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 13 

Abstract  14 

Perennial commodity crops, such as coffee, often play a large role globally in agricultural 15 

markets and supply chains and locally in livelihoods, poverty reduction, and biodiversity. Yet, 16 

the production of spatial information on these crops are often overlooked in favor of annual 17 

food crops. Remote sensing detection of coffee faces a particular set of challenges due to 18 

persistent cloud cover in the tropical “coffee belt,” hilly topography in coffee growing regions, 19 

diversity of coffee growing systems, and spectral similarity to other tree crops and agricultural 20 

land. Looking at the major coffee growing region in Dak Lak, Vietnam, we integrate multi-21 

temporal 10m optical Sentinel-2 and Sentinel-1 SAR data in order to map three coffee 22 

production systems: i) open-canopy sun coffee, ii) intercropped and other shaded coffee and 23 

iii) newly planted or young coffee. 24 

 25 

Leveraging Google Earth Engine (GEE), we compute five sets of features in order to best 26 

enhance separability between coffee and other land cover and within coffee production 27 

systems. The features include Sentinel-2 dry and wet season composites, Sentinel-1 texture 28 

features, Sentinel-1 spatiotemporal metrics, and topographic features. Using a random forest 29 
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classification algorithm, we produce a 9-class land cover map including our three coffee 30 

production classes and a binary coffee / non-coffee map. The binary map has an overall 31 

accuracy of 89% and the three coffee production systems have user accuracies of 65, 56, 32 

71% for sun coffee, intercropped coffee and newly planted coffee, respectively. This is a first 33 

effort at large-scale distinction of within-crop production styles and has implications across 34 

many applications. The binary coffee map can be used as a high-resolution crop mask, 35 

whereas the detailed land cover map can inform monitoring of deforestation dynamics, 36 

biodiversity, sustainability certification and implementation of climate adaptation strategies. 37 

This work offers a scalable approach to integrating optical and radar Sentinel data for 38 

production of spatially explicit agricultural information and contributes particularly to tree crop 39 

and agroforestry mapping, which often is overlooked in between agricultural and forestry 40 

sciences.  41 

 42 

Key words: agroforestry, smallholder agriculture, crop mask, Sentinel-1, Sentinel-2, data 43 

fusion, Google Earth Engine, random forest 44 

 45 

1. Introduction 46 

Tree crops contribute to food and livelihood security, poverty alleviation, agricultural Gross 47 

Domestic Product (GDP) and export earnings of tropical countries, especially commodity 48 

crops such as coffee, cocoa and rubber (Dawson et al., 2014; Ha and Shively, 2007; 49 

Läderach et al., 2017; Leakey, 2017). Over 70 tropical countries contribute to global coffee 50 

production, now over 10 million tons annually (FAO, accessed: 01-11-2020). In Vietnam, the 51 

2nd largest coffee producer worldwide, production is dominated by smallholders owning less 52 

than 2 ha farmland (Fridell, 2014). There is an increasing demand for detailed information on 53 

the spatial dynamics of such commodity tree crops to better understand deforestation 54 

drivers, sustainability certification, livelihood preservation, and how a changing climate 55 

intersects with these aspects (Hunt et al., 2020; Pham et al., 2019). However, accurately 56 

mapping coffee production systems, especially distinguishing shade or intercropped system 57 
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(e.g. multi-canopy) and young coffee, remains challenging. Our study contributes to this 58 

effort by building on applied remote sensing methods to derive cropped areas and planting 59 

styles in the coffee landscape in Dak Lak province, Vietnam. In this study, we focus on the 60 

robusta (Coffea robusta) growing region in Dak Lak, as there is a significantly less research 61 

on robusta compared to arabica (Coffea arabica), worldwide (Hunt et al., 2020; Kath et al., 62 

2020; Pham et al., 2019).  63 

 64 

Coffee in Vietnam is grown in a variety of agroecosystems. After many years of mostly sun-65 

grown coffee production systems with regional implications for reduced habitat, biodiversity 66 

and water-resource related ecosystem services, Vietnam smallholders have recently shown 67 

interest in diversification and more sustainable production, due to various economic and 68 

climatic factors (Pham et al., 2020; Thi and Chaovanapoonphol, 2014). This diversification 69 

has resulted in mixed agroforestry systems, such as intercropped plots where e.g. 70 

peppercorn, fruit and nut trees are grown in between coffee trees, or nitrogen-fixing boundary 71 

trees are planted on plot borders. In Vietnam, the focus is on “intercropping” systems, similar 72 

to terms like shade, polyculture, multi-layer canopy. These production systems all entail that 73 

multiple tree species are planted alongside coffee. These coffee production systems all have 74 

their ecosystem service benefits in micro-climate temperature regulation, water retention 75 

(through reduced evapotranspiration), increase in biodiversity and even coffee quality (De 76 

Beenhouwer et al., 2013; de Carvalho et al., 2020; Jezeer et al., 2019; Nesper et al., 2017). 77 

We are therefore motivated to not only map coffee area but to also separate coffee sub-78 

classes, including a distinction between sun and intercropped coffee as a means of 79 

investigating on-the-farm agroforestry implementation.  80 

 81 

1.1. Current Literature 82 

Accurately mapping smallholder coffee production systems, especially the intercropped 83 

coffee plots, has been challenging despite recent advances in remote sensing data and 84 

methods. This challenge is compounded in that coffee and particularly intercropped systems 85 
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are often associated with complex and diverse management practices, which influences 86 

spectral signal in various ways (Hung Anh et al., 2019; Nogueira et al., 2018). There is 87 

limited work on distinguishing coffee production systems, i.e. coffee sub-categories (Hunt et 88 

al., 2020). Only a handful of studies have distinguished shade (closed-canopy or mixed) 89 

coffee from sun coffee (open-canopy or production) at mid-resolutions, such as Landsat 90 

