 1 being much less frequent than b̄(t) < 1.
Therefore, γ = 1 is a reasonable choice to separate the participants into two groups. Members of the group with
b̄(t) ≥ 1, who visit the fitness studio at frequent intervals, are referred to as active nodes, while individuals with
b̄(t) < 1 are referred to as passive nodes.

3 Methods

In this section, we describe the methodologies used to estimate empirical dose response functions from temporal
network data (Sect. 3.1) and for generating surrogate data sets to test hypothesis on the processes and structures
underlying specific features of the empirical dose response functions (Sect. 3.2).

3.1 Estimating dose-response functions from temporal network data

Dose response functions (DRFs) represent the functional dependence between the probability of changing a trait
po→o′ and the exposure K, which is defined as the joint influence of all contacts with a given trait, or more formally
as the superposition of all received doses from neighbouring nodes. To measure the exposure to which a single node
i is subjected, we put

Ki(o, t) =
t∑

t′=0
Ni(o, t′) · e−(t−t′)2/(2t2

K) , (6)

where Ni(o, t′) is the number of neighbouring nodes with trait o at time t′. Hence, we assume that each node’s
influence is equal. The one-sided Gaussian kernel e−(t−t′)2/(2t2

K) together with the characteristic exposure time of
tK = 7 days acts as a smoothing. Contacts in the near past t− t′ . tK dominate the sum due to the weighting by the
kernel. Conversely, contacts in the distant past t− t′ & tK are devalued. We thus interpret the kernel as representing
the memory capacity of node i for the period of approximately tK = 7 days.
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From the time series of each node’s traits oi(t), the received exposures Ki(o, t) can be computed, allowing us to
estimate the DRFs as relative frequencies as

po→o′(K) ≈ C(K)
N(K) . (7)

Here C(K) is the number of nodes that have changed their trait between t − 1 and t and having experienced a
certain level of exposure K. Furthermore, N(K) is the total number of nodes that have experienced exposure level
K. C(K) and N(K) are the result of an aggregation over all time steps and are thus time-independent.

p(K) is an estimator of the actual probability of changing trait when experiencing an exposure level of K. If the
reactions (changing trait or not) to subsequent exposures are assumed to be independent, this estimator is simply the
empirical success rate of an N(K) times repeated Bernoulli experiment, and its standard error can thus be estimated
by

σp =
√
C(K)(N(K)− C(K))

N(K) . (8)

In the present study we adopted σc
p =

√
C(K)(N(K) + C(K))/N(K) as a conservative upper bound to this error.

3.2 Generating surrogate data sets for hypothesis testing

To probe the empirical data from the Copenhagen Networks Study for contagion effects relating to the studied
behaviour, we use the method of surrogate data sets. The surrogate data approach is a statistical method for
identifying non-linearity, such as contagion effects, in time series. This is achieved by performing hypothesis tests on
data sets that are generated from the empirical data by using Monte Carlo methods [64, 65]. Surrogate data sets
have been used in the past to study a wide range of time series [66–68] and network data [69–71]. The method
is described in the following paragraph, followed by the description of the surrogate data studies presented in this
contribution.

First, a class of linear processes that may potentially be sufficient in explaining the empirical data, is specified as
a composite null hypothesis H0. To test this hypothesis, a new, “surrogate” data set is derived from the empirical
data in a way that is consistent with H0. Any potential non-linear features that the null-hypothesis excludes are
destroyed in this process, while some linear features of the original data are retained. One algorithm which can be
used to produce such surrogate data sets is the creation of random permutations of the original data. The product
resembles the empirical data, but lacks any potential non-linearities, such as contagion processes. This method, known
as Constrained Realisations [72], represents a parameter-free way of producing surrogate data sets without the use
of a specific model. A discriminating statistic is then computed on the original data and surrogate data sets alike. If
there is a significant difference between the value or distribution computed for the original data, and the ensemble of
values or distributions computed for the surrogate data sets, the null hypothesis is rejected. Put simply, the empirical
data are permuted in a way that is consistent with a composite null hypothesis, and if this substantially changes a
statistical measure of interest, the null hypothesis can be rejected. Through the careful choice of iteratively more
complex null hypotheses, preserving different sets of data properties, the nature of the true underlying non-linear
process can be investigated.

Six surrogate data sets are produced for this analysis. The first four investigate the influence of different assump-
tions about the node dynamics on the dose response functions, by permuting the node traits oi(t) and keeping the
network component Aij(t) unchanged. The last two surrogate data sets address the effect of the network compo-
nent, by permuting the network edges Aij(t) and keeping the node dynamics oi(t) unchanged. In the following, the
estimated DRF of the empirical data is referred to as the empirical DRF po→o′ , while the one estimated for surrogate
data may be referred to as the surrogate DRF p̃o→o′ . The following surrogate data test were conducted:
1. H1

0: The empirical DRF can be reproduced with a class of models that is based only on the global mean activity
level O = 〈oi(t)〉i. Here, the overline and brackets represent the time and ensemble average, respectively. This
null hypothesis represents the most basic assumption, corresponding to an underlying process that is completely
random. For this surrogate data set, all traits oi(t) are permuted randomly. Only the average activity level across
the entire ensemble and observation period is conserved.

2. H2
0: The empirical DRF can be reproduced with a class of models that is based only on each node’s individual

activity level Oi = oi(t). This null hypothesis leaves room for an activity factor unique to each individual node,
while still assuming otherwise random node dynamics. For the corresponding surrogate data set, the activity levels
are permuted in time, separately for each node.

3. H3
0: The empirical DRF can be reproduced with a class of models that is based only on each node’s individual

activity level Oi, and its number of activity state switches. This null hypothesis builds on the previous one by also
conserving each node’s persistence, defined as the inverse of a node’s number of switches between behaviours.
This is realised by separately permuting the length of intervals with a constant activity level, separately for periods
of active and passive behaviour, for each node.

4. H4
0: The empirical DRF can be reproduced with a class of models that is based only on the mean time-dependent

activity level O(t) = 〈oi(t)〉i of the ensemble. This null hypothesis assumes a non-stationary temporal dynamics
of the ensemble’s behaviour, while excluding any non-random individual node characteristics. The surrogate data
set is produced by permuting the activity states of all nodes, separately for each time step.
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5. H5
0: The empirical DRF can be reproduced with a class of models that is based only on individual activity dynamics

and the average network edge density A = 〈Aij(t)〉i,j . In this case, the null hypothesis contains the assumption
that the observed DRF is independent of the specific topology of the connection network, and arise solely based
on the individual nodes’ behaviour. The corresponding surrogate data set is produced by randomly permuting all
edges across nodes and time.

6. H6
0: The empirical DRF can be reproduced with a class of models that is based only on the individual node

dynamics, and each node’s time-dependent network degree ki(t) =
∑N

j=0 Aij(t). This null hypothesis builds on
the previous one by randomising the neighbourhood of the nodes, but preserving each nodes connectivity in the
network. This can serve as a check for homophilic effects in the network dynamics. To produce the surrogate
data set, we use the random link switching algorithm [73, 74]. Pairs of connections (i, j) and (k, l) are drawn
randomly, and are transformed into the connections (i, k) and (j, l). This procedure ensures that each node’s
degree remains unchanged.
We choose the dose response function, introduced in Sect. 3.1, as the discriminating statistic used to compare

empirical and surrogate data sets. The comparisons of surrogate and empirical data sets are presented in Sect. 4.2.

4 Results
Here, we report on the results obtained by applying our proposed dose response function methodology. As a first
step, we analyse synthetic data generated by the adaptive voter model as a proof of concept (Sect. 4.1). Building
on these insights, we then investigate the empirical temporal network data obtained from the Copenhagen Network
Study (Sect. 4.2).

4.1 Synthetic data

As a first application of our methodology, we analyse synthetic temporal network data generated by the adaptive
voter model (Sect. 2.2). Fig. 3 shows the estimated DRFs for the AVM with ϕ = 0 (green dots), which includes only
imitation dynamics, and with ϕ = 0.6 (blue crosses), involving both imitation and homophily dynamics. The plots
contain the data from ten independent model runs each. The probabilities for the change of trait po→o′ are generated
for equally sized bins with a width of K = 2. Only bins with at least 30 data points were considered. Nevertheless, for
high K, the DRF po→o′ is subject to increasing uncertainties since exposures K > 30 are very rare in the network.

As suggested by the imitation rule in the model, we observe that po→o′ depends monotonically, but non-linearly,
on K. Moreover, the plot for ϕ = 0.6 clearly shows the impact on po→o′(K) of the additional homophily compared
to the plot of ϕ = 0. For K & 15 the DRF of this data is significantly larger then for those with ϕ = 0.

From this first proof of concept application, we can conclude that contagion dynamics such as the imitation rule
in the model [2, 20] leads to positive correlation of po→o′ and K. However, from the estimated DRF for ϕ = 0.6,
we learned that homophily is reflected in the DRFs as well. To distinguish between the different dynamics, we use a
surrogate analysis in the following investigation of the empirical temporal network data (Sect. 3.2).
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Fig. 3: Average estimated dose response functions (DRFs) for synthetic temporal network data generated by ten
runs of the adaptive voter model for rewiring probability ϕ = 0 and ϕ = 0.6. The number of nodes N = 850 and
the average degree 〈ki〉 = 13.5 were chosen analogously to the empirical temporal network from the Copenhagen
Networks Study. The difference between the two DRFs shows that their form is not only influenced by contagion
(imitation or social learning) effects, but also by homophily (network adaptation) dynamics.
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4.2 Empirical data

In the following, we apply our methodology to empirical temporal network data from the Copenhagen Networks
Study (Sect. 2.3) to investigate possible spreading dynamics of the illustrative behaviour “regularly going to the
fitness studio”. The DRF po→o′(K) is estimated for equal-sized bins with a width of K = 5. Only bins with at least
30 data points were considered. The resulting DRFs are shown in Fig. 4.

We observe that the probabilities for becoming active pp→a (Fig. 4a) and for becoming passive pa→p (Fig. 4b)
do not behave in a symmetric way. Since the initiation and the maintenance of an activity represent two rather
distinct phases [43], this is not necessarily surprising. For the latter, pa→p, a slight negative dependence on K may
be indicated, however this is obscured by the large error bars. Stopping to regularly go to the fitness centre could
possibly be largely independent of contagion events and dominated by external influences (e.g. an injury). Therefore,
in the following we focus our analysis on the probability of becoming active pp→a.

The probability pp→a is subject to large errors for K > 100. The low occurrence of large K seems to be the main
reason. However, we find a notable positive correlation of pp→a with K for K < 100, which could indicate contagion
or homophilic dynamics. To pursue this indicator further, we examine the DRF using the surrogate data set method
(Sect. 3.2). First, we investigate the possible influence of contagion dynamics (Sect. 4.2.1), then for group dynamics
or external influences (Sect. 4.2.2) and finally for homophily dynamics (Sect. 4.2.3).

Fig. 4: Empirical dose response functions computed from the Copenhagen Networks Study temporal network data,
representing the the probability to become active (A) or passive (B), as a function of the absolute exposure to these
respective activity levels. For the probability to become active pp→a, a clear upward trend is noticeable, which might
be caused by contagion, although the sparse data at K > 170 make it difficult to discern this trend there. For the
probability to become passive pa→p, no clear dependence on K can be identified due to large uncertainties. Note
that the two estimated DRFs are very different from those derived from the adaptive voter model shown in Fig. 3

.

4.2.1 Investigation for Contagion Dynamics

For investigating the possible influence of contagion dynamics on the DRF we employ the surrogate data tests H1
0,

H2
0, and H3

0 introduced in Sect. 3.2, i.e., consider surrogate models in which explicitly no contagion takes place and
we explore if they nevertheless reproduce the empirically observed DRF. To do so, we permute the traits of the nodes
oi(t) and leave the network component Aij(t) unchanged. These permutations destroy possible temporal correlations
of exposure K with changes in traits and, thus, any trace of contagion dynamics. In three steps, we analyse the
impact of different assumptions about the node dynamics on the dose-response functions and show step by step
which assumptions are necessary to explain the observed DRF.

First Data Test. Hypothesis H1
0: The empirical DRF can be reproduced with a class of models that is based only

on the global mean activity level O = 〈oi(t)〉i.
We test the most basic assumption of whether the empirical DRF can be explained by uncorrelated traits. To do

so, all traits were uniformly permuted at random and only the global mean activity level O = 〈oi(t)〉i, was conserved.
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Here, the overline and the brackets represent the time and ensemble mean, respectively. All possible contagion dy-
namics are destroyed in the model due to the random permutations.
Expectation. We expect to observe no correlation between the DRF p̃p→a of the surrogate and K due to the per-
mutations. Moreover, p̃p→a(K) should be equal to the fraction of active states in the whole observed period.
Result. In Fig. 5a, the DRF p̃p→a of the surrogate is contrasted with the empirical DRF pp→a. We find our expecta-
tions confirmed, p̃p→a is quantitatively and qualitatively different from pp→a. Moreover, p̃p→a is approximately equal
to the share of active states. Therefore, the model is not sufficient to explain the empirical dynamics and we reject
the first null hypothesis.
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Fig. 5: Comparison of DRFs computed on empirical data (black triangles) and surrogates of the node traits (green
crosses), corresponding to the null hypotheses H1

0 through H3
0. It can be observed that neither A) the preservation

of the average trait O (H1
0), nor B) the additional preservation of each individual node’s average trait Oi (H2

0) is
sufficient to reproduce the data. C) However, when the individual node persistence, defined as the inverse of the
number of trait switches, is also conserved (H1

0), the surrogate and empirical data show good agreement. Thus, we
do not find sufficient evidence that contagion plays a significant role.

Second Data Test. Hypothesis H2
0: The empirical DRF can be reproduced with a class of models that is based

only on each node’s individual activity level Oi = oi(t).
We test the effects of the individual activity level of each node Oi = oi(t). Analogous to the previous model, the

traits per node are randomly permuted in time, but this time not in the ensemble. Therefore, Oi is conserved. As in
the previous model, any possible contagion dynamics are destroyed due to the permutations.
Expectation. Due to the permutation in the surrogate, the individual probability of the node to change its trait
is equal to Oi. In particular, this probability is independent of the exposure K. Therefore, we do not expect any
correlation between p̃p→a and K.
Result. Contrary to our expectations, in Fig. 5b we find the probability p̃p→a andK positively correlated, qualitatively
similar to the correlation of pp→a and K. However, for K > 100, the probability p̃p→a(K) continues to increase,
while pp→a(K) appears to saturate. Furthermore, p̃p→a and pp→a differ quantitatively by a factor of about six. Thus,
the conservation of Oi is not sufficient to explain the empirical DRF, and we also reject the second null hypothesis.

In the second considered model, we found that the DRFs of the surrogate and the empirical data behave in a
qualitatively similar way. This could be the result of pre-existing clustering in the data set: contacts j of nodes i would
have similar activity values Oj ≈ Oi over the entire observation period. A node i with e.g. low Oi thus has contacts
j with low Oj and therefore receives low exposure K. A positive correlation would be the result. Even without fully
understanding the cause of the correlation found, it can be concluded that the individual activity level Oi is an
essential feature in the empirical network. In addition to the correlation, we found a shift of the DRF p̃p→a(K) by a
factor of six compared to pp→a. We suspect the reason for this shift to be the non-preserved persistence of the nodes
(inverse number of individual activity state changes). Due to the random permutations, the nodes change their trait
more frequently than in the empirical network. In the following surrogate, this hypothesis is analysed in more detail.
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Third Data Test. Hypothesis H3
0: The empirical DRF can be reproduced with a class of models that is based only

on each node’s individual activity level Oi, and its individual persistence (inverse number of individual activity state
switches).

Additionally to Oi, the effect of individual persistence is tested. To achieve this, both the intervals with active
trait oi(t) = 1 and the intervals with passive trait oi(t) = 0 were permuted at random. Hence, Oi and the persistence
are conserved. Similar to the previous models, the random permutations remove any possible contagion dynamics.
Expectation. Due to the additional conservation of individual persistence, we expect p̃p→a to be qualitatively similar
to p̃p→a from the second model, but shifted closer to the empirical DRF on the y axis.
Result. In Fig. 5c, we find, consistently with our expectations, that the DRF of the surrogate is shifted. Moreover, the
probability p̃p→a saturates for K > 100, analogous to the empirical DRF. Overall, no significant deviation between
p̃p→a and pp→a can be found. Therefore, we cannot reject the third null hypothesis.

The third model showed that individual persistence is a main feature in the empirical network. Moreover, the
model reproduces the empirical DRF in the model even without contagion. Thus, the third model shows that the data
are not sufficient evidence that contagion plays a significant role in the empirical network, contrary to the hypothesis
we formed when we first observed the correlation of pp→a and K.

4.2.2 Investigation for Group Dynamics

In the previous section, we tested the effects of individual properties such as the individual activity level Oi or the
individual persistence with our models. To investigate the importance of group dynamics, in this section we discard
all individual properties and test the following null hypothesis:
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Fig. 6: Comparison of the DRF for empirical (black triangles) and surrogate (green crosses) data for null hypothesis
(H4

0). To investigate external influences that affect all nodes simultaneously, the node traits were randomized in a
way that conserves the time-varying mean activity level O(t) of the group. The two figures contain the same data:
A) compares the absolute values of the data points, while in B) the surrogate data y-axis (green, left side) is offset
by 0.25 to facilitate comparison of the functional forms. While the absolute values differ strongly, similarities in the
functional forms are apparent, pointing to the importance of external influences on the collective group dynamics.

Fourth Data Test. Hypothesis H4
0: The empirical DRF can be reproduced with a class of models that is based

only on the mean time-dependent activity level O(t) = 〈oi(t)〉i of the ensemble.
We test the relevance of the mean time-dependent activity level O(t) = 〈oi(t)〉i for the empirical dynamics. To

do this, the traits between nodes were permuted at random for each time point separately, and only O(t) is preserved.
Expectation. Given the permutations, both the probability of becoming active p̃p→a and the exposure K depend
on O(t). Thus, a correlation between p̃p→a and K is to be expected. Furthermore, we expect p̃p→a(K)� pp→a(K)
resulting from the destruction of the persistence of the nodes.
Result. Fig. 6a compares the DRF p̃p→a obtained from the surrogate data to the empirical DRF pp→a. Fig. 6b shows

426 world-earth dynamics in the anthropocene: a copan reader 2013–2021

Reproduced from arXiv preprint: J.F. Donges, J. Lochner et al., Dose-response function approach for detecting spreading processes in temporal
network data, arXiv:2103.09496. Published under arXiv.org - non-exclusive license to distribute.

https://arxiv.org/abs/2103.09496
https://arxiv.org/licenses/nonexclusive-distrib/1.0/license.html


Will be inserted by the editor 11

the same DRFs, but the DRF of the surrogate (green, left y-axis) is offset by 0.25 to better compare the shape
of the functions. In line with our expectations, p̃p→a is correlated with K. For K < 100, the probability p̃p→a(K)
increases linearly. The empirical pp→a(K) also increases for K < 100, but slightly non-linearly. Quantitatively, we
observe p̃p→a(K) � pp→a(K). Thus, without individual traits, the model is not able to reproduce the empirical
DRF. Therefore, we reject the fourth null hypothesis.

Although the surrogate model DRF is quantitatively significantly different from the empirical DRF, the model
predicts a qualitatively similar functional form. Temporal group dynamics thus seems to be another important feature
in the empirical temporal network data. Apparently, participants change their behaviour collectively, as is also evident
from the fluctuations observed in the mean activity level (Fig. 2). Such non-stationarities could emerge from internal
collective dynamics or be due to external influences such as, for example, exam periods, weekends or holidays. A more
detailed analysis is needed to distinguish these possible effects.

4.2.3 Investigation for Homophily Dynamics

Continuing our investigation, we look for homophily dynamics in the network. Analogously to the analysis testing for
contagion effects, we create surrogate models in which explicitly no homophily takes place. With these, we attempt
to reproduce the empirical dynamics. To this end, we permute the network edges Aij(t) and keep the properties of
the nodes oi(t) unchanged. This approach removes any homophily dynamics from the network, since the drawing and
breaking of edges is randomised. The investigation is carried out in two steps, testing the following null hypotheses:

Fifth Data Test. Hypothesis H5
0: The empirical DRF can be reproduced with a class of models that is based only

on individual activity dynamics and the average network edge density A = 〈Aij(t)〉i,j .
We test the most basic assumption that the empirical dynamics can be explained by a random network. For

this purpose, all edges were permuted uniformly at random. Only the average temporal network edge density A =
〈Aij(t)〉i,j was conserved. In this model, any homophily dynamics is removed, as the formation and breaking of edges
is randomized.
Expectation. Since the traits have been kept unchanged, we expect the DRF of the model and the empirical DRF to
be of the same order of magnitude. Due to the randomisation of the network, the neighbourhoods of the nodes are
randomised as well. Thus, no correlation between the exposure K received from the neighbours and the probability
p̃p→a of changing the trait is to be expected.
Result. The DRF of the model and the empirical DRF are compared in the Fig. 7a. Contrary to our expectation, we
can observe a correlation between p̃p→a and K. Moreover, for the model, the case p̃p→a(K) for K > 100 does not
exist. Both DRFs have the same order of magnitude, which is in line with our expectations. However, only a few bins
of the empirical DRF lie within the 95% confidence interval of the DRF from the surrogate. Consequently, we reject
the fifth null hypothesis.

When analysing our model based on a random network, we observed a positive correlation between p̃p→a and K.
This correlation was significantly different from the correlation found for the empirical DRF. Therefore, the non-trivial
network structure and dynamics appear to be essential for reproducing the empirical dynamics. One explanation for
the correlation found could be the external influences already described in Sect. 4.2.2. Nodes may change their traits
in synchrony, independently of the network and caused by an external influence. This would affect K as well and
could explain the correlation found. A further analysis is necessary here. Another feature of the surrogate model’s
DRF is that no large exposure K > 100 occurred. This is likely caused by a much smaller variance of the degree
distribution in the random network than in the empirical one. In the following surrogate, this hypothesis is analysed
in more detail.

Sixth Data Test. Hypothesis H6
0: The empirical DRF can be reproduced with a class of models that is based only

on the individual node dynamics, and each node’s time-dependent network degree ki(t) =
∑N

j=0 Aij(t).
Building on the previous model we test whether the time-dependent network degree of the nodes ki(t) =∑N

j=0 Aij(t) has a significant impact on the network dynamics. For this purpose, the edges of the network are
permuted at random, but ki(t) is preserved. To generate the surrogate data set, we use the random link switching
algorithm as described in Sect. 3.2. Analogous to the previous model, the homophily dynamics is removed by the
permutations.
Expectation. For the correlation of p̃p→a and K we expect it to be similar to the one of the previous model. However,
for this model we conserved the node’s degree. Thus, the progression of the DRF should also extend over K > 100.
Result. In Fig. 7b we compare the DRF of the model with the empirical one. In agreement with our expectation, we
find p̃p→a(K) for K > 100. However, the correlation of p̃p→a and K is different from the previous model (Fig. 7a).
No significant difference to the empirical DRF can be found anymore. Therefore, we cannot reject the sixth null
hypothesis.

With this final surrogate model, we were able to reproduce the empirical DRF by conserving the node degree
sequence in the temporal network data. Accordingly, node degree ki(t), the number of social contacts a student has
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at a given time time t within the student population covered by the study, seems to be an important feature in
the empirical data set. Furthermore, the reproduction succeeded without including the dynamics of homophily. This
shows that the empirical data provide not only no sufficient evidence for a significant influence of contagion (see the
results for H3

0 reported above), but are also not sufficient evidence for a significant influence of homophily either.
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Fig. 7: Comparison of DRFs computed on empirical data (black triangles) and surrogates of the network topology
(green crosses) for null hypotheses (H5

0) and (H6
0). In A) only the mean node degree k is conserved (H5

0), leading to a
significant difference between empirical and surrogate data. In B) each node’s time-varying degree ki(t) is conserved
as well (H6

0), corresponding to a test for homophily in the network, with good agreement between the DRFs. It can
be concluded that, while the non-trivial network structure appears to be of importance, no significant evidence for
homophilic dynamics can be found.

5 Discussion and Conclusion
In this paper, we proposed a methodology for estimating dose response functions (DRFs) from temporal network data.
We developed a hierarchy of surrogate data models to evaluate to what degree the observed DRFs can be explained
by underlying processes such as social contagion, collective group dynamics and homophily. These surrogate models
test the effects of distinct data features, such as overall and individual node activity levels, individual nodal trait
persistence, overall network link density and individual node degrees. We applied this methodology to empirical
temporal network data from the Copenhagen Networks Study, focusing on the illustrative health-related behaviour
“regularly going to the fitness studio” in a physically-close-contact network of 850 university students, observed over
the course of three months. The empirical data neither provide significant evidence for an influence of contagion, nor
significant evidence for homophily. The individual activity level, individual behavioural persistence, effects of possibly
externally forced collective group dynamics, and individual number of social contacts (the node degree sequence) are
sufficient to explain the estimated empirical dose response function.

In the context of the application case considered in our study, these findings contradict the perspective that social
interactions influence adopted behaviour, for example via subjective norms [75], as supported by psychological research
[76]. In particular, the ability of social norms to influence individual decision-making has been identified previously as
a potential tool for large-scale group behaviour transformations [11, 77]. However, in the present context of exercise
behaviour a person may only be susceptible to social influence during particular stages of their decision process, while
being almost “immune” at other times [43, 78]. At any time, too few people may be in this socially susceptible state
to rise above the noise threshold in the data.

Overall, our results demonstrate that care needs to be taken in interpreting dose response functions obtained from
empirical temporal network data; in particular when considering observational data that did not emerge from controlled
experiments as in [36, 37]. Even pronounced positive correlations between exposure to a trait and the probability to
adopt this trait can arise from structures in the temporal network data that do not need to be related to contagion and
spreading processes, or homophily. Applying and further developing methodologies based on hierarchies of surrogate
models, such as the one proposed in this article, provides a way forward to discern the specific imprints of complex
spreading processes in temporal network data. Cases where the presence of such processes is not supported by the
data can thus be excluded.
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Our analysis has limitations in several dimensions that should be considered. Firstly, in terms of data limitations, the
empirical temporal network data set extracted from the Copenhagen Networks Study depends on multiple assumptions
on thresholds and other parameter values. The definition of social contacts as links in a physically-close-contact
network could be too unspecific for discerning social contagion effects. Social contagion might be expected to require
a more permanent and intense social relationship such as friendship to be effective. Furthermore, the definition of
node traits as active or passive may suffer from noise and missing data issues, since most likely some fitness studios
and other relevant exercise institutions (e.g. university gyms, swimming pools etc.) are missing from our list. Also,
using GPS coordinates to determine whether a student is visiting a fitness studio introduces uncertainties: in a densely
populated urban area like the city of Copenhagen, a café or a library might be located right next to, or even above
or below a fitness studio, introducing additional noise into our data set.

Secondly, considering methodological limitations, DRFs are a highly aggregate statistical indicator describing a
complex temporal network data set. They might not be specific enough to detect subtle spreading processes or to
discriminate different types of complex contagions. Arguably this calls for higher order statistics with larger statistical
power. Moreover, the proposed methodology based on a hierarchy of surrogate data sets is limited in that it allows
only for indirect inference on the possible presence of spreading or contagion processes. In this respect it is desirable
to augment the present analysis with more direct investigations including generative models of complex network
spreading processes.

In summary, we suggest that our methodology is promising for applications to other systems and temporal
network data sets. This can, among other applications, possibly aid our understanding of the social dynamics,
spreading potentials and possible social tipping points in behaviours and social norms relevant for the adoption of
healthy and sustainable diets [79] that can help to feed the world within planetary boundaries [80]. Efforts should be
directed towards providing high-quality empirical temporal network data sets that can be leveraged for understanding
complex spreading processes in these relevant domains. Promising directions of methodological developments include
higher order statistics such as multi-node correlations for discerning the effects of longer contagion chains, spreading
contagion waves, or the imprints of network motifs on complex spreading processes. Astute surrogate data models can
provide detailed insights into such spreading processes. Connecting empirical network data to generative statistical and
dynamical adaptive network models more directly, e.g. via maximum likelihood methods, appears similarly promising.
Hence, one can open new perspectives to predict future spreading dynamics. Ultimately, this research thus aids in
designing targeted interventions for fostering desirable or suppressing unwanted contagions in diverse complex systems
including pandemics, brain, traffic and sustainability transformations.
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A List of considered fitness centers in Copenhagen

Name Longitude [◦ E] Latitude [◦ N]
Fresh Fitness Hvidovre 12.4691961 55.6415696
Fitness.dk 12.5618214 55.6614733
FitnessDK 12.5114098 55.6647699
Fresh Fitness 12.5404751 55.6975516
Fresh 12.4199488 55.6493081
Fitness World 12.4418141 55.7231967
Fitness World Ballerup 12.3579672 55.7296181
Fitness World Brøndby 12.4383494 55.6673030
Fitness World Farum Park 12.3513120 55.8172970
Fitness World Frederiksberg Bernhard Bangs Alle 12.5104671 55.6844058
Fitness World Frederiksberg Forum 12.5524718 55.6830906
Fitness World Frederiksberg Peter Bangs Vej 12.5131680 55.6795400
Fitness World Gentofte 12.5378949 55.7386120
Fitness World Glostrup 12.4008395 55.6640800
Fitness World Greve Hundige Storcenter 12.3274148 55.5987709
Fitness World Greve 12.2984612 55.5905648
Fitness World Herlev 12.4160534 55.7253403
Fitness World Husum 12.4810239 55.7095419
Fitness World København Baron Boltens Gård 12.5848511 55.6820125
Fitness World København Ellebjergvej 12.5108247 55.6507568
Fitness World København Emdrup Station 12.5409464 55.7218740
Fitness World København Englandsvej 12.6043943 55.6569690
Fitness World København Gasværksvej 12.5570237 55.6708078
Fitness World København Jagtvej 12.5509410 55.6964980
Fitness World København Lyngbyvej 12.5604444 55.7116463
Fitness World København Lyongade 12.6099453 55.6613686
Fitness World København Nordre Fasanvej 12.5364747 55.6985181
Fitness World København Strandvejen 12.5777058 55.7219712
Fitness World København Vester Farimagsgade 12.5623173 55.6782088
Fitness World København Århusgade 12.5872772 55.7067752
Fitness World Lyngby 12.5039072 55.7688801
Fitness World Måløv 12.3187172 55.7485909
Fitness World Søborg 12.4932893 55.7395909
Fitness World Taastrup 12.3017208 55.6529634
Fitness World Valby Mosedalvej 12.5134815 55.6674858
Fitness World Værløse 12.3615021 55.7821745
fitnessdk 12.4392816 55.7249089

Table 1: List of the fitness centers in Copenhagen considered in this study, with their respective coordinates, as
extracted from Open Street Maps [60].
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4.2 Special cases of socio-economic dynamics and social tipping

This second section is dedicated to the presentation of selected
scenarios in which we identified socio-economic dynamics and
social tipping.

Social tipping dynamics has been suggested as a key aspect
of addressing the climate crisis [Otto et al., 2020b, Lenton, 2020,
Farmer et al., 2019]. Dedicated minorities could encourage larger
populations to get involved and fight global warming. In “A
network-based microfoundation of Granovetter’s threshold model
for social tipping” [Wiedermann et al., 2020], we extended Gra-
novetter’s widely studied theoretical threshold model of collective
behaviour to model social tipping phenomena on networks.

We continue in “Clustered marginalization of minorities during
social transitions induced by co-evolution of behaviour and network
structure” [Schleussner, C. F. and Donges, J. F. et al., 2016] with an
examination of large-scale transitions in societies. In this publica-
tion, we modeled the feedback effects of individual behavioural
change and homophilic social network restructuring and illustrated
their interplay by simulating how smoking behaviour and network
structure are reconfigured by changing social norms.

In “Emergent inequality and endogenous dynamics in a sim-
ple behavioral macroeconomic model” [Asano et al., 2019, not
included in this reader], we presented a simple macroeconomic
model in which households are embedded in a social network.
Unlike standard macroeconomic models, we did not assume that
households base their decisions on utility maximization but are
influenced by the behaviour of their neighbours via social learn-
ing. We could show that inequality and realistic business cycles
both occur spontaneously as a consequence of imperfect household
decision-making.

Divestment is seen as a key tool to achieve the goals of the Paris
climate agreement [Rockström et al., 2017]. In “Divestment may
burst the carbon bubble if investors’ beliefs tip to anticipating
strong future climate policy” [Ewers, B. and Donges, J. F. et al.,
2019, not included in this reader], we presented an investigation
of the dynamics of fossil fuel divestment using an adaptive social
network coupled to a model of stock trading on a financial market.
Our analysis highlights the potential for social tipping away from a
fossil fuel-based economy.

We conclude this section with an analysis using a game-theoretic
model of far-sighted coalition formation. In “Bottom-up linking of
carbon markets under far-sighted cap coordination and reversibil-
ity” [Heitzig and Kornek, 2018], we examined the dynamics of
carbon market linkage among countries.
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A network-based microfoundation 
of Granovetter’s threshold model 
for social tipping
Marc Wiedermann1 ✉, E. Keith Smith2,5, Jobst Heitzig1 & Jonathan F. Donges3,4

Social tipping, where minorities trigger larger populations to engage in collective action, has 
been suggested as one key aspect in addressing contemporary global challenges. Here, we refine 
Granovetter’s widely acknowledged theoretical threshold model of collective behavior as a numerical 
modelling tool for understanding social tipping processes and resolve issues that so far have hindered 
such applications. Based on real-world observations and social movement theory, we group the 
population into certain or potential actors, such that – in contrast to its original formulation – the model 
predicts non-trivial final shares of acting individuals. Then, we use a network cascade model to explain 
and analytically derive that previously hypothesized broad threshold distributions emerge if individuals 
become active via social interaction. Thus, through intuitive parameters and low dimensionality our 
refined model is adaptable to explain the likelihood of engaging in collective behavior where social-
tipping-like processes emerge as saddle-node bifurcations and hysteresis.