(Cordero‐Sancho and Sader, 2007; Kawakubo and Pérez Machado, 2016; Ortega-Huerta et 91 

al., 2012). Even fewer works distinguish coffee age classes (Chemura et al.,2017; Chemura 92 

and Mutanga, 2016). And a single work classifies multiple production systems: closed 93 

canopy, shade polyculture, sun monoculture and newly planted (sparse cover), using high 94 

resolution IKONOS imagery (Widayati et al., 2003). 95 

 96 

There are many documented challenges to mapping in coffee landscapes using remotely 97 

sensed imagery, namely: (i) diversity in size and structure of coffee fields, (ii) steep slopes 98 

and their topographic effects, (iii) wet season cloud coverage in coffee-growing tropics, and 99 

(iv) similarity in the infrared spectral signal of coffee farms and adjacent mature plantations, 100 

young plantations and agricultural land (Cordero‐Sancho and Sader, 2007; Gomez et al., 101 

2010; Kelley et al., 2018; Mukashema et al., 2014; Nogueira et al., 2018; Ortega-Huerta et 102 

al., 2012). The fusion of optical and synthetic aperture radar (SAR, specifically Sentinel-1 103 

and Sentinel-2 data) has been highlighted as particularly promising for coffee mapping (Hunt 104 

et al., 2020). Inclusion of Sentinel-1 has the main advantage that it is not restricted by cloud 105 

coverage, a common barrier during the tropical rainy season. There are a growing number of 106 

studies integrating these two data types in plantation mapping (Liu and Chen, 2019; 107 

Poortinga et al., 2019), annual crop mapping (Clerici et al., 2017; Denize et al., 2018; Jin et 108 

al., 2019; Mercier et al., 2019; Qadir and Mondal, 2020; Sun et al., 2019) and even detection 109 

of single trees outside of forests (Brandt and Stolle, 2021); however, the integration of 110 

Sentinel-1 and 2 data has not yet been applied to coffee production systems.  111 

 112 
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Along the same line of fusion of multiple satellite data, the integration of multiple remote 113 

sensing derived feature types (e.g. not only spectral, but including texture, weather 114 

indicators, topographic) has also been shown to be beneficial in heterogenous agricultural 115 

and coffee mapping (Gomez et al., 2010; Hunt et al., 2020; Kelley et al., 2018). Most 116 

commonly, topographic information is regularly included in many coffee mapping studies 117 

(Cordero ‐Sancho and Sad            t 118 

al., 2014), which can be attributed to coffee’s suitability at higher elevations (DaMatta et al., 119 

2007). Precipitation or temperature features (Cordero ‐Sancho and Sader, 2007; Kelley et 120 

al., 2018) and texture features (Gaertner, 2017; Gomez et al., 2010; Tsai and Chen, 2017) 121 

are rapidly becoming key in difficult-to-map coffee regions. Studies that include texture 122 

features often use high-resolution proprietary data such as WorldView (Gaertner, 2017) or 123 

Quickbird (Gomez et al., 2010), or focus on mapping or distinguishing other tree crops such 124 

as cocoa, rubber, oil palm (Burnett et al., 2019; Gao et al., 2015; Nomura and Mitchard, 125 

2018; Numbisi et al., 2019; Torbick et al., 2016). Notably, Gray Level Co-occurrence 126 

Matrices (GLCM) texture measures were derived from Sentinel-1 for cocoa mapping in 127 

Numbisi et al. (2019). Texture measures were demonstrated to have more use in SAR 128 

images compared to optical and are of added value in heterogenous landscapes (Mishra et 129 

al., 2019). 130 

 131 

We integrate Sentinel-2 optical and Sentinel-1 SAR data and generate the first map of its 132 

kind for the different coffee production systems at the plot-level in Dak Lak, Vietnam. The 133 

coffee production systems, or coffee subcategories that we target are: i) newly planted coffee 134 

(< 3 years old), ii) intercropped coffee and iii) sun (open-canopy) coffee. We build on the 135 

work of employing multiple feature types in a heterogenous smallholder landscape by 136 

employing: optical spectral features, optical derived indices (such as vegetation indices), 137 

SAR spectral and spatiotemporal features, SAR texture features, and topographic features.  138 

 139 
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 140 
Figure 1. A) The Central Highlands region, Dak Lak province, and Ea H’Leo district; B) 141 

Elevation in Dak Lak (Farr et al., 2007) and C) Land cover map of Dak Lak, MODIS-derived 142 

land cover product (Friedl & Sulla-Menashe, 2015). 143 

 144 

2. Study Area 145 

 The province of Dak Lak (with an area of ~13,000 km2) is situated in the middle of the 146 

Central Highlands, a hilly region of Vietnam (Figure 1). The southern, high-elevation border is 147 

covered by tropical evergreen forest, and the northwestern, low-elevation corner by dry 148 

deciduous forest. A large portion of the province is dominated by agricultural land: perennials 149 

such as coffee, cashew, and rubber and annual crops such as rice and cassava. The Central 150 

Highlands has been defined as an “agricultural frontier region” (Agergaard et al., 2009; 151 

Grogan et al., 2015; Meyfroidt et al., 2013; Müller and Zeller, 2002; Phuc and Tran, 152 

2014).These frontier dynamics are often connected to cash crops, perennial crops grown for 153 

the external market such as a coffee and rubber (Meyfroidt et al., 2013). In the 1990s there 154 

was a “coffee boom,” where Vietnamese farmers planted over a million hectares (10,000 155 
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km2) of coffee (De Ha and Shively, 2007). More recently there is an emerging trend of forest 156 

and annual cropland conversion for rubber plantations. 157 

 158 

The coffee phenological cycle is many ways linked to seasonal weather patterns. The 159 

Central Highlands has a dry season (December - March) and a wet (rainy) season (April - 160 

November), with first rains in mid-April or early May and lasting into November (Pham ‐161 

Thanh et al., 2020). The flowering period for coffee occurs during the dry season, where 162 

rainfall is low and evaporation is high. Because of this, farmers irrigate to start cherry 163 

formation, primarily in January and February (Amarasinghe et al., 2015; Byrareddy, 2020; 164 

Pham et al., 2020). The interactions between climate and management is a prominent 165 

process occurring in the coffee landscape in Dak Lak and the Central Highlands. 166 

 167 

3. Data and Methods 168 

We combine optical and radar satellite data to create i) a detailed land cover map of the 169 

coffee landscape (9 classes), targeting different coffee production classes and ii) a binary 170 

map of coffee/non-coffee in order to characterize the spatial distribution of where coffee is 171 

grown in Dak Lak. The model was developed on the basis of features and approaches from:  172 

(a) Jin et al., (2019),  who use multiple S1 & S2 features for crop mapping in a smallholder 173 

landscape,( b) Poortinga et al., (2019), who integrate S1, S2, and Landsat-8 composites in a 174 

tree crop landscape, and (c) Kelley et al., (2019), who map coffee using multiple data, 175 

including optical seasonal composites, as well as through region-specific consideration in a 176 

calibration phase. The more detailed land cover map can be used as a base map to examine 177 

the evolution of different land uses/covers, whereas the binary map has applications as a 178 

more traditional “crop mask.” To do this, we implement a random forest classifier in Google 179 

Earth Engine (GEE) using optical, radar and topographic data as input features and training 180 

and test data collected via Collect Earth relying on high-resolution imagery. 181 

 182 
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In order to best target such a complex target as coffee, we build our feature set and 183 

approach based on the follow ecophysiological and plot characteristics of sun, intercropped 184 

and new coffee: 185 

 186 

On separability of rubber and coffee:  187 

There are ecophysiological characteristics that can help distinguish mature rubber and sun 188 

coffee. These are differences in foliage patterns, tree density and tree height. Coffee is an 189 

evergreen tree while rubber is deciduous, losing leaves annually in the dry season. Rubber 190 

trees are planted much closer together and almost quadruple the height of a mature coffee 191 

tree (standing up to 20m tall and ~5m tall, respectively). We hypothesize that seasonal 192 

optical imagery would capture the differences in foliage, particularly in the dry season, and 193 

that S1 C-band backscatter would capture the double scatter of the coffee canopy and the 194 

soil in a less dense sun coffee plot in order to distinguish these two dominant plantation 195 

crops. 196 

 197 

Additionally, coffee and rubber have different growing patterns, i.e. coffee is almost 198 

exclusively planted in basaltic soils, often after clearing evergreen forests. Rubber, on the 199 

other hand, is found in low-lying land, less constrained by soil type, and often organized in 200 

expansive plots (very rarely in the same smallholder and ad-hoc patterns similar to coffee). 201 

This spatial pattern can help to distinguish mature rubber and sun coffee, but also cleared 202 

rubber from newly planted coffee. This hypothesis was demonstrated in part by the 203 

importance of elevation in both the calibration of our classification model at the district level 204 

in Ea H’Leo (Figure S1) and in our final land cover model at the province level of Dak Lak 205 

(Figure S1 & S2). 206 

 207 

Further, we also consider the timing of planting coffee saplings (at the beginning of the wet 208 

season), for the distinction of newly planted coffee. There are two field-level characteristics 209 

we consider to distinguish it from rubber: i) there is a checkboard-like pattern from the holes 210 
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dug for the coffee trees (particularly for sun coffee) and ii) newly planted coffee is often 211 

fertilized. We hypothesize that our GLCM texture variables could help to contextualize the 212 

surroundings of the newly planted coffee to better distinguish cleared rubber, newly planted 213 

coffee and other bare soil. We draw from nitrogen management monitoring literature to 214 

hypothesize that fertilization and soil properties associate with basaltic soils (reddish-brown) 215 

can be detected through the visible band remote sensing (Blaes et al., 2016).  216 

 217 

On the separability of sun coffee and intercropped coffee: 218 

The plot characteristics of sun and intercropped coffee differ in the following ways (non-219 

exclusively) in which they would be distinguishable with the sensors and features used in our 220 

study: i) higher moisture (less evapotranspiration) in intercropped coffee, ii) thicker canopy 221 

and ground cover (rather than bare soil), and iii) “rougher” or more textured canopy for 222 

intercropped coffee (Assefa and Gobena, 2019; Padovan et al., 2018; Siebert, 2002). 223 

Sentinel-2 swir bands and Sentinel-1 bands are both sensitive to water and would entail that 224 

intercropping has a higher reflectance and backscatter, for S2 and S1, respectively (Figure 225 

S2 & S3). S1 GLCM texture features were designed primarily with distinguishing in-plot 226 

canopy texture between the two coffee production systems. This drove our choice of window 227 

sizes (further explained in Section 3.3). 228 

 229 

3.1. Remote Sensing Data  230 

In our multi-sensor approach, three remote sensing data types – optical data, SAR data and 231 

topographic information – were integrated as predictors for the coffee classification. We used 232 

10m-60m optical Sentinel-2 (S2) Surface Reflectance (SR), 10m SAR C-band Sentinel-1 233 

(S1) Ground Range Data (GRD), and topographic Shuttle Radar Topographic Mission 234 

(SRTM) 30m DEM data, accessed on GEE platform (Copernicus, retrieved: 11-12-2019; Farr 235 

et al., 2007; Gorelick et al., 2017). It was key to include 10m resolution optical and radar in 236 

this smallholder landscape as it allows for distinguishing cropping systems at the smallholder 237 

plot-level. Additionally, SAR data added a temporally consistent data source in the cloudy 238 
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tropical and hilly region and the C-band wavelength at 5.6cm is more suitable than the L-239 

band sensor, typically used to monitor forest, due to coffee’s smaller crown size. 240 

 241 

Sentinel-2 SR images were accessed for 01 November, 2018 through 31 October, 2019 242 

covering both wet and dry seasons (Table S1, Table S2). A filter was applied to consider 243 

images with a cloudy pixel percent less than 10%, an estimated data attribute to all Sentinel 244 

scenes. This was particularly important as Sentinel cloud masks are not yet as developed as 245 

e.g. Landsat cloud masks. Using highly clouded scenes will likely result in cloud artefacts, 246 

impacting the spectral signal. 247 

 248 

Sentinel-1 GRD data were obtained for the same date range. We utilize data from vertical 249 

transmit and vertical receive (VV) and vertical transmit and horizontal receive (VH) 250 

polarization (as this is what is available in this region) and interferometric wide swath 251 

acquisition mode (Table S1, Table S2). The Copernicus S1 GRD data is already multi-looked 252 