Studies of collective behavior or action, such as protest demonstrations, responses to disasters or even revolution1, 
fosters an understanding of the formation and logic of the crowd2–5. Broadly, the study of collective behavior can 
be separated into either that of social movements or that of temporary gatherings. Social movements are usually 
more structured around specific, identified goals, have deeper social connections between actors, are organized 
(generally to defend or fight against existing authorities) and persist over time (such as the civil rights move-
ments)6. In contrast, gatherings (such as riots, sudden protests, concerts, sporting events) are more spontaneous, 
less organized, do not carry as deep of social connections between actors, and can be quite ephemeral7,8.

Further, individual engagement in collective behaviors (such as changing consumption behavior or adoption 
of new technologies) can be connected to broader social processes, such as norms and expectations for behavior9. 
Specifically, individuals strategically control their actions in accordance with their norms in order to achieve their 
goals and objectives4,5,10. As such, norms and preferences structure an actor’s likelihood to engage in collective 
behaviors, as well as its form of participation within these groups. Complex forms of collective behaviors (be it 
either a movement or a crowd) are thus created through dynamic interactions of actors that share common goals 
and objectives for a given social situation. For example, global climate change has been frequently noted as one 
prominent contemporary social problem that could trigger and might also be addressed through collective behav-
iour (such as the emergent ‘Fridays for Future’11 movement)12–14.

Empirical evidence for such complex contagion of interlinked individuals leading to collective action has 
been found for both online15–17 and offline18 social networks. Additionally, complex contagion has been exper-
imentally shown to foster social tipping19, a process that has gained increased attention in the recently20 due to 
its potential for rapid societal changes with profound impacts on the entire socio-ecological Earth System13,21. 
Complementing empirical studies, recent conceptual models of complex contagion incorporate the spreading of 
an action, behaviour or trait through a complex network22–26. They often aggregate an individual’s surrounding 
over time27,28 or abstract space29 to accumulate exposure to a considered trait such that at a certain point the 
individual adopts that trait as well. Such models have been applied successfully to study processes involved in the 
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spreading of opinions30,31, large-scale epidemics24, the adoption of life-style choices32 or the collective behaviour 
of animal groups33,34. However, most such models of collective behavior are often tailored to a specific problem 
(both in the incorporated processes as well as the underlying parameter set) and are thus often not transferable to 
different and novel applications.

The Granovetter threshold model is a comparatively early contribution to this field, providing a core basis for 
subsequent and more contemporary modeling attempts35. This model aims to explain the emergence of collective 
behaviors while noting that individual norms and preferences are a crucial factor determining their development 
and final outcome. In particular, when presented with a simple binary choice – to participate within a collective 
behavior or not – each individual has a certain activation threshold for participation. This measures the pro-
portion of the group that an individual would like to observe participating within the collective behavior before 
they are willing to join themselves. The thresholds emerge from the norms, preferences, goals and beliefs of each 
individual, e.g., representing a kind of trade-off between the costs and benefits of joining in the behavior. As such, 
the application of the threshold model, or variations thereof, is not limited to simple crowd-like behaviors, such 
as protests and riots, but is comparatively broad, encompassing collective behaviors e.g., voting36, diffusion of 
innovations37, or migration38, as well as classical social movements such as the Monday Demonstrations in East 
Germany39. However, while by design the model is very flexible, it has mainly been used for illustrative and the-
oretical purposes (including most applications outlined above), but hardly applied as a numerical modeling tool.

This paper identifies two major sets of issues that prevent broader application of the Granovetter model 
and proposes extensions to resolve them. First, under often assumed threshold distributions (such as cut-off 
Gaussians35) the model usually unrealistically predicts either no-one or the entire population to eventually act. 
We resolve this issue by drawing from real-world observations, social movement and resource mobilization 
theories40,41, as well as recent theoretical and numerical results regarding network spreading processes42,43 to 
extend the original model by classifying individuals as either certainly active, certainly inactive, or contingently 
active. This causes the model to display nontrivial equilibria in which a certain part of the contingent individuals 
becomes active. Second, the emergence and shape of the threshold distribution itself is often underexplained. 
Therefore, we utilize an established conceptual network cascade model29 and show that a broad (non-Gaussian) 
threshold distribution emerges from microscopic networked interactions in which potentially active individuals 
join an action if a sufficient number of their neighbors are also engaged. We thus specifically acknowledge empir-
ically observed tendencies of individuals to make decisions with respect to their immediate social surrounding 
rather than considering the entire global population, i.e., the mean field19,44,45. By addressing both of the above 
issues, we effectively separate (unique) individual preferences which determine general tendencies towards or 
against an action from the embedding of each individual into a larger social structure and corresponding expo-
sure to external influences. Both characteristics then co-determine whether the individual ultimately joins into 
an action or not.

The remainder of this work is organized as follows. We first introduce the formal specifics of the Granovetter 
threshold model and discusses in detail its aforementioned conceptual limitations. We then implement the pro-
posed solutions and present a refined threshold model that only depends on parameters that are readily observ-
able in real-world systems. Additionally, we provide an analytical solution of the refined model and analyse its 
potential for modeling social tipping. Ultimately, we culminate with a discussion of the results and an outlook to 
future work.

Granovetter’s threshold model
The threshold model assigns each individual in a population of size N a threshold that defines the number of 
others that must participate in an action before the considered individual does so, too35. In its discrete-time for-
mulation the number of acting individuals at time t 1+ , R t( 1)+ , is hence directly derived from the cumulative 
distribution function of thresholds in the population, F, such that

+ = .R t NF R t( 1) ( ( )) (1)

Note that the original exemplary application of the model was that of individuals’ participation in riots. Hence 
the choice of the symbol R for the number of acting individuals. An equilibrium number of acting individuals R* 
is obtained by solving + = =R t R t NF R t( 1) ( ) ( ( )) for R t( ) which is equivalent to finding an intersection of the 
graph of F with the diagonal through (0, 0) and N N( , ), Fig. 1a. All equilibrium points R* at which F intersects the 
diagonal line from above are stable, while all others are unstable35.

While the threshold model has been widely used within a broad literature41,46,47 it has up to now been mainly 
used for illustrative purposes as a number of issues hinder its application as numerical modeling tool:

Plausible distributions typically predict no one or the entire population to act.  As thresholds are 
hard to estimate, one typically assumes Gaussian threshold distributions35 cut off at the extreme values 0 and N. 
However, assuming a mean threshold μ of reasonable size and a moderate standard deviation σ implies that there 
are only few individuals with low or high thresholds and many with medium thresholds close to μ. Hence, under 
the typical assumption of a low number of instigators35 the model usually predicts zero eventually acting individ-
uals, Fig. 1a. Only if a sufficiently large σ is chosen more individuals than the instigators become active. However, 
the choice of a large σ causes the distribution to become rather flat instead of bell-shaped. For example, for a 
population size of =N 100 and an average threshold of μ = 25, a standard deviation of σ = .12 2 is required so 
that a single instigator can cause the rest of the population to become active35.

In addition, if no individual has a threshold larger than 100%, the threshold model generally has a second 
typically stable fixed point at =R N⁎  implying that the entire population has the potential to become active if 
only enough others do so, too, Fig. 1a. In reality, an individual may never engage in an action regardless of how 
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many others have already joined as personal preferences, norms or attitudes can restrict behaviours9. In its basic 
setup, the Granovetter model can only account for this by either assigning the concerned individuals a threshold 
of 100% or by selecting the population such that only those individuals that are generally in favour of a certain 
action are considered35. The first approach, however, implies that everyone would generally be willing to act if 
only enough other individuals become active before. The second approach requires updating the population and, 
hence, its size, whenever the norms and attitudes of an individual change. What both approaches have in common 
is that they imply a constant change of the threshold distribution whenever individuals alter their preferences or 
attitudes.

We therefore propose a framework that refines the threshold model and accounts for the above issues by 
grouping individuals according to basic preferences that determine whether they certainly, contingently or never 
act. This circumvents the existence of trivial solutions and we show below that this approach does not require a 
constant updating of the threshold distribution as a response to changing group memberships.

The threshold distribution can not be observed, but emerges from microscopic factors.  
Broadly, two complementary aspects shape whether an individual engages in an action or not. On the one hand 
there are individual factors (such as background characteristics, social class, education or occupation48,49), that 
determine the acceptance of or inclination towards an action. On the other hand there are group factors, i.e., 
characteristics resulting from one’s embedding in a larger social network (such as social position, influence, or 
peer pressure50). Both traits and processes ultimately co-determine the macroscopic threshold that is exposed to 
the observer and we call these thresholds of the original Granovetter model emergent thresholds from here on. 
However, quantifying the emergent thresholds on the individual basis is difficult, if not impossible, to achieve 
without any prior knowledge or assumptions on the aforementioned microscopic characteristics and interactions. 
In addition, even properly justifying a certain shape of the emergent threshold distribution is a difficult task as it 
remains unclear to which extent different shapes follow from a certain composition of individual traits.

Notably, in analogy to the concept of emergent thresholds there should still exist on the micro-level a share (or 
number) of others that join into an action before an individual does so, too. One commonly accepted definition 
of such a quantity is that of a threshold fraction29 that is not assessed with respect to the entire population, but 
with regard to the relevant social ties of a considered individual35,51. The specific importance of one’s egocentric 
social network for decision making has recently been shown in empirical studies where individuals generally did 
not aim for consensus or convergence in the global population, but rather on the microscopic or group-level19,44. 
Additionally, it was observed that individuals tend to coordinate with (at least subsets of) an entire group rather 
a single partner45. This renders the use of a per-individual threshold fraction particularly useful as it determines 
the share of others within a group that must make a certain decision before the considered individual does so, 
too. In our specific case this threshold fraction is considered a fundamental trait of each individual, regardless of 
whether their preferences and norms favour or hinder a certain action. As such it disentangles social processes 
from non-social factors, such as individual preferences and norms. In contrast to the emergent thresholds, these 
threshold fractions may not necessarily be widespread. Rather, they might be assumed to have a narrow distri-
bution or correspond to fixed, intuitive points, e.g. 50% (majority rule)52. Note that in contrast to the emergent 
thresholds, that measure absolute numbers in a global population, the threshold fraction measures the relative 
number of others in one’s egocentric social network that must make a decision before a considered individual 
does so, too. It thereby specifically accounts for heterogeneities in the number of each individual’s neighbors, i.e., 
the so-called social network’s degree distribution53.

Figure 1.  Extension of Granovetter’s (graphic) model with P potentially and A certainly acting individuals. (a) 
The original model that computes the number of acting individuals +R t( 1) from the cumulative distribution 
function of thresholds F. The purple line indicates a typical normal-like choice for this distribution. The 45°-line 
(green) intersects F at the stable (black) and unstable (white) equilibrium points R*. As for many realistic 
choices of F, only R* = 0 and R* = N are stable. (b) Introducing A certainly and P potentially acting individuals, 
such that the = −C P A contingent individuals have the same threshold distribution F as the entire population 
N . Here, the equilibria move to the interval R A P[ , ]∈⁎  and are not necessarily located at exactly ⁎ =R A and 

⁎ =R P. Hence, the A certainly acting individuals trigger some contingent individuals to act, too. (c) Rescaling 
R t( 1)+  to the unit interval shows that equilibria can be computed by shifting the diagonal line from crossing 
(0, 0) and N N( , ) (as in (a)) to crossing A( , 0) and P( , 1) and using the same threshold distribution F as in (a).
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Below we present a microscopic threshold model based on a previous study of cascading dynamics29 where 
individual preferences are assigned to each member of the population that then join into an action based on their 
threshold fractions applied to the neighborhood in their social network. We then show that such microscopic 
processes in fact yield an often postulated broad (but not normal-shaped) emergent threshold distribution.

Results
Refinement of the Model.  We start by addressing the first two issues identified above, namely that for 
usually chosen distributions the original model predicts either no-one or the entire population to become active. 
As discussed above, one way to circumvent these issues is to assign certain individuals either a threshold of 0% or 
≥100% such that some individuals certainly become active and others never become active35. This approach 
requires a constant updating of the threshold distribution and may be impracticable for many cases. Recent stud-
ies investigated the effects of either such certainly active initiators42 or never active immune individuals43 on the 
adoption of certain traits or behaviours via spreading dynamics on social networks. In alignment with social 
movement theory40,41 we combine these two notions and suggest to divide the population of size N  into three 
groups, namely: ≤A N  certainly acting individuals42, C ≤ N − A contingent individuals and the remaining 
N − C − A certainly inactive individuals43. The certainly acting and contingent individuals form the group of 
P A C= +  potentially acting individuals. In a social movement and resource mobilization context, our three 
groups can for example be seen as representing adherents, potential supporters and those in opposition40,41.

If we have no reason to assume that the threshold distribution is different in the three groups, the original 
recursive formula Eq. (1) is then replaced by

+ = + ⋅ .R t A C F R t( 1) ( ( )) (2)

The equilibria of the thus refined model are again obtained by computing the intersection of the r.h.s. of Eq. (2) 
with the diagonal through (0, 0) and N N( , ), Fig. 1b. It is apparent that if >A 0 and P N<  (note again that 

= +P A C), we get nontrivial equilibrium numbers of acting individuals ∈⁎R A P[ , ]. Conveniently, as A or P 
(and C) change, the new equilibria can be found without re-estimating the threshold distribution.

In order to also avoid having to redraw F in Fig. 1b whenever there is a variation in A or C, it is beneficial to 
rescale the ordinate to the unit interval, Fig. 1c. This allows us to find the equilibria for all possible combinations 
of A and P in the same diagram, by drawing F only once and just adjusting the diagonal to meet the points A( , 0) 
and P( , 1).

Our adjusted approach makes the application of the threshold model as an actual modeling framework more 
practical as it (i) produces nontrivial fixed points R*, (ii) requires the threshold distribution to be only estimated 
once for the entire population or a representative sample thereof, and (iii) relies on only two intuitive parameters, 
the size of the certainly (A) and potentially acting population (P). Recall that A directly relates to an immediate 
action or behaviour, while P denotes the general acceptance of or attitude towards that action.

Estimation of the emergent threshold distribution.  Having refined the threshold model to properly 
allow for the computation of non-trivial fixed points, we shift our focus to the second issue that relates to the 
threshold distribution itself. It has been established above that the emergent thresholds follow from microscopic 
characteristics of each individual as well as its embedding in a social context. Specifically for the latter it will turn 
out that the share of others, i.e., the threshold fraction, that must join into an action before a contingent individual 
does so, too need not be widely distributed or even heterogeneous at all across the population in order to produce 
a widespread distribution for the emergent threshold.

We now study how such characteristics and interactions on the micro-level determine one’s emergent thresh-
old by using a simulation model of social contagion that has been studied in the past to model binary decisions 
with externalities and resulting cascading dynamics29. We represent each individual in the population by a node 
in a complex network and draw links between nodes to indicate their embedding in a social group of others (see 
Methods section below for details). This relates directly to the idea of a sociomatrix that accounts for the stronger 
influence that individuals to which one forms a social bond have on one’s behaviour35. In addition to the original 
formulation of this network cascade model29 and in agreement with the consideration put forward above we 
assume that P randomly distributed nodes form the potentially active population. Being potentially active sub-
sumes all norms, preferences and attitudes that cause an individual to show acceptance for a considered type of 
behaviour. Among the P potentially active nodes we assume that A P≤  randomly distributed nodes are certainly 
active. In each time step each of the remaining C P A= −  contingent nodes i becomes active if more than a share 

[0, 1]ρ ∈  of its immediate neighbors is already active. We hence denote ρ the threshold fraction of an individual. 
The resulting number or active nodes at time t is again denoted as R(t). Setting a common value of ρ represents 
the most narrow distribution of actual threshold fractions that determine whether one joins into an action given 
that one generally supports that action at all.

We simulate cascades of nodes becoming active for two different shares of potentially active nodes 
= = .p P N/ 0 56 (Fig. 2a) and =p 1 (Fig. 2b), as well as for different threshold fractions {0 2, 0 5, 0 8}ρ ∈ . . . . 

Figure 2 shows the final share of acting nodes ⁎ ⁎r R N/=  after the cascade stops for increasing shares of certainly 
acting nodes = ≤a A N p/ . For p 0 56= .  (i.e., a low share of potentially acting nodes) only small threshold frac-
tions (ρ = .0 2) allow for a large-scale cascade such that ⁎r p→  for values of .a 0 05⪆  (Fig. 2a). In contrast, for 
values of .⪅a 0 05 no cascade is observed and, hence, ⪅⁎r a. Larger threshold fractions (i.e., 0 5ρ = .  or ρ = .0 8) 
hinder the emergence of a cascade such that ⪅⁎r a for all choices of a (Fig. 2a). For p 1= , cascades are also 
observed at a larger threshold fraction of 0 5ρ = .  but are still suppressed for 0 8ρ = .  (Fig. 2b). Furthermore, the 
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required share of certainly acting nodes a at which the system tips from a state with no cascades to a state with a 
global cascade decreases slightly with increasing p (compare Fig. 2a,b). Note that specifically the role of the 
remaining N − P certainly inactive nodes has been studied under the term ‘immune nodes’ in an earlier study of 
spreading dynamics on networks43. However, in contrast to our results presented above the underlying model in 
this previous work43 assumed the share of certainly active nodes a to increase over time at a constant rate, thus 
yielding convergence to a globally stable fixed point =⁎r p for all initial choices of a. Hence, the major purpose of 
the immune nodes in this earlier work was to moderate the rate of convergence to that global fixed point.

To estimate an emergent threshold distribution as required for the Granovetter-type threshold model we now 
evaluate =r t R t N( ) ( )/  against r t a c( ( 1) )/+ −  (with = = −c C N P A N/ ( )/ ) from the network simulations. 
Figure 3 shows the results if the network cascade is close to equilibrium, i.e., for t 0=  or t t 1max= − , where tmax 
is the time at which the cascade stops. We observe the formerly postulated broad distribution of emergent thresh-
olds as a result of the microscopic interactions at narrowly distributed threshold fractions {0 2, 0 5, 0 8}ρ ∈ . . .  
given a generally positive (P nodes) or negative (N − P nodes) attitude towards the considered behavior. This 
implies that individuals with a high emergent threshold may not necessarily be more reluctant to join into an 
action, it could simply mean that they are located at a more peripheral position in the network.

By approximating the number of active, ai, and inactive neighbors, bi, of a node i as coming from a common 
multinomial distribution that only depends on the number of neighbors = +k a bi i i and the overall share of 
active nodes r t( ), we derive an analytical approximation of the emergent threshold distribution F (note that for 
brevity we omit the dependence of r t( ) on t) as

Figure 2.  The final share of acting nodes r* in the microscopic network simulation for given shares of certainly 
acting nodes a. (a) With only around half the population being potentially active (i.e, = ≈ .p P N/ 0 56) only a 
low threshold fraction ( 0 2ρ = . , purple) causes large shares of the contingent nodes to act. Grey areas indicate 
values of r* and a that would exceed p. (b) If every node in the network is potentially active ( =p 1), also an 
intermediate threshold fraction (ρ = .0 5, green) suffices to cause the entire population to act. In comparison 
with (a) one also observes that the transition observed for ρ = .0 2 occurs already for smaller choices of a. For a 
large threshold fraction ( 0 8ρ = . , yellow) no abrupt transition appears such that ⪅⁎r a for all considered choices 
of a and p.

Figure 3.  Emergent threshold distribution measured from the microscopic network simulations and the 
analytical approximation. For the network simulations only those points where the system is close to 
equilibrium, i.e. ∈ −t t{0, 1}max , are shown. For all shown choices of threshold fractions ρ, the approximation 
matches well with the network simulations.
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here, = ∑K k N/i i  denotes the average degree (i.e., number of neighbors) of nodes in the network (see Methods 
section below and the Supplementary Information for a full derivation of Eq. (3)). Note that the second factor in 
Eq. (3) can be further approximated by an incomplete gamma function. We find that (close to equilibrium) Eq. 
(3) aligns very well with the network simulations for small ( 0 2ρ = . ), medium ( 0 5ρ = . ) and large ( 0 8ρ = . ) 
fractional thresholds (Fig. 3) and thus complements previously proposed approximations that primarily held for 
small to medium values42. For the transient phase the approximation still estimates the emergent thresholds well 
for small and large choices of ρ but decreases in quality for intermediate values (see Supplementary Information). 
This is mainly caused by the clustering of active and inactive nodes. An extension of the above approximation that 
accounts for such factors, e.g., via pair approximations54,55 or moment generating functions29, is beyond the scope 
of this work and remains as a subject for future research. In summary, Eq. (3) gives a good estimation of an emer-
gent macroscopic distribution that fulfills the initially postulated broad shape35 while emerging from a subsumed 
set of preferences as well as a single common threshold fraction ρ. In addition, using a single distribution F has 
the advantage of being independent of the share of certainly and potentially acting nodes. As such it only needs to 
be estimated once while changing preferences (i.e., varying A and P) are incorporated into shifting the diagonal 
line that is used to estimate the fixed points (see again Fig. 1c).

Comprehensive analysis and social tipping.  From the approximate emergent threshold distribution F 
in Eq. (3) we estimate the fixed points r* of the refined threshold model for different choices of a, p (or = −c p a), 
and ρ by solving r a c F r( )/ ( )− =  (i.e., intersecting the diagonal line with F). We either identify two stable and 
one unstable fixed points, or one globally stable fixed point r*. Figure 4a shows the value of the smallest stable 
fixed point ⁎rmin( ). We find a sharp increase in its value for certain values of ⪅ ⪅. .a0 15 0 22 and ⪆ .p 0 5 hinting 
at a saddle-node bifurcation. Figure 4b,c show that saddle-node bifurcation at varying values of a and p, respec-
tively. As the saddle-node bifurcation, and correspondingly also hysteresis, emerges in both parameters, the 
model consequently displays a cusp bifurcation as well (see black circle in Fig. 4a). For fixed values of a or p below 
the cusp-point the final share of acting individuals r* thus varies only smoothly with the respective other free 
parameter (red lines in Fig. 4b,c). In contrast, fixing either a or p to values above the cusp-point can cause the 
system to rapidly shift from a stable state with low r* to a stable state with high r* (and vice versa) as the corre-
sponding bifurcation point in the remaining free parameter is crossed (black lines in Fig. 4b,c). Notably, the 
model shows hysteresis also within a band of possible threshold fractions, Fig. 4d.

In summary, our model conceptually shows what has formerly been termed social tipping, i.e., a process where, 
for a given population, a small change in the size of a dedicated minority can have a large effect19,21,56. In our spe-
cific case, for a given value of a or p a small change in the respective other parameter suffices to largely increase 
(or decrease) the share of finally acting individuals r*. Complementing recent theoretical and numerical studies 
of spreading processes on networks that either varied the size of the initiating minority42 or the so-called immune 
group of inactive nodes43 our model shows a bistable regime that is necessary for the emergence of hysteresis. 
This implies that once the system has tipped it sustains its state of high (low) shares of acting individuals r* even 
if a or p were to be reduced (increased) again. By incorporating both, initiating and immune groups, our model 
additionally gives rise to a previously undetected cusp bifurcation as well.

Remarkably, the critical size of the dedicated minority at which the system undergoes a fold bifurcation 
(Fig. 4a,b) has recently been empirically estimated to lie in the range a0 21 0 25. .⪅ ⪅  which is consistent with the 
results of our model19. Moreover, critical minority group sizes of around 20 percent have also been discussed with 
respect to the Pareto principle57 which has recently been reframed as the law of the vital few to discuss matters of 
sustainability transformations and social tipping58.

Discussion
We have proposed a refined version of the original Granovetter threshold model35 that addresses a set of issues 
that, so far, have hindered its application as a conceptual modeling tool. Specifically, we propose to divide the 
considered population of size N into three classes (certainly, potentially, and certainly not acting individuals) of 
different sizes A P≤ , ≤P N , and −N P. In addition, we propose a threshold distribution that emerges from 
microscopic interactions between individuals on a social network. This distribution solely depends on the average 
connectivity K of individuals and a common threshold fraction ρ to join into an action given that their individual 
preferences and attitudes are already favourable with respect to that action. The four parameters of our refined 
model are of intuitive nature and allow for a systematic evaluation of its dynamics in terms of a bifurcation  
analysis (except for K  which only needs to be chosen sufficiently larger than zero, i.e., K 0, see Supplementary 
Information for details). As in the original threshold model, an estimation of the fixed points can be obtained by 
(graphically) intersecting the diagonal line defined by a and p with the emergent threshold distribution F. The 
three crucial parameters a, p, and ρ all cause a saddle-node bifurcation which is a prototypical mechanism behind 
tipping points in many other systems, such as in ecology59,60 or the climate system61,62, as well. It thus makes the 
model a promising tool to study the emerging field of social tipping19,21,56 where little things can make a big differ-
ence63 and minority groups can trigger large shares of a population to engage in collective action.

Our revised model describes multiple forms of collective behaviors, including social movements and 
crowd-like behaviors. For both such behaviors, norms are directly called upon to structure individual likelihood 
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to engage in actions while also observing the actions of others around them. Importantly, there are differences in 
the speed of the process. For crowds the observation of social members is made relatively quickly, as are the deci-
sions to participate in the actions. In contrast, these processes can be much slower for social movements. For both 
cases, however, we identify three time scales that are underlying our refined threshold model. We assume that the 
microscopic threshold fractions change at the slowest time scale (usually years to decades), as these are attributed 
to the unique identity of an individual (which may be less prone to sudden external shocks). In contrast, the clas-
sification into certainly or contingently active individuals varies on intermediate time scales (months to years) as 
changes in the environment (such as financial shocks or the exposition to increasing extreme weather events) are 
beyond an individual’s own agency and can trigger sudden changes in attitudes64. The social dynamics modelled 
here, i.e., the observation of others and the joining into an action, are happening on the fastest time scale (days to 
months) as frequent social interactions are common among members of any given society.

Most parameters of the refined model may be readily measurable in a variety of applications. Attitudes that 
determine p could be estimated from surveys or existing panel data. The share of certainly acting individuals a 
could be given by those in the population that inevitably need to act, e.g., migrate as a consequence of climate 
change impacts65,66. For the average degree K it may often suffice to set it to a reasonable number, e.g., Dunbar’s 
number that suggests a cognitive limit to the number of people with whom an individual can maintain a persis-
tent social relationship67 (see Supplementary Information for details). The threshold fraction ρ could then either 

Figure 4.  Bifurcation analysis and hysteresis of the refined Granovetter model with an emergent threshold 
distribution as given by the analytical approximation. (a) Smallest stable fixed point min(r*) for different shares 
of certainly acting a and potentially acting individuals p. The black circle denotes a cusp-bifurcation. Black 
dashed horizontal/vertical lines correspond to the diagrams in (b,c) that show a saddle-node bifurcation. For 
(b–d), solid (dotted) lines indicate stable (unstable) fixed points r*. Grey shading indicates those areas where ⁎ ∉r a p[ , ] and that can thus not be reached. The yellow circled area in (a) indicates the bistable regime. Red 
dashed horizontal/vertical lines in (a) correspond to values of p and a at which no bifurcation is observed and 
thus r* varies smoothly in (b,c). (d) Shows the bifurcation diagram in the threshold fraction ρ. Fixed parameters 
are: a 0 16= .  for (c) ( = .a 0 24 for the red curve) and (d), = .p 0 67 for (b) ( = .p 0 58 for the red curve) and (d), 
and ρ = .0 4 for (a–c).
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remain as a free parameter of the model or be set to fixed intuitive points such as 50% (majority rule) or 20% 
(Pareto principle57,58). Furthermore, the model also allows for changes in its parameters over time, such that r* 
can be estimated as a time-dependent variable, possibly causing the system to tip back and forth between its two 
possible stable states. In that sense the respective parameters can be incorporated into the system’s internal 
dynamics as slowly changing variables.

Future work should concentrate on collecting data for the different parameters and then consequently test and 
calibrate the model against historical test cases. One specific challenge that lies within such an endeavor is the 
estimation of appropriate (relative) time scales at which the parameters and the internal variables change. In addi-
tion, appropriate early-warning indicators62,68,69 should be applied to study the existence of precursory signals for 
the transgression of a social tipping point, i.e., bifurcation, in our model. Some of these indicators would require a 
further extension of the model such that individuals may also spontaneously become active with a low probability 
even if their threshold fraction is not transgressed (or vice versa). We further acknowledge that up to now a pro-
posal for an emergent threshold distribution has only been derived analytically for the case of an Erdős—Rényi 
random network70. While this lays good groundwork, the threshold distribution should also be explored for 
topologies (such as scale-free71 and small-world networks72) that more closely mimic those of real-world social 
systems. Hence, even though our proposed approximation of the emergent threshold distribution holds well if the 
system is well-mixed and close to a fixed point, more elaborate methods, e.g., pair approximations55 and moment 
generating function approaches29, should be used to predict the model’s dynamics for more general network 
topologies and during transient phases as well. Ultimately, the model should be applied as a conceptual modeling 
tool, e.g., to make qualitative statements on the possibility for social tipping with respect to issues of global change 
or sustainability transformations12,73,74 under different scenarios.

Methods
Network cascade model.  For the microscopic network simulation we consider an Erdős—Rényi random 
network70 with =N 100000 nodes and a linking probability of 9 10 5

 = ⋅ −  resulting in an average degree of 
K 10= . We vary the number of certainly acting nodes A logarithmically between 1 and N and the number of 
potentially acting nodes logarithmically between A and N . For each setting of A and P (and fixed values of the 
threshold fraction ρ as given in Fig. 2) we create an ensemble of =n 100 networks and randomly assign P out of 
the N  nodes as potentially active. Out of those P nodes we then randomly assign A certainly acting nodes. The 
model then runs in discrete time steps t. In each time step, every potentially active, yet inactive, node i becomes 
active if its share of active neighbors exceeds the threshold fraction ρ. All nodes update their status synchronously 
at each time step. The simulation stops if the number of newly activated nodes at time t equals zero, i.e., if 

− =R t R t( 1) ( ). Note that our model is based on previous works that implemented a simpler version of a cascade 
model that did not account for a distinction in potentially active and certainly inactive nodes29.

Approximation of the emergent threshold distribution.  The approximate emergent threshold distri-
bution F in Eq. (3) is derived by assuming that for each individual i the number of active ai and inactive neighbors 
bi are distributed according to a common multinomial distribution, giving
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P′ = N − 1 − R denotes the number of inactive individuals that are not the considered i, as one’s own level of activ-
ity is not accounted for.  is the linking probability of the Erdős—Rényi network. Equation (3) follows from Eq. 
(4) by setting ⌊ ⌋=R rN , substituting the binomial distributions by two Poisson distributions with expectation 
values Kraλ =  and λ = −K Krb  and assuming that N K . A step-by-step derivation of Eq. (3) is given in the 
Supplementary Information.
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Clustered marginalization of 
minorities during social transitions 
induced by co-evolution of 
behaviour and network structure
Carl-Friedrich Schleussner1,2,*, Jonathan F. Donges2,3,*, Denis A. Engemann4,5,* & 
Anders Levermann2,6,7

Large-scale transitions in societies are associated with both individual behavioural change and 
restructuring of the social network. These two factors have often been considered independently, yet 
recent advances in social network research challenge this view. Here we show that common features 
of societal marginalization and clustering emerge naturally during transitions in a co-evolutionary 
adaptive network model. This is achieved by explicitly considering the interplay between individual 
interaction and a dynamic network structure in behavioural selection. We exemplify this mechanism 
by simulating how smoking behaviour and the network structure get reconfigured by changing social 
norms. Our results are consistent with empirical findings: The prevalence of smoking was reduced, 
remaining smokers were preferentially connected among each other and formed increasingly 
marginalized clusters. We propose that self-amplifying feedbacks between individual behaviour and 
dynamic restructuring of the network are main drivers of the transition. This generative mechanism 
for co-evolution of individual behaviour and social network structure may apply to a wide range of 
examples beyond smoking.

Behaviour is shaped by interactions between the individual and its environment1. As a result of evolutionary pres-
sures emanating from intensified group lifestyles, humans acquired a diverse and specialised social behavioural 
repertoire2,3. The human cognitive capacity for enduring collaborative social interaction has been extensively 
investigated in various disciplines related to the field of cognitive sciences (for an overview cf. refs 4–6). Theories 
about how behaviours are shaped by social and individual factors have a longstanding tradition in psychology and 
social sciences7,8. Examples of quantitative models include dynamic models of segregation in urban neighbour-
hoods9, models of cultural dissemination10 and a wealth of literature aiming at the inclusion of social decision mak-
ing into economic theory11,12. An overview on mathematical approaches to social dynamics is provided in ref. 13.  
Importantly, social relations can be represented as graphs, which renders them accessible to network theoretical 
analysis14. It has been shown that the overall structure of connections between individuals in social networks and 
face-to-face interactions between individuals systematically affects a wide range of social and individual charac-
teristics, such as happiness, divorce rates, smoking and obesity15–19. We refer to this effect as behaviour selection 
emphasising an evolutionary process rather than mere individual decision-making.

In this context, networks statistics enable more targeted characterisations of social dynamics. For example, 
social distance modulates similarity and behavioural synchrony between individuals. It is commonly measured 
using the shortest path length between two individuals in a social network and has been shown to preferentially 
shape individual behaviour up to a distance of three social ties19. Likewise, the contents of social interactions 
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between individuals depend on their relationship, i.e., perceived friendship status, which suggests nonlinear inter-
dependencies between network dynamics and social interaction20. Opinion formation and imitation have been 
advocated as candidate mechanisms of behaviour induction21,22. This puts emphasis on cognitive processes and 
biases for selective spread of behaviours in social networks23,24.