(converted from slant range) and projected to ground level. The data made available through 253 

GEE has been pre-processed in the Sentinel Application Platform (SNAP) to apply the orbit 254 

file, perform thermal noise removal, radiometric calibration and terrain correction, using 255 

SRTM30 (ESA- S1TBX Sentinel-1 Toolbox, accessed: 05-02-2021). 256 

 257 

3.2. Reference Data & Classification Scheme 258 

Reference data refers to all point data used to parameterize, train and test the classification. 259 

These points were collected using Collect Earth (Bey et al., 2016) and Google Earth high-260 

resolution imagery from the year 2019 in two rounds: at the province level across Dak Lak, 261 

and at the sub-province district level in Ea H’Leo (see Figure 1). This data collection was 262 

facilitated by a field visit in summer 2019 where location points for different land cover 263 

classes were collected using a handheld smart device. For both sets of reference data 264 

(province and district level), we randomly sampled and labelled following the classification 265 

scheme in Figure 2. If randomly sampled points fell in between classes or in a mixed area, 266 
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they were resampled within one km for all relevant classes. Additionally, iterative 267 

opportunistic sampling was used to sample particularly from the coffee target classes and 268 

cultivated vegetation (both annual and perennial crop) classes, the classes that are most 269 

often confused with coffee (Figure 2). The Ea H’Leo set (600 points) was used to test and 270 

select a subset of features to use in the classifier at the full province level, in a calibration 271 

and feature reduction phase. The Dak Lak dataset (~1000 points) was randomly split 70/30 272 

into a train and test dataset for the random forest classifier, ensuring that at least 50 points 273 

for each of our 9 classes were part of training dataset.  274 

 275 

The reference data classification scheme was collected at the “lowest denominator,” most 276 

detailed categorical level and aggregated as needed for each of the classifications (Table 1; 277 

Bey et al., 2020). This modular scheme allowed for flexibility in re-grouping classes based on 278 

the classification needs and application. For example, we use this dataset to classify a 279 

detailed land cover map, targeting coffee sub-classes, and in a binary coffee/ non-coffee 280 

map.  281 

  282 



12 
 

Table 1. Classification scheme, with example high-resolution imagery from Google Earth 283 

imagery for the reference data (points), and how it was aggregated for the detailed land 284 

cover map and binary classification scheme. 285 

Reference 
scheme 

Detailed land 
cover scheme 

Binary 
classification 
scheme 

Reference image from 
Google Earth 

Sun coffee 
(coffee with an 
open canopy) 

sun coffee coffee 

 
Intercropped or 
other shade 
coffee 

intercropped 
coffee 

coffee 

 
Newly planted 
coffee (sparse) 

newly planted 
coffee 

coffee 

 
Other tree crop 
(including e.g. 
acacia, cashew) 

partially 
vegetated 

non-coffee 

 
Newly planted 
fruit or nut tree 
crop (sparse) 

upland crop non-coffee 

 
Upland crop upland crop non-coffee 
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Shrubland partially 
vegetated 

non-coffee 

 
Low or no 
vegetation 
(including bare 
soil) 

partially 
vegetated 

non-coffee 

 
Mature rubber 
plantation 

heavily 
vegetated or 
forested 

non-coffee 

 
Clear or young 
rubber 

upland crop non-coffee 

 
Dry deciduous 
forest 

partially 
vegetated 

non-coffee 

 
Evergreen forest heavily 

vegetated or 
forested 

non-coffee 

 
Mixed forest  heavily 

vegetated or 
forested 

non-coffee 

 



14 
 

Wet crop (rice) rice non-coffee 

 
Built built non-coffee 

 
Water water non-coffee 

 
 286 

 287 

For the detailed land cover map, we aggregated non-target (non-coffee) classes that were 288 

most often confused in the calibration phase. This includes the aggregation of dry deciduous, 289 

other tree crop, and low vegetation, where our classifier is most likely confusing the low 290 

foliage deciduous forest with low or no vegetation particularly in the dry season. For the 291 

binary coffee map, the detailed land cover labels were reclassified as coffee or non-coffee. 292 

 293 

3.3. Data Pre-processing 294 

Each scene in the Sentinel-2 Surface Reflectance series were cloud masked using the GEE 295 

implemented cloudscore algorithm and shadow masked using temporal dark outlier mask 296 

(TDOM) (Housman et al., 2018; Schmitt et al., 2019). For each cloud and shadow masked 297 

S2 scene, a stack of spectral indices was calculated and appended, creating a collection of 298 

66 scenes with the 10 reflectance bands and 13 computed indices (Table S3). This collection 299 

was then split into dry season from 01 November, 2018 to 15 April, 2019 and wet season, 300 

from 01 May to 31 October, 2019. The median values from the 44 dry season scenes and 22 301 

wet season scenes were taken to create two seasonal image stacks from the S2 data (Figure 302 
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2). Although there are many ways to composite an image, we decided for the median due to 303 

limited scenes in the wet season, where max or min values could be contaminated by cloud 304 

and cloud shadow. 305 

 306 

Our image search for the study area returned 90 ascending VV, 90 ascending VH, 60 307 

descending VV, and 60 ascending VH scenes (Table S4). An initial variable importance 308 

analysis (random forest) with the Ea H’Leo district reference set showed a consistently 309 

higher importance for descending scenes, perhaps due to topography or the different pass 310 

times of ascending and descending. A preliminary look at VV and VH backscatter also 311 

showed a more defined signal between sun and intercropped coffee for VH (Figure S3). 312 

Therefore, SAR-derived temporal statistics and texture features at the Dak Lak level were 313 

only calculated for the descending scenes for both polarizations (VV & VH). First, spectral 314 

temporal statistics were calculated for the VV descending and VH descending time series. 315 

These metrics, including median, 25th and 75th percentile and standard deviation across the 316 

time series of scenes, are often used for optical Landsat imagery in less cloudy regions, such 317 

as in Hu et al., (2018); Müller et al., (2015); Pflugmacher et al., (2019). Yet such metrics are 318 

not as effective in sparse time series, as is often the case for wet season optical data in the 319 

tropics. S1 radar data, with its cloud non-dependence and dense time series (revisits roughly 320 