These findings motivate process-based techniques for modelling dynamical social networks highlighting 
time-varying aspects of social connections25. One such approach is represented by adaptive networks that model 
the temporal co-evolution of network structure and dynamic node states26–28. The most commonly modelled 
social processes include imitation, collaboration dynamics and social tie formation as a function of antipathy 
and sympathy (sometimes referred to as homophily and heterophily, respectively) between agents. Adaptive net-
work models have then been used to investigate complex phenomena in social networks such as phase transi-
tions and tipping points in opinion formation on single-29 and multi-layer30 networks, epidemic spreading31, 
swarm behaviour32, friendship structure in social media networks33, sustainable use of renewable resources34 and 
coalition formation35. Opinion formation has been intensively investigated using the adaptive voter model29, its 
generalisations and related models26–28 with a focus on consensus formation36, opinion diversity37 and network 
fragmentation38.

In adaptive network models, the selection of update rules critically determines the co-evolutionary dynamics 
of node states and network structure. When considering real-world social systems, social connections are very 
unlikely to be established randomly and in disregard of the underlying network structure, but rather are the out-
come of agents’ interactions in a complex network39–41. At the same time, interaction between agents along social 
ties is a key process to induce individual behavioural change42. Therefore, choosing update rules such that they 
explicitly take into account peculiarities of micro-scale social interactions seems promising for obtaining more 

Figure 1.  Adaptive network model of behaviour selection. For a group of individuals, the proposed 
model predicts selection of behaviour as a function of two factors: local interaction between individuals 
and the global structure of their social connections. The proximity matrix describes how similar a given pair 
of individuals is based on their individual characteristics such as smoking behaviour. Assuming restricted 
resources, agents maintain a limited number of social contacts. In the proposed model, individuals only keep 
their most proximate contacts. Based on the proximity matrix, it can be determined which individuals are 
current neighbours in the contact network. The distance between nodes in this network is then used to compute 
the interaction probability matrix for stochastically generating current interactions between a given pair of 
individuals. Importantly, this interaction network exerts feedback on the individual behaviour and thus closes 
the co-evolutionary loop: The probability of changing the smoking behaviour is modelled as a function of the 
individual smoking disposition and the dominance of smoking behaviour in the local neighbourhood of the 
interaction network. Note that only individuals who have actually interacted can establish a tie in the contact 
network in the next time step.
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realistic models. Such an interaction-resolved adaptive network approach would then also allow to study the 
co-evolution of micro-scale social influence and large-scale network structures.

More empirical findings have become available that explicitly describe social network structures. In the work 
presented here, we will focus on a study on smoking habits by Christakis and Fowler17. Based on a detailed 
long-term survey, they analysed smoking habits of 12,067 inhabitants of a small town in the US between 1971 and 
2003 while concomitantly tracking their social relationship structure, i.e., mutual assessment of friendship status. 
Their analysis revealed that over that time period, the prevalence of smoking declined from about 50% to about 
10%. At the same time, the structure of social connections changed almost selectively for the remaining smokers. 
Their average eigenvector centrality, a measure of how much a node is in the “centre” of its social network, signif-
icantly declined. At the same time, the probability of an individual being a smoker conditional on the prevalence 
of smoking in its neighbourhood (referred to as conditional probability below, see Methods) increased up to the 
level of third degree contacts (contacts of contacts of contacts). In other words, individuals who did not adapt to 
the decreasing societal support for smoking preferentially interacted with similar individuals, forming subgroups 
or clusters of increasingly marginalized smokers.

An Adaptive Network Model of Behaviour Selection
In the following, we will introduce an interaction-resolved adaptive network approach that we evaluate in terms 
of its capacity to reproduce characteristics of empirically studied time-varying social networks. We first outline 
the general modelling framework that contains core conceptual ideas of our adaptive network model of behaviour 
selection presented in Fig. 1. In a next step, we describe specific modifications and additions made to model social 
dynamics of changing smoking behaviour to reproduce findings from the empirical reference case17.

Complex systems, such as the human brain, social networks, or the backbone structure of the internet, typ-
ically implement functional hierarchies43–46. Although dynamics with multiple temporal hierarchies also apply 
to the emergence of complex macroscopic structure in social systems in which agents repeatedly interact over 
time47–49, hierarchical social network dynamics have rarely been explicitly modelled26,27,50,51. Here we considered 
functional hierarchies as coupling between an interaction network with fast updates and contact network with 
slow updates that together shape individual characteristics as their states change over time with preferential for-
mation of social ties. A schematic overview of the model and its components is depicted in Fig. 1 and a detailed 
formal description of our model is given in the methods description below.

The contact network’s structure is based on an overall similarity between individual’s characteristics such as 
preferences, socio-economic status or genetic factors (cf. refs 52–55) that generate a social proximity between 
individuals. Here, contacts are understood as the number of other agents an individual may regularly interact 
with (a counterexample for this are entries in a Facebook contact list that only require a single interaction to be 
established). The total number of such contacts that can be maintained by a human individual is constrained 
by temporal and cognitive capacities2. General cognitive capacity and the number of contacts are both subject 
to individual differences56,57. We therefore restricted the maximum degree of social contact that an agent in the 
contact network is capable or willing to maintain by introducing an individual degree preference parameter that 
is normally distributed. An agent cannot maintain more contacts than prescribed by its degree preference, which 
implies that establishing new contacts (by a new edge in the contact network) may require disbanding old ones 
(deleting the edge in the contact network).

The interaction network provides the basis for establishing new contacts while at the same time also inducing 
change in the individual characteristics. It is generated stochastically at each time step based on the contact net-
work. Reflecting empirical findings19, the probability of interactions between two individuals in a given time step 
(represented by an edge in the interaction network) decreases with the shortest path distance between them in the 
contact network. The minimal interaction probability is a constant positive value, thereby allowing for unlikely, 
incidental meetings (“by chance”) between distant or disconnected individuals.

In our model, tie formation in the contact network is constrained by the social proximity that may change 
as a result of the interaction58. To update the contact network, the social proximities to neighbours in the inter-
action network are compared with proximity values to contact network neighbours. Only the top ranking con-
tacts are maintained, both in the contact and the interaction network up to the agent specific degree preference. 
Importantly, to establish a contact between two agents, each of them has to be included in the other’s set of 
preferred contacts. By this requirement of reciprocity, previous contacts can be replaced actively, but also lost pas-
sively, reminiscent of forgetting. Such a process can be illustrated by an agent moving from city A to another city 
B in which she establishes new contacts and at the same time gradually forgets about her previous social network 
in A. In turn, also her previous contacts in A loose contact with her.

At the same time, the social influence dynamics play out on the interaction network. Individual character-
istics such as behaviours are subject to peer-influence by direct neighbours in the interaction network as will 
be described below. The model design also allows to account for individual dispositions as node-dependent 
constraints on behaviour exogenous to the model, i.e., weights on choice options, that do not depend on the 

Behaviour update by social interaction

Yes No

Feedback into contact network 
Yes coupled, mean-field network

No interaction —

Table 1.   Partial and alternative models of behaviour selection studied in this work.
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interaction network. Such dispositions may be understood as culturally transmitted norms, values, knowledge 
and slowly changing collective contexts (e.g. health campaigns or climate change). Intuitively, by altering these 
weights according to a simulation protocol, one can emulate changes in global societally relevant factors. The 
hierarchical coupling between components in our model supports decomposition into partial models (see Table 1 
and Methods). This allows us to differentiate the relative importance of model components and their associated 
social processes for behaviour selection in response to changing global trends.

Modelling Social Dynamics of Changing Smoking Behaviour
In the following, we apply the proposed adaptive network model of behaviour selection to the specific case of 
network-dependent changes in smoking behaviour to investigate empirically observed social transitions.

In particular, we introduce an update mechanism for the agent’s smoking behaviour as the individual char-
acteristic of interest. We conceptualise smoking behaviour as a binary variable (either smoking or non-smoking) 
endogenously in the model. The individual’s smoking behaviour can be altered over time by an Ising-type model 
of social influence13. At each time step, we determine the probability of an agent to alter its smoking behaviour 
as a function of balanced peer-influence of smoking and non-smoking behaviour of its neighbours in the inter-
action network (see Methods). In addition to the peer-influence, we introduce an individual smoking disposition 
that reflects individual preferences in the probability to switch smoking behaviour. As this individual smoking 
disposition is exogenous to the model, its distribution can be altered externally and the dynamic response of the 
model can be investigated.

Importantly, it is only the endogenous binary smoking behaviour that dynamically affects agents’ social prox-
imity in our model. As in actual social networks, however, the social proximity also reflects many dimensions 
of which most remain latent during an interaction. Our proximity matrix thus includes two components: the 
time-invariant background proximity that largely determines the position of agents in the social network, e.g. 
reflecting long-term social ties such as family relationships, and a time-dependent component that depends on 
the co-occurrence of smoking behaviour for pairs of individuals. As a consequence, adopting a new behaviour 
will modify an agent’s entries in the proximity matrix and may thus lead to changes in the contact network.

We then emulated dynamics of societal changes that historically lead to reduced prevalence of smoking (e.g. 
health campaigns and changes in public opinion17) by gradually modifying the exogenous distribution of smoking 
disposition. Over 1000 model time steps, we gradually converted a bimodal distribution, representing a balanced 
share of smokers and non-smokers in the network, into a quasi unimodal distribution favouring non-smoking 
attitudes as depicted in Fig. 2. We subsequently performed simulations over an ensemble of 1000 model runs 
using different seeds to initialise the pseudo-randomisation of the time-invariant background proximity matrix 
and the smoking disposition (see Methods). The model dynamics of interest were robust with respect to the spe-
cific choice of the distributions and the speed of the change in external forcing.

Results
To evaluate our co-evolutionary model of behaviour selection, we gradually modified the exogenous smoking dis-
position and studied the response of several metrics of our social adaptive network. These metrics were motivated 

Figure 2.  Smoking behaviour and centrality before and after the social transition. Panel (a,b) illustrate 
the initial and the final state of the contact network as simulated by the proposed adaptive network model of 
behaviour selection. Circles represent individual nodes. Their colour and size represent smoking behaviour 
and the individual’s centrality, respectively. At the initial state of the simulation (panel (a)), smoking behaviour 
is homogeneously distributed across the network with random centrality values and the number of smokers 
equals the number of non-smokers resulting from the initial distribution of smoking dispositions. As the 
normative support for smoking gradually declined, behaviour and centrality changed over repeated interactions 
within the network. In the final state of the simulation (panel (b)), the number of smokers has considerably 
declined. As a consequence of the adaptive network dynamics, the centrality of smokers is selectively reduced. 
In comparison, non-smokers are characterised by a wide distribution of centrality.
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by previous empirical studies that documented co-evolution between behaviour and social network structure (cf. 
refs 17 and 19) and include the prevalence of smokers in the network, the eigenvector centrality of each individual 
and the probability that an individual smokes given that her contacts smoke (conditional probability of smoking).

Over time, the fraction of smokers in the network reduces from about 50% to 10% (Fig. 3), which is consistent 
with the empirical findings reported in ref. 17. In a second step, we compared different generative mechanisms by 
repeating the analysis for the remaining three partial models (see Table 1 and coupled model in Fig. 3). We found 
that models considering social influence dynamics (interaction, mean-field and coupled) reduced the smoking 
prevalence twice as much as the network model (Fig. 3), in which agent’s behaviour is determined solely by the 
exogenous smoking disposition.

Only models considering the evolution of the contact network reduced the eigenvector centrality of remaining 
smokers below baseline (Fig. 4a). These effects were most pronounced for models combining social influence 
and network dynamics (mean-field and coupled). These models suggest a preferential reduction of centrality for 
smokers, reminiscent of the empirical results reported in ref. 17 (Fig. 4b). Here the mean-field model exhibits 
somewhat more drastic effects with less temporal variability as compared to the coupled model and even initially 
increases the eigenvector centrality of nodes, however not selectively for smokers. This is consistent with the 
deactivation of local influence that might give rise to “clusters of resistance”. When considering the conditional 
probability of smoking up to fifth degree contacts (Fig. 5), we found changes between four to eight times higher in 
the coupled model as compared to all other models. This suggests that the feedback between specific local dynam-
ics of social influence greatly amplifies such social clustering behaviour. Taken together, the results from our fully 
coupled co-evolutionary model support key findings from the empirical reference study17. At the same time, these 
results suggest that the residual pattern of clustered smokers of reduced centrality reflect a synergy between local 
interaction and network dynamics.

Discussion
We proposed a co-evolutionary model of behaviour selection in adaptive social networks and evaluated it through 
computational models targeting historical changes of smoking behaviour in social networks. Our computational 
models emulated gradual changes of network-wide smoking norms. We observed a reduced prevalence of smok-
ing, a decreased eigenvector centrality and an increased conditional probability of smoking. Notably, the patterns 
of smoking behaviour and network characteristics computed by our model closely resemble empirical findings 
from a large-scale and long-term social network study investigating smoking behaviour in a North American 
small town17. Results of a partial model analysis suggest that selective modelling of either network dynamics, 
social influence or non-local social induction yields less match with empirical findings, and underscore the 
empirical relevance of behaviour-network co-evolution. Only the fully coupled co-evolutionary model was capa-
ble of explaining non-trivial structural change in complex social systems.

In particular, we would like to highlight the relevance of local generative mechanisms for social interaction as 
indicated by the deviating results for a mean-field forcing. The apparent imminent relevance of locality in inter-
actions underscores the need for meaningful, social network based update mechanisms to study complex social 
phenomena.

Figure 3.  Gradual transition from a smoker to a non-smoker society is reflected in the prevalence of 
smoking. We considered four distinct models of behaviour selection. Over the course of the simulation, 
the distribution of the smoking disposition was gradually transformed from a bimodal to a quasi unimodal 
distribution and the smoking behaviour was computed at each time step. The coupled model assumes that 
behaviour is shaped by a local interaction based on a time-varying contact network. In the network model, no 
local interactions are considered. Here, the behaviour is only determined by the individual disposition while 
the contact network changes over time. In the interaction model, only local interactions shape the behaviour on 
a static contact network. Similarly to the coupled model, social influence and network dynamics are considered 
in the mean-field model, but smoking behaviour is shaped by non-local influences only. In all four (partial) 
models, the proportion of smokers changes in the course of the normative transition (time is represented in 
arbitrary units, AU). Notably, the absolute change is higher in the models that assume social interaction. Solid 
lines show mean values across 1000 runs with different pseudo-random initialisations. The variation across runs 
was negligible.
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It is important to highlight that our models did neither involve any data-fitting nor predictive analyses. Instead 
we provided simulations with outputs according to their parameters and components. Thus the reported evidence 
is qualitative in nature and emphasises one distinct generative model through comparisons to empirical data and 
prior knowledge. The variance across ensembles assumes different values metric-wise, reflecting their algebraic 
properties as well as the effect of network size. Hence, our analyses do not imply statistical inference. The specific 
parameter choices in our model were adapted from the empirical study17 and motivated from social sciences, 
evolutionary biology and neurosciences findings2,19,52,59,60.

Furthermore, the models we evaluated in our simulations clearly suffer from conceptual limitations. The cog-
nitive make-up of our simulated individual constitutes a bold simplification, particularly the assumption of an 
exogenously prescribed behavioural disposition. Human behaviour is clearly not binary but continuous and more 
complex model assumptions can therefore be easily motivated. Decision making is governed by multiple interact-
ing factors, involving individual cognitive-emotional dispositions, but also by collaboration dynamics integrating 
social and cultural factors. Social support for a certain behaviour is often ambiguous, reflecting conflicting values, 
and social interactions can be asymmetric and unequally weighted. In this context, our model of behavioural 
change should be regarded as a prototype. We do not assess the validity of a specific mechanism of behavioural 
change or opinion formation. Instead we emphasise the structural importance of co-evolutionary processes that 
coalesce social cognition with network dynamics. But we hope that our simulation method stimulates future 
validation of specific social cognition theories against the background of evolving social networks. Nevertheless, 
our model generalises to other empirically documented examples of behaviour-network co-evolution including 
the spread of happiness, the spread of obesity but also the conditioning of food choices61, as well as large data sets 
available from monitored social dynamics in massive multiplayer online games20. Assessing behavioural changes 
in social networks thereby complements spatial analysis62, as social ties and physical distance tend to be sub-
stantially correlated17 albeit a spatial and a network approach highlight fundamentally different qualities of the 
environment.

In particular, the example of food choices illustrates the potential outreach of our model for diverse interdis-
ciplinary research questions. For example, the environmental foot-print of meat-centred diets is considerably 
higher than that of a vegetarian diet63. Against the historical background of strong positive correlations between 
meat consumption and economic prosperity64 and given the rise of the global middle-class, diet habits represent 
a key challenge affecting several planetary boundaries65,66. At the same time, modifying nutritional behaviour has 
been targeted by health-related disciplines such as clinical psychology and behavioural medicine in preventive 
and therapeutic contexts. Capitalising on contingencies between individual behaviour and environment, thera-
peutic efforts might therefore benefit from models that specifically detail the relationship between microscopic 

Figure 4.  During the normative transition, local interactions between individuals and the evolution of the 
network structure rendered smokers less influential in the network. The eigenvector centrality (EVC) was 
computed at each time step for 1000 model runs with different random seeds. All models were initialised to the 
equilibrium run of the coupled model and values were normalised to the initial state of the model parameters. 
Panel (a,b) depict changes in EVC according to the four (partial) models for smokers and non-smokers, 
respectively. Solid lines show mean values and areas indicate bootstrapped 95% and 99% confidence intervals. It 
is noteworthy that only in models reflecting network effects, EVC was substantially reduced. These effects were 
strongest in models that in addition considered social interactions between individuals.
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and macroscopic social dynamics. Furthermore, co-evolutionary dynamics of behaviour and networks have been 
found to promote cooperation in public good games67,68, thereby illustrating their transformative potential69. In 
the neuroscientific context it would be worthwhile to explore adaptive networks of spontaneous brain activity. 
Such models might help to overcome the limitations of ubiquitous “flat models” which do not resolve functional 
and structural connectivity hierarchically.

At a theoretical level, our study promotes a synergistic, co-evolutionary and interdisciplinary approach to 
social dynamics which gains explanatory momentum by integrating interpersonal cognitive processes with net-
work dynamics as explanatory factors.

Methods
Detailed model description.  In the following, we provide a detailed mathematical model description, 
including definitions of the model variables and parameters, their initialisation, the algorithm for computing 
their temporal dynamics, the general modelling protocol and partial models. The model code is publically avail-
able and can be assessed and reviewed here: https://github.com/pik-copan/pycopanbehave. The implementation 
is based on the Python complex network software package pyunicorn70 that is available at https://github.com/
pik-copan/pyunicorn.

Model entities.  We model individuals as agents or nodes i ∈​ V, where V denotes the population or set of N =​ |V| 
agents in the social system considered. The system is assumed to be closed and, hence, V does not depend on 
time, i.e. agents cannot enter or leave the population. The following entities define the system on the individual 
and population levels:

Agent properties.  Each agent i carries a vector of scalar agent properties. Agent properties are parameters pre-
scribed externally, they are fixed at initialisation and can be changed over time only by forcing external to the 
model (see below). The current model setup implements two agent properties:

(i)	 Degree preference qi ≤​ N −​ 1 is a discrete quantity serving as an upper bound of an agent’s degree in the contact 
network ki

C (i.e. its number of neighbours in the contact network). This reflects the varying and limited capa-

Figure 5.  During the normative transition, joint effects of individual interaction and the evolution of the 
network structure led remaining smokers to cluster in marginalized groups. The probability of an individual 
being a smoker conditional on the prevalence of smoking in its neighbourhood at a given social distance or 
degree of separation (conditional probability, CP) was computed for 1000 model runs with different pseudo-
random seeds at each time step and normalised to the percentage of change relative to the initial value. Panels 
(a–d) show the CP at social distance 1–5 for the network, the interaction, the coupled and the mean field models, 
respectively. CP increased with simulated time for lower social distances (1–3) across all models, whereas 
decreases of CP were observed for larger social distances in some models. Notably, this pattern was between 
four to eight times more pronounced in the coupled model compared to all other models. Solid lines depict 
mean values and areas represent bootstrapped 95% and 99% confidence intervals, barely visible as a result of the 
high signal to noise ratio for this metric.
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bility of individuals to establish, manage and maintain sustained social relationships2. qi is drawn from a 
discretised Gaussian distribution with mean μ and standard deviation σ at initialisation of the model. Specif-
ically, we choose μ =​ 10 and σ =​ 3 in the smoking experiment.

(ii)	 Smoking disposition γi(t) ∈​ [0, 1] is a continuous variable measuring an agent’s individual and network-inde-
pendent preference for smoking. Agents with small smoking disposition γi(t) have a low probability to start 
smoking if they are non-smokers, while those with large γi(t) have a low probability to stop smoking if they 
are smokers. γi(0) is drawn at initialisation from a bimodal, parabolic probability density distribution that 
is optionally modified by stochastic external forcing towards a quasi unimodal distribution over time (see 
below).

Agent characteristics.  Each agent i also carries a vector of scalar agent characteristics. The latter are dynamic 
variables that are by definition subject to social influence (induction), i.e. they are internal variables of the model 
obeying the social influence loop (Fig. 1). In this work, the following single agent characteristic is implemented: 
smoking behaviour si(t) ∈​ {0, 1} is a binary variable describing an agent’s actual smoking behaviour. si(t) =​ 0 means 
that an agent does not smoke at time t, si(t) =​ 1 implies that an agent does smoke at time t.

Contact network.  The contact network resembles the social relationships between agents. By contacts we refer 
explicitly to people that interact on a regular basis and are able to follow each other’s affairs. We describe it as an 
undirected and simple time-dependent graph GC(t). It can be represented by its adjacency matrix AC(t). The 
neighbourhood of agent i in the contact network is denoted by t( )i

C .

Interaction network and interaction probability matrix.  The interaction network represents all short-term inter-
actions established between agents at each time step t. It is the basis for updating both the agent characteristics 
and the contact network at each time step. We describe it as an undirected and simple time-dependent graph 
GI(t). It can be represented by its adjacency matrix AI(t). The neighbourhood of agent i in the interaction network 
is denoted by  t( )i

I .
Each entry πij(t) of the interaction probability matrix Π​(t) gives the probability that two agents i, j will interact 

in time step t. For computing πij(t), the social distance between two agents i, j is measured by the shortest path 
length −d t( 1)ij

C  between them in the contact network at time t −​ 1 (the minimum number of steps needed to 
reach agent i from agent j over the contact network). Empirical results reveal that social influence decays approx-
imately exponentially with dij

C19. Following these findings reporting a so-called “three degrees of separation law” 
of social influence, we define the interaction probability matrix as

π β ε
δ

ε= −





−

− − 




+ˆt

d t
L d( ) ( ) exp

( 1) 1
( ) ,

(1)
ij

ij
C

ij

where ε is a baseline probability of interaction irrespective of the contact network. To account for the distribution 
of shortest path lengths between nodes, a normalisation factor =L̂ d L L d( ) (1)/ ( )ij ij  is introduced with L(1) and 
L(dij) being the absolute number of shortest paths between nodes of length equal to 1 or dij, respectively. πij(t) is 
scaled such that the probability of interaction between direct neighbours is always equal to the interaction proba-
bility scaling factor β. Here we set β =​ 0.8 and ε =​ 0.03. The parameter δ gives the typical social distance for the 
exponential decay of interaction probability and is chosen as δ =​ 2 in line with empirical evidence19.

Proximity matrix.  The proximity matrix P(t) with elements Pij(t) measures the social proximity of two agents i, 
j. If social proximity is large, both agents are more likely to establish or maintain a contact. Hence, the proximity 
matrix is used in updating the contact network (see below). In our case of a single binary individual characteris-
tic, the social proximity Pij(t) of two agents is only determined by the smoking behaviour si(t) and sj(t) and their 
initially prescribed background proximity Bij describing rigid social ties such as family relationships and other 
factors that are not explicitly included in the model. We choose a simple linear relationship

α α= − | − | + −P t s t s t B( ) (1 ( ) ( ) ) (1 ) , (2)ij i j ij

where α is a weight parameter balancing the influence of smoking behaviour and background proximity. Here, 
we choose α =​ 0.2 to allow for a typical network mobility of between one and two degrees in the Watts-Strogatz 
network that underlies the background proximity generation.

The background proximity matrix B with elements Bij is constructed on the basis of a Watts-Strogatz 
small-world network45 with N nodes, mean degree z =​ 10 and a rewiring probability pw =​ 0.03. The individual 
proximities Bij are derived as a linear combination of the social distance dij

WS in a realisation of a Watt-Strogatz 
random network and a uniformly distributed stochastic component ζ ∈​ [0, 1). This choice allows to emulate the 
typical small-world property of empirical social networks. Bij is derived as

ζ= − . − − . .B d1 0 1( 1) 0 1 (3)ij ij
WS

After computation of Bij using the above formula, all entries with Bij <​ 0.2 are reset to a minimum value of 0.2, 
which is in line with the assumption that for very high degrees of separation, no further meaningful distinction 
can be motivated.
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Model dynamics.  The temporal update scheme describes the dynamics of the main variables of interest in the 
model (Fig. 1): smoking behaviour si(t) and contact network GC(t). The model evolves in discrete time steps. It 
is deterministic with the exception of the stochastic generation of the interaction network from the interaction 
probability matrix and the stochastic switching of the agents’ smoking behaviours in each time step. After ini-
tialisation, the algorithm proceeds from step 1 to step 6 in the full co-evolutionary setup and then starts again 
at step 1. Modified model dynamics implemented to isolate the effects of specific mechanisms in the model are 
described below.

Step 1: Calculate interaction probabilities based on social distance.  The interaction probability 
matrix Pi(t) is computed based on the social distance −d t( 1)ij

C  between agents i, j in the contact network 
GC(t −​ 1) from the previous time step t −​ 1 following Eq. 1.

Step 2: Generate interaction network.  The interaction network’s adjacency matrix is randomly gener-
ated for all i, j ∈​ V independently. An interaction takes place with probability πij(t) corresponding to setting 

=A t( ) 1ij
I , while no interaction takes place with probability 1 −​ πij(t) leading to =A t( ) 0ij

I .

Step 3: Change agent characteristics (social influence/induction step).  In the considered case of a 
single binary individual characteristic (smoking behaviour), social influence reduces to a probabilistic switching 
of smoking behaviour similar to the flipping of spins in an Ising model in physics13. At time step t, the probability 
pi(t) to switch the smoking behaviour is assumed to depend to both the smoking disposition γi(t −​ 1) of agent i 
and the average smoking behaviour in the agent’s neighbourhood in the interaction network GI(t) at time t. For 
all agents i, the smoking behaviour is determined as follows. For a non-zero number of interactions 

= ∑ =k t A t( ) ( )i
I

j
N

ij
I

1 :

•	 If si(t −​ 1) =​ 0 (non-smoker):


∑γ= −

−

∈

p t C t
s t

k t
( ) ( 1)

( 1)

( ) (4)
i i

j t

j

i
I

( )i
I

The smoking behaviour switches to “smoker” with probability pi(t), i.e. si(t) =​ 1, and remains the same with 
probability 1 −​ pi(t), i.e. si(t) =​ 0.

•	 If si(t −​ 1) =​ 1 (smoker):


∑γ= − −

− −

∈

p t C t
s t

k t
( ) (1 ( 1))

1 ( 1)

( ) (5)
i i

j t

j

i
I

( )i
I

The smoking behaviour switches to “non-smoker” with probability pi(t), i.e. si(t) =​ 0 and remains the same 
with probability 1 −​ pi(t), i.e. si(t) =​ 1.
If no interactions take place for agent i ( =k t( ) 0i

I ), we set si(t) =​ si(t −​ 1).
The smoking behaviour switching probability scaling factor C scales the switching probability pi(t) of the smok-

ing behaviour. C controls the amplitude of equilibrium stochastic noise of the smoking behaviour that is intro-
duced by the Ising-like implementation. Here we set C =​ 0.1.

Step 4: Calculate proximity matrix.  The proximity matrix P(t) is computed from the current agent char-
acteristics (smoking behaviour si(t)) and background proximity matrix B according to the diagnostic relationship 
given in Eq. 2.

Step 5: Update contact network.  New ties in the contact network GC(t) can only be established between 
agents that interacted in the same time step. In contrast, potentially any edge may disappear from the contact 
network depending on the outcome of the following update scheme. Let Ui(t) be the ordered set of neighbours 

∪ −t t( ) ( 1)i
I

i
C   of i included in its interaction and contact neighbourhoods that is sorted in descending 

order of social proximity Pij(t). The number of potential contacts of agent i is determined by the agent’s degree 
preference qi. Specifically, the agent’s potential contact neighbourhood at time t consists of the set Ti(t) of the first 
qi entries of Ui(t). Additionally, we require bidirectionality of contacts. This implies that only those agents can 
establish or maintain a contact relationship at time t that are included in each other’s potential contact lists Ti(t). 
Thus, the contact network at time t is derived as follows:

=





∈ ∧ ∈

.
A t i T t j T t( ) 1 if ( ) ( ),

0 otherwise (6)
ij
C j i

This means that a new contact relation can only be formed if the corresponding social proximity value is large 
enough to enter the potential contact neighbourhood of both involved agents. On the contrary, a contact is lost 
if either alter is not element of ego’s own list of potential contacts or if ego is not element of alter’s own list, or if 
both is the case. Thus ego can loose a contact actively (by dropping alter) or passively (by being dropped by alter).

Importantly, we do not derive “second best” solutions by iteratively updating the potential contacts after the 
bidirectionality check. We account for this refinement implicitly via the iterative network update dynamics cycle 
in the model (Fig. 1).
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Step 6: Apply external forcing (optional).  External forcing can change agent properties and other sys-
tem parameters. In our smoking case study, we change the smoking dispositions γi(t) of agents over time accord-
ing to prescribed initial and target distributions to emulate the effects of changing values, political and health 
campaigns, etc. For all time steps, we ensure that the set {γi(t)}i is consistent with being drawn from a parabolic 
probability distribution of the form y(x; t) =​ a(t)(b(t) −​ x)2 +​ c(t) for x ∈​ [0, 1] with parameters implicitly defined 
by the conditions ∫ =y x t dx( ; ) 1

0

1 , y(x =​ 0; t) =​ C1 and y(x =​ 1; t) =​ C2(t). Specifically, the initial {γi(0)}i are 
drawn from a bimodal and symmetric distribution y(x; t =​ 0) with C2(t) =​ C1.

Then, the target distribution is changed over time by gradually reducing the parameter C2(t). To compute 
the set of smoking distributions {γi(t)}i at time step t, the previous set {γi(t −​ 1)}i is stochastically transformed by 
stepwise addition of two-tailed log-normal distributed noise ε that is linearly weighted by the deviation from the 
target distribution. Noise is added iteratively until a Kolmogorov-Smirnoff criterion with significance level 90% 
of {γi(t)}i being drawn from the target distribution y(x; t) is fulfilled. By this procedure, individual γi are modified 
following a Markov process, whereas the overall system property, in this case the smoking disposition distribu-
tion, is externally controlled. Using this procedure, the randomly sampled initial set of smoking dispositions 
{γi(0)}i following a bimodal distribution (C2(t =​ 0) =​ C1) is gradually transformed into a sample {γi(tf)}i following 
a quasi unimodal distribution (C2(t =​ tf) =​ Cf; see Fig. 1).

Modelling protocol.  Model runs proceed in three steps: (i) The interaction network is initialised as =A (0) 1ij
I  for 

all pairs i, j. In the following, the initial contact network A (0)ij
C  is established based on the fully connected inter-

action network. Smoking behaviour si(0) is initialised consistently with the initial smoking disposition γi(0) as

γ= Θ


 −



s (0) (0) 1

2
,

(7)i i

where Θ​(⋅​) is the Heaviside function. (ii) The system is then integrated without applying external forcing for 
200 time steps to a quasi-equilibrium state. We choose system parameters interaction probability scaling factor 
β =​ 0.8 and smoking behaviour switching probability scaling factor C =​ 0.1 to limit the system’s internal noise 
level in equilibrium. More specifically, this choice guarantees that the maximum deviation from the median 
number of smokers in equilibrium that is induced by the stochastic dynamics of the model is smaller than 5% of 
the population size N. (iii) The system is then further integrated under continuous application of the stochastic 
external policy forcing acting on the smoking dispositions γi(t).

Partial models.  Besides the fully coupled model described above, we study three additional partial models that 
focus on a subset of processes of behaviour formation (Table 1): (i) an interaction model focussing on local social 
influence by assuming a static contact network (omitting step 5), (ii) a network model not considering local social 
influence, but inducing behavioural change only whenever the exogenously modified smoking disposition γi(t) 
of an individual i crosses a threshold of 0.5 (modifying step 3), (iii) a mean-field model, where the agents react to 
the mean-field effect of the average smoking prevalence S(t)/N instead of their local neighbourhood in the social 
influence process (modifying step 3). S(t) is the number of smokers in time step t.

Network metrics.  Eigenvector centrality.  The eigenvector centrality ci(t) of agent i (also referred to simply 
as centrality above) is a non-local centrality measure implicitly defined to be proportional to the sum of i’s contact 
neighbours’ eigenvector centralities71. An agent has a high centrality if it is connected to many high centrality 
neighbours in the contact network that also have many high centrality neighbours. This implies that large values 
of eigenvector centrality ci(t) are observed in high density cliques or substructures embedded within the contact 
network. ci(t) is given by the i-th component of the leading eigenvector (associated to the largest eigenvalue) of 
the contact network’s adjacency matrix AC(t) at time t and is computed by applying the evcent method from the 
igraph package72.