~6 days) allows us to leverage the added value information that temporal statistics can offer. 321 

 322 

In addition to the S1 spectral temporal metrics, 8 Gray Level Co-occurrence Matrix (GLCM) 323 

texture variables (Haralick et al., 1973) were calculated for the median composite of the 324 

descending VH series using a 5x5 moving window, with a displacement of 1, and averaged 325 

over four spatial orientations (Figure 2). After testing moving windows of size 3, 5, and 7 in 326 

Ea H’Leo, a 5x5 pixel moving window was chosen to best capture the plot-level texture, 327 

particularly between sun and intercropped coffee. S1 SAR textural information has been 328 

shown to be particularly beneficial in heterogenous landscape (Mishra et al., 2019), 329 

distinguishing between smallholder and large-scale plantations (Oon et al., 2019), but has 330 
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also been applied for agroforestry mapping, as is done for a cocoa landscape in Numbisi et 331 

al., (2019). 332 

 333 

The S2, S1 and topography image stacks were all prepared and combined into a single stack 334 

in GEE. Although the random forest classifier has been assumed to deal well with high-335 

dimensional data, it has been shown that large numbers of correlated input features can 336 

disadvantage the minority class (Waldner et al., 2019), especially when trying to capture 337 

small proportion target classes (such as newly planted coffee). In order to reduce the 67 338 

prepared features and multicollinearity, we applied a variance inflation factor (VIF). The full 339 

feature stack was exported into R and a VIF: 1
1−𝑅𝑅²

 , where R² is the coefficient of 340 

determination, was computed for each of the 67 features, by sampling at the Ea H’leo 341 

reference points. Any feature with a VIF higher than 10 was removed, which is often 342 

considered the rule of thumb (O’Brien, 2007). This step resulted in 22 features, representing 343 

all five types: S2 wet and dry season composites, S1 spectral temporal metrics, S1 texture 344 

variables, and SRTM topographic variables (Table 2). These features were the input for the 345 

random forest classifier. 346 

 347 

3.4. Calibration 348 

Before running our final classifications, we calibrated our model at the sub-province level (Ea 349 

H’leo). Calibration entailed using the Ea H’leo reference data and our full feature set (67 350 

features) as input into an initial classifier, inspecting confusion between classes, and variable 351 

importance metrics. The calibration phases tested multiple land cover classification schemes 352 

and informed the aggregation of classes that would best allow for the targeting of coffee. For 353 

example, natural forest and mature rubber plantations had high confusion most likely due to 354 

their high planting density and similarity in height. Additionally, in the north of Dak Lak, dry 355 

deciduous forest, low or no vegetation and “other tree crops,” which in this area is primarily 356 
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acacia, were being confused, most likely due to their similarities in low foliage during the dry 357 

season. 358 

 359 

The variable importance analysis for Ea H’Leo aligned with the variable importance for Dak 360 

Lak. For example, ndti (normalized tillage index, a swir1 and swir2 normalization) and 361 

elevation maintained their relative importance in both Ea H’Leo and Dak Lak, across multiple 362 

runs. Lastly, in the calibration phase, we also reduced our feature set, using VIF (detailed in 363 

3.3 Data pre-processing). This reduce collinearity between features (and minimizes OOBe), 364 

allowing for a more stable re-application of our method at a higher scale and in other areas.  365 

 366 

 367 
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 368 
Figure 2. Methods workflow showing data used, pre-processing steps and classification 369 

inputs and outputs. 370 

  371 
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Table 2. Features inputted into the classifier after a feature reduction (using a Variable 372 

Inflation Factor method). The features are grouped in the 5 categories: Sentinel-2 derived 373 

features in the dry season; Sentinel-2 derived features in the wet season, Sentinel-1 374 

spatiotemporal metrics (temporal statistics), Sentinel-1 texture metrics, and DEM-derived. 375 

Category Features included (22) 
S2- dry season blue 

nir 
Green Chlorophyll Vegetation Index (GCVI) 
Modified Crop Residue Cover (MCRC) 
Normalized Difference Tillage Index (NDTI) 

S2- wet season blue 
nir 
swir2 
MTCI 
GCVI 
MCRC 

S1 SAR (including 
spatiotemporal metrics) 

VV asc median 
ratio VV:VH desc 
standard dev. VV desc 
75th percentile VV desc 
75th percentile VH desc 

S1 SAR- texture metrics GLCM correlation 
GLCM sum variance 
GLCM angular second moment (ASM) 

DEM-derived metrics elevation 
slope 
aspect 

  376 
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3.5. Classification 377 

 In order to create i) a detailed land cover map with coffee production systems specified and 378 

ii) a binary coffee mask, both at 10m resolution, two random forest classifiers were 379 

implemented in Google Earth Engine. Random forest (RF) is a machine learning algorithm 380 

hat uses a decision tree-based ensemble and bootstrap aggregation (bagging) of training 381 

data, described in the landmark paper (Breiman, 2001). RF is often used for remote sensing 382 

classification problems for its robustness compared to individual models, relative resistance 383 

to noise, ability to hand high-dimensionality, and ease of parameterization (Belgiu and 384 

Drăguţ, 2016; Hengl et al., 2018). There are three main user-defined hyperparameters for RF 385 

models: number of trees, number of variables per split and maximum number of splits. 386 

Number of trees is the number of individual models in the ensemble, or number of decision 387 

trees in the “forest.” Number of variables per split (or node on a decision tree) is a restriction 388 

from 1 to the total number of features, that can be used to create the most separation at any 389 

specific node. If the number of variables per split is less, this creates more variation between 390 

the trees. And lastly, the maximum number of splits restricts the depth of the individual trees. 391 