Conditional probability of smoking.  The conditional probability that a randomly drawn agent i (ego) smokes 
given that another agent j (alter) randomly drawn from a neighbourhood shell at social distance =d t d( )ij

C  
smokes is defined as

S N
=

∑ ∑
.

∈ ∈
P d t

s t

S t N
( ; )

( )

( )/ (8)
S t i t N t j t j

1
( ) ( )

1
( ) ( )

i d i d, ,

Here, t( )  denotes the set of smokers at a given time-step and =S t t( ) ( ) . Similarly, t( )i d,  is the set of agents 
at a social distance d (measured by distance on shortest paths) from agent i in the contact network and 

=N t t( ) ( )i d i d, ,  is the total number of agents in this set. In our study, P(d; t) is employed as a measure of the 
mean effect of social distance in the contact network on smoking behaviour17.
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The Paris Agreement relies on nationally determined con-
tributions to reach its targets and asks countries to increase 
ambitions over time, leaving open the details of this process. 
Although overcoming countries’ myopic ‘free-riding’ incen-
tives requires cooperation, the global public good character 
of mitigation makes forming coalitions difficult. To cooper-
ate, countries may link their carbon markets1, but is this 
option beneficial2? Some countries might not participate, 
not agree to lower caps, or not comply to agreements. While 
non-compliance might be deterred3, countries can hope that 
if they don’t participate, others might still form a coalition. 
When considering only one coalition whose members can 
leave freely, the literature following the publication of refs 4,5 
finds meagre prospects for effective collaboration6. Countries 
also face incentives to increase emissions when linking their 
markets without a cap agreement7,8. Here, we analyse the 
dynamics of market linkage using a game-theoretic model of 
far-sighted coalition formation. In contrast to non-dynamic 
models and dynamic models without far-sightedness9,10, in our 
model an efficient global coalition always forms eventually if 
players are sufficiently far-sighted or caps are coordinated 
immediately when markets are linked.

Our study extends the climate coalition literature by analysing a 
dynamic process with multiple coalitions, far-sighted players antici-
pating further steps, and uncertainty about which transitions will 
happen11–13 (in contrast to cost and benefit uncertainty). We adapt 
the dynamic far-sighted coalition formation model of ref. 13 to the 
linking of carbon markets with endogenous decisions whether to 
coordinate caps. Unlike refs14–17 which focus on stable end results, 
our model allows insights about the process. We assume these 
dynamic possibilities:

	1.	 Individual countries or regions establish carbon markets to 
cost-efficiently achieve individual mitigation goals.

	2.	 Market linkage: some markets get linked to reduce costs by 
equalizing marginal abatement costs, leading to adjustments 
in members’ emissions caps (for example, refs 18,19).

	3.	 Cap coordination: members of linked markets may agree 
to coordinate the amounts of permits each member issues, 
internalizing the effect of their emissions on each other, thus 
reducing their total cap20,21. This coordination may or may not 
already be part of the linkage agreement. Any agreement may 
be terminated at any time by any member.

This may eventually lead to a (near-)global emissions trading 
scheme with coordinated caps and substantial mitigation levels. 
Although first steps along this line have been taken already22, it is 
unclear which markets will be linked, which caps coordinated, in 

which order, and whether this will lead to a global market with an 
efficient cap. We present scenarios of how the dynamic formation of 
linked carbon markets with coordinated caps might evolve.

In our model, a set of players can form and later terminate differ-
ent markets and cap-coordinating coalitions over time (rectangular 
nodes in Fig. 1). Each constellation (for example, the constellation 
[AB],C, where players A and B are in an immediately coordinated 
market without player C) is a possible state x of the process and 
would result in certain static payoffs πi(x) if it would prevail (for 
example, Fig. 1c, middle column).

We use different settings for these static payoffs, at first a simple 
illustrative cost-benefit structure with linear benefits and marginal 
mitigation costs, then later a version of the coalitional payoffs from ref.7  
based on cost-benefit estimates from refs23,24, assuming that surplus-
ses from forming a coalition are shared according to the asymmetric 
Nash bargaining solution25, that is, in proportion to some distribu-
tion of bargaining power, see ‘Derivation of static payoffs’ in the 
Methods section.

The possible transitions between states x,y,…​ (arrows in Fig. 1) 
represent the formation of new markets or coalitions (for example, 
adding an overarching three-player coalition to [AB], resulting in a 
transition from [AB],C to [[AB]C], Fig. 1b), or the termination of 
existing ones by some or all members (for example, the transition 
from [AB],C to the non-cooperative state A,B,C in Fig. 1e). Players 
hold beliefs about the process that are represented as subjective 
transition probabilities (shown as percentages) px → y.

Given any assumed transition probabilities, a player i evalu-
ates each state x by the discounted long-term payoffs ℓ x( )i  she can 
expect when starting in that state and then progressing according to 
these probabilities (Fig. 1c, right column). Our main parameter is 
the level of far-sightedness δ used in evaluations, representing the 
combined effects of time preference, trust that the process does not 
break down, and duration between steps. Mathematically,

∑δ π δℓ = − + ℓ .→x x p y( ) (1 ) ( ) ( ) (1)i i
y

x y i

At the same time, given any such evaluations, certain transitions 
appear unprofitable since they decrease the evaluation of some  
relevant player (for example, the transition A,B,C →​ [AC],B in  
Fig. 1b,c is unprofitable for player C in view of her beliefs about 
the further steps, although temporarily her payoffs would increase).  
A profitable transition is dominated if some of its relevant players 
can initiate another transition that they all prefer. In each step, a 
player is drawn at random with probabilities proportional to bar-
gaining power. She proposes her favourite profitable and undomi-
nated transition (marked by arrow labels), and all relevant players 
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accept this since they profit from it and cannot initiate a better tran-
sition. Note that she may propose a coalition that excludes herself 
(for example, because of fairness and responsibility). If an undomi-
nated profitable transition is no player’s favourite, it gets zero prob-
ability (dotted arrows). This process of rationally proposing and 
accepting transitions generates a set of objective transition prob-
abilities, which are thus a function of the given evaluations,

= ℓ→p f x{ } ({ ( )}), (2)x y i

and which can then be compared to the subjective probabilities the 
players started with.

If objective and subjective probabilities coincide, they describe 
an equilibrium process since they form a ‘consistent’ set of com-
mon beliefs that prove to be correct if all players act rationally with 
respect to these beliefs. In other words, an equilibrium is given if 
the two (typically large) systems of equations (1), (2) between all the 
quantities px → y and ℓ x( )i  are fulfilled. We identify such equilibrium 
processes numerically.

Consider the illustrative example of Fig. 1, where three  
symmetric players can form coalitions with static payoffs based 
on ref. 26. Player i’s benefits and costs from mitigating qi units of 
greenhouse gas (GHG) emissions are ∑ qj j

 and ∕q 2i
2 , respectively. 

For simplicity, let us assume for now that when forming a market 
the players must immediately agree on caps. For low to medium 
far-sightedness (δ <​ 0.45) there is only one equilibrium process, 
where each player proposes that the other two form a coalition 
first before she joins (Fig. 1a). For 0.45 <​ δ <​ 0.67, there are three 
more alternative equilibrium processes in which all players believe 
that one of them (for example, C in Fig. 1b,c) would not join a 
bilateral coalition, resulting in a 2/3 probability of forming the 
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Fig. 1 | Illustration of the model in a fictitious situation with three symmetric players A, B, and C, linear mitigation benefits, and quadratic mitigation 
costs. All eight possible coalition states are shown. a, Unique equilibrium process for low far-sightedness δ = 0.3; arrow labels state transition probabilities 
in percent and which players favour this transition. b, One of three alternative equilibrium processes for medium far-sightedness δ = 0.5. c, Static payoffs 
(in arbitrary units) and evaluations of player C in process b, based on linear benefits and marginal costs (see text). d, Unique result for high far-sightedness 
δ = 0.7. e. Very high far-sightedness δ = 0.9. f, Effect of far-sightedness on mean number of steps to reach a grand coalition (large dots) and on total payoff 
uncertainty (small dots, arbitrary units, see Methods), one dot for each existing equilibrium process, with dots’ opacity indicating how often this process 
was found by our algorithm (see Supplementary Section 3.6 for details). g, Example where two asymmetric players can get stuck when immediate cap 
coordination is unavailable (δ = 0.5, see Supplementary Section 3.2 for details).

C,E,F,I,J,U

[CEFIJU]

[CFIJU],E

35 CI

a

b

20 E

15 J

10 F

20 U

15 l

75 CEJU

10 F

[CEFIU],J

[CEIJU],F

[CEFIJ],U

[[CFIJU]E]

[[CEFIU]J]

[[CEIJU]F]

[[CEFIJ]U]

C,E,F,I,J,U

[CEFJU],I

[CEFIJU]

[CEIJU],F

[[CEFJU]I]

[[CEIJU]F]

Fig. 2 | Typical model results for the six major emitters. a, Low to moderate 
far-sightedness (here δ = 0.5). A fully coordinated global carbon market 
results after one step (with 35% probability, if the permit sellers C(hina) and 
I(ndia) get their way) or two steps (with 65% probability, if E(urope), F(ormer 
Soviet Union), J(apan), or U(SA) manage to stay out of the market at first). 
Diamond-shaped nodes are stable states with an optimal global cap, differing 
only in the burden- or surplus-sharing between members. See Table 1  
for payoffs. b, Highly far-sighted players (here δ = 0.9).
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grand coalition right away. For 0.53 <​ δ <​ 0.75, there is another 
equilibrium process (Fig. 1d) where no player can hope to stand 
back when starting with no collaboration in state A,B,C; in that 
equilibrium, however, players believe that if a bilateral coalition 
already exists for whatever reason (as in [AB],C), it would not be 
terminated but another overarching coalition would be formed 
(for example, [[AB]C]). Finally, for δ > 0.75, this belief would 
become inconsistent with the evaluations since the two players in 
the bilateral coalition would become far-sighted enough to pre-
fer terminating their coalition, anticipating the eventually higher 
payoffs in [ABC] (Fig. 1e). While for each given type of equilib-
rium, increasing far-sightedness increases the uncertainty about 
the resulting path, it overall reduces this uncertainty due to the 

change in which equilibria exist, and it makes it more likely that a 
grand coalition forms in just one step (Fig. 1f).

Also consider shortly the case where two players A,B cannot  
form a coordinated market [AB] in one step but need to first 
form an uncoordinated market, denoted A-B, and then agree on 
caps afterwards, denoted AB. Then, if δ is not large enough and  
vulnerabilities and cost efficiencies are asymmetric but consider-
ably positively correlated, the first move may not be profitable and 
the unique equilibrium process may look like in Fig. 1g, remain-
ing in the uncooperative state A,B. (see Supplementary Section 3.2  
for an analysis).

For a more realistic picture, we identified equilibrium processes 
for a setting in which the static payoffs for the six major GHG  
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Fig. 3 | Alternative scenario to Fig. 2 with typical complications occurring if players are highly far-sighted (δ = 0.9) and agreements are irreversible. In 
view of the expected later moves, F and I now prefer to establish a global market C-E-F-I-J-U that only later coordinates its caps and in which all members 
prefer to join cap coordination late. In that branch, only the path with the highest probability is shown completely here, ending in a fully coordinated market 
(CU)EFIJ in which C and U have formed a cap coordinating coalition first before agreeing with the others to coordinate further; other paths are pruned for 
the figure (marked by ‘…​’). See Supplementary Table 1 for payoffs and evaluations and Supplementary Section 3.3 for a discussion.
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emitters C(hina), E(urope), F(ormer Soviet Union), I(ndia), J(apan), 
and U(SA) are derived from the literature (refs 7,23,24, see Methods), 
resulting in scenarios such as those depicted in Figs. 2,3 and 4.  
Table 1 compares the (myopic) static payoffs and (far-sighted)  
evaluations in some states of Fig. 2a. There, if the US were myopic,  
they would not consider forming an uncoordinated market with  
Japan resulting in a move from the initial state labelled (a) to (b) 
in Table 1, since if this state were to prevail, their payoff would  
be reduced (middle column U). Farsightedly, however, they antici-
pate further steps resulting in larger markets and an eventual 
increase in payoff (last column U), making the move (a) →​ (b) prof-
itable after all.

Despite the strong dependency of actual transition probabilities 
on the model parameters, a systematic analysis of the above three-
player case and the more realistic six-player setting reveals the fol-
lowing findings (see Supplementary Section 3 for details):

•	 If it is possible to immediately coordinate caps when linking 
markets, a global market with a first-best cap emerges, but prob-
ably not in one move (Fig. 2), and with uncertainty about who 
will cooperate first.

•	 Counterintuitively, when agreements are reversible (can be 
terminated), the process takes fewer steps and is less uncer-
tain since agreements which would later be terminated are not 
signed in the first place (compare Figs. 2b and 3), so that no 
agreement actually signed will be terminated later. Higher far-
sightedness tends to reduce uncertainty and the mean number 
of steps further (Figs. 1,2).

•	 When agreements are irreversible, a large market might be 
established at first with uncoordinated caps, which then eventu-
ally get fully coordinated in several further moves (for example, 
the “C-E-F-I-J-U” branch in Fig. 3). Higher far-sightedness here 
tends to increase uncertainty and the mean number of steps 
(Fig. 3) since it makes more and smaller transitions profitable.

•	 If immediate cap coordination is not an option when linking 
markets, and players are not sufficiently far-sighted, a global mar-
ket may not emerge (as in Fig. 1g) and they might get stuck with 
several, only internally coordinated carbon markets (Fig. 4).

While these findings appear robust under simple variations 
such as further restricting the number of players and varying the 
cost, vulnerability, and bargaining power coefficients, the follow-
ing effects may depend on the assumed linearity of benefits. First, 
free-riding by not entering a market: even when joining a market 
eventually, prospective permit buyers tend to have an incentive to 
free-ride by joining late, while prospective sellers tend to profit from 
joining early (for example, compare favourite moves and payoffs of 
C, seller, and U, buyer, in Fig. 2a and Table 1). A permit seller might 
or might not prefer if its main competitor joins the market only later 
(for example, compare the evaluations for C in state [CEFJU],I in 
Table 1 and Supplementary Section 2, and C’s favourite moves in 
states C,E,F,I,J,U and [CFJU],E,I of Fig. 3). Second, free-riding by 
not coordinating caps: in a not yet fully coordinated market, both 
permit buyers and sellers usually have an incentive to free-ride by 
entering a coalition late (for example, in the C-E-F-I-J-U branch in 
Fig. 3). Overall, the analysis in Supplementary Section 3.6 shows 

C,E,F,I,J,U

C-E-F-J-U,I
80 EFIJU

80 EFIJU

80 EFIJU

80 EFIJU 80 CFIJU
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80 EFIJU

20 C

20 C

35 Cl

20 E

20 U

15 J

10 F

20 C

20 C

20 E

20 E

20 C

C-E-I-U,F,J

C-E-F-I-J-U

C-J-U,E,F,I

C-E-F-I-J,U

C-EFJU,I

CEFJU,I

CEIU,F,J

C-EIU,F,J

CEFIJU

C-EFIJU

CJU,E,F,I

C-JU,E,F,I

CEFIJ,U

C-EFIJ,U

CJU,E-I,F

CJU,E-F-I

C(JU),E,F,I

CEIU,F-J

C(EIU),F,J

C(JU),E-F-I

C(JU),E-I,F

CJU,EI,F

CJU,EFI

C(JU),EFI

C(JU),EI,F

C(EFIJ),U

C(EFJU),I

C(EIU),F-J

CEIU,FJ

C(EIU),FJ

C(EFIJU)

Fig. 4 | Alternative scenario to Fig. 2 in a world where caps cannot immediately be coordinated when markets are linked but only later in separate 
moves. Medium far-sightedness of δ = 0.5, unilaterally terminable agreements. A fully coordinated global carbon market is only reached with 35% 
probability, otherwise the process gets stuck with two or more markets (egg-shaped nodes) since players are not far-sighted enough to accept the 
temporary costs of delayed cap coordination. (See Supplementary Figs. 3, 4 for irreversible agreements and myopic players.).
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that the combined effects of differences in vulnerability, cost effi-
ciency, and bargaining power are highly nonlinear and can be  
very complicated.

Our scenarios show that an explicit modeling of the stepwise 
process of forming, merging and potentially terminating multiple 
coalitions of various size changes the often pessimistic picture of 
previous literature on coalition formation. Most importantly, while 
a country may have an incentive to delay cooperation to temporarily  
profit from others’ efforts of cooperation, and thus improve their 
bargaining position for later steps, this ‘free-riding’ will not remove 
the incentive to later join an overarching coalition as long as further 
cooperation generates some surplus that the existing coalition can 
share with this country. In other words, the dynamic analysis shows 
that free-riding does not prevent the eventual formation of a grand 
coalition, but only changes the surplus (or burden) sharing within 
the grand coalition to the advantage of the free-riding country. Our 
model results thus give an alternative explanation of the currently 
observed low level of cooperation in international climate policy: 
rather than planning to free-ride permanently, some countries may 
at present try to stand back simply to improve their bargaining posi-
tion for the later formation of coalitions. However, restrictions such 
as an impossibility of immediate cap coordination could change our 
positive results.

Since the presented probabilities are based on a static cost−​bene-
fit model, future studies should use more accurate, path-dependent 
payoffs, effects of leakage and trade feedbacks, and policy instru-
ments such as tariffs. More importantly, the question of how players 
may arrive at common levels of far-sightedness, common assess-
ments of mitigation costs and benefits and bargaining power, and 
common beliefs about the process should be studied. Nevertheless, 
our results seem to justify more hope that a first-best global cap-
and-trade system evolves under the Paris Agreement bottom-up, 
with ambitions increasing over time even if there are at present only 
few coordinated carbon markets.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41558-018-0079-z.
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Methods
Model overview. As players we consider either two or three hypothetical countries 
or the six major GHG emitters C(hina), E(urope), F(ormer Soviet Union), I(ndia), 
J(apan), U(SA).

In each period, the market structure code (MSC) specifies which markets exists 
(separated by commas), whether there was immediate cap coordination upon 
market formation (indicated by square brackets), which top-level cap-coordinating 
coalitions exist in each market (separated by dashes), and any subcoalitions of 
these (in round brackets). For example, the code [CU],(EF)J-I has two markets:  
a joint one in C +​ U with immediate cap coordination, and another in which I sets 
its caps independently but E +​ F coordinated their caps before coordinating with J.

Each change to the MSC is called a transition and can be brought about by  
a move of some set of initiating players which are considered the ‘relevant’ players 
for this transition. Players propose, amend, and accept or reject moves based 
on payoff expectations (called evaluations) and several forms of individual and 
collective rationality similar to ref. 13, with probabilities depending on a given 
distribution of bargaining power. Payoff expectations are based on a static payoff 
function stating each player’s payoff in each MSC, on players’ beliefs about 
further changes in MSC, and on their degree of far-sightedness (combining time 
preferences and trust in the process).

Feasible moves include the linking of markets with or without immediate cap 
coordination, forming and merging of cap-coordinating coalitions, and optionally 
unanimous or unilateral termination of links or mergers (‘reversibility’).

Assumed forms of rationality are: accepting only profitable move proposals, 
‘amending’ (that is, changing) move proposals that are dominated by a more 
profitable move of some subgroup13, proposing only favourite undominated 
profitable moves, and collectively forming correct beliefs about the process.

The model output is a process diagram specifying a probability for each feasible 
transition between MSCs. Because of rationality, these probabilities depend on 
payoff expectations by player and MSC, as well as an assumed bargaining power 
distribution. Since players form correct beliefs, payoff expectations must equal 
discounted average long-term payoffs (‘evaluations’), which in turn depend on 
(the believed) move probabilities. The resulting system of nonlinear equations 
between probabilities and expected payoffs is solved numerically, resulting in 
an equilibrium process that represents a consistent combination of transition 
probabilities based on rationality and correct beliefs about expected payoffs. In 
other words, an equilibrium process is a set of commonly believed (‘subjective’) 
transition probabilities on the basis of which all players’ rational behaviour 
would bring about these very same probabilities in reality (that is, as ‘objective’ 
probabilities). In short, an equilibrium process is a set of common beliefs that is 
consistent with the common assumption of rational behaviour. One can prove that 
for all parameter settings, there is at least one equilibrium process, and sometimes 
there are many. Exactly as for proving the existence of many other game-theoretic 
equilibria (for example, Nash equilibrium), that proof consists in applying 
Kakutani’s fixed point theorem to a suitable set-valued function (here the one  
that relates subjective to objective transition probabilities, see Supplementary 
Section 1.1.2).

See the following section ‘General game structure’ and Supplementary  
Section 1.1 for details.

General game structure. Players and notation for carbon market structure. We 
assume a set P of N >​ 0 players. In each period, each player i (that is, a central 
authority in the respective country or world region; for example, the government) 
first chooses their domestic emissions cap ci individually, issuing that many permits 
to their domestic industry or population. These can then be traded freely in a 
domestic or international carbon market such as the European Union’s Emissions 
Trading System (EU ETS). In the terminology of ref. 21, this means that we consider 
a ‘bottom-up’ cap-and-trade architecture in which companies or households are 
trading permits in a sufficiently ‘integrated’ international market at a market-wide 
equalized price, while governments only issue permits but do not trade them 
directly, instead of a ‘top-down’ architecture in which governments trade permits 
directly (as in the Kyoto Protocol). For simplicity, if several carbon markets have 
been linked, we treat them as one large market and do not analyse the trade in 
its parts individually while they are linked. This corresponds two ‘two-way direct 
links’ in the terminology of ref. 20, also known as ‘formally linked’ markets in the 
terminology of ref. 21.

We represent the market structure by a code in which the markets are separated 
by commas and the members by dashes. For example, the code C-U,E-F-J,I 
represents three markets, a domestic one consisting of player I, one international 
with members E, F and J, and one international with members C and U.  
After trading, player i’s actual emissions ei(t) equal its post-trade amount  
of permits, so that

∑ ∑= =
∈ ∈

e c E: (3)
i P

i
i P

i

and she gets a pre-transfer payoff of f(ej : j∈​P) depending on everyone’s actual 
emissions via some function f to be specified later. A player’s static payoffs πi(x) 
are then the sum of f(ej : j∈​P) and any transfers by which the coalitions that i is a 

member of implement their surplus sharing (see the section: Derivation of  
static payoffs).

Notation for cap-coordinating coalitions. Within each market, players might be 
organized in a tree-like hierarchy of coalitions as in ref. 27. A coalition in our sense 
is a subset K of the members of a market M that agree to coordinate their cap 
choices in some way. Such an agreement might have been signed by individual 
players or by sub-coalitions that have formed earlier. We assume that cap choices 
are coordinated in such a way that the surplus (the difference between the post- 
and pre-agreement coalitional payoffs) is distributed in some fixed proportions 
given by the bargaining power of the signatories (see below). We treat individual 
players as one-member ‘coalitions’. There is no explicit cap coordination between 
the top-level coalitions in a market.

We represent the coalition hierarchy in a market by a code in which the top-
level coalitions are separated by dashes and the lower-level coalitions are identified 
by parentheses. For example, the code EF-J represents a market with members 
E, F and J, in which E and F have formed a coalition by agreeing to coordinate 
their cap choices, while J chooses its caps individually. If the coalition EF in a later 
period signs a further agreement with J, the code becomes (EF)J. If all three had 
agreed immediately without a preceding bilateral agreement, we would write EFJ 
instead. Note that because of the assumed proportional surplus-sharing rule (see 
the section: Derivation of static payoffs), while the total cap choice of E, F and J will 
be the same in these two situations, they will share this total cap in different ways 
in the two situations, since the pre-agreement payoffs are those in EF-J in the first 
situation but those in E-F-J in the second. Hence payoffs depend on both top-level 
and lower-level coalition structure, and it is important to distinguish the cases  
(EF)J and EFJ.

Market linkage and notation for states and moves. Markets can be linked in two 
ways: Either several markets such as C-U and EF-J are linked without immediate 
coordination of caps, thus becoming a new larger market C-EF-J-U, or several 
markets that have already reached full internal cap coordination, such as CU and 
(EF)J, are linked with immediate overarching cap coordination, which is then 
indicated by square brackets: [(CU)((EF)J)]. Once a market is formed by the second 
type of agreement, that is, with immediate cap coordination, it is assumed that it 
can no longer be linked with further markets by the first kind of agreement, that 
is, without immediate further cap coordination. In other words, the markets [(CU)
((EF)J)] and I can only be linked to form [[(CU)((EF)J)]I], while [(CU)((EF)J)]-I 
is impossible. Of course, the markets CU and (EF)J could also develop into CU-
(EF)J, then into (CU)((EF)J) in a second step, and then into (CU)((EF)J)-I. But 
although (CU)((EF)J) and [(CU)((EF)J)] will get the same joint payoff, their cap 
distributions will differ, again because of the surplus-sharing rule which compares 
the payoff in (CU)((EF)J) with that in the one market CU-(EF)J but compares the 
payoff in [(CU)((EF)J)] with that in the two markets CU,(EF)J instead to  
determine surpluses.

Combining the market structure and coalition hierarchy codes to state codes 
and indicating moves between states with arrows labelled by the subset of players 
who are required for initiating that move, the above fictitious example process 
would be denoted

− − −
− −
−

⎯ →⎯⎯

⎯ →⎯⎯⎯⎯
⎯ →⎯⎯⎯
⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯

⎯ →⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯

C U,E F J,I
C U,EF J,I
C U,(EF)J,I
CU,(EF)J,I
[(CU)((EF)J)],I
[[(CU)((EF)J)]I]

EF
EFJ
CU
CEFJU
CEFIJU

The number of theoretically possible states grows faster than exponentially 
in the number of players. For five or six players, the model has already 2729 or 
41,106 states, respectively; hence we restrict our analysis to six players at this time. 
Fortunately, our results verify the intuition that only a very small number of these 
possible states occur with positive probability. The actual process might then, for 
example, look as depicted in Figs. 2,3 and 4 where the arrows are labelled with 
transition probabilities and those players that favour the move.

Individual and collective rationality, far-sightedness. In order to decide which moves to 
consider, we assume that players apply certain principles of individual and collective 
rationality, trying to influence the market structure and coalition hierarchy to 
optimize their average, properly discounted long-term payoffs, which we call their 
evaluations, denoted ℓi. We assume that they do so in a far-sighted way, anticipating 
the further development of the structure. We model the level of this far-sightedness 
via a number δ ∈​ (0,1) used in the discounting of prospective future states’ static 
payoffs πi. This far-sightedness parameter δ can be interpreted as a combined measure 
of time discounting, period length, and trust in the process (see below for details).

In contrast to some other game-theoretic models of coalition formation, we do 
not assume that the changes to the market structure and coalition hierarchy follow 
a specific bargaining protocol precisely prescribing who can propose which move 
at what time to whom, since in the climate context negotiations are probably not 
following such restrictive rules. Instead, we assume that in each period, the set of 
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initiators of any feasible move can consider its realization if they all agree to do so. 
If several different moves are considered in a period, however, it depends on other 
factors than only rationality principles which move will actually get realized. In 
the model this is represented by assigning probabilities to moves on the basis of all 
players’ preferences and on assumptions about their bargaining power.

We consider different levels of rationality. In the weakest case, any move 
might be considered that is individually profitable for each of its initiators, using 
one of several concepts of profitability to be discussed below. On the medium 
level of rationality, only those profitable moves might be considered which are 
undominated in the sense that its initiators cannot initiate a different move which 
they all prefer (this corresponds to the approach in ref. 13). Even stronger, we 
assume that an undominated move will only be considered if it is the favourite 
undominated move of at least one player, be it an initiator of the move or not, 
based on the assumption that no international agreement will come about without 
at least one country pressing for its realization. We could have considered an even 
higher level of collective rationality in which players can find a consensus move 
which no player favours but which all players prefer to the otherwise resulting 
lottery of favourite moves, as in ref. 28. With the long-term profitability concept of 
our model, however, such consensus moves are automatically identified as the only 
profitable moves in an equilibrium process.

The remaining uncertainty about which move will actually be realized is then 
expressed as a probability distribution over the thus determined set of considered 
moves, assuming that only one of them will be realized in each period even when 
there are several moves considered by disjoint sets of initiators which could in 
principle be realized at the same time. The latter assumption is justified by the fact 
that usually a move by one set of players also affects the payoffs of other players, so 
that when a certain move is about to be made by some of the major emitters, it seems 
plausible to assume that the other players will wait with their attempt of an additional 
move until it becomes clear whether the first move will actually be realized.

Derivation of static payoffs. Assumptions. For the six-player case, we use an 
analytically derived form of the payoff function πi that results from the following 
assumptions:

•	 Abatement costs are cubic functions of actual domestic abatement.
•	 Abatement benefits are linear functions of global abatement.
•	 Emissions trading equalizes the price with all marginal abatement costs.
•	 �Before the trading, all top-level coalitions simultaneously choose their coalitional 

caps to maximize their respective joint payoffs, anticipating its effect on trading 
(that is, on traded amounts and price), leading to a global Nash equilibrium 
between all top-level coalitions of all markets.

•	 �Each coalition allocates their coalitional cap to its members so that the surplus is 
shared in some exogenously given fixed proportions.

The functional form and coefficients of the abatement cost and benefit 
functions for the six real-world emitters are taken at this point from the STACO 
model (ref. 24 version) which calibrates its benefit estimates to the vastly used DICE 
model of ref. 29 and takes its cost estimates from ref. 23, because that model presents 
a good trade-off between tractability and qualitative real-world relevance. For 
future applications, one may use newer estimates, for example, derived from ref. 30 
or from more sophisticated models such as the one in ref. 8. To keep our numbers 
comparable to those in ref. 24, we report ei in metric gigatons of carbon (GtC) per 
100 years and πi in US$ billion per 100 years.

Derivation of coalitional payoffs. Given the actual emissions ei, the STACO model 
expresses individual payoff in terms of individual abatement contributions 

= − >q e e 0i i i
0  with respect to some fixed reference (‘business as usual’) emissions 

ei
0 since this formulation makes it easier to compare the abatement game with other 

public good games. In the linearized static version of STACO that we use here, 
benefits from global abatement (avoided damages from climate change) are a linear 
function 37.4 US$ per tC ×​ σi /1000 × Q of global contributions Q = ∑​i∈P qi = E0−​E, 
and costs of abatement are a cubic function

= +g q
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of individual contributions, where the coefficients σi,ai,bi are given in 
Supplementary Table 1 using calibration I from ref. 24. Together with the emissions 
trade balance, individual payoffs of a member i of a market M in terms of caps and 
emissions are then

π σ= − − − + −E E g e e p c e( ) ( ) ( ) (5)i i i i i M i i
0 0

where pM is the market price in M.
The remaining derivation is a straightforward application of the one in ref. 7 to 

the case of several markets. We assume that each emissions market M has perfect 
competition, so that the marginal abatement costs at the post-trade abatement 
levels are equal to the market price for all market members,

′ − =g e e p( ) (6)i i i M
0

for all i ∈​ M (see Supplementary Fig. S1) for the corresponding marginal 
abatement cost curves). Since the market’s cap equals the market’s emissions,
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the price pM can be seen as a function of cM whose derivative is related to individual 
emissions via the theorem on implicit functions as
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Now we assume that each top-level coalition K in M acts as an output cartel 
that chooses its cap cK=​∑​i∈K ci to maximize its joint payoffs,
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taking the caps cK′ of all other top-level coalitions K′ ≠ K as given, where σK, eK are 
the coalitional aggregates of σi, ei. The corresponding first-order condition is
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by Eq. 6, where the last term reflects the fact that the coalition is not a ‘price-taker’ 
but is aware of its choice’s effect on the price. If there are nM top-level coalitions in 
M, their simultaneous optimization leads to a unique Nash equilibrium which can 
easily be found analytically by summing the above condition over all nM coalitions, 
giving

σ σ= − + − = −n p c e
c

p n p0 ( ) d
d

(11)M M M M M
M

M M M M

by Eq. 7. Hence the market price is simply
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actual individual emissions are
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by Eq. 6, the coalition’s cap choice is
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by Eqs. 8,10, and 13, and all coalitions’ payoffs are given by Eq. 9.
From this general payoff structure, ref. 7 derives several effects of establishing  

a global carbon market without cap coordination that translate into our  
setting as follows:

•	 A coalition K in a market M is a permit seller iff σK <​ pM (follows from Eq. 10).
•	 �When markets are linked without coordinating caps further than before, permit 

sellers might increase their caps and global emissions might actually increase 
instead of decrease.

•	 �Independently of whether such a linkage decreases or increases the market’s cap, 
it might or might not be profitable for all members.

At first glance, all this might indicate that the immediate coordination of caps 
when linking markets is the preferable option since it surely gives a positive surplus 
that can be distributed via cap redistribution to make sure that all members profit 
from it. Such myopic reasoning, however, neglects the possibility that also after a 
linkage without cap coordination, caps might later on be coordinated, and some 
coalitions might prefer such a two-step process since its first step puts them in 
a more comfortable bargaining situation for the second step. It is precisely such 
effects and the resulting conflicts that our dynamic model uncovers.
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Surplus-sharing and bargaining power. Finally, each top-level coalition K 
determines their surplus payoff Δπ π π= −K K K

0 by comparing their joint payoff πK 
with the joint payoff π π= ∑ ∈K i K i

0 0 their members i would get in the following 
reference state: remove coalition K from the coalition hierarchy, and if K is of the 
immediate-coordination form […​], also split the corresponding market into one 
market for each of the resulting top-level coalitions. For example, for K = (EJ)
U in state C-(EJ)U,FI the reference state is C-EJ-U,FI, while for K = [C(EJ)U] in 
state [C(EJ)U],FI the reference state is C,EJ,FI,U. Then coalition K allocates their 
joint cap cK in such a way that each player i∈​K gets a share of this surplus that is 
proportional to their bargaining power wi, so that

∑
π π

Δπ
= +

∈

w
w (15)i i

K i

j K j

0

A possible interpretation of this surplus-sharing rule that relates it to 
traditional solution concepts of cooperative game theory is this: each player gets its 
weighted Shapley value or, equivalently, its share as determined by the asymmetric 
Nash bargaining solution25, in the unanimity game v with v(K′​) = Δ​πK if K′ ⊇ K 
and v(K′​)=​0 otherwise, using the weights wi (compare ref. 31 which also discuss 
using population as weight). The underlying rationale is that the reference state 
is the only alternative state that could realistically be reached on short notice, by 
terminating only one top-level agreement, so that the value of each player’s outside 
option is simply its payoffs in that reference state.