Theoretically, the hyperparameter values shouldn’t strongly influence the outputs, however 392 

practically, they need to be tuned (Scornet, 2017). The hyperparameters, number of trees 393 

and variables per split, were tuned using the out-of-bag error (OOBe) and step-wise test runs 394 

of all reasonable combinations (Table S5, Table S6). In GEE, we set bagging to 65% for the 395 

calculation of the internal OOBe used to tune the random forest model. Based on the tuning, 396 

we ran both the detailed land cover and binary classifiers with 2000 trees and 2 variables per 397 

split. We used the default for maximum depth of trees, unrestricted.  398 

 399 

A random sub-selection of 70% of the Dak Lak reference data (Section 3.2) was used to train 400 

the random forest classifier, each training point could be thought of as a vector with 401 

associated values sampled from the 22 features, selected using VIF (Section 3.3). The 402 

detailed land cover map being trained on a 9-class schematic specified in the second column 403 

of Table 1 and the coffee mask being trained on with a binary coffee / non-coffee scheme.  404 
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 405 

In addition to the traditional accuracy assessment matrix, we would refer to another metric: 406 

quantity disagreement and allocation disagreement, as proposed by Pontius and Millones 407 

(2011) in substitution of kappa. Pontius and Millones argue that overall accuracy (agreement) 408 

and kappa provide only a positive evaluation and do not give information on the certainty of 409 

how a classification does not perform. Quantity disagreement can be defined as the 410 

differences between the reference data and the classification attributing to an imperfect 411 

match in the proportion of the categories. Allocation disagreement is defined as the 412 

differences in geographic spread of pixels between reference and classification. The “total 413 

disagreement,” or the percentage of mismatch, between the reference and classification is 414 

the sum of the quantity and allocation disagreement. 415 

 416 

For the detailed land cover classification, we also carried out sensitivity analysis by running 417 

our classifier with our feature subsets (S1 spectral temporal metrics, S1 GLCM texture 418 

features, S2 wet season, S2 dry season, topographic) and various combinations of these 419 

subsets.  420 

  421 
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4. Results 422 

4.1. Detailed Land Cover Map 423 

The detailed land cover classification offers a method for employing open 10m Sentinel 424 

optical and radar data to characterize plot-level production system for coffee within a highly 425 

heterogeneous landscape, while also covering a province-level area of 13,000 km2.  426 

 427 

Our classified land cover map shows coffee plantations clustered in the middle stripe of Dak 428 

Lak, in mid-range elevation (Figure 3, Figure 4D). Visually, intercropping and other shade 429 

systems are concentrated around Buon Ma Thuot, the Central Highland’s “coffee capital” 430 

(Figure 4E). New coffee plantations are often on increasing elevations, with concentrations in 431 

the Northeast in Ea H’Leo (Figure 4A) and a patch of new coffee landscape in M’Drak 432 

(Figure 4B). The overall accuracy is 72.5% (Table 4), with user accuracies of 64.5%, 56.0%, 433 

and 70.8% for sun, intercropped and newly planted coffee respectively. The classifier’s most 434 

common confusion is between sun and intercropped coffee, as expected. We also find a 435 

slight over-classification of all coffee classes (and agricultural land) at the expense of the 436 

partially vegetated class. 437 

 438 

Figure 4 also highlights how our classification captures patterns of high heterogeneity within 439 

the landscape. It is common that neighboring plots of sun, intercropped and newly planted 440 

coffee are often patchworked, along with other annual and perennial crops or because 441 

farmers plant coffee gardens next to their houses. Our classifier was able to represent these 442 

intricacies of the landscape with good agreement of this challenging task. Our classification 443 

and reference data had a quantity difference of 6.2% and an allocation difference of 21.3%, 444 

with the majority of the disagreement or error attributed to spatial mismatch, primarily in the 445 

partially vegetated class (Table 5). 446 

 447 
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 448 
Figure 3. Map of detailed land cover classification for Dak Lak at 10-m resolution. 449 

 450 

  451 



24 
 

 452 

Table 4. Accuracy assessment for detailed land cover classification. 453 

 detailed land cover classification 

te
st

 d
at

a 

  su
n 

 

in
te

rc
ro

pp
ed

  

ne
w

ly
 p

la
nt

ed
  

up
la

nd
 c

ro
p 

pa
rt

ia
lly

 
ve

ge
ta

te
d 

he
av

ily
 

ve
ge

ta
te

d 
 

ric
e 

 

bu
ilt

 

w
at

er
 

  co
un

t 

us
er

 a
cc

ur
ac

y 

sun 20 8 0 1 2 0 0 0 0 
 

31 0.645 
inter- 

cropped 8 14 0 0 2 0 0 1 0 
 

25 0.560 

newly 
planted 2 0 17 3 1 0 1 0 0 

 
24 0.708 

upland 
crop 1 0 4 25 4 0 3 0 0 

 
37 0.676 

partially 
vegetated 4 3 3 10 74 8 2 1 2 

 
107 0.692 

heavily 
vegetated 1 2 0 0 4 33 0 0 0 

 
40 0.825 

rice 0 0 2 4 0 1 15 0 0 
 

22 0.682 
built 0 0 0 0 0 0 0 18 0 

 
18 1.000 

water 0 0 0 0 0 0 1 0 19 
 

20 0.950 

  
          

    

count 36 27 26 43 87 42 22 20 21   
overall 
accuracy 0.725 

producer 
accuracy 0.556 0.519 0.654 0.581 0.851 0.786 0.682 0.900 0.905 

 
kappa 0.675 

 454 

 455 

Table 5. Overall disagreement metrics from Pontius and Millones (2011) for the detailed land 456 

cover map and the binary map. Agreement (or persistence) is equivalent to overall accuracy 457 

and total disagreement is the inverse.  458 

  
Agreement or 

Persistence 
Commission 

or Loss 
Omission or 

Gain 
Total 

Disagreement 
Quantity 

Disagreement 
Allocation 

Disagreement 
detailed 
land 
cover 
map 

0.725 0.275 0.275 0.275 0.062 0.213 

binary 
map 0.886 0.114 0.114 0.114 0.071 0.043 

 459 

  460 
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 461 

Figure 4. Closer look at the detailed land cover map in order to highlight specific landscape 462 

processes being captured, along with the corresponding satellite images: A) concentration of 463 

many new coffee plots, in a sun coffee and rubber landscape in Ea H’Leo, B) establishment 464 

of newly planted coffee in M’Drak (Eastern-most district), C) area dominated by sun coffee in 465 