For player’s bargaining power weights, we use a subjectively chosen distribution 
that aims at a simple compromise between the following possible choices (see 
Supplementary Table 1):

•	 wi=​population of i.
•	 wi=​GDP of i in US$.
•	 wi=​σi (climate “vulnerability”).
•	 wi=​1 (equal bargaining power).

•	 �An ‘egalitarian’ approach that leads to equal per-capita surplus in purchasing 
power parities (PPP):

=
×
×

w i
i

i

(population of )
(PPP in currency of )
(exchange rate from to US$)

i

Total payoff uncertainty. To assess the stochasticity of the process, we use the metric 
∑ LVar( )i i  where Li(0) is player i’s actual discounted long-term payoff when 

starting at the root node, and the variance is over the different realizations of the 
actual path towards cooperation that make Li a random variable. Like its expected 
value ℓ = LE( )i i  (Eq. 1), Li can be calculated recursively,

δ π δ= − + +L X t X t L X t( ( )) (1 ) ( ( )) ( ( 1))i i i

where the random variable X(t) is the state in period t.

Data availability. The authors declare that the data supporting the findings of 
this study are available within the article and its Supplementary Information file. 
Additional model output is available on request from the first author.
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4.3 Earth system analysis and planetary boundary interactions

This last section features publications which focus on coevo-
lutionary interactions of societal management and Earth system
dynamics within the planetary boundaries.

Due to the increasing levels of atmospheric carbon resulting from
anthropogenic fossil fuel burning and land-use change, several cli-
mate engineering methods like terrestrial carbon dioxide removal
(tCDR) have recently been discussed. In “Collateral transgression
of planetary boundaries due to climate engineering by terrestrial
carbon dioxide removal” [Heck et al., 2016] we analyzed the co-
evolutionary interaction of societal interventions via tCDR and the
natural dynamics of the Earth’s carbon cycle. Our study elaborated
the danger of transgressing certain planetary boundaries when
applying tCDR in a business-as-usual scenario.

Deforestation in the Amazon has enormous consequences for
the ecosystem and the climate. The potentials of management op-
tions such as intensifying cattle ranching to reduce deforestation
are controversial. In “Can intensification of cattle ranching reduce
deforestation in the Amazon? Insights from an agent-based social-
ecological model” [Müller-Hansen et al., 2019], we examined the
social-ecological interplay using a multi-agent adaptive network
model that links social learning and ecological processes with mar-
ket dynamics.



Earth Syst. Dynam., 7, 783–796, 2016
www.earth-syst-dynam.net/7/783/2016/
doi:10.5194/esd-7-783-2016
© Author(s) 2016. CC Attribution 3.0 License.

Collateral transgression of planetary boundaries due to
climate engineering by terrestrial carbon dioxide removal

Vera Heck1,3, Jonathan F. Donges1,2, and Wolfgang Lucht1,3,4

1Earth System Analysis, Potsdam Institute for Climate Impact Research, Telegraphenberg A62,
14473 Potsdam, Germany

2Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, 114 19 Stockholm, Sweden
3Department of Geography, Humboldt University, Unter den Linden 6, 10099 Berlin, Germany

4Integrative Research Institute on Transformations of Human-Environment Systems, Humboldt University,
Unter den Linden 6, 10099 Berlin, Germany

Correspondence to: Vera Heck (heck@pik-potsdam.de)

Received: 4 May 2016 – Published in Earth Syst. Dynam. Discuss.: 17 May 2016
Revised: 26 September 2016 – Accepted: 27 September 2016 – Published: 31 October 2016

Abstract. The planetary boundaries framework provides guidelines for defining thresholds in environmental
variables. Their transgression is likely to result in a shift in Earth system functioning away from the relatively
stable Holocene state. As the climate system is approaching critical thresholds of atmospheric carbon, several
climate engineering methods are discussed, aiming at a reduction of atmospheric carbon concentrations to control
the Earth’s energy balance. Terrestrial carbon dioxide removal (tCDR) via afforestation or bioenergy production
with carbon capture and storage are part of most climate change mitigation scenarios that limit global warming
to less than 2 ◦C.

We analyse the co-evolutionary interaction of societal interventions via tCDR and the natural dynamics of the
Earth’s carbon cycle. Applying a conceptual modelling framework, we analyse how the degree of anticipation
of the climate problem and the intensity of tCDR efforts with the aim of staying within a “safe” level of global
warming might influence the state of the Earth system with respect to other carbon-related planetary boundaries.

Within the scope of our approach, we show that societal management of atmospheric carbon via tCDR can
lead to a collateral transgression of the planetary boundary of land system change. Our analysis indicates that
the opportunities to remain in a desirable region within carbon-related planetary boundaries only exist for a
small range of anticipation levels and depend critically on the underlying emission pathway. While tCDR has
the potential to ensure the Earth system’s persistence within a carbon-safe operating space under low-emission
pathways, it is unlikely to succeed in a business-as-usual scenario.

1 Introduction

Rockström et al. (2009) introduced the concept of a safe
operating space (SOS) for humanity, delineated by nine
global planetary boundaries, some of which take into ac-
count the existence of tipping points or nonlinear thresh-
olds in the Earth system (Lenton et al., 2008; Schellnhuber,
2009; Kriegler et al., 2009) and may frame sustainable de-
velopment. Particularly, the state of the Earth system with
respect to climate change has received strong political atten-

tion as atmospheric carbon concentrations have already en-
tered the uncertainty zone of the planetary boundary of cli-
mate change, set at an atmospheric CO2 concentration of 350
to 450 ppmv (Steffen et al., 2015).

The Paris climate agreement (UNFCCC, 2015) aims at
limiting global temperature increase to well below 2 ◦C
above pre-industrial levels, while greenhouse gas emissions
are still currently growing. Fuss et al. (2014) have high-
lighted that more than 85 % of IPCC scenarios that are
consistent with the 2 ◦C goal require net negative emis-
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sions before 2100. Particularly, terrestrial carbon dioxide re-
moval (tCDR) via afforestation or large-scale cultivation of
biomass plantations for the purpose of bioenergy produc-
tion has been included in recent IPCC scenarios (van Vu-
uren et al., 2011; Kirtman et al., 2013). Furthermore, tCDR
has been proposed as a climate engineering (CE) method that
could be applied in case global efforts in mitigating anthro-
pogenic greenhouse gas emissions fail to prevent dangerous
climate change (Caldeira and Keith, 2010).

In the context of the SOS framework, tCDR via large-
scale biomass plantations could extract carbon from the at-
mosphere via the natural process of photosynthesis (Shep-
herd et al., 2009). If the carbon accumulated in biomass is
harvested and stored in deep reservoirs or used for bioenergy
production in combination with carbon capture and storage
(Caldeira et al., 2013), further transgression of the climate
change boundary and initial transgression of the ocean acid-
ification boundary could be prevented. On the other hand,
tCDR is likely to have unintended impacts on other Earth
system components besides atmospheric carbon concentra-
tions that is mediated by the global cycles of carbon, water
and other biogeochemical compounds (Vaughan and Lenton,
2011). For example, large-scale biomass plantations would
require substantial amounts of fertiliser, irrigation water and
land area, driving the Earth system closer to the planetary
boundaries for biogeochemical flows, freshwater use and
land system change, respectively (Heck et al., 2016). The
tCDR in the form of afforestation would not be accompanied
by most of these negative trade-offs. However, afforestation
only has a limited potential to increase the terrestrial car-
bon storage while all emitted fossil carbon remains a part
of the active carbon cycle. Thus, the potentials of tCDR via
afforestation are small and afforestation is not included as a
tCDR method in this study.

Social and political actions are important drivers of tCDR.
The willingness to engage in CE or mitigation is based on
monitoring of the climate system and can be expected to in-
crease as the climate system approaches the normatively as-
signed climate change boundary. A holistic assessment and
systemic understanding of CE therefore requires an analysis
of the social and ecological co-evolutionary system.

A dynamic integration of complex interactions between
the social and ecological components of the Earth system to
simulate in detail the co-evolution of societies and the en-
vironment is currently unfeasible due to fundamental con-
ceptual problems and high computational demands on both
modelling sides (van Vuuren et al., 2012, 2016). An emerg-
ing field of low-complexity models explores new pathways
for understanding social–ecological Earth system dynamics
(e.g. Brander and Taylor, 1998; Kellie-Smith and Cox, 2011;
Jarvis et al., 2012; Anderies et al., 2013; Motesharrei et al.,
2014). For example, first simulation approaches have been
reported using such conceptual models to simulate the inter-
action between human climate monitoring and societal action
in the form of transitions to renewable energy (Jarvis et al.,

2012) or climate engineering (MacMartin et al., 2013). While
not aiming for realism in their quantitative evaluations, the
low complexity of such conceptual models allows to under-
stand the structure and effects of dominating feedbacks and
their leading interactions, which are otherwise often hidden
in the complexity of state-of-the-art full-complexity Earth
system models.

In this paper, we provide a conceptual but systematic anal-
ysis of the nonlinear system response to using tCDR for
steering the Earth system within the SOS defined by plane-
tary boundaries as quantified by Rockström et al. (2009) and
Steffen et al. (2015). Specifically, we analyse how the trade-
offs between tCDR and other planetary boundaries depend
on the achievable rate and threshold of tCDR implemen-
tation; and whether particular combinations of climate and
management parameterisations can safeguard a persistence
within the SOS. As a starting point, we focus on a subset
of the nine proposed planetary boundaries that are most im-
portant in the context of tCDR. These are the carbon-related
boundaries on climate change, ocean acidification and land
system change.

We utilise a conceptual model of the carbon cycle and ex-
pand it to explore feedbacks within and between societal and
ecological spheres, while being sufficiently simple to permit
an analysis of its state and parameter spaces in the form of
constrained stability analysis similar to van Kan et al. (2016).
We do not aim to provide a quantitative assessment because
in this exploratory study, we choose to use a computation-
ally efficient conceptual model to shed light onto the qual-
itative structure of co-evolutionary dynamics. The approach
proposed here can be transferred to models of higher com-
plexity to the extent that this is computationally feasible.

This paper is structured as follows: following the intro-
duction (Sect. 1) we present a co-evolutionary model of soci-
etal monitoring and tCDR intervention in the Earth’s carbon
cycle and related parameter calibration procedures (Sect. 2).
Subsequently, we present and discuss our results (Sect. 3)
and finish with conclusions (Sect. 4).

2 Methods

In social–ecological systems modelling, societal influences
and ecological responses are recognised as equally impor-
tant (Berkes et al., 2000). Therefore, it can be considered es-
sential that representations of social and ecological systems
are of the same order of complexity. Increasing complexity
of only one model component would not increase the accu-
racy of information generated by the full coupled model, but
would greatly increase computational demand. In view of our
objective, we require a sufficiently simple model that concep-
tually captures the most important processes of global car-
bon dynamics with respect to planetary boundaries, as well
as a stylised societal management feedback loop consisting
of tCDR interventions and monitoring of the climate system.
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2.1 Co-evolutionary model of societal monitoring and
tCDR intervention in the carbon cycle

The basis of our co-evolutionary model is the conceptual car-
bon cycle model by Anderies et al. (2013). The model covers
the most basic interactions between terrestrial, atmospheric
and marine carbon pools, and was developed specifically
to enable a bifurcation analysis of carbon-related planetary
boundaries and their interactions. We modified atmosphere–
land interactions for a better representation of empirically
observed Earth system carbon dynamics and extended the
model by a stylised societal management feedback loop
mimicking the current focus of international policy processes
on climate change. We calibrated the model in order to rep-
resent global carbon cycle dynamics consistent with obser-
vational data and simulations from detailed high-resolution
Earth system models (Sect. 2.2). In the following, we provide
an overview of the fundamental model equations. A detailed
motivation of the model design and underlying assumptions
are given in Anderies et al. (2013).

The adapted model consists of five interacting carbon
pools: land Ct (t), atmosphere Ca(t), upper-ocean Cm (t), ge-
ological fossil reservoirsCf(t) and a potential CE carbon sink
CCE(t) (Fig. 1). All model equations are summarised in Ta-
ble 1. Note that only the upper-ocean carbon pool is included
because the movement of carbon into the deep ocean occurs
on longer timescales relative to those of interest, as discussed
by Anderies et al. (2013). The land carbon pool combines
soil and vegetation carbon pools, implying a simple propor-
tional partitioning of aboveground and belowground carbon
pools (Anderies et al., 2013). These simplifications have been
adopted because they reduce the number of state variables
and we were able to qualitatively reproduce the dynamics of
observed carbon pool evolution with the adapted model.

The co-evolutionary dynamics of the system is determined
by Eqs. (1)–(5). Conservation of mass (Eq. 1) dictates that
the active carbon in the system, i.e. the sum of terrestrial, at-
mospheric and maritime carbon is equal to the active carbon
at pre-industrial times (C0) plus carbon released from fossil
reservoirs (Cr(t)) minus carbon extracted via tCDR (CCE(t))
to permanent stores. Fossil carbon release (Eq. 2) is approxi-
mated by a logistic function parameterised by the maximum
emitted carbon cmax and rate of carbon release ri .

The social management feedback loop is motivated by
proposals of CE as a management intervention in response
to intolerable levels of global warming. It comprises atmo-
spheric carbon monitoring and tCDR action conditional on
the proximity to a critical threshold of atmospheric carbon
content (Eq. 3). CE action is implemented via a tCDR car-
bon offtake from terrestrial carbon (HCE(t)) and storage in a
permanent (geological) sink CCE. Carbon offtake for tCDR
(Eq. 11) is defined analogous to human offtake for agricul-
ture or land-use change (Eq. 13), however, with a dynamic
offtake rate αCE(Ca(t)) (Eq. 12).

Figure 1. Structure of the co-evolutionary model of societal mon-
itoring and terrestrial carbon dioxide removal (tCDR) intervention
in the carbon cycle including simulated components of the carbon
cycle as well as a societal management feedback loop and their in-
teractions. Carbon fluxes are indicated as solid lines and coloured
red if influenced by society. Carbon values in the boxes indicate es-
timates of pre-industrial carbon pools in the year 1750 AD (Batjes,
1996; Ciais et al., 2013). CE sink is the climate engineering sink.

The tCDR characteristics are governed by three param-
eters: (i) implementation threshold (C̃a) in terms of atmo-
spheric carbon content, representing societal foresighted-
ness, (ii) maximally achievable rate of tCDR (αmax), a mea-
sure of societies’ efforts, as well as biogeochemical con-
straints and (iii) the slope of tCDR implementation (sCE),
parameterising social and economic implementation capac-
ities. Figure 2 depicts an exemplary tCDR trajectory for con-
stant terrestrial carbon in Eq. (11) for two values of sCE.
The implementation time can be computed from the slope
of tCDR implementation by using current increase rates of
atmospheric carbon as a conversion factor. With current in-
crease rates of approximately 2 ppmv a−1 (Tans and Keeling,
2015), the two depicted values of sCE correspond to tCDR
ramp-up times of approximately 20 and 40 years (from 10
to 90 % capacity) for sCE = 0.1 ppmv−1 (solid) and sCE =

0.05 ppmv−1 (dashed), respectively.
The atmosphere–ocean carbon feedback (Eq. 4) is gov-

erned by diffusion, which in the model is assumed to depend
on the difference between atmospheric and maritime carbon
pools.

Land–atmosphere interaction is determined by both eco-
logical and social processes: the net ecosystem productivity
(Eq. 6), tCDR offtake (Eq. 11) and other human offtake for
agriculture and other land use (Eq. 13), respectively.

Net ecosystem productivity is given by the net carbon flux
of photosynthesis (Eq. 8) and respiration (Eq. 9), multiplied
by the terrestrial carbon pool and a logistic dampening func-
tion which represents competition for space, sunlight, wa-
ter or nutrients. Both photosynthesis and respiration are con-
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Table 1. Summary of equations describing the co-evolutionary model of societal monitoring and tCDR intervention in the carbon cycle
building upon Anderies et al. (2013). The unit a is years.

Process Equation

Conservation of mass Ct(t)+Ca(t)+Cm(t)= C0+Cr(t)−CCE(t) (1)
Fossil carbon release Ċr(t)= riCr(t)(1−

Cr(t)
cmax

) (2)
CE carbon storage ĊCE(t)=HCE(Ct(t),Ca(t)) (3)
Atmosphere–ocean diffusion Ċm(t)= am(Ca(t)−βCm(t)) (4)
Terrestrial carbon flux Ċt(t)= NEP(Ca(t),Ct(t))−H (Ct(t))−HCE(Ct(t),Ca(t)) (5)

Net ecosystem productivity NEP(Ca(t),Ct(t),T (t))= rtc [P (T (t))−R(T (t))]Ct(t)
[
1− Ct(t)

K(Ca(t))

]
(6)

Terrestrial carbon carrying capacity K(Ca(t))= ake−bkCa(t)
+ ck (7)

Photosynthesis P (T (t))= apT (t)bpe−cpT (t) (8)
Respiration R(T (t))= arT (t)bre−crT (t) (9)
Temperature T (Ca(t))= aT Ca(t)+ bT (10)

tCDR offtake flux HCE(Ct(t),Ca(t))= αCE(Ca(t))Ct(t) (11)
Societal tCDR offtake rate αCE(Ca(t))= αmax

(
1+ exp(−sCE(Ca(t)− C̃a)

)−1 (12)
Other human biomass offtake flux H (Ct(t))= αCt(t) (13)
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Figure 2. Sigmoidal dependence of the tCDR flux on atmospheric
carbon concentrations for two values of the tCDR implementa-
tion capacity parameter (slope): sCE = 0.1 ppmv−1 (solid line)
and sCE = 0.05 ppmv−1 (dashed line). The threshold parameter
(C̃a) is set at 400 ppmv atmospheric carbon concentration and the
potentially achievable tCDR flux is parameterised with αmax =
20 Gt C a−1.

tinuous functions of global land temperature (T (t), Eq. 10),
which in turn depends linearly on atmospheric carbon con-
tent. It is important to note that in our model, respiration ex-
ceeds photosynthesis for higher temperatures (Fig. 3). The
state of equilibrium of the terrestrial carbon pool is thus de-
termined by the land surface temperature, as well as the ter-
restrial carbon carrying capacity (Eq. 7) in the density func-
tion. In contrast to Anderies et al. (2013), we implement a
dynamic terrestrial carbon carrying capacity as a function of
atmospheric carbon content. This is motivated by a number
of factors such as CO2 fertilisation and a higher water-use ef-
ficiency under higher atmospheric carbon concentrations, as
well as higher average vegetation density in a warmer world
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Figure 3. Modelled photosynthesis and respiration rates as a func-
tion of global mean land surface temperature.

(e.g. Drake et al., 1997; Keenan et al., 2013). For low at-
mospheric carbon we assume a rapid increase in terrestrial
carbon storage capacity as a function of atmospheric car-
bon concentration and a saturation of storage capacity for
high atmospheric carbon, in line with assessments of cou-
pled carbon cycle climate models (Heimann and Reichstein,
2008). The functional relationship in Eq. (7) follows these
constraints for chosen parameter values (Sect. 2.2).

2.2 Calibration of model parameters

A sufficiently suitable application of a conceptual model in
the context of the planetary boundaries as in Steffen et al.
(2015) requires the model’s ability to simulate credible tran-
sients of global carbon dynamics. In order to achieve this,
we calibrated model parameters to observed carbon fluxes
and pools, as well as simulation results of detailed high-
resolution Earth system models.
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Because we simulate relative dynamics between the dif-
ferent carbon compartments and do not aim at prognostics of
actual time evolution of carbon pools, all carbon fluxes and
pools are normalised to the active carbon at pre-industrial
times, i.e. the total sum of pre-industrial carbon in the year
1750 AD (3989 Gt C, Fig. 1). All normalised parameter val-
ues are summarised in Table 2.

2.2.1 Temperature

For the calibration of the linear relationship between temper-
ature and atmospheric carbon content (Eq. 10) we used the
transient climate response to cumulative emissions (TCRE)
with a reported global mean surface temperature increase
per emitted carbon of 2 K / 1000 Gt C (Joos et al., 2013;
Gillett et al., 2013). Assuming an airborne fraction of 0.5
(Knorr, 2009; Gloor et al., 2010), the global mean tempera-
ture increase rate per atmospheric carbon increase (Eq. 10) is
approximately twice the temperature increase rate of emit-
ted carbon (TCRE), i.e. 2 K / 500 Gt C in the atmosphere.
From this global surface temperature increase rate (two-
thirds ocean and one-third land surface), the global land
surface temperature increase can be inferred via the global
land / sea warming ratio of approximately 1.6 (Sutton et al.,
2007). Thus, we approximate a global land surface warming
rate of 5.3 K / 1000 Gt C that remains in the atmosphere. The
y-offset (bT in Eq. 10) was inferred via global land surface
temperature anomalies from 1880–2000 (Jones et al., 2012),
a global average (1880–2000) land temperature of 8.5 ◦C
(NOAA, 2015) and observed monthly mean CO2 concentra-
tions (Mauna Loa, 1959–2000, Tans and Keeling, 2015).

2.2.2 Ocean–atmosphere dynamics

The carbon solubility in sea water factor (β) is directly de-
termined by the assumption of pre-industrial equilibrium be-
tween upper-ocean carbon and atmospheric carbon ( ˙Cm(0)=
0). From this and a present carbon flux from the atmosphere
to the ocean of Ċm(ttod)= 2.3 Gt C a−1 (Ciais et al., 2013),
follows the atmosphere–ocean diffusion coefficient am.

2.2.3 Terrestrial dynamics

Photosynthesis and respiration are calibrated according to
temperature relationships reported in the literature. How-
ever, literature generally specifies temperature relationships
at small temporal- and spatial-scales in controlled envi-
ronments, whereas our model equations refer to a global
average of day and night-time temperature. Thus, only a
rough estimation of the relationship between temperature and
photosynthesis / respiration for model calibration is possible.
As in Anderies et al. (2013), we assume maximum respira-
tion at a global land surface temperature of 18 ◦C (supported
by Yuan et al. (2011)), determining the ratio of parameters
br/cr = 18 ◦C (Fig. 3). We choose a maximum of photosyn-
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Figure 4. Approximated terrestrial carbon carrying capacity (black
line). Blue lines represent approximate changes in terrestrial carbon
storage published in Crowley (1995), François et al. (1998), Kaplan
et al. (2002) and Joos et al. (2004). Red lines represent simulated
changes in terrestrial carbon storage due to climate change reported
by Joos et al. (2001), Lucht et al. (2006) and Friend et al. (2013).

thesis at 12 ◦C, incorporating a CO2 fertilisation feedback in-
directly via the dependence of temperature on atmospheric
carbon (bp/cp = 12 ◦C). The amplitudes of photosynthesis
and respiration functions (ar and ap, respectively) are approx-
imated for agreement with carbon fluxes reported in Ciais
et al. (2013). Note that the functional form of carbon fluxes
is not decisive for the model dynamics, however, it is impor-
tant that the curves of photosynthesis and respiration inter-
sect at some temperature limit where ecosystem respiration
exceeds photosynthesis. With our parameterisation this is the
case at a global mean land surface temperature of approx-
imately 13 ◦C, which is 4.5 ◦C warmer than the 20th cen-
tury average global mean land surface temperature (NOAA,
2015). This is in line with multi-model assessments in carbon
reversal studies (e.g. Heimann and Reichstein, 2008; Friend
et al., 2013).

The terrestrial carbon carrying capacity K(Ca(t)) in Ċt (t)
determines how much carbon can be accumulated in the ter-
restrial system at maximum, as long as photosynthesis ex-
ceeds respiration (refer to Eq. 6). K(Ca(t)) was calibrated
to represent both past long-term climatic and terrestrial car-
bon changes (last glacial maximum to Holocene) (Crowley,
1995; François et al., 1998; Kaplan et al., 2002; Joos et al.,
2004), and prognostics of climate change impacts on terres-
trial carbon storage (Joos et al., 2001; Lucht et al., 2006;
Friend et al., 2013) to capture terrestrial changes due to cli-
mate variability (Fig. 4).

Human activities such as fires, deforestation and agricul-
tural land use that affect terrestrial carbon stocks are sum-
marised as human offtake of biomass and are presently es-
timated at H (ttod)= 1.1 Gt C a−1 (Ciais et al., 2013). With
a present terrestrial carbon pool of Ct(ttod)= 2470 Gt C we
calculate the human offtake rate α =H (ttod)/Ct(ttod).
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Table 2. Calibrated model parameters after normalisation to pre-industrial carbon pools. Remaining units are years (a) and temperature
(20 K).

Parameter Symbol Value Unit

Ecosystem-dependent conversion factor rtc 2.5 a−1

Scaling factor for photosynthesis P (T ) ap 0.48 (20K)−bp

Scaling factor for respiration R(T ) ar 0.40 (20K)−br

Power law exponent for increase in P (T ) for low T bp 0.5 1
Power law exponent for increase in R(T ) for low T br 0.5 1
Rate of exponential decrease in P (T ) for high T cp 0.556 (20K)−1

Rate of exponential decrease in R(T ) for high T cr 0.833 (20K)−1

Scaling factor for terrestrial carbon carrying capacity ak −0.6 1
Rate of exponential increase in terrestrial carbon carrying capacity bk 13.0 1
Offset for terrestrial carbon carrying capacity ck 0.75 1
Human terrestrial carbon offtake rate α 0.0004 a−1

Slope of T –Ca relationship aT 1.06 20K
Intercept of T –Ca relationship bT 0.227 20K

Carbon solubility in sea water factor β 0.654 1
Atmosphere–ocean diffusion coefficient am 0.0166 20K

∗ Atmospheric carbon threshold of tCDR implementation C̃a 0–0.3 1
Rapidity of tCDR ramp-up (tCDR implementation capacity) sCE 200 1
∗ Maximum tCDR rate αmax 0–0.03 a−1

∗ Size of geological fossil carbon stock cmax 0–0.51 1
Industrialisation rate ri 0.03 a−1

Climate change boundary ba 0.21 1
Land system change boundary bl 0.59 1
Ocean acidification boundary bm 0.31 1

∗ Parameters are varied during the analysis and the parameter range is stated.

2.2.4 Fossil fuel emissions

The size of the geological fossil carbon stock cmax deter-
mines the carbon released from fossil reservoirs (Eq. 2) and
plays an important role for carbon dynamics (Sect. 3.4). In
the scope of this study, cmax is varied to assess different
baseline emissions following the cumulative emissions of the
representative concentration pathways (RCPs). RCP2.6 is a
low-emission scenario with cumulative emissions of approx-
imately 880 Gt C (cmax = 0.2) (van Vuuren et al., 2011). The
two medium emission scenarios RCP4.5 and RCP6.0 have
cumulative emissions of approximately 1200 Gt C (cmax =

0.31) (Thomson et al., 2011) and 1400 Gt C (cmax = 0.36)
(Masui et al., 2011), respectively. RCP8.5 represents a busi-
ness as usual scenario with cumulative emissions of approx-
imately 2000 Gt C (cmax = 0.51) (Riahi et al., 2011).

2.3 Planetary boundaries

We use the carbon-related planetary boundaries (climate
change, ocean acidification and land system change) to de-
fine the desirability of given trajectories of carbon pool evo-

lution. The proposed locations of these boundaries are nor-
malised to match the normalisation of our model.

The planetary boundary for climate change is proposed
at 350 ppmv CO2 equivalents in the atmosphere with an un-
certainty range to 450 ppmv (Steffen et al., 2015). For our
study we take the middle of the uncertainty range (400 ppmv)
because critical atmospheric thresholds are likely to be lo-
cated somewhere within the uncertainty range and obtain a
normalised climate change boundary is at 0.21 atmospheric
carbon. Ocean acidification is measured via the saturation
state of aragonite and its boundary is set at 80 % of the pre-
industrial average annual global saturation state of arago-
nite (Steffen et al., 2015). Since chemical processes are not
explicitly represented in our model, this measure is not di-
rectly transferable to maritime carbon content. This measure
is not directly transferable to maritime carbon content be-
cause it largely depends on chemical variables such as pH-
value, ocean alkalinity and dissolved inorganic carbon that
are not included in the model. At the current carbon content
(1150 Gt C), the saturation state of aragonite is at 84 % of the
pre-industrial value (Guinotte and Fabry, 2008). We there-
fore estimate the normalised ocean acidification boundary at
0.31, about 5 % higher than the current value of the marine
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carbon stock (0.29). The land system change boundary is de-
fined in terms of the amount of remaining forest cover, mo-
tivated by critical biogeophysical feedbacks of forest biomes
to the physical climate system (Steffen et al., 2015). The
global boundary has been specified as 75 % of global for-
est cover remaining (Steffen et al., 2015). Due to the lack of
biogeophysical feedbacks in the model, we translate defor-
estation into carbon content by measuring the loss of vege-
tation carbon with deforestation. We thereby neglect vegeta-
tion carbon of all non-forest biomes, while at the same time
neglecting soil carbon changes by deforestation (Heck et al.,
2016), thus approximating that soil carbon changes by de-
forestation are of the same order of magnitude as vegetation
carbon pools of non-forest biomes. With vegetation carbon
of 550 Gt C (Ciais et al., 2013), we obtain a normalised land
system change boundary at 0.59.

Note that the exact location and normalisation of the
boundaries is not decisive for our results because we qual-
itatively analyse the influence of tCDR management on the
existence of desirable trajectories. Slightly different sets of
planetary boundaries would not qualitatively change the sys-
temic effects reported in this study.

2.4 Model analysis and terminology

Our analysis of the co-evolutionary system aims at assessing
transient dynamics of carbon pools with respect to planetary
boundaries. First, we run the model and exemplarily show the
influence of socially controlled parameters of tCDR imple-
mentation on the transient carbon pool evolution (Sect. 3.1).
It is of particular relevance under what circumstances the
simulated carbon pool trajectories (atmosphere, ocean and
land) do not cross their respective planetary boundaries. We
refer to the regions on the safe side of the planetary bound-
aries as “safe regions”. All carbon pool trajectories remain-
ing in the respective safe region at all times are considered
“safe trajectories”. For example, all atmospheric carbon tra-
jectories that do not cross the planetary boundary for climate
change (i.e. trajectories that are in the safe region of atmo-
spheric carbon) are safe atmospheric carbon trajectories. Sys-
tem states with each carbon pool remaining in its respective
safe region are referred to as carbon system states within the
SOS, i.e. “safe states”.

In a nonlinear dynamical system, trajectories can be sen-
sitive to initial conditions. The pre-industrial distribution of
carbon pools, as well as carbon dynamics in the Earth system
are relatively well-assessed, while still subject to high uncer-
tainty (Ciais et al., 2013). Furthermore, considerable uncer-
tainty remains with respect to our conceptual model struc-
ture and the exact values of planetary boundaries. Bearing
in mind these inherent uncertainties, we explore how robust
the existence of safe trajectories is under a variation of the
initial conditions, i.e. the initial carbon pool distribution and
different tCDR characteristics (Sect. 3.2).

Such a variation of initial conditions is also a common
approach to conceptualising and measuring resilience of
social–ecological systems as the ability to return to an attract-
ing state after a perturbation (Holling, 1973; Scheffer et al.,
2001). A suitable approach to quantifying the likelihood of
a complex system to return to an attracting state under finite
perturbations is basin stability analysis (Menck et al., 2013).

In the context of planetary boundaries, not necessarily all
trajectories that approach a “safe attractor” (i.e. an attractor
within the SOS associated to all three planetary boundaries)
would be considered safe because they could temporarily
leave the safe region. The concept of constrained basin sta-
bility (van Kan et al., 2016) and related methods (Hellmann
et al., 2016) provide generalisations of basin stability that al-
low taking transient phenomena into account. Similarly to
the constrained basin stability approach, we classify different
domains in the initial-condition state space based on transient
dynamics of carbon pools. The set of initial conditions result-
ing in safe carbon trajectories form the “safe domain”. We
refer to this domain as the manageable core of the safe op-
erating space (MCSOS), as it depends on the tCDR manage-
ment characteristics and the emission pathway. The “undesir-
able domain” is formed by all initial conditions resulting in
a transgression of all three carbon boundaries at some point
in time. Remaining state space domains are formed by initial
conditions leading to a transgression of a subset of plane-
tary boundaries. They are referred to as the respective par-
tially manageable domains (MDs) (e.g. the land manageable
domain is the state space domain of initial conditions with
trajectories without a transgression of the land boundary).

The computational efficiency of our model allows for a
systematic analysis of the MCSOS and other domains under
variation of societal parameters (tCDR management and fos-
sil fuel emissions). We analyse how the size of all domains
(MCSOS, partially MDs and the undesirable domain) varies
with different tCDR characteristics (Sect. 3.3) and emission
pathways (Sect. 3.4). In the spirit of van Kan et al. (2016), the
size of (partially) manageable domains can be interpreted as
a resilience-like measure of the opportunities to stay within
the carbon-related SOS, taking into account inherent struc-
tural uncertainties of our model, the location of planetary
boundaries, and the pre-industrial carbon pool distribution.
Note that the maximum extent of the MCSOS is constrained
by the planetary boundaries, but it may differ from the SOS
(i.e. the “safe” region) as the safety of the domain is deter-
mined by transient system dynamics, whereas the SOS is de-
fined within static planetary boundaries.

3 Results and Discussion

3.1 Carbon system trajectories subject to societal tCDR
management loop

To illustrate how the co-evolutionary social–environmental
system evolves with respect to carbon-related planetary
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Figure 5. Time evolution of the normalised carbon pools in our
model of the carbon system for three tCDR configurations with a
high-emission baseline (cumulative emissions as in RCP8.5; Riahi
et al., 2011) (a) without tCDR (αmax = 0), (b) intermediate tCDR
rate (αmax = 0.0025) and (c) high tCDR rate (αmax = 0.025). To-
tal active carbon (red) is increased by fossil fuel emissions (cmax =
0.51) with dynamic response of the terrestrial carbon pool (green),
maritime carbon pool (blue) and atmospheric carbon pool (grey).
The tCDR sink (purple) stores carbon extracted from the active
system. Shaded areas represent the respective safe regions of land,
ocean and atmosphere in green, blue and grey. Dotted lines indicate
the location of the associated planetary boundaries (PBs).

boundaries, Fig. 5 depicts trajectories of the major carbon
pools with tCDR adhering to different management charac-
teristics. All trajectories start at their respective normalised
pre-industrial state. The normalised planetary boundaries
(Sect. 2.3) are indicated as dotted lines and the safe region
of each boundary (refer to Sect. 2.4) is shaded in the respec-
tive colours. Variation of tCDR characteristics reflects uncer-
tainty about possible tCDR rates related to overall biomass
harvesting potentials and societies’ implementation capaci-
ties (Sect. 2.1).

The emission baseline used for all results displayed in
Fig. 5 is a business-as-usual scenario with cumulative emis-
sions as in RCP8.5 (Riahi et al., 2011). Without tCDR
(Fig. 5a), all that fossil carbon societies emit into the atmo-
sphere is distributed to ocean, land and atmosphere. This re-
sults in more active carbon (red), leading to carbon accumu-
lation in all pools and a transgression of the atmosphere and
ocean boundaries. In this emission scenario, the land system
accumulates carbon and, thus, moves away from its plane-
tary boundary in our model setting (note that the actual con-
trol variable of the planetary boundary of land system change
as defined by Steffen et al. (2015) is the remaining forest
cover, which would not be directly modified by changing at-
mospheric carbon concentrations). Moreover, higher emis-
sion baselines (results not shown here) can lead to decreas-
ing terrestrial carbon stocks when respiration dominates over
photosynthesis due to strong global warming.

In Fig. 5b) and c), the societal tCDR response via har-
vesting from the terrestrial carbon stock and subsequent stor-
age starts just before the atmospheric boundary is reached
(C̃a = 0.18∼ 340 ppmv). With a low tCDR rate (maximal
storage flux of about 7 GtC a−1, αmax = 0.0025), the CE sink
is filled relatively slowly (Fig. 5b). Thus, a transient trans-
gression of the atmosphere and ocean boundaries cannot be
prevented. However, all trajectories re-enter their respective
“safe” region after about 150 years. A higher tCDR rate
(αmax = 0.025, corresponding to very high-potential storage
fluxes of 26 Gt C a−1 or 5 % of global biomass per year) can
prevent a large increase in active carbon and thus prevents
the transgression of both atmosphere and ocean boundaries
(Fig. 5c). However, extensive harvest from the land carbon
pool then leads to a temporary transgression of the land
boundary. The implementation of tCDR was thus effective
in its purpose of preventing entry into a dangerous region of
climate change, but at the cost of exploiting the land system
to an extent that crossed the land system change boundary.

These results show that small tCDR rates (Fig. 5b) (or im-
plementation that is too late, results not shown here) do not
necessarily keep the system in the SOS. High tCDR rates
(Fig. 5c) could seem successful when focusing on the climate
change boundary, but might in fact not be feasible if other
components of the carbon system are taken into account. In
light of ongoing deforestation for the purpose of bioenergy
production (Gao et al., 2011), this simulated collateral trans-
gression of the land system change boundary with large-scale
tCDR is an important and plausible feature of the model.

In the actual Earth system, a transgression of the land sys-
tem change boundary might evoke additional trade-offs to
the biogeophysical climate system (Foley et al., 2003), which
are not represented in the model. For example, large tCDR
rates can only be achieved by large-scale land-use change
that could alter atmospheric circulations and rainfall patterns
(Snyder et al., 2004) even though the carbon-related climate
change boundary might not be transgressed with high tCDR
rates.

The carbon values stated here are primarily given as an
orientation for the reader, and should not be directly inter-
preted with respect to tCDR feasibility assessments. How-
ever, tCDR rates of 7 Gt C a−1 are in line with more con-
servative biomass harvest potentials considering biodiversity
conservation and agricultural limits (Dornburg et al., 2010;
Beringer et al., 2011). More idealistic assessments of tCDR
rates of more than 35 Gt C a−1 – assuming high biomass
yields of more than one-quarter of global land area – have
been reported as well (Smeets et al., 2007). In this context,
the range of tCDR rates studied in this paper reflects both
conservative and highly optimistic tCDR potentials reported
in the literature.
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3.2 State space domain structure of the Earth’s carbon
system subject to societal tCDR management loop

We compute the state space domain structure (refer to
Sect. 2.4) from a sample of initial conditions around the pre-
industrial carbon state. We sample approximately 66 000 ini-
tial conditions from a regular grid by variation of each carbon
pool by±0.2 around the pre-industrial conditions. This range
is a pragmatic choice which does not influence the follow-
ing qualitative analysis. To compute the existing domains,
we evolve each initial condition for 600 years in time and
colour it according to the domains following from the tran-
sient properties of the trajectories of land, atmosphere and
ocean carbon, as described above. The mapping of initial
conditions sheds light on possible domains in the carbon sys-
tem and potential transitions into other state space domains in
our model of the carbon cycle. In this context, the vicinity of
the pre-industrial and current Earth system states to such do-
main boundaries in the model’s initial-carbon-condition state
space is of particular relevance.

Figure 6 shows the existing domains without tCDR (a),
with intermediate tCDR rates (b) and with very high tCDR
rates (c). The emission baseline is the same for all variations
of tCDR characteristics, with cumulative emissions of ap-
proximately 880 Gt C, which is comparable to RCP2.6 cu-
mulative emissions (van Vuuren et al., 2011). The current
state of the carbon cycle is located in proximity to domain
borders, highlighting that it is close to a transgression of the
land system and climate change boundaries. Historical emis-
sions and land system changes have moved the state of the
carbon cycle closer towards the undesirable domain, and re-
maining on an emission trajectory similar to RCP2.6 without
tCDR results in the non-existence of the MCSOS (Fig. 6a).
Thus, the manageable core does not exist if the implementa-
tion of tCDR management is not considered by society, even
in a relatively low-emission scenario.

Figure 6b and c serve as an example of how human inter-
vention and management by tCDR can influence the size and
even the existence of the MCSOS and other domains. With an
implementation of tCDR, the MCSOS can be re-established,
potentially to its full extent, which is directly determined by
the three planetary boundaries (Fig. 6b). Even for a relatively
low-emission scenario, the tCDR threshold needs to be at
sufficiently low atmospheric carbon content (C̃a = 0.16) to
prevent potential boundary transgressions. Nevertheless, be-
cause of past land-use change, the current Earth system state
is approaching domains with unsafe land system and climate
change. If tCDR is applied under the same conditions but
with a 10 times higher potential tCDR rate (αmax = 0.04), the
MCSOS shrinks due to over-exploitation of the land system
for tCDR (Fig. 6c). The land system is overexploited when
the total human biomass offtake flux (HCE+H ) exceeds net
ecosystem productivity (NEP). This decreases terrestrial car-
bon pools (Eq. 5) which in turn limits the potential for tCDR
(Eq. 11). In Fig. 6c this occurs under high initial atmospheric

carbon concentrations, because these result in a higher tCDR
flux for the same potential tCDR rate (αmax, ref. to Fig. 2).
The current state of the carbon cycle of the Earth system is
out of the MCSOS. In this case, large societal commitment to
avoid a transgression of the climate change boundary leads to
a collateral transgression of the land system change boundary
in our model.

3.3 Size of manageable domains under variation of
tCDR characteristics

The size and existence of the MCSOS and other state space
domains depends on tCDR characteristics (refer to Sect. 2.4).
We compute the size of the different initial-condition state
space domains depending on the most decisive management
parameters, i.e. on the implementation threshold C̃a and on
the potential maximum tCDR rate αmax. The size of all do-
mains is measured in relation to the size of the considered
state space section as depicted in Fig. 6, which is given by a
variation of pre-industrial conditions by ±0.2.

Figure 7 depicts the relative size of the MCSOS and the
partially manageable domains under baseline emissions of
cmax = 0.4, corresponding to cumulative emissions in the or-
der of RCP6.0. The size of the MCSOS or partially MDs
can be interpreted as a form of resilience of the system (i.e.
the likelihood that the system stays within the carbon-related
SOS). Thus, we measure the resilience of the carbon cycle
by the size of MCSOS (i.e. the opportunity of success of
tCDR to maintain safe trajectories). This strongly depends
on the atmospheric carbon threshold at which tCDR is im-
plemented. Obviously, only the anticipation of an approach-
ing planetary boundary can prevent a transgression thereof.
Thresholds higher than the atmospheric carbon boundary
(bl = 0.21) are not sufficient in sustaining a MCSOS, be-
cause the atmosphere MD disappears by definition at C̃a =

0.21 (grey line in Fig. 7a).
However, strong anticipation coupled with too early

tCDR implementation does not necessarily maintain the sys-
tem within the SOS. If tCDR is initialised at relatively
low atmospheric carbon content (C̃a = 0.13 (approximately
330 ppmv) in Fig. 7a), the MCSOS is diminished due to a
transgression of the land system change boundary at some
point in time. Hence, the window of opportunity for using
tCDR as a means of staying in the SOS under this exemplary
fossil fuel emission scenario is limited to a relatively narrow
range of tCDR implementation thresholds. The size of the
land MD shows nonlinear dependence on the tCDR thresh-
old. For thresholds between 0.2 and 0.25, the land MD is al-
most diminished (Fig. 7a), because the relatively high tCDR
rate (αmax = 0.02) leads to an over-exploitation of the land
system (ref. to Sect. 3.2). However, higher tCDR thresholds
avoid this over-exploitation and increase the land MD, be-
cause of a later onset of tCDR and overall higher NEP due to
higher atmospheric carbon content and temperature (Eq. 6).
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Figure 6. Charting of normalised carbon-system initial-condition state space in our model for three tCDR management characteristics
with identical, relatively low-emission baseline (cmax = 0.2): (a) without tCDR (αmax = 0), (b) intermediate tCDR rates (αmax = 0.004)
and (c) high tCDR rates (αmax = 0.04). The two-dimensional plane is formed by sampling initial conditions around the pre-industrial state
(variation of carbon stocks by ±0.2 while conserving total carbon in the system). Each domain is coloured according to transient properties
of trajectories starting in different state space regions. For example, the MCSOS (i.e. safe domain) is formed by the initial conditions of
“safe” trajectories, whereas red indicates the initial conditions of trajectories crossing all respective planetary boundaries at some point in the
simulation. Lines indicate the associated planetary boundaries of atmosphere, land and ocean in grey, green and blue, respectively.
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Figure 7. Relative size of domains in modelled carbon-system
initial-condition state space for normalised parameter variation
of (a) tCDR threshold (with αmax = 0.02) and (b) tCDR rate
(with C̃a = 0.2) for a medium emission scenario (cmax = 0.4∼
1600 Gt C cumulative emissions). All domain sizes are given as
shares of the state space region defined by a variation of the pre-
industrial conditions by ±0.2.

Similar to the tCDR threshold, the parameter governing
the maximal achievable rate of tCDR plays a decisive role for
the existence of the MCSOS. With a tCDR implementation
threshold not far below the atmospheric carbon boundary
(C̃a = 0.2), high tCDR rates are required in order to maintain
a MCSOS. The tCDR starts being effective in maintaining a
MCSOS at a rate of αmax > 0.007 (corresponding to approx-
imately 16.5 Gt C a−1 with a fixed land carbon pool of 0.6).
Rates smaller than that are not sufficient because of a lacking
atmospheric MD (grey line in Fig. 7b).

As the tCDR threshold, the tCDR rate has a strong influ-
ence on the size of the land MD. For small tCDR rates, the
land MD is sustained because of high atmospheric carbon
concentrations and small biomass extraction. Rates higher
than αmax = 0.0075 result in a smaller land MD due to the

over-exploitation of the photosynthetic productivity of the
system which is reduced by both biomass removal and de-
creasing atmospheric carbon concentrations driving NEP.
Higher rates, however, lead to overall smaller reductions
of the land MD. This nonlinearity is evoked by the co-
evolutionary feedbacks between society and the carbon cy-
cle, which lead to a deceasing tCDR flux if the system is in
the atmosphere MD. Thus, sufficiently high tCDR rates lead
to fast atmospheric carbon decrease and tCDR is switched
off before the land system boundary is transgressed.

This analysis of the size of initial-condition state space do-
mains suggests that the success of tCDR in sustaining the
Earth system’s persistence in the carbon SOS nonlinearly
depends on the characteristics of tCDR implementation. On
the one hand, foresightedness and anticipation of planetary
boundaries are required to maintain the MCSOS, while on
the other hand, too-early or too-intensive management could
trigger co-transgressions of other planetary boundaries.

3.4 Opportunities and limitations of tCDR

While anticipation and appropriate management are neces-
sary, the underlying emission scenario plays a major role in
the resulting carbon dynamics. Figure 8 exemplarily depicts
the relative MCSOS size for variations of tCDR character-
istics (threshold and potential maximum rate) for emission
pathways in accordance with RCP cumulative-emission sce-
narios. The window of opportunity for successful tCDR (i.e.
the size of the MCSOS) decreases with increasing emission
baselines and depends on the tCDR rate and threshold. In
the case of the low-emission RCP2.6 scenario (cmax = 0.2),
the MCSOS can be sustained for a broad range of parame-
ter values (Fig. 8a). The medium emission scenarios RCP4.5
(cmax = 0.31; Thomson et al., 2011) and RCP6.0 (cmax =
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0.36; Masui et al., 2011) show a narrower range of tCDR
characteristics that have the potential to sustain a MCSOS
(Fig. 8b and c). In a business-as-usual RCP8.5 scenario, the
room for manoeuvring to maintain a MCSOS is very small
(Fig. 8d).

Besides the dependence on the emission scenario, Fig. 8
highlights that for most emission scenarios the range of
tCDR thresholds sustaining the MCSOS is narrow and de-
pends on the tCDR rate. As discussed in Sect. 3.3 (for a
fixed tCDR rate), tCDR thresholds higher than the atmo-
spheric carbon boundary (0.21) are not sufficient in prevent-
ing a boundary transgression in the medium-to-high emis-
sion scenarios (Fig. 8b–d), whereas small tCDR thresholds
lead to a transgression of the land system change boundary
(unless tCDR rates are within a very narrow range smaller
than 0.001). The variation of both the tCDR rate and thresh-
old shows that smaller tCDR rates require a smaller mini-
mal tCDR threshold as well as a smaller maximal thresh-
old (Fig. 8b–d). This dependence of the success of tCDR on
both the tCDR characteristics and the underlying emission
scenarios highlights the relevance of societal intervention for
global carbon dynamics. Essentially, tCDR intervention can
trigger a nonlinear carbon system response through the land
system when human carbon offtake exceeds NEP, which in
turn causes a further reduction in NEP and tCDR potentials.

In our conceptual framework, tCDR can be effective
in complementing climate change mitigation strategies as
employed in low-emission scenarios. However, already an
RCP4.5 emission scenario narrows the range of potentially
successful management options significantly in comparison
to RCP2.6 emissions. Under a business-as-usual pathway,
tCDR cannot be applied to maintain a MCSOS in a resilient
way. In contrast to prevailing reasoning of CE as an emer-
gency action in case of dangerous climate change (Caldeira
and Keith, 2010), tCDR would most likely not function as an
emergency option under high-emission scenarios when addi-
tional sustainability dimensions reflected by other planetary
boundaries are taken into account.

4 Conclusions

The introduced conceptual modelling approach – combin-
ing carbon cycle dynamics with a societal feedback loop
of carbon monitoring and terrestrial carbon dioxide re-
moval (tCDR) action – provides valuable insights into
system-level constraints to navigating within the carbon-
related safe operating space defined by several interlinked
planetary boundaries. Despite the fact that the reported re-
sults cannot be taken as exact quantitative prognostics of car-
bon pool evolution, our analysis has shown that employing
tCDR for managing the atmospheric carbon pool does not
necessarily safeguard the carbon cycle in the safe operating
space because of nonlinear feedbacks between tCDR man-
agement and the carbon system.

The success of maintaining a manageable core of the safe
operating space depends on the degree of anticipation of cli-
mate change, the potential maximum tCDR rate, as well as
the underlying emission pathway. While tCDR might be suc-
cessfully deployed as part of a strong climate change mitiga-
tion scenario, it is not likely to be effective in a business-
as-usual scenario. Particularly, the focus on one planetary
boundary alone (e.g. climate change), may lead to navigat-
ing the Earth system out of the carbon-related safe operating
space due to collateral transgression of other boundaries (e.g.
land system change). In light of numerous (economically-
based) integrated assessment studies proposing tCDR to
counteract anthropogenic emissions, our conceptual results
highlight that it is vital to include integrated sustainability as-
sessments of more advanced models to the debate on climate
engineering (CE) and climate change mitigation via tCDR.
In the case of tCDR, the consequences for biosphere in-
tegrity, as well as trade-offs with agricultural land use and the
biogeophysical climate system must be taken into account
among other sustainability dimensions reflected by planetary
boundaries and beyond.

In analogy to our analysis of tCDR, the approach followed
in this paper could be transferred to other CE proposals such
as ocean fertilisation or solar radiation management. Addi-
tionally, it would be of interest to extend the analysis pro-
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vided here and study Earth system dynamics under CE with
more detailed models in line with the framework proposed
by Heitzig et al. (2016), including a full topological analy-
sis of the system with respect to the possibility of avoiding
or leaving undesired domains, the reachability of desirable
domains and the various management dilemmas induced by
this accessibility structure.

5 Data availability

The model code and generated data are publicly avail-
able and can be accessed at https://github.com/pik-copan/
pycopanpbcc.
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A B S T R A C T

Deforestation in the Amazon with its vast consequences for the ecosystem and climate is largely related to
subsequent land use for cattle ranching. In addition to conservation policies, proposals to reduce deforestation
include measures to intensify cattle ranching. However, the effects of land-use intensification on deforestation
are debated in the literature. This paper introduces the abacra model, a stylized agent-based model to study the
interplay of deforestation and the intensification of cattle ranching in the Brazilian Amazon. The model com-
bines social learning and ecological processes with market dynamics. In the model, agents adopt either an
extensive or semi-intensive strategy of cattle ranching based on the success of their neighbors. They earn their
income by selling cattle on a stylized market. We present a comprehensive analysis of the model with statistical
methods and find that it produces highly non-linear transient outcomes in dependence on key parameters like
the rate of social interaction and elasticity of the cattle price. We show that under many environmental and
economic conditions, intensification does not reduce deforestation rates and sometimes even has a detrimental
effect on deforestation. Anti-deforestation policies incentivizing fast intensification can only lower deforestation
rates under conditions in which the local cattle market saturates.

1. Introduction

Can intensification of agricultural land use help us preserve threa-
tened ecosystems such as the Amazon rain forest? If land is easily ac-
cessible, low-productivity land use often results in a high demand for
land, putting pressure on ecologically important areas. Therefore, a
common proposition is to increase yields per area to ease this pressure.
In the economic literature, this proposition is often referred to as the
Borlaug hypothesis (Angelsen and Kaimowitz, 2001, p. 3). The discus-
sion mainly focuses on crop production, but livestock is equally im-
portant.

In the Amazon, livestock production, especially beef cattle ranching,
drives expansion of pastures into the rainforest (Barona et al., 2010;
Pacheco and Poccard-Chapuis, 2012). While more than 60% of the
deforested area in the Brazilian legal Amazon was used as pasture by
2008, only about 5% was used for crop production (Almeida et al.,

2016). In the last decades, the opening of the region for national and
international markets has led to a shift from extractive land-use activ-
ities to cattle ranching and increased the activities of agribusiness in-
cluding the development of a supply chain for meat processing
(Salisbury and Schmink, 2007; Pacheco and Poccard-Chapuis, 2012).
This increased the demand for agricultural land in the Amazon basin
considerably, also via indirect effects (Richards et al., 2014). The ex-
pansion of pasture leads to large-scale deforestation with strong adverse
impacts on biodiversity and local climate, for example, reduced pre-
cipitation as a result of lower evapotranspiration from deforested areas
(Zemp et al., 2017). Lower precipitation in turn affects agricultural
productivity (Oliveira et al., 2013) and may constitute a tipping ele-
ment with relevance for global climate (Lenton et al., 2008).

On average, cattle ranching in the Amazon is characterized by ex-
tensive production systems with low stocking rates compared to other
regions (Pacheco and Poccard-Chapuis, 2012). Many extensive
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production techniques can be linked to environmental degradation in
the region. Slash-and-burn methods are used to fertilize the land and
may spark unintended forest fires (Cano-Crespo et al., 2015). In many
areas, nutrient-poor soils lead to fast run-down of pasture fertility
(Serrão et al., 1979; Myers and Robbins, 1991). Additionally, weed
invasion, pests, compaction, and erosion further promote pasture run-
down (Landers, 2007). The exhausted pastures are often abandoned and
secondary vegetation starts to regrow on them (Perz and Skole,
2003a,b). However, this forces the ranchers to replace them with pas-
tures on newly deforested areas and move the frontier further into
pristine forest.

Since the 2000s, there have been various efforts to reduce defor-
estation in the Brazilian Amazon (Nepstad et al., 2014). This includes
the enforcement of environmental laws, which entails considerable
costs and requires careful monitoring. As the current stagnation of de-
forestation rates shows, the present policy measures have their limita-
tions (Azevedo et al., 2017). For example, Richards et al. (2017) show
that agents react to the current monitoring system by deforesting
smaller patches to avoid detection. Besides, current environmental
legislation, the Brazilian Forest Code, allows land-owners to deforest
20% of their private lands (Soares-Filho et al., 2014). Cutting only the
legally available areas will already lead to large losses in biodiversity
and considerable amounts of greenhouse gases released into the at-
mosphere (Aguiar et al., 2016).

For these reasons, policies that promote the intensification of cattle
ranching have been suggested as a viable option to reduce deforestation
(Cohn et al., 2014). Intensification could help ranchers use the already
deforested land more efficiently and detain them from deforesting
more. These proposals are heavily criticized, arguing that higher profits
from intensified land use may even increase deforestation rates
(Angelsen and Kaimowitz, 1999; Kaimowitz and Angelsen, 2008).
Other authors note that the success of intensification policies cannot be
determined a priori but highly depends on the political, economic, and
environmental circumstances (Latawiec et al., 2014).

Empirical evidence to support the effectiveness of intensification as
a means to reduce deforestation in the Amazon is hard to assess and at
most mixed. Cohn et al. (2011) review some of the cattle ranching in-
tensification programs in Brazil that aim at the adoption of yield-in-
creasing technology. They argue that due to a lack of data, the im-
plementation of policies should proceed very carefully as it might result
in unintended consequences. Soler et al. (2014) find that land-use de-
velopments in the federal states of Mato Grosso and Rondônia are
strongly linked to market accessibility and the land distribution struc-
ture. They cannot uncover clear mechanisms that link land-use in-
tensification to expansion of the deforestation frontier. Barretto et al.
(2013) argue that land-use intensification in frontier regions coincides
with the expansion of agriculture. An analysis of deforestation drivers
also shows that intensified land use is associated with higher incomes,
which in turn can be linked to higher deforestation (Busch and Ferretti-
Gallon, 2017). After all, huge data gaps make the comparison of dif-
ferent management techniques of livestock systems difficult (Erb et al.,
2016). A big challenge is to disentangle the effect of intensification
from other influences and drivers (e.g., enforcement of legal protection)
in empirical data. This also makes assessments of the impact of in-
tensification policies difficult, mostly because of the huge heterogeneity
of agents and their changing importance and roles in the deforestation
process (Pacheco, 2012; Godar et al., 2014).

This paper investigates the interdependencies of intensification and
deforestation using a theoretical modeling approach. Modeling has
been used in the literature to investigate these interdependencies. For
example, Bowman et al. (2012) use a spatial land rent model to find
that intensification policies have to be complemented by improvements
in conservation policies that disencourage land speculation to decrease
deforestation. Many land-use models apply a procedure that determines
demands for different types of land and then allocates them geo-
graphically. They use empirically derived statistics and economic

criteria that indicate suitability of areas for different land uses. Con-
version elasticities determine how changing demands translate into
changes in spatial land-use patterns (e.g., Verburg et al., 2002; Michetti,
2012; Aguiar et al., 2012).

To intensify their production, ranchers have to adopt new man-
agement practices and production technologies. Such decisions are not
only based on economic considerations, but are also determined by the
diffusion of knowledge and successful management practices via social
networks (Feder and Umali, 1993). This has been demonstrated and
modeled for example for the adoption of new agricultural technologies
(Berger, 2001; Maertens and Barrett, 2012). Therefore, it is important
to consider the social and cultural context of cattle ranching in-
tensification. For example, there are not only strong economic in-
centives but also cultural drivers, such as the dissemination and adop-
tion of values that make the current practice of cattle ranching
attractive in comparison with more sustainable land uses (“cowboy
culture”, Hoelle, 2011).

Agent-based approaches can capture such influences on land-use
change. They model the decisions of heterogeneous agents and their
social and environmental interactions to explain emergent patterns and
dynamics at the system level. They can therefore describe how social
interactions and incentive structures influence the decisions of ranchers
to use the land in a specific way. Agent-based models (ABMs) are
widely applied to describe social-ecological systems (for reviews see
Schlüter et al., 2012; An, 2012; Groeneveld et al., 2017; Parker et al.,
2003; Matthews et al., 2007; Heppenstall et al., 2012). In the land-use
context, social-ecological ABMs are mostly developed for small study
regions, taking into account local specificities and fitting behavioral
patterns to data acquired in the field (Parker et al., 2008). There are
several ABMs in the literature explicitly developed to study the influ-
ence of socio-economic drivers on deforestation dynamics. Many of
these models use profit or utility maximization approaches to describe
land-use decisions. For example, Andersen et al. (2017) provide a
model of households in a small Bolivian community to explore the
consequences of different policy options, including the level of public
investment, a deforestation tax, and conservation payments. The model
by West et al. (2018) is based on similar principles and focuses on the
effects of direct REDD+ payments to agricultural households. Other
models use heuristic approaches to land-use decisions, focusing for
example on colonist households (Deadman et al., 2004) and on defor-
estation outcomes under different institutional settings (Costa, 2012) in
frontier regions of the Brazilian Amazon. Some models also take local
interactions between individual agents into account. For example,
Mena et al. (2011) use socioeconomic surveys and demographic data to
calibrate complex heuristic decision making modules in a model that
describes households in the Ecuadorian Amazon. Manson and Evans
(2007) combine different decision-making approaches in a genetic
programming framework to model deforestation in Mexico. However,
none of these models integrates social influence processes and their role
for land-management decisions.

This paper presents the abacra (agent-based amazonian cattle
ranching) model, a stylized ABM to investigate under which circum-
stances intensification of cattle ranching can reduce deforestation in
Amazon frontier regions. The model described in Section 2 of this paper
combines simplified representations of the social, economic, and eco-
logical processes that we judge most important for the purpose of this
study. It differs from the above-mentioned ABMs by specifying heuristic
land-management strategies and capturing how these change as a result
of social influence. Such a combination of approaches has been iden-
tified as a promising representation of human decision making in social-
ecological models (e.g., Müller-Hansen et al., 2017). The model serves
as a proof of concept that the combination of non-standard decision-
making with local and social interactions can help to understand and
explore the emergent system-level outcomes of social-ecological sys-
tems. It does not aim at producing concrete numerical predictions or
scenarios of future land use in the Amazon.
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After introducing the model, Section 3 provides a detailed analysis
of the model results to demonstrate its dynamics, using data from the
frontier region around Novo Progresso in southern Pará. Sections 4 and
5 discuss broader implications and limitations of the results and con-
clude the paper.

2. Model Description

In this section, we describe the details of the abacra model that we
use throughout this study. A full description according to the ODD+D
protocol (Müller et al., 2013) is provided in the Supplementary Material
(see Appendix B).

2.1. Overview

The model is designed to investigate the interrelation between in-
tensification of cattle ranching and deforestation in an Amazon frontier
region. Furthermore, it demonstrates how social learning dynamics can
be combined with heuristic land-management strategies and market
dynamics to integrate social, economic and ecological dynamics. The
model is designed for researchers interested in tropical deforestation,
land modeling and complex social-ecological systems.

The model comprises a large number N of ranchers with their re-
spective land properties. The ranchers interact with their local en-
vironment by decisions to convert forest into pasture and managing this
pasture. The land area of every ranch is divided into three different
land-cover categories (forest, pasture, secondary vegetation).
Furthermore, the pasture productivity and the soil quality of areas with
secondary vegetation describe the environmental quality of the land.
Land-cover succession equations trace deforestation, land abandon-
ment, and forest regrowth, while two other dynamic equations describe
the evolution of the productivity of pasture and secondary vegetation.

The ranchers are characterized by their savings and their land-
management strategy. The decisions of agents are captured by heuristic
strategies depending on economic and ecological constraints. Agents
can follow either an extensive strategy, corresponding to traditional
cattle ranching with fallow periods and slash-and-burn fertilization, or
a semi-intensive strategy. In contrast to intensive cattle ranching that
relies mostly on externally produced feedstock, semi-intensive cattle
ranching increases the productivity of the pasture on which the cattle
graze by inputs such as machinery and fertilizers. The choice of the
land-management strategy is modeled as a social learning process:
Agents are located on a geographic network representing neighborhood
and acquaintance relations. They imitate the successful strategies of
their neighbors. Key parameters of the model describe the cattle market
demand and the time scale of social learning.

The model is discrete in time t and each time step represents one
year, thereby abstracting from seasonal variations. The simulation for
each time step proceeds in the following sequence:

First, the agents make decisions about their land-use activities,
based on the previous state of their environment and their economic
situation (Sections 2.4–2.6). Second, based on the previous state and
the decisions, the system evolves according to the environmental dy-
namics (Section 2.2). Third, all ranchers receive revenues for the cattle
they produced (Sections 2.3 and 2.8). Finally, ranchers imitate their
neighbors' land-management strategies with a probability depending on
the difference of the rancher's consumption with its neighbor
(Section 2.7).

The model is implemented in python, using various packages of the
python ecosystem (numpy, scipy, pandas, networkx) to combine the
data with the dynamics described above.1 This language was chosen to
allow an easy parallelization of model runs on the high performance
cluster computing infrastructure of the Potsdam Institute for Climate

Impact Research.
In the following, we describe the different parts of the model in

detail. Table 2 in Appendix A gives an overview of the variables used
for the formalization.

2.2. Ecological Dynamics

Each agent i has a ranch with a constant area X that is covered by
forest Ft, pasture Pt, and secondary vegetation St. Thus, Ft+ Pt+ St= X,
where we drop the index i indicating the rancher. Land-cover changes
such as deforestation and land abandonment are traced by land-cover
succession equations (cp., e.g., Satake and Rudel, 2007). At each time
step, pasture land can be created through deforestation dt or reuse of
land previously covered by secondary vegetation rt. Pasture with area at
can also be abandoned, leading to secondary vegetation regrowth. The
change in pasture land is given by= + + −+P P d r a ,t t t t t1 (1)

where dt, rt, and at are rates per year in units of area. The dynamics of
forest and secondary vegetation are given by= + −+F F r v S dt t n t t t1 (2)

and = − −= − + −+ + +S X P F
S r v S a r ,

t t t

t n t t t t

1 1 1

(3)

where rn is a parameter that describes the natural recovery from sec-
ondary vegetation to mature forest. The deforestation dt, abandonment
at, and reuse rt are control variables determined in the rancher's deci-
sion process. The land-cover dynamics for a single ranch are illustrated
in Fig. 1.

The pasture land is furthermore characterized by an average pro-
ductivity qt. The agent can decide how much cattle to place on the
pasture. Pasture productivity is decreasing if the stocking rate lt= Lt/Pt
is high, i.e., there is a high number of cattle Lt per area on the pasture.
The model formulation implicitly assumes here that the herd size of
ranchers is variable through acquisition and sale of calves and the
ranchers adjust it to their requirements (cp. Quaas et al., 2007). The
decay of pasture productivity can be reduced by a management effort
mt, which subsumes various processes like fertilization, adoption of new
grass species, fencing, and maintenance work.

For describing the dynamics of the pasture productivity, we choose
the simplest decreasing dynamics with a lower zero bound, i.e., an
exponential decay. Deforestation and reuse add land area to the pasture
with productivities qd and vt, respectively. Furthermore, abandonment
lets the pasture area shrink. Averaging over all these changes and
weighting with the respective areas gives the following dynamics for
pasture productivity:

= − − − + ++ + −+q
β l m q P a q d v r

P d r a
(1 ( )) ( )

,t
t t t t t d t t t

t t t t
1 (4)

where β is the rate of degradation, lt is the stocking rate of the pasture,
and mt is a management effort that can counteract pasture degradation.

Finally, the variable vt tracks the productivity and regrowth on land
areas with secondary vegetation. It follows a similar dynamics as the
pasture productivity, but with an exponential approach to the natural
relative productivity v*= 1 with rate rS. The other terms stem from
weighting and averaging for additional and outgoing areas, similar to
Eq. (4).