Krong Ana, D) high concentration of intercropped or shade coffee near Buon Ma Thuot, E) 466 

zoomed in view near Buon Ma Thuot, an area of mixed sun and intercropped plots. 467 

  468 
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 469 

Table 6. The performance of detailed land cover model with inputs of feature subsets and 470 

combination of subsets. The 5 subsets are Sentinel-2 (S2) dry season composite, S2 wet 471 

season composite, Sentinel-1 (S1) spatiotemporal metrics, S1 Gray Level Occurrence Matric 472 

(GLCM) texture features and topographic features (SRTM). Overall accuracy (OA) and out-473 

of-bag error (OOBe) are presented. 474 

 475 

 476 

Similar to other LULC mapping studies, optical seasonal composite gives an added 477 

information to the classifier, increasing both the overall accuracy and decreasing the OOBe 478 

(Table 6; Jin et al., 2019; Nguyen et al., 2019; Poortinga et al., 2019; Spracklen and 479 

Spracklen, 2021).  While neither S1 subset performs well on its own, in combination with S2, 480 

the accuracy increases. The OOBe is higher in the model runs including GLCM texture, 481 

which may be due to the fact that some GLCM features are highly correlated (Haralick et al., 482 

1973). Nevertheless, the inclusion of GLCM with optical and topographical information still 483 

increases accuracy and decreases OOBe.  484 

  485 

  

Number 
of 
features OA OOBe 

S2 dry only 22 0.65 0.40 
S2 dry + wet 44 0.70 0.34 
S2 all + SRTM 47 0.73 0.33 
S1 spectral 
temporal 12 0.40 0.54 
S1 GLCM 8 0.32 0.67 
S1 all 20 0.46 0.52 
S2 all + SRTM + 
S1 spectral 
temporal 59 0.74 0.30 
S2 all + SRTM + 
S1 GLCM 55 0.73 0.32 
all bands (full set) 67 0.67 0.31 
reduced set 
(presented in 
Figure 4, Table 4) 22 0.73 0.28 
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4.2. Binary Coffee / Non-coffee Map 486 

The binary coffee classification has an overall accuracy of 88.6% and a user accuracy for the 487 

coffee class of 89.4% (Table 7). The binary map was targeted with applications as a crop 488 

mask, since it is relatively uncommon to find one for tree crop at such a high spatial 489 

resolution with some degree of certainty (Inglada et al., 2015). This is highlighted in Figure 5, 490 

which shows a comparison of our coffee map (A) and other coffee maps (B-D) with coverage 491 

of Dak Lak.  492 

 493 

Figure 5 helps to visualize the trade-off between spatial resolution, coverage, and information 494 

depth. For example, the Japanese Aerospace Exploration Agency (JAXA) land cover dataset 495 

(Figure 5B), offers a 10m spatial resolution for all of Vietnam but focuses on a rather general 496 

land cover scheme, without a specific coffee class. In the JAXA dataset, coffee crop is 497 

aggregated with other tree crops into the class “orchards.” A MODIS-derived dataset of 498 

“boom crops” (e.g. primarily rubber and other tree crops) in Mainland Southeast Asia, offers 499 

information on coffee at 250m resolution (Figure 5C). Our binary classification shows visual 500 

agreement with Figure 5C in terms of spatial distribution. Figure 5D shows a global gridded 501 

dataset on production area for FAO crops, where national and other administrative statistics 502 

are aggregated and re-distributed to the grid-cell level (Monfreda et al., 2008). In order to 503 

create the map shown in Figure 5D, cells with less than 1% of area covered by coffee were 504 

filtered out. It is noteworthy that no grid cell in Dak Lak had more than 3% area covered by 505 

coffee, according to the Monfreda dataset. The difference in spatial distribution between 506 

Figure 5A and 5D highlights the difficulties in scaling information on landscape dynamics to 507 

the global level. 508 

 509 

With a producer accuracy for coffee of 66.3% in our detailed land cover map, the difference 510 

between the user and producer accuracy implies an over-assigning of pixels to coffee. The 511 

reference data was roughly proportional to land cover proportion for the binary map, as we 512 

changed the classification scheme without reducing the number of points (from a random 513 
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sampling). As such, there were many more non-coffee training points compared to coffee 514 

training points and the over-assigning was unexpected. This is perhaps represented in the 515 

quantity and allocation disagreement, as quantity disagreement is higher than the allocation 516 

disagreement, at 7.1% and 4.3% respectively (Table 5). 517 

 518 

 519 

Table 7. Accuracy assessment for binary classification. 520 

  non-coffee coffee   count user accuracy 

non-coffee 228 30 
 

258 0.884 

coffee 7 59 
 

66 0.894 

      
count 235 89 

 

overall 
accuracy 0.886 

producer 
accuracy 0.970 0.663 

 
kappa 0.689 

 521 

 522 
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 523 
Figure 5. Comparison of A) the binary coffee map from this study; B) the orchard class from 524 

the 2017 JAXA Land cover map (10m), derived from S2, Landsat 7 & 8, ALOS/AVNIR-2, 525 

PALSAR, and SRTM (Duong et. al., 2018); C) Hurni and Fox's (2018) coffee class from their 526 

2014 boom crop mapping in Mainland Southeast Asia (250m), MODIS-derived; D) Monfreda 527 

et al., (2008) “fraction of harvested area,” with a threshold of more than 1% coffee area 528 

harvested, disaggregated at the 5’ (~10km) grid cell from agricultural statistics for 2000. 529 

 530 

 531 

5. Discussion 532 

The method presented here builds on large-scale, crop-specific mapping using the open 533 

Sentinel asset, advancing geospatial methodology on mapping coffee as a complex target 534 

and generating plot-level thematic information within a heterogenous landscape. Most other 535 
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large-scale Sentinel-based crop type mapping (Defou, 2019; Griffiths et al., 2019; Jin et al., 536 