= + − − +− ++v
v r v S r a q

S r a
( (1 ))( )

.t
t S t t t t t

t t t
1 (5)

In summary, the ecological state of each ranch has four degrees of
freedom (Pt, Ft, qt, and vt).1 The code is available from www.github.com/fmhansen/abacra.
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2.3. Economic Dynamics

There are five control variables of the ecological dynamics, re-
presenting the possible decisions for the rancher: The management mt,
deforestation dt and reuse rt are associated with a cost per area. The
income of the agent is realized from selling cattle yt= ltPtqt/Tp at a
price of pc (per head), where Tp is the average time that cattle have to
spend on the pasture until they can be slaughtered. Thus, the income of
the agent is given by= − − −I p l P q T c d c r c m P/ ,t c t t t p D t R t m t t (6)

where cD and cR are the cost of deforestation and reuse (per area) and cm
the cost of management (per area and effort).

This income can either be consumed or saved by the rancher, re-
sulting in the following dynamics for the accumulated savings:= + + −+k δ k I C(1 ) ,t t t t1 (7)

with an interest rate δ. The income spent for consumption Ct also
comprises a control in the model. Note that the savings can also be
negative, such that they effectively represent the debt of the rancher.
For reasons of simplicity, we assume here a fixed saving rate s, such that
Ct=(1− s)It.

2.4. Decision Making of Agents and Land-Management Strategies

The decision-making functions of agents are the centerpiece of the
abacra model. They determine the amount of deforestation, abandon-
ment, reuse, stocking rate, and pasture management in every time step.
Because the land-use decisions may depend on many factors such as
location, available resources, weather, beliefs about future prices and
policies, and the choices of other agents, it is especially challenging to
capture them appropriately in a stylized model.

Here, we use a heuristic decision approach for modeling the deci-
sions of the ranchers. Heuristics are rules of thumb, often formalized as
decision trees, that help agents to evaluate available information and
choose actions that lead to more desirable outcomes over less desirable
ones (for a recent review, see Gigerenzer and Gaissmaier, 2011).

As evidence from surveys suggests, land use decisions are not only
based on monetary incentives but strongly influenced by social pre-
ferences (Garrett et al., 2017). Because of limited empirical data on
actual decision processes in the system under consideration, we make
the following simplifying assumptions for the agents' decision func-
tions. We capture the social aspects of land-use decisions in our model
by a heuristic land-management strategy that an agent adopts. This
strategy determines how an agent makes use of the land. In the model,
we implement two idealized strategies, an extensive and a semi-

intensive land management strategy. They correspond to typical in-
dividual land-use trajectories in the Amazon.

2.5. Extensive Strategy

The extensive strategy represents traditional approaches to cattle
ranching with fallow periods and slash-and-burn fertilization. It is
characterized by low stocking densities. The pasture productivity de-
creases over time and has to be renewed by fallow periods and slash-
and-burn practices.

The decisions to deforest or reuse (i.e., slash-and-burn) an area D or
R are determined as follows. First, the respective savings for covering
the conversion costs cD or cR have to be available. The conversion can
only take place, if there is enough forest Ft or secondary vegetation St.
For the extensive strategy, the managed pasture cannot exceed a fixed
fraction of the total area pmax because the rest is set aside as fallow land.
Finally, the expected additional income =I p l Dq T/exp

d
c t d p (or=I p l Rv T/exp

r
c t t p for reuse) from the additional pasture is compared to

the cost. If the investment is paying back within a time period Trec, the
investment is made. If both deforestation and reuse are profitable, then
the option with the higher expected additional income is chosen. The
latter depends on the expected cattle price times the expected amount
of cattle that can be produced on the new pasture. An area A of land is
abandoned if pasture productivity falls below a certain threshold qθa
and this land was used as pasture before.

The extensive strategy does not use the pasture management option
(mt=0) and the stocking rate is fixed at a low level lt= lext. The logic of
the decisions are illustrated as two decision trees in Fig. 4. For the
implementation of the model, we used Heaviside step-functions. The
equations are given in the Supplementary material.

Fig. 2 shows a sample trajectory of a single ranch with the extensive
strategy. The strong oscillations in the trajectory result from the
thresholds in the decision functions. The agent has to reinvest into
deforestation and reuse of secondary vegetation in order to improve the
pasture productivity every few years.

Fig. 1. Illustration of the conversion of land for single ranches in the model. The
total area of a property is divided into three land-cover types that can be
converted by land management with rates d (deforestation), a (abandonment),
and r (reuse). Secondary vegetation regenerates with a rate proportional to a
natural recovery parameter rn and the productivity of secondary vegetation v.
Cattle raised on the pasture generate revenues for the rancher.

Fig. 2. Sample trajectory for illustration of the dynamics of a single ranch with
extensive strategy, showing (a) the areas of different land use: pasture (light
green), forest (dark green), and secondary vegetation (magenta) and (b) savings
(blue), pasture productivity (brown), and secondary vegetation fertility (ma-
genta), which are displayed in arbitrary units (a.u.). (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)
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2.6. Semi-intensive Strategy

The semi-intensive strategy, corresponding to cattle ranching with
various industrial inputs and pasture improvement techniques, has
higher stocking densities but also higher costs for inputs. Agents invest
in inputs for pasture maintenance such as fertilizers and fencing for
pasture rotation, but also in measures such as better adapted grass and
cattle species, improved pasture seeding with legumes, or additional
concentrated feed to improve pasture and livestock productivity.

The semi-intensive strategy is implemented in the following way:
Deforestation D occurs if there is enough primary forest on the property
left and the agent has sufficient savings to cover the deforestation cost.
Furthermore, the agent evaluates whether it is possible to recover the
investment within a certain time period Trec, assuming that the eco-
nomic circumstances remain constant: The agent compares the ex-
pected income = −I p l Dq T c m D/exp

d
c t d p m t from using a newly deforested

area to the deforestation cost. The agent uses a similar logic to de-
termine whether it is profitable to convert an area of secondary vege-
tation R back to pasture. As for the extensive strategy, the decision
between deforestation or reuse to get new pasture results from a com-
parison of the expected income increases of both options. An area A of
pasture is abandoned if the ranching activity is not profitable anymore.

For the semi-intensive strategy, the deforestation costs are higher by
the intensification cost cI. This also has to be considered in Eq. (6) by
subtracting the intensification cost cI(dt+ rt) for converted areas. Si-
milarly, when adopting this strategy, the cost for converting existing
pasture cIPt has to be subtracted from the savings stock, Eq. (7). A
formulation of these rules in terms of Heaviside functions is provided in
the Supplementary materials.

The semi-intensive strategy uses the pasture management option
mt=M, where M is a constant. The stocking rate is higher than in the
extensive case lt= lint> lext. A sample trajectory for this strategy is
shown in Fig. 3. Here, one can observe that most of the forest is de-
forested quite fast and the decline of pasture productivity is much
slower because of pasture management.

Evidence for the proposed kind of heuristic behavior was obtained
in personal interviews by one of the co-authors (E. D.-N., unpublished
fieldwork carried out in 2016 in the states of Pará and Mato Grosso

along the highway BR-163). Ranchers tend to invest in new pasture if
they can recover their initial investment in a time period below a
threshold of about 5–8 years. Furthermore, the valuation of land is an
important factor for decision making of ranchers. Because our model
does not contain a description of the land market, we do not consider
this in our analysis.

2.7. Local Interaction: Strategy Imitation Between Agents

In the abacra model, we reduce the potentially complex process of
adopting a land-management strategy to a social imitation process on a
geographic network and assume that the adoption of a certain man-
agement strategy only depends on the agent's own success and its
comparison with the neighbors (cp. Traulsen et al., 2010; Wiedermann
et al., 2015). The agents are modeled on a network that represents
neighbor relations as illustrated in Fig. 5. This simplifying assumption is
motivated by evidence from the literature that neighbor interactions
play an important role in deforestation decisions (Robalino and Pfaff,
2012) and the role of networked social interactions in various en-
vironmental contexts (Currarini et al., 2016). Furthermore, word-of-

Fig. 3. Sample trajectory for illustration of the dynamics of a single ranch with
the semi-intensive strategy: (a) areas of different land use: pasture (light green),
forest (dark green), and secondary vegetation (magenta). (b) Savings (blue),
pasture productivity (brown) and secondary vegetation fertility (magenta),
which are displayed in arbitrary units (a.u.). (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 4. Decision trees illustrating the decision heuristics used by the agents in
the model (a) for deforestation and reuse and (b) for abandonment. Differences
between the extensive and the semi-intensive strategy are marked as dashed
boxes. The differences regarding the stocking rate and the use of pasture
management are not displayed.
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mouth recommendation has been identified as one of the most im-
portant determinants for the participation in sustainable ranching
programs (zu Ermgassen et al., 2018).

We implement the neighbor interactions as follows: The simplest
assumption for the timing of interaction events is that they are equally
probable for every point in time, i.e., they occur with a constant imi-
tation rate λ. Such a stochastic process is called Poisson process and is

described by a rate λ (Van Kampen, 2007). The number of interaction
events K in one time step of the model is then given by a random
number drawn from a Poisson distribution with rate λ. For each in-
teraction event, a random node i of the network and a random neighbor
j of this node are chosen. Then, i imitates the strategy of j with a
probability given by a hyperbolic tangent function of the difference
between the agents' consumption Ct (cp. Wiedermann et al., 2015):= − +P C C1

2
( tanh( ) 1).ij j i (8)

However, the imitation of the intensive strategy is only possible if
an intensification cost per area cI can be covered. This cost can also be
payed by a credit (modeled as negative savings) up to a certain limit
kmin. The imitation process results in a faster spread of production
strategies that generate more income.

2.8. Interaction Between All Agents: The Cattle Market

Additionally to the local imitation, the model captures how ranchers
interact on a cattle market, which determines the price that ranchers
can realize when selling their cattle. We model the price as given by a
demand curve that represents the demand side of a local market for
cattle. The price response to changes in cattle quantity = ∑Y q P li i i i is
modeled by a constant elasticity function= −p a Y ,c p

ε1/ (9)

with price elasticity of demand ε. A high price elasticity means that a
slight change in price leads to a high change in demand. Put the other
way around, a large change in the quantity leads to a slight change in
price. A low elasticity thus implies a strong price reaction to a change in
the produced quantity. This relation is illustrated in the upper right of
Fig. 5, where the yellow demand curve corresponds to a lower elasticity
than the green one.

The price elasticity allows modeling different market settings: The

Fig. 5. Illustration of the local and system-wide interactions between agents:
Agents can imitate their strategies (extensive, blue, or semi-intensive, red) if
they are connected on a geographically embedded social network. They sell
their cattle on a market that determines the cattle price and thus their income,
depending on the price elasticity of demand (yellow curve: low price elasticity,
green curve: high price elasticity). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Table 1
Description, symbols, and values of parameters in the presented ABM. Where applicable, ranges in the literature for the parameterization with the corresponding
sources or own calculations are indicated.

Parameter Symbol Default value Range Unit Sources and comments

Deforestation cost cD 1500 1000–3000 BRL/haa Difference in land prices between pasture and Forest from
FGVIBRE (n.d.)

Reuse cost cR 500 500–2000 BRL/ha
Pasture maintenance cost cm 150 150–300 BRL/ha Estimated using IMEA (n.d.)
Intensification cost cI 500 300–1000 BRL/ha zu Ermgassen et al. (2018)
Live cattle price 5 3.4–6.4 BRL/kg SEAB (n.d.)
Slaughter age Tp 3 2.5–3 Years Tab. 4 in Pacheco and Poccard-Chapuis (2012)
Cattle weight at slaughter (3 years) 500 470–520 kg Tab. 4 in Pacheco and Poccard-Chapuis (2012)
Initial live cattle price pc(0) 2500 1600–3330 BRL/head Live cattle price×weight at slaughter
Average stocking rate lext, lint 0.8, 1.6 0.5–2.0 Head/ha Tab. 3 & 4 in Pacheco and Poccard-Chapuis (2012)
Saving rate s 0.25 0.15–0.3 Gross domestic savings (The World Bank, n.d.)
Natural recovery parameter rn 0.013 1/year Corresponding to a half-life of about 50 years (Poorter

et al., 2016)
Regeneration of soil quality of Secondary

vegetation
rS 0.06 1/year Corresponding to a half-life of about 10 years (Davidson

et al., 2007)
Parameter of pasture degradation β 0.15 1/head/year Corresponding to a half-life of 3–4 years for Degradation

(Costa, 2012)
Productivity of pasture after Deforestation qd 1 Arbitrary units

(a.u.)
Determines scale

Threshold on q for abandonment qθa 0.2 a.u.
Relative deforested, abandoned and Reused

areas
D/X, R/X, A/X 0.05 0.02–0.1 Relative area For deforestation, estimations with PRODES (n.d.) yield

0.08
Maximum relative pasture for Extensive

strategy
pmax 0.5 Relative area

Time period for investment decisions Trec 7 Years Information from personal interviews: 5–8 years
Management effort M 1.5 a.u.
Maximal credit for intensification kmin 200 BRL/ha
Imitation rate λ 1 0.001–10 1/year
Price elasticity of demand ε 10 0.1–1000
Share of teleconnections α 0.02 0–0.1

a Prices are in 2010 Brazilian Real (BRL), areas are in hectare (10,000m2).
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price elasticity is lower and thus prices are more sensitive to changes in
quantity in regions with a market that is not well integrated into na-
tional or international markets. If markets are well connected to bigger
markets, the prices will not be affected much by changes in locally
produced quantities but rather by external price fluctuations. The spe-
cial case of fixed prices (ranchers being price takers) is effectively
equivalent to very high price elasticities: in this case, the exponent in
Eq. (9) gets close to zero such that the dependence on Y becomes
negligible and the curve approaches the constant ap. Instead of studying
the case of fixed prices separately, we will look at very high values for
the price elasticity.

2.9. Input Data and Parametrization

We use different data sources to estimate parameters of the abacra
model. The details are given in Table 1. Some of the parameters,
especially those related to decision making, cannot be determined from
the data. We analyze the sensitivity of model outcomes on such input
parameters further in Section 3.2.

The model uses the following input data for initial conditions and
set-up of the network: Initial values for pasture areas are approximated
from deforestation data from PRODES, using the data from 2000 as
initial conditions. For comparison with other initial conditions, we also
test initial conditions corresponding to the deforestation extent in 2016.
The initial conditions for secondary vegetation are set to zero. Initial
values for the soil productivity q are randomly drawn from a uniform
distribution of values between 0 and 1. Furthermore, we allocate initial
savings to the ranchers drawn from a log-normal distribution with
mean 200 and standard deviation 100 BRL per ha of property area.

We apply the model framework on the study region around Novo
Progresso in the Brazilian Amazon. We choose the region because it is
characterized by strong deforestation in recent years and a high share of
cattle ranching on deforested areas. However, the model should be
easily adapted to other regions and could be scaled to larger regions.

We use property data from the Rural Environmental Registry
(Cadastro Ambiental Rural, CAR), a geoinformation tool that helps the
administration to monitor land owners' compliance with the Forest
Code (Azevedo et al., 2017). Between 2000 and 2016, average defor-
estation on CAR-registered properties in the Novo Progresso region was
9.5 ha/year with an average property size of 563 ha. In total, about 28%
of the forest area on registered properties has been cleared by 2016
(own calculations using PRODES and CAR).

We use the CAR data to get a representative heterogeneity of
property sizes and construct different neighborhood networks.
However, the CAR data is incomplete and contains unsettled land
claims, which leads to overlapping properties. To avoid inconsistencies,
we remove properties with large overlap by via visual inspection of the
data set in a GIS program. Like this, we remove properties that overlap
with more than a small part of their total area. Fig. 6 (a) shows the
municipality of Novo Progresso and its adjacent municipalities as well
as the limits of properties in the CAR data.

To construct the network, we apply a function on the distance be-
tween properties (nodes) determining whether they are connected or
not. The simplest method connects all properties closer than a specific
threshold. We test the model with networks for different thresholds and
choose 10 km because this results in a good balance between overall
connectivity of the network and an average degree that is in a rea-
sonable range for social contacts. This network has 4012 nodes and an
average degree of about 81.

We also test probabilistic methods for constructing neighborhood
networks, for which the probability of being connected decays ex-
ponentially with the distance between properties. Furthermore, we
construct geographic networks that have a proportion α of links re-
placed by random links. We call these links teleconnections because
they are independent of the spatial embedding of the network and
therefore represent social interactions over distance. Fig. 6 (b) shows

the network constructed from the property data without teleconnec-
tions. For the model simulations, the initial strategies are set as follows:
all properties start with the extensive strategy except the ones within a
range of 10 km from the major cities, which start with a 50% prob-
ability with the semi-intensive strategy. The colors of the network
nodes in the figure indicate initial conditions for the agents' strategies.

3. Model Analysis and Results

After introducing the model design in the previous section, this
section discusses system-level outcomes of model simulations with in-
teracting agents.

3.1. System-Level Dynamics

For parameter settings with a high imitation rate λ and high elas-
ticity of demand ε, the initially small number of agents with a semi-
intensive strategy increases over time until almost all agents use this
strategy. This happens because the increase in produced cattle does not
decrease the revenue per area significantly. Further deforestation al-
lows more cattle to be raised and thus increases overall income, which
can be reinvested to deforest more.

Fig. 7 shows the key variables of an ensemble of model runs with
such a parameter setting (the other parameters are given in Table 1).
The shaded ranges indicate the variation of variables due to different
realizations of the stochastic processes in the model. The figure shows
that most of the forest is already deforested and converted to pasture in
the first 30 to 40 years of the simulation (panel a). Panel (b) in Fig. 7
shows that after an initial peak in pasture productivity stemming from
newly deforested pastures with a high initial productivity, q drops be-
cause of ongoing pasture degradation. Later, it increases as more and
more agents use pasture management to improve their pasture pro-
ductivity. The productivity of secondary vegetation is initially low, but
increases as the soil regenerates. The agents' savings are low at the
beginning and accumulate at the end of the simulation as many agents
have already deforested all of their area and cannot invest in more
pasture. The fraction of ranchers that adopted the semi-intensive
strategy in panel (c) of Fig. 7 increases rapidly, because they have the
possibility to borrow money for intensification. In a scenarios in which
this option is not available, they first have to accumulate the savings to
cover intensification costs, which slows down the increase. For higher
imitation rates and higher cattle prices, this fraction increases more
rapidly. Panel (d) in Fig. 7 finally shows how the produced cattle
quantity Y increases rapidly in the first 40 years. After all forest has
been converted to pasture, there is a slow decay due to pasture de-
gradation. The cattle price pc hardly changes because of the high price
elasticity.

For comparison, Fig. 8 displays the results of model simulations
with similar parameterization except for a lower imitation rate and
lower elasticity. Here, one can observe that because of the low imitation
rate, the number of ranchers with a semi-intensive strategy increases
only slowly (Fig. 8 (c)). This leads to the abandonment of degraded
pasture and an increase in secondary vegetation (Fig. 8 (a)). Further-
more, the low price elasticity of demand leads to a strong reaction of
prices to increasing production at the beginning of the simulation, as a
comparison of Figs. 7 and 8 in panels (d) illustrates. As the pastures
degrade and production goes down, the price recovers towards the
middle of the displayed simulation time. At the end of the simulation,
prices decrease again because intensification sets in and cattle pro-
duction increases. In the long run, the lower revenues lead to less
savings (Fig. 8 (b)) and thus slow down deforestation, as panel (a) in
Fig. 8 illustrates.

A formal analysis of the asymptotic dynamics of the model is diffi-
cult because the system is very heterogeneous and stochastic. Long-
term simulation results suggest that there are (quasi) stable states and
cyclic asymptotic dynamics, depending on the parameter regime. They
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are only reached after long transients (several hundred years) as an
effect of the slow forest recovery dynamics. We do not analyze them in
detail, because we are interested in deforestation, which is mainly a
transient phenomenon.

3.2. Sensitivity Analysis

Here, we present an analysis of how model results depend on spe-
cific model parameters. Several parameters are difficult to estimate due
to a lack of data and therefore a sensitivity analysis is crucial.
Parameters may also change over time and an analysis of the depen-
dence of model outcomes can illustrate how trends in external drivers of
the system might influence model outcomes. We focus our analysis on
six parameters describing costs and prices as well as the imitation
process. An exploration of further results indicates that variations of
other parameters do not lead to qualitatively different model behavior.

Price elasticity of demand and deforestation cost are crucial for the
revenues and production costs of ranchers. They have a direct influence
on the production of cattle and the rate of deforestation. A lower
elasticity inhibits the expansion of cattle production and deforestation
(Fig. 9), while higher deforestation costs slow down deforestation (see
Fig. S1 in the Supplementary Material). The former is due to a satura-
tion of the local cattle market. The effect of both parameters on in-
tensification is limited.

The four parameters imitation rate, intensification cost, limitations
to intensification credit, and teleconnection share influence the imita-
tion of strategies and therefore directly impact the speed of the spread
of the semi-intensive pasture management strategy. Fig. 10 shows how
a lower imitation rate leads to a considerably slower spread of the semi-
intensive strategy. This also leads to a lower cattle production and
deforestation. A higher intensification cost inhibits fast intensification

and thus the expansion of pasture and cattle production (Fig. S2). The
same applies for low limits to credit that a rancher can access (para-
meter kmin). If ranchers cannot access credit at all (kmin=0), the in-
tensification process is considerably slowed down (Fig. S3). Finally, the
share of teleconnections has only limited influence on the speed of in-
tensification. However, if we do not add teleconnections to the network
of neighboring ranches, some of the ranches are isolated. Therefore,
they cannot adopt the semi-intensive strategy at all. This leads to a
saturation of the intensification share below 1 (Fig. S4).

To make it more systematic, we extended the analysis to aggregate
measures of the transient model behavior. Because this study analyzes
the interaction between intensification and deforestation, we focus on
the impact of different parameter combinations on the average defor-
estation. Figs. 11 and 12 show the mean over the first 50 years after
model initialization, because this is the period in which most of the
deforestation happens (compare Figs. 7 and 8).

In Fig. 11, the average deforestation is plotted depending on the
elasticity of the cattle demand function as well as the imitation rate
(both on a log-scale). The results match with observed mean defor-
estation rates on properties ranging between 3 and 20 ha/year (own
calculations using PRODES and CAR). The figure shows that for low
imitation rates and elasticities, the average deforestation is in the
medium range of 3–4 ha/year. For low elasticity, this decreases with a
higher imitation rate, which is associated to faster intensification. For a
high elasticity of demand, this relationship is reversed: A higher imi-
tation rate increases the higher deforestation rate even further.

If there are high intensification costs and agents do not have access
to credit, the intensification under high imitation rates is hampered.
Therefore, such conditions will not result in an increase of deforestation
under high imitation rates (see Fig. S5).

We also test other parameter ranges indicated in Table 1 and find

Fig. 6. (a) Map of the study region with property limits from the environmental registry (CAR; red), municipality borders (blue) and roads (black). The data is plotted
over a satellite image of the region. The inset shows the location in Brazil (grey) and the Brazilian legal Amazon (green line). (b) Geographic neighborhood network
without teleconnections (α=0) derived from this data. Each node represents a property. The color of the nodes depicts the distribution of initial strategies. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that even though they may influence the results quantitatively, they do
not change the model outcomes in a relevant way. For instance, var-
iation of the parameter determining the relative areas that agents can
deforest preserves our main findings (see Fig. S6).

The results presented here are properties of the transient dynamics
of the system, not equilibrium or asymptotic states. Therefore, they
depend on the initial conditions of the system, especially on the initial
pasture areas, pasture productivity, and savings. We test the dynamics
for different settings of initial conditions and find for all of them that an
increase in imitation rate does not reduce deforestation rates if the price
elasticity is high.

3.3. Network Effects

Apart from the influence that certain parameters and initial condi-
tions have on the model outcome, we also investigate the influence of
the topology of the underlying neighborhood network. To account for

long-range social ties (i.e., family and friendship relations independent
of geographic distance), we test how the spreading of land-management
strategies on the social network changes if we replace a fraction of local
links by teleconnections, i.e., random links that are independent of the
spatial embedding (cp. Section 2.9).

For random initial conditions with a spatially uniform distribution,
the spreading does not change strongly when replacing a fraction α of
local connections with teleconnections. With initial conditions for
which ranches with semi-intensive strategies are spatially concentrated
(e.g., around local cities or main roads), the additional teleconnections
accelerate the spreading of the strategies considerably. Under para-
meter settings where the semi-intensive strategy is favored, the in-
tensification process is therefore accelerated by the introduction of
teleconnections.

Fig. 12 displays the average deforestation rate depending on the
share of teleconnections in the network and the imitation rate. For
medium imitation rates, the influence of the teleconnection share on
the deforestation outcome is small compared to other effects in the
model. The figure suggests that adding teleconnections has the same
effect as slightly rescaling the imitation rate.

In addition to the network construction as described in Section 2.9,
we also test a method for network construction that links nodes with a
probability that decays exponentially with distance (Waxman, 1988).
This results in changes in the network structure because the threshold
on the distance is replaced by a characteristic length for the decay. It
has only very limited effect on model outcomes and does not change

Fig. 7. Mean state variables of agents on the geographic network depicted in
Fig. 6 with high imitation rate (λ=1), high elasticity (ε=100), and some
teleconnections in the social network (α=0.02): (a) mean areas (forest, pas-
ture, secondary vegetation), (b) mean pasture productivity, soil quality on
secondary vegetation areas, and savings, (c) intensification: ratio of ranches
with the semi-intensive strategy (red nodes in Fig. 6), and (d) price and quantity
of produced cattle. The thick lines are the respective ensemble median of a
sample of 1000 model runs with different realizations of the stochastic pro-
cesses in the model and the shaded areas around them indicate the 5th to 95th
percentile of the distribution of model outcomes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web ver-
sion of this article.)

Fig. 8. Mean state variables of agents on the geographic network (Fig. 6) but
with lower imitation rate (λ=0.1) and elasticity (ε=1). The shown variables
are the same as in Fig. 7.
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them in a relevant way.

4. Discussion

The model analysis above showed that already a stylized model
including a few feedbacks and representing the heterogeneity of agents
yields rich non-linear dynamics. The model design implies that only
price effects, limited access to credit, high costs for investments, and
constraints on decision making impede total deforestation in the abacra
model. For these assumptions, we find that deforestation can only be
curbed by intensification if price elasticity of demand in the model is
high and the cattle market saturates at some point.

The elasticity in the model can be interpreted as a measure of in-
tegration of the local cattle market into national or international mar-
kets. With ongoing globalization and building of infrastructure in the
Amazon (de Toledo et al., 2017), the elasticity of demand for local
markets rises such that markets will not easily saturate.

Especially with the pavement of the BR-163 highway, our example

region around Novo Progresso is increasingly well accessible and con-
nected to the rest of Brazil (Fearnside, 2007). Therefore, a high degree
of integration of the local cattle market into national and international
markets is probable (Gollnow et al., 2018). In our model, this is re-
presented by a high elasticity of demand approximating a purely price-
taking supply side. However, there may be differences also within the
region, for example regarding the accessibility of properties far away
from the highway (Weinhold and Reis, 2008).

We can similarly interpret the share of teleconnections in the net-
work: with ongoing technical progress, the interaction between ran-
chers that are not located in the same neighborhood will increase. The
model results suggest that this only has a minor effect on the defor-
estation outcomes. Furthermore, if the costs for intensification are high,
limitations on credit hamper the increase of deforestation in the model.
This may reflect the success of policies limiting access to agricultural
credit in municipalities with high deforestation rates (Assunção et al.,
2013).

The model analysis indicates that the exact trajectories depend on

Fig. 9. Sensitivities for variations of the price elasticity of demand ε. Fig. 10. Sensitivities for variations of the imitation rate λ.
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the parameterization of the implemented decision processes and initial
conditions. The decision rules used in this model are derived from a
survey of the literature and are tuned to reproduce observed land-use
patterns in the region. However, there are no empirical studies on the
motives, goals and decision procedures of agents, which makes it dif-
ficult to construct sound decision functions. Further research in this
direction is needed to improve the validity of model results, especially
the collection of evidence on how agents in frontier regions make de-
cisions about land use. Furthermore, there often remain many in-
determinacies when deriving decision rules from empirical observa-
tions even if plenty of data is available. This gap can be bridged by
comparing different decision making strategies of agents in a model
with empirical data, for instance using inter-temporal or myopic opti-
mization, satisficing, and individual learning approaches. Separating
between single intensification practices and techniques would further-
more result in a characterization of intensification as a continuous
process, helping to answer for instance the question which level of in-
tensification would be individually and socially optimal.

To date, intensification of cattle ranching in the Amazon is slow
(Sparovek et al., 2018). Especially in remote areas, there is limited
access to transportation infrastructure, energy, and labor. Furthermore,

the land tenure system and land market play an important role for
deforestation dynamics because deforestation is a means for agents to
lay claim to land and later get land titles through regularization pro-
cesses (Barretto et al., 2013; Sparovek et al., 2015). This can make
deforestation a speculative investment. We did not account for these
factors in the abacra model, but future extensions focusing on any of
these issues could be used to investigate their interplay with in-
tensification further.

The adoption of intensification techniques for cattle production also
generates new environmental problems not captured in our model.
Intensified systems are associated with heavy nitrogen pollution, water
usage, and soil depletion (Tilman et al., 2011). Including such impacts
into the model would allow analyzing the environmental trade-offs
between intensified and extensive cattle production further. The aim of
such modeling could be to identify agricultural practices that are both
economically viable and sustainable over long time scales.

In the past, Brazilian conservation policies like the extension of legal
reserves from 50 to 80% of private lands in 1996 (Alston and Mueller,
2007) and the monitoring and sanctioning of deforestation activities
have reduced deforestation considerably (Nepstad et al., 2014). But
current legislation provides low incentives for full compliance with the
law, especially regarding reforestation (Azevedo et al., 2017). The in-
ternationalization of agricultural commodity markets increased pres-
sure on producers to comply with environmental legislation (Nepstad
et al., 2006). This resulted in industry initiatives to monitor compliance
such as the zero-deforestation agreement from 2009 (Gibbs et al.,
2016). However, recent research shows that the positive effect of the
zero-deforestation agreement is undermined by leakage effects (“cattle
laundering” Alix-Garcia and Gibbs, 2017; Klingler et al., 2018). To ef-
fectively exclude violators of environmental law from the beef supply
chain, monitoring of the entire life cycle of cattle would be necessary.

Measures to foster land-use intensification have been debated as an
alternative anti-deforestation policy. However, as Merry and Soares-
Filho (2017) convincingly argued, intensification policies alone will not
lead to better conservation outcomes, i.e., less deforestation. In-
tensification is rather the result of effective conservation policies. This
is consistent with our model results for well integrated markets. Given
the model results in this study and despite the limitations of our model,
we conclude that anti-deforestation policies only aiming at in-
tensification of cattle ranching will not have the desired result if they
are not accompanied by measures that limit the agents' access to new
land. Policies aiming to increase intensification cannot replace con-
servation policies.

An important issue for the design of future anti-deforestation po-
licies is the huge heterogeneity of actors in frontier development. The
roles of various types of agents with respect to deforestation outcomes
changes as a response to new policy implementations and their effec-
tiveness. Recent studies comparing the contributions of small-holders
and large land-owners found opposing trends, depending on the time
and location they focused on (Godar et al., 2014, 2012; Richards and
VanWey, 2015). For example, large-scale ranchers, who drive land
concentration in more consolidated areas, are susceptible to other in-
centives than small-holders in remote areas, mainly involved in sub-
sistence farming. To investigate the different effect of intensification
policies and economic drivers on this heterogeneity of agents is a
challenge for future modeling studies.

In general, development and environmental policies for the Amazon
have to face the various trade-offs between social and environmental
issues (de Toledo et al., 2017). Cattle ranching remains an important
source of income for land holders in the Amazon. As the demand for
cattle products is increasing world-wide (Thornton, 2010), ranching
provides an economic perspective for the region. Policies have to
guarantee that local incomes are maintained or increased while con-
serving the ecosystems. Therefore, it is essential that they can anticipate
the multiple feedbacks in the system that could undermine the effec-
tiveness of policies. It remains an open question how cattle ranching in

Fig. 11. Average deforestation per year and property in dependence on price
elasticity and imitation rate. Parameters are given in Table 1 and the initial
conditions are based on deforested areas in the study area by 2000. The dis-
played values are the ensemble median over 100 runs.

Fig. 12. Average deforestation per year and property in dependence on tele-
connection share α and imitation rate λ. Parameters as in Table 1 with ε=100.
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the Amazon will become an environmentally and socially sustainable
economic activity in the long term, with or without intensification.

5. Conclusion

This study presents and analyzes a new agent-based model that
conceptualizes the intensification of cattle ranching as a socially
mediated process. With this approach, we shed light on the interplay
between ecological dynamics, economic conditions, decision making of
agents, and interactions on a social network. We show how even from
very stylized assumptions about these dynamics, a rich non-linear be-
havior arises at the system level, which can be explained by the various
feedback loops between them. We use recent data sets on land prop-
erties (CAR) and deforestation (PRODES) in a frontier region to de-
monstrate the model dynamics for specific initializations and para-
meterizations.

In particular, we highlight the effect of the imitation rate and price
elasticity of demand for cattle. We show that higher imitation rates,
which lead to faster intensification, can only reduce deforestation in a
market that saturates. On the other hand, under conditions of less re-
sponsive prices, faster intensification can even lead to higher defor-
estation. Our model shows these effects on a regional scale but similar
rebound effects have been discussed for the global food system (Lambin
and Meyfroidt, 2011).

The model presented here is only a first step towards including local
social interaction into models of land-use change in the context of
tropical deforestation. Future work with agent-based models could
focus on evaluating the effectiveness and resilience of anti-deforestation
policies accounting for heterogeneities of actors in the deforestation
process (Godar et al., 2014). Agent-based models are a powerful tool for

such analyses because they can represent heterogeneities and account
for the various feedbacks in the system. Thereby, they might help de-
veloping an economic perspective for the region that provides im-
provements in livelihoods and at the same time reduce deforestation.
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Appendix A

Table 2
Overview of variables, symbols, and units in the model.

Variable Symbol Unit

Pasture area Pt ha
Forest area Ft ha
Secondary vegetation area St ha
Pasture productivity qt a.u.
Secondary vegetation productivity vt a.u.
Savings of rancher kt BRL
Income It BRL
Consumption Ct BRL
Deforestation dt ha/year
Abandonment at ha/year
Reuse rt ha/year
Management effort mt a.u.
Stocking rate for pasture lt Head/ha

Appendix B. Supplementary material

Supplementary material to this article can be found online at https://doi.org/10.1016/j.ecolecon.2018.12.025.
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Copan members

Philipp S. Arndt was an undergraduate summer intern at copan in
2015, analyzing the ’Great Acceleration’ time series with a focus
on the Anthropocene discussion. He is now a doctoral student at
Scripps Institution of Oceanography in San Diego and a NASA
"Future Investigator" studying meltwater systems on Antarctic ice
shelves using satellite remote sensing techniques. [Arndt et al.,
2016]

Yuki Asano did his BSc thesis at copan in 2017, building a macro
economic agent-based model that includes social dynamics. He is
now a PhD student focussing on Computer Vision at the University
of Oxford. [Asano et al., 2019]
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2019, working on multi-agent learning in social-ecological system
models. [Barfuss et al., 2020, Barfuss et al., 2019, Barfuss et al.,
2018, Barfuss et al., 2017]

Boyan Beronov collaborated with copan in 2014–2015, via his BSc
thesis in physics about causal entropy in conceptual models of
social dynamics, and as a contributor to the Pyunicorn software. He
continued with an MSc in computational science and is currently
pursuing a PhD in artificial intelligence at the University of British
Columbia, Vancouver. [Donges, J. F. and Heitzig, J. et al., 2020]

Jonathan F. Donges is a theoretical physicist and one of the speak-
ers of copan since 2013. He also leads PIK’s FutureLab on Earth
Resilience in the Anthropocene and the working group on Whole
Earth System Analysis.

Birte Ewers wrote her master’s thesis for her Economics MSc in the
copan group. Her topic focused on divestment from fossil fuels and
agent-based modeling. She is currently working at the Institute for
Energy and Environmental Research (ifeu) in Heidelberg. [Ewers, B.
and Donges, J. F. et al., 2019]

Fabian Geier did his physics master thesis with copan working on
opinion formation on multi-layer complex networks in 2016. He
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went on to become a data scientist and software developer at the
consulting company Ramboll. [Geier et al., 2019]

Luzie Helfmann is a PhD student at FU Berlin and in the copan
group. She is developing methods for the analysis of tipping dy-
namics in high-dimensional agent-based models. [Helfmann et al.,
2021, Helfmann et al., 2020]

Jobst Heitzig is a mathematician and one of the speakers of copan
since 2013. He also leads PIK’s FutureLab on Game Theory and
Networks of Interacting Agents.

Tanja Holstein did her physics master’s thesis in copan in 2019,
working on a model of diffusively coupled socio-ecological resource
exploitation networks. She is now a PhD student in virus bioinfor-
matics at the Bundesanstalt für Materialforschung und -Prüfung
and Ghent University. [Holstein et al., 2021]

Johannes Kassel finished his physics master’s thesis in copan in
2019, studying a network model for human behavioural changes.
Afterwards he started a PhD under the supervision of Holger Kantz
at MPI PKS in Dresden. [Donges, J. F. and Heitzig, J. et al., 2020]

Tim Kittel did his PhD on the analysis of socio-ecological models
at the copan group at PIK. After an intermezzo as entrepreneur he
is now a project manager at one of the leading North-European
software consultancies. [Kittel et al., 2017a, Kittel et al., 2017b]

Niklas Kitzmann is a PhD student in the copan group since 2019.
His research focuses on exploring network-based approaches to
social tipping points, for example in the spread of sustainability
innovations between cities. [Donges, J. F. and Lochner, J. et al., 2021]

Ann Kristin Klose did her environmental modelling bachelor’s as
well as master’s thesis in copan in 2017 and 2019–2020, exploring
the dynamics of interacting tipping elements in the climate system.
[Klose et al., 2020]

Rebekka Koch did an internship at copan in 2016 during which
she worked on automizing the Topology of Sustainable Manage-
ment framework. Since 2019, she is a PhD student in theoretical
condensed matter physics at the University of Amsterdam. [Kittel
et al., 2017b]

Jakob Kolb wrote his dissertation in theoretical physics as part of
copan and defended it successfully in 2020, studying agent-based
modelling and analytic approximations of heuristic decision-
making in socio-economic systems. [Kolb et al., 2020, Donges, J.
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F. and Heitzig, J. et al., 2020, Asano et al., 2019, Müller-Hansen
et al., 2017b]

Till Kolster wrote his master’s thesis on the development of an
agent-based migration model in the copan group in 2017/18. He is
now doing his PhD at Siemens and TU Darmstadt on the topic of
increasing the german transmission grid’s efficiency to integrate
more renewables into our energy system. [Donges, J. F. and Heitzig,
J. et al., 2020]

Jonathan Krönke did his physics master’s thesis in copan in 2019

working on modeling and simulation of tipping cascades on com-
plex networks. Since then, he started working as a software de-
veloper. [Wunderling et al., 2021, Krönke et al., 2020, Wunderling
et al., 2020d]

Jakob Lochner did his physics master’s thesis in copan in 2019 in
which he investigated social contagion dynamics based on empir-
ical network data and stochastic process modeling. [Donges, J. F.
and Lochner, J. et al., 2021]

Wolfgang Lucht is co-head of PIK’s Research Department on Earth
System Analysis and the main initiator and founder of the copan
idea.

Finn Müller-Hansen wrote his dissertation in theoretical physics as
part of copan , analyzing deforestation in the Amazon with complex
networks and agent-based modeling. After completing his PhD in
2018, he joined MCC Berlin as a postdoctoral researcher and now
uses natural language processing and network analysis to better
understand climate politics. [Müller-Hansen et al., 2019, Müller-
Hansen et al., 2017b, Müller-Hansen et al., 2017a]

Jan Nitzbon wrote his master’s thesis in physics with copan be-
tween 2015 and 2016 in which he explored pathways of global
human-nature coevolution using the copan:GLOBAL model. He has
recently obtained his PhD in geography for a thesis investigating
permafrost degradation under climate warming using numerical
modelling. [Nitzbon et al., 2017]

Ilona M. Otto worked as a post-doctoral researcher in copan from
2015 to 2020. She is currently working as a Professor for Societal
Impacts of Climate Change and leading a research group Social
Complexity and System Transformation at the Wegener Center for
Climate and Global Change, University of Graz, Austria.

Erik Scharwächter did his computer science master’s thesis in co-
pan in 2015, where he studied and developed algorithms to learn
evolution rules for social networks. [Scharwächter et al., 2016]
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Antonia Schuster is interested in socio-metabolic classes and their
mapping to different levels of human agency to improve our under-
standing of social complexities. As a doctoral researcher, she is part
of the copan group since 2020. [Schuster and Otto, 2021]

Felix Strnad did his physics master’s thesis in copan in 2019 in
which he dealt with the coupling of deep reinforcement learning
and World-Earth modeling. Since September 2020, he works as a
PhD student at the International Max Planck Research School for
Intelligent Systems (IMPRS-IS) in Tübingen. [Strnad et al., 2019]

Benedikt Stumpf did his master’s thesis in physics in copan in
2018/2019, working on critical thresholds of tipping cascades on
complex networks. He is currently working as a teacher for physics,
history and political education. [Krönke et al., 2020, Wunderling
et al., 2020d]

Lea Tamberg wrote her Bachelor’s thesis in systems science in
copan in 2020, investigating the effects of no-growth policies on the
copan:GLOBAL model. She is currently pursuing a Master’s degree
in Data Science at ETH Zurich. [Tamberg et al., 2020]

Marc Wiedermann did his physics master’s thesis with copan in
2014, developing a socio-ecological model of coevolutionary net-
work dynamics. After his PhD he re-joined copan as a PostDoc in
2017, working on low-dimensional models for social tipping pro-
cesses in response to anticipated and experienced climate impacts.

Ricarda Winkelmann, Professor of Climate System Analysis at PIK
and University of Potsdam, is an associated member of copan ,
working closely together with Jonathan Donges, Jobst Heitzig and
others on interacting tipping elements in the Earth system.

Valentin Wohlfarth did his physics master’s thesis in copan 2020-
2021, working on tipping cascades on the international trade net-
work and the effects of network structures on tipping dynamics.
[Wunderling et al., 2021]

Nico Wunderling did his PhD thesis in copan from 2017–2021,
working on the the emergence of tipping cascades among cli-
mate tipping elements under global warming. [Wunderling et al.,
2021, Wunderling et al., 2020a, Wunderling et al., 2020b, Wunder-
ling et al., 2020c, Wunderling et al., 2020d, Wunderling et al., 2020e]

Furthermore, Sara Ansari, Sabine Auer, Reik Donner, Vera Heck,
Sarah Hiller, Volker Karle, Jan Kohler, Paul Müller and Kilian Zim-
merer have contributed to a number of further copan publications
[Heitzig and Hiller, 2020, Müller et al., 2020, Ansari et al., 2021].



Copan software

Abacra-Model An agent-based Amazonian cattle ranching model.
https://github.com/fmhansen/abacra. [Müller-Hansen et al., 2019]

CyExploit A cython / python implementation of the copan:EXPLOIT
model. https://github.com/wbarfuss/cyexploit. [Wiedermann
et al., 2015, Barfuss et al., 2017]

EvoMine Algorithm for mining frequently occurring graph evolu-
tion rules. https://hpi.de/mueller/evomine.html. [Scharwächter
et al., 2016]

PyCascades Python framework for simulating tipping cascades on
complex networks. https://github.com/pik-copan/pycascades/
tree/v1.0. [Wunderling et al., 2021]

PyCopanBehave A python implementation of copan:BEHAVE
model. https://github.com/pik-copan/pycopanbehave. [Schleuss-
ner, C. F. and Donges, J. F. et al., 2016]

PyCopanCore A reference implementation of the copan:CORE
open World-Earth modelling framework. https://github.com/
pik-copan/pycopancore. [Donges, J. F. and Heitzig, J. et al., 2020]

PyCopanPbcc Python scripts for modelling collateral transgres-
sion of planetary boundaries. https://github.com/pik-copan/
pycopanpbcc. [Heck et al., 2016]

PyDRLinWESM A package for using Deep Reinforcement Learn-
ing within World-Earth Models to discover sustainable manage-
ment strategies. https://github.com/fstrnad/pyDRLinWESM. [Str-
nad et al., 2019]

PyMofa A collection of simple functions to run and evaluate com-
puter models systematically. https://github.com/jakobkolb/
pymofa. [Barfuss, 2019]

PyRegimeShifts Python scripts for detecting regime shifts in paleo-
climate time series. https://github.com/pik-copan/pyregimeshifts.
[Donges et al., 2015a]
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PyTPT Implementation of Transition Path Theory for: station-
ary Markov chains, periodically varying Markov chains and time-
inhomogenous Markov chains over finite time intervals. https:
//github.com/LuzieH/pytpt. [Helfmann et al., 2020]

PyUnicorn Python modules for complex network and nonlinear
time series analysis. https://github.com/pik-copan/pyunicorn.
[Donges et al., 2015b]

PyViability A library for computations related to viability theory,
in particular the viability kernel and the capture basin, and for the
classifications of models with respect to the Topology of Sustainable
Management. https://github.com/timkittel/PyViability. [Kittel
et al., 2017b]

https://github.com/LuzieH/pytpt
https://github.com/LuzieH/pytpt
https://github.com/pik-copan/pyunicorn
https://github.com/timkittel/PyViability


Copan references

[Arndt et al., 2016] Arndt, P. S., Donges, J. F., and Heitzig, J. (2016).
The Great Acceleration: timing a high-potential candidate for
responsibly defining the onset of the Anthropocene. (in review).

[Asano et al., 2019] Asano, Y. M., Kolb, J. J., Heitzig, J., and Doyne
Farmer, J. (2019). Emergent inequality and endogenous dynam-
ics in a simple behavioral macroeconomic model. Proceedings of
the National Academy of Sciences of the United States of America, in
press (arXiv:1907.02155).

[Auer et al., 2015] Auer, S., Heitzig, J., Kornek, U., Schöll, E., and
Kurths, J. (2015). The Dynamics of Coalition Formation on
Complex Networks. Scientific Reports, 5:1–8.

[Barfuss, 2019] Barfuss, W. (2019). Learning dynamics and decision
paradigms in social-ecological dilemmas. PhD thesis, Humboldt-
Universität zu Berlin, Mathematisch-Naturwissenschaftliche
Fakultät.

[Barfuss et al., 2017] Barfuss, W., Donges, F. J., Wiedermann, M.,
and Lucht, W. (2017). Sustainable use of renewable resources in
a stylized social-ecological network model under heterogeneous
resource distribution. Earth System Dynamics, 8(2):255–264.

[Barfuss et al., 2019] Barfuss, W., Donges, J. F., and Kurths, J.
(2019). Deterministic limit of temporal difference reinforcement
learning for stochastic games. Physical Review E, 99(4):1–16.

[Barfuss et al., 2018] Barfuss, W., Donges, J. F., Lade, S. J., and
Kurths, J. (2018). When optimization for governing human-
environment tipping elements is neither sustainable nor safe.
Nature Communications, 9(1):1–10.

[Barfuss et al., 2020] Barfuss, W., Donges, J. F., Vasconcelos, V. V.,
Kurths, J., and Levin, S. A. (2020). Caring for the future can turn
tragedy into comedy for long-term collective action under risk
of collapse. Proceedings of the National Academy of Sciences of the
United States of America, 117(23):12915–12922.

[Donges and Barfuss, 2017] Donges, J. F. and Barfuss, W. (2017).
From Math to Metaphors and Back Again Social-Ecological Re-
silience from a Multi-Agent-Environment Perspective Jonathan.
GAIA, 26:182–190.



504 world-earth dynamics in the anthropocene: a copan reader 2013–2021

[Donges et al., 2015a] Donges, J. F., Donner, R. V., Marwan, N.,
Breitenbach, S. F., Rehfeld, K., and Kurths, J. (2015a). Non-linear
regime shifts in Holocene Asian monsoon variability: Potential
impacts on cultural change and migratory patterns. Climate of the
Past, 11(5):709–741.

[Donges et al., 2015b] Donges, J. F., Heitzig, J., Beronov, B., Wieder-
mann, M., Runge, J., Feng, Q. Y., Tupikina, L., Stolbova, V., Don-
ner, R. V., Marwan, N., Dijkstra, H. A., and Kurths, J. (2015b).
Unified functional network and nonlinear time series analysis for
complex systems science: The pyunicorn package. Chaos, 25(11).

[Donges et al., 2018] Donges, J. F., Lucht, W., Heitzig, J., Barfuss,
W., Cornell, S. E., Lade, S. J., and Schlüter, M. (2018). Tax-
onomies for structuring models for World-Earth system analysis
of the Anthropocene: subsystems, their interactions and social-
ecological feedback loops. Earth System Dynamics Discussions,
2018:1–30.

[Donges et al., 2017] Donges, J. F., Lucht, W., Müller-Hansen, F.,
and Steffen, W. (2017). The technosphere in Earth System anal-
ysis: A coevolutionary perspective. The Anthropocene ReviewAn-
thropocene Review, 4(1):23–33.

[Donges et al., 2016] Donges, J. F., Schleussner, C. F., Siegmund,
J. F., and Donner, R. V. (2016). Event coincidence analysis for
quantifying statistical interrelationships between event time
series: On the role of flood events as triggers of epidemic out-
breaks. The European Physical Journal: Special Topics, 225(3):471–
487.

[Donges, J. F. and Heitzig, J. et al., 2020] Donges, J. F. and Heitzig,
J., Barfuss, W., Wiedermann, M., Kassel, J. A., Kittel, T., Kolb,
J. J., Kolster, T., Müller-Hansen, F., Otto, I. M., Zimmerer, K. B.,
and Lucht, W. (2020). Earth system modeling with endogenous
and dynamic human societies: The copan:CORE open World-
Earth modeling framework. Earth System Dynamics, 11(2):395–
413.

[Donges, J. F. and Lochner, J. et al., 2021] Donges, J. F. and Lochner,
J., Heitzig, J., Kitzmann, N., Lehmann, S., Wiedermann, M.,
and Vollmer, J. (2021). Dose-response function approach for
detecting spreading processes in temporal network data. arXiv,
(id:2103.09496).

[Donges, J. F. and Winkelmann, R. et al., 2017] Donges, J. F. and
Winkelmann, R., Lucht, W., Cornell, S. E., Dyke, J. G., Rock-
ström, J., Heitzig, J., and Schellnhuber, H. J. (2017). Closing the
loop: Reconnecting human dynamics to Earth System science.
Anthropocene Review, 4(2):151–157.

[Ewers, B. and Donges, J. F. et al., 2019] Ewers, B. and Donges, J.
F., Heitzig, J., and Peterson, S. (2019). Divestment may burst



COPAN REFERENCES 505

the carbon bubble if investors’ beliefs tip to anticipating strong
future climate policy. arXiv, (id:1902.07481).

[Geier et al., 2019] Geier, F., Barfuss, W., Wiedermann, M., Kurths,
J., and Donges, J. F. (2019). The physics of governance networks:
critical transitions in contagion dynamics on multilayer adaptive
networks with application to the sustainable use of renewable
resources. European Physical Journal: Special Topics, 228(11):2357–
2369.

[Heck et al., 2016] Heck, V., Donges, J. F., and Lucht, W. (2016).
Collateral transgression of planetary boundaries due to climate
engineering by terrestrial carbon dioxide removal. Earth System
Dynamics, 7(4):783–796.

[Heitzig et al., 2018] Heitzig, J., Barfuss, W., and Donges, J. F.
(2018). A thought experiment on sustainable management of
the earth system. Sustainability, 10(6):1–25.

[Heitzig and Hiller, 2020] Heitzig, J. and Hiller, S. (2020). Degrees
of individual and groupwise backward and forward responsibil-
ity in extensive-form games with ambiguity, and their applica-
tion to social choice problems. arXiv, (id:2007.07352).

[Heitzig et al., 2016] Heitzig, J., Kittel, T., Donges, J. F., and
Molkenthin, N. (2016). Topology of sustainable management
of dynamical systems with desirable states: From defining plan-
etary boundaries to safe operating spaces in the Earth system.
Earth System Dynamics, 7(1):21–50.

[Heitzig and Kornek, 2018] Heitzig, J. and Kornek, U. (2018).
Bottom-up linking of carbon markets under far-sighted cap coor-
dination and reversibility. Nature Climate Change, 8(3):204–209.

[Helfmann et al., 2021] Helfmann, L., Conrad, N. D., Djurdjevac,
A., Winkelmann, S., and Schütte, C. (2021). From Interacting
Agents To Density-Based Modeling With Stochastic Pdes. Com-
munications in Applied Mathematics and Computational Science,
16(1):1–32.

[Helfmann et al., 2020] Helfmann, L., Ribera Borrell, E., Schütte,
C., and Koltai, P. (2020). Extending Transition Path Theory: Pe-
riodically Driven and Finite-Time Dynamics. Journal of Nonlinear
Science, 30(6):3321–3366.

[Holstein et al., 2021] Holstein, T., Wiedermann, M., and Kurths,
J. (2021). Optimization of coupling and global collapse in diffu-
sively coupled socio-ecological resource exploitation networks.
New Journal of Physics, 23(3):033027.

[Kittel et al., 2017a] Kittel, T., Heitzig, J., Webster, K., and Kurths,
J. (2017a). Timing of transients: Quantifying reaching times and
transient behavior in complex systems. New Journal of Physics,
19(8).



506 world-earth dynamics in the anthropocene: a copan reader 2013–2021

[Kittel et al., 2017b] Kittel, T., Müller-Hansen, F., Koch, R., Heitzig,
J., Deffuant, G., Mathias, J.-D., and Kurths, J. (2017b). From lakes
and glades to viability algorithms: Automatic classification of
system states according to the Topology of Sustainable Manage-
ment. arXiv, (id:1706.04542).

[Klamser et al., 2017] Klamser, P. P., Wiedermann, M., Donges, J. F.,
and Donner, R. V. (2017). Zealotry effects on opinion dynamics
in the adaptive voter model. Physical Review E, 96(5).

[Klose et al., 2020] Klose, A. K., Karle, V., Winkelmann, R., and
Donges, J. F. (2020). Emergence of cascading dynamics in in-
teracting tipping elements of ecology and climate. Royal Society
Open Science, 7(6):200599.

[Kolb et al., 2020] Kolb, J. J., Müller-Hansen, F., Kurths, J., and
Heitzig, J. (2020). Macroscopic approximation methods for the
analysis of adaptive networked agent-based models: Example of
a two-sector investment model. Physical Review E, 102(4).

[Krönke et al., 2020] Krönke, J., Wunderling, N., Winkelmann, R.,
Staal, A., Stumpf, B., Tuinenburg, O. A., and Donges, J. F. (2020).
Dynamics of tipping cascades on complex networks. Physical
Review E, 101(4):1–19.

[Müller et al., 2020] Müller, P. M., Heitzig, J., Kurths, J., Lüdge, K.,
and Wiedermann, M. (2020). Anticipation-induced social tipping
- Can the environment be stabilised by social dynamics? Euro-
pean Physical Journal: Special Topics, in press(arXiv:2012.01977).

[Müller-Hansen et al., 2017a] Müller-Hansen, F., Cardoso, M. F.,
Dalla-Nora, E. L., Donges, J. F., Heitzig, J., Kurths, J., and Thon-
icke, K. (2017a). A matrix clustering method to explore patterns
of land-cover transitions in satellite-derived maps of the Brazil-
ian Amazon. Nonlinear Processes in Geophysics, 24(1):113–123.

[Müller-Hansen et al., 2019] Müller-Hansen, F., Heitzig, J., Donges,
J. F., Cardoso, M. F., Dalla-Nora, E. L., Andrade, P., Kurths, J.,
and Thonicke, K. (2019). Can Intensification of Cattle Ranching
Reduce Deforestation in the Amazon? Insights From an Agent-
based Social-Ecological Model. Ecological Economics, 159:198–211.

[Müller-Hansen et al., 2017b] Müller-Hansen, F., Schlüter, M., Mäs,
M., Donges, J. F., Kolb, J. J., Thonicke, K., and Heitzig, J. (2017b).
Towards representing human behavior and decision making
in Earth system models - An overview of techniques and ap-
proaches. Earth System Dynamics, 8(4):977–1007.

[Nitzbon et al., 2017] Nitzbon, J., Heitzig, J., and Parlitz, U. (2017).
Sustainability, collapse and oscillations in a simple World-Earth
model. Environmental Research Letters, 12(7).

[Otto et al., 2015] Otto, I. M., Biewald, A., Coumou, D., Feulner, G.,
Köhler, C., Nocke, T., Blok, A., Gröber, A., Selchow, S., Tyfield,



COPAN REFERENCES 507

D., Volkmer, I., Schellnhuber, H. J., and Beck, U. (2015). Socio-
economic data for global environmental change research. Nature
Climate Change, 5(6):503–506.

[Otto et al., 2020a] Otto, I. M., Donges, J. F., Cremades, R.,
Bhowmik, A., Hewitt, R. J., Lucht, W., Rockström, J., Aller-
berger, F., McCaffrey, M., Doe, S. S., Lenferna, A., Morán, N.,
van Vuuren, D. P., and Schellnhuber, H. J. (2020a). Social tipping
dynamics for stabilizing Earth’s climate by 2050. Proceedings
of the National Academy of Sciences of the United States of America,
117(5):2354–2365.

[Otto et al., 2019] Otto, I. M., Kim, K. M., Dubrovsky, N., and
Lucht, W. (2019). Shift the focus from the super-poor to the
super-rich. Nature Climate Change, 9(2):82–84.

[Otto et al., 2020b] Otto, I. M., Wiedermann, M., Cremades, R.,
Donges, J. F., Auer, C., and Lucht, W. (2020b). Human agency in
the Anthropocene. Ecological Economics, 167.

[Scharwächter et al., 2016] Scharwächter, E., Müller, E., Donges, J.,
Hassani, M., and Seidl, T. (2016). Detecting change processes in
dynamic networks by frequent graph evolution rule mining. In
2016 IEEE 16th International Conference on Data Mining (ICDM),
pages 1191–1196.

[Schleussner et al., 2016] Schleussner, C. F., Donges, J. F., Donner,
R. V., and Schellnhuber, H. J. (2016). Armed-conflict risks en-
hanced by climate-related disasters in ethnically fractionalized
countries. Proceedings of the National Academy of Sciences of the
United States of America, 113(33):9216–9221.

[Schleussner, C. F. and Donges, J. F. et al., 2016] Schleussner, C. F.
and Donges, J. F., Engemann, D. A., and Levermann, A. (2016).
Clustered marginalization of minorities during social transitions
induced by co-evolution of behaviour and network structure.
Scientific Reports, 6(1):30790.

[Schuster and Otto, 2021] Schuster, A. and Otto, I. M. (2021). Socio-
metabolic class conflicts in the Anthropocene: Developing a
novel class theory based on German population data. Capitalism
Nature Socialism, in press.

[Strnad et al., 2019] Strnad, F. M., Barfuss, W., Donges, J. F., and
Heitzig, J. (2019). Deep reinforcement learning in World-Earth
system models to discover sustainable management strategies.
Chaos, 29(12):123122.

[Tamberg et al., 2020] Tamberg, L. A., Heitzig, J., and Donges, J. F.
(2020). A modeler’s guide to studying the resilience of social-
technical-environmental systems. arXiv, (id:2007.05769).

[Van Kan et al., 2016] Van Kan, A., Jegminat, J., Donges, J. F.,
and Kurths, J. (2016). Constrained basin stability for studying



508 world-earth dynamics in the anthropocene: a copan reader 2013–2021

transient phenomena in dynamical systems. Physical Review E,
93(4):1–7.

[Wiedermann et al., 2015] Wiedermann, M., Donges, J. F., Heitzig,
J., Lucht, W., and Kurths, J. (2015). Macroscopic description
of complex adaptive networks co-evolving with dynamic node
states. Physical Review E - Statistical, Nonlinear, and Soft Matter
Physics, 91(5):1–11.

[Wiedermann et al., 2020] Wiedermann, M., Smith, E. K., Heitzig,
J., and Donges, J. F. (2020). A network-based microfoundation
of Granovetter’s threshold model for social tipping. Scientific
Reports, 10(1):1–10.

[Winkelmann, R. and Donges, J. F. and Smith, E. K. and Milkoreit, M. et al., 2020]
Winkelmann, R. and Donges, J. F. and Smith, E. K. and Milkoreit,
M., Eder, C., Heitzig, J., Katsanidou, A., Wiedermann, M.,
Wunderling, N., and Lenton, T. M. (2020). Social tipping
processes for sustainability: An analytical framework. arXiv,
(doi:10.2139/ssrn.3708161).

[Wunderling et al., 2020a] Wunderling, N., Donges, J., Kurths,
J., and Winkelmann, R. (2020a). Interacting tipping elements
increase risk of climate domino effects under global warming.
Earth System Dynamics Discussions, 2020(April):1–21.

[Wunderling et al., 2020b] Wunderling, N., Gelbrecht, M., Winkel-
mann, R., Kurths, J., and Donges, J. F. (2020b). Basin stability and
limit cycles in a conceptual model for climate tipping cascades.
New Journal of Physics, 22:123031.

[Wunderling et al., 2021] Wunderling, N., Krönke, J., Wohlfarth,
V., Kohler, J., Heitzig, J., Staal, A., Willner, S., Winkelmann,
R., and Donges, J. F. (2021). Modelling nonlinear dynamics
of interacting tipping elements on complex networks: the Py-
Cascades package. European Physical Journal: Special Topics, in
press(arXiv:2011.02031).

[Wunderling et al., 2020c] Wunderling, N., Staal, A., Sakschewski,
B., Hirota, M., Tuinenburg, O., Donges, J., Barbosa, H., and
Winkelmann, R. (2020c). Network dynamics of drought-induced
tipping cascades in the Amazon rainforest. Research Square,
(doi:10.21203/rs.3.rs-71039/v1).

[Wunderling et al., 2020d] Wunderling, N., Stumpf, B., Krönke, J.,
Staal, A., Tuinenburg, O. A., Winkelmann, R., and Donges, J. F.
(2020d). How motifs condition critical thresholds for tipping
cascades in complex networks: Linking micro- to macro-scales.
Chaos, 30(4):043129.

[Wunderling et al., 2020e] Wunderling, N., Willeit, M., Donges,
J. F., and Winkelmann, R. (2020e). Global warming due to loss of
large ice masses and Arctic summer sea ice. Nature Communica-
tions, 11(1).



Further References

[Ansari et al., 2021] Ansari, S., Anvari, M., Pfeffer, O., Molkenthin,
N., Hellmann, F., Heitzig, J., and Kurths, J. (2021). Moving the
epidemic tipping point through topologically targeted social
distancing. arXiv, (id:2102.09997).

[Farmer et al., 2019] Farmer, J. D., Hepburn, C., Ives, M. C., Hale,
T., Wetzer, T., Mealy, P., Rafaty, R., Srivastav, S., and Way, R.
(2019). Sensitive intervention points in the post-carbon transition.
Science, 364(6436):132–134.

[Hellmann et al., 2016] Hellmann, F., Schultz, P., Grabow, C.,
Heitzig, J., and Kurths, J. (2016). Survivability of Determinis-
tic Dynamical Systems. Scientific Reports, 6(29654):1–12.

[Holling, 1973] Holling, C. S. (1973). Resilience and stability of
ecological systems. The Future of Nature: Documents of Global
Change, 4:1–23.

[Holme and Newman, 2006] Holme, P. and Newman, M. E. (2006).
Nonequilibrium phase transition in the coevolution of networks
and opinions. Physical Review E, 74(5):1–5.

[Lade et al., 2017] Lade, S. J., Bodin, Ö., Donges, J. F., Kautsky,
E. E., Galafassi, D., Olsson, P., and Schlüter, M. (2017). Modelling
social-ecological transformations: An adaptive network proposal.
arXiv, (id:1704.06135).

[Lenton, 2020] Lenton, T. M. (2020). Tipping positive change.
Philosophical Transactions of the Royal Society B: Biological Sciences,
375(1794):20190123.

[Menck et al., 2013] Menck, P. J., Heitzig, J., Marwan, N., and
Kurths, J. (2013). How basin stability complements the linear-
stability paradigm. Nature Physics, 9(2):89–92.

[Milkoreit et al., 2018] Milkoreit, M., Hodbod, J., Baggio, J., Benes-
saiah, K., Calderón-Contreras, R., Donges, J. F., Mathias, J. D.,
Rocha, J. C., Schoon, M., and Werners, S. E. (2018). Defining
tipping points for social-ecological systems scholarship - An in-
terdisciplinary literature review. Environmental Research Letters,
13(3).



510 world-earth dynamics in the anthropocene: a copan reader 2013–2021

[Petschel-Held et al., 1999] Petschel-Held, G., Block, A., Cassel-
Gintz, M., Kropp, J., Lüdeke, M. K., Moldenhauer, O., Reusswig,
F., and Schellnhuber, H. J. (1999). Syndromes of Global Change:
A qualitative modelling approach to assist global environmental
management. Environmental Modeling and Assessment, 4(4):295–
314.

[Raworth, 2017] Raworth, K. (2017). A Doughnut for the Anthro-
pocene: humanity’s compass in the 21st century. The Lancet
Planetary Health, 1(2):e48–e49.

[Rockström et al., 2017] Rockström, J., Gaffney, O., Rogelj, J., Mein-
shausen, M., Nakicenovic, N., and Schellnhuber, H. J. (2017). A
roadmap for rapid decarbonization.

[Rockström et al., 2009] Rockström, J., Steffen, W., Noone, K.,
Persson, Å., Chapin, F. S., Lambin, E., Lenton, T. M., Scheffer,
M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A.,
Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K.,
Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell,
R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richard-
son, K., Crutzen, P., and Foley, J. (2009). Planetary boundaries:
Exploring the safe operating space for humanity. Ecology and
Society, 14(2).

[Schellnhuber, 1998] Schellnhuber, H. J. (1998). Discourse: Earth
System Analysis - The Scope of the Challenge. In Earth System
Analysis, pages 3–195.

[Steffen et al., 2018] Steffen, W., Rockström, J., Richardson, K.,
Lenton, T. M., Folke, C., Liverman, D., Summerhayes, C. P.,
Barnosky, A. D., Cornell, S. E., Crucifix, M., Donges, J. F., Fet-
zer, I., Lade, S. J., Scheffer, M., Winkelmann, R., and Schellnhu-
ber, H. J. (2018). Trajectories of the Earth System in the Anthro-
pocene. Proceedings of the National Academy of Sciences of the United
States of America, 115(33):8252–8259.


	Introduction
	Conceptual foundations and making the case
	Towards a unified analytical framework
	Theoretical and methodological work
	Stability and resilience of complex social-ecological systems
	Sustainable management of complex social-ecological systems
	Dynamics of adaptive social-ecological networks
	Model simplification and approximation methods

	Analyses and studies of concrete cases and contexts
	Detecting complex social-ecological interactions in empirical data
	Special cases of socio-economic dynamics and social tipping
	Earth system analysis and planetary boundary interactions

	Copan members
	Copan software
	References