2019) targets annual crops, such as maize or wheat. We delve into the large-scale mapping 537 

of a tree crop, more along the lines of Poortinga et al. (2019), who mapped oil palm and 538 

rubber in a cross-border protected area between Myanmar & Thailand. To our knowledge, 539 

the work we present here is a first attempt at mapping coffee at the fine spatial resolution and 540 

large geographic scales using Sentinel data.  541 

 542 

The integration of both Sentinel-2 and Sentinel-1 in crop type mapping is still being 543 

developed. The default is to rely solely on optical sensors; most work piloting the 544 

combination of optical and SAR Sentinel data for crop type mapping is carried out on a 545 

smaller geographic footprint (Denize et al., 2018; Sun et al., 2019). Nevertheless, recent 546 

studies have started to focus on crop-specific mapping combining these two data streams at 547 

regional to national scales (Jin et al., 2019; Poortinga et al., 2019).  We contribute to this line 548 

of research for mapping coffee production systems. As demonstrated in Jin et al., (2019) and 549 

Poortinga et al., (2019), Sentinel-1 data has the added advantage of non-reliance on cloud-550 

free days, allowing for a temporally constant information source to supplement optical data, 551 

especially in the cloudy tropics and sub-tropics. For coffee mapping or other lower biomass 552 

or sparse tree crops, C-band data (e.g. Sentinel-1 SAR), with its smaller wavelength of 3 – 553 

5cm, is better suited compared to higher wavelength L-band data, often used for forest 554 

mapping. 555 

 556 

As emphasized by Hunt et al. (2020), it is not common that coffee maps offer 557 

characterization or sub-plot information on the production system or age of coffee stand. We 558 

build off of the work using remote sensing to spatially characterize coffee production systems 559 

(Cordero ‐Sancho and Sader, 200       -Huerta et 560 

al., 2012; Widayati et al., 2003) and coffee age classes (Chemura et al., 2017; Chemura and 561 

Mutanga, 2016) by developing a method that allows implementation at larger geographic 562 

scale. This was enabled by i) open and easily accessible 10m Sentinel data, ii) GEE’s cloud 563 
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computing infrastructure, and iii) inclusion of a diverse set of features: seasonal information 564 

derived from optical imagery, radar temporal metrics, radar texture information and 565 

topographic information. The first two points speak to openly available research resources 566 

and infrastructure and the last speaks to a diversity of input features for representation of a 567 

diverse landscape. We conclude that each set of features brings something specific to the 568 

classifier’s ability to separate classes. This is supported by a feature importance not 569 

dominated by a specific feature, with all 22 features used in the classifier contributing to the 570 

overall accuracy (Figure S4).  For example, we theorize that the use of texture metrics was 571 

particularly helpful in distinguishing between “textured” intercropping or other shade systems 572 

and homogeneous sun plantations that occur adjacent to each other. And according to a 573 

feature importance, the wet season SWIR2 band and the Normalized Difference Tillage 574 

Index, a ratio index between SWIR1 and SWIR2, had the highest contribution to accuracy 575 

(although not by a wide margin). This could be indicative of the importance of water regimes, 576 

such as irrigation schedule, or soil signals, such as background soil from less densely 577 

planted coffee, as SAR and SWIR are sensitive to water and soil signals. 578 

 579 

In other smallholder landscapes it has been shown that that moderate resolution sensors, 580 

such as Landsat (30m), offer an advantage over MODIS (250m) in identifying cropping 581 

patterns in a Central Indian smallholder landscape (Jain et al., 2013), whereas very high-582 

resolution Planet data (of 3 – 5cm) allows for sub-plot crop monitoring at a farm in Southern 583 

Brazil (Breunig et al., 2020).  Our results fit in between these two works, presenting 584 

information on the plot-level production system with a 10m resolution at a landscape scale. 585 

This introduces a specific advantage over the previous work that cover Dak Lak (Figure 5). 586 

Only one other work with coverage of Dak Lak produced a map explicitly including coffee and 587 

did so using MODIS’s 250m resolution as part of a mapping effort targeting rubber in South 588 

East Asia (Hurni and Fox, 2018; Figure 5c). While JAXA produced a multi-sensor 10m land 589 

cover map for Vietnam, coffee was not a separate class, and was aggregated into “orchard,” 590 
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defined as the intentional planting of trees or shrubs, which as a class did not perform well in 591 

Dak Lak (Duong et al., 2018).  592 

 593 

This first mapping of “full coverage” coffee production styles, intercropped and newly planted 594 

coffee respectively, is useful in many applications. Information on where coffee is being re-595 

planted or planted for the first time, represented by our class “newly planted coffee,” can aid 596 

in agricultural planning and monitoring deforestation (although both entail knowledge of the 597 

past land cover, e.g. through time series analysis, which will be mentioned later in the 598 

Discussion). Even though newly planted coffee is also confused with other agricultural land 599 

(primarily cleared rubber) and our classifier slightly over-estimates newly planted coffee, it is 600 

still a best-effort at addressing the two above-mentioned processes in the region. As a large 601 

percentage of coffee trees in the region are aging, 33% are 15-20 years and 31% are over 602 

20 years, local governments are targeting replantation programs, such as Decision No. 603 

2729/QD-UBND from the People’s Committee of Dak Lak (Hung Anh et al., 2019). The map 604 

and method presented here could offer one way of tracking progress, particularly in remote 605 

areas. Additionally, newly planted coffee in regions that are otherwise primarily natural 606 

vegetation or forest can give an indication for forest conversion, complementing prior work on 607 

forest frontiers and agricultural dynamics in the Central Highlands (Bourgoin et al., 2020; 608 

Meyfroidt et al., 2013; Phuc and Tran, 2014).  609 

 610 

 The spatial overview of implementation of agroforestry practices, represented by our class 611 

“intercropping,” can i) assist in monitoring of sustainability certification and ii) complement 612 

climate adaptation monitoring: two fields where monitoring is overwhelmingly undertaken 613 

through household surveys.  It is also the novelty of our classification that we attempt to 614 

create spatially continuous dataset of information that is often collected and available at a 615 

point or clustered level. There are limitations in the producer accuracies of sun and 616 

intercropped coffee, primarily due to confusion between the two (as opposed to confusion 617 

with other classes). Nevertheless, a remote sensing effort at tracking coffee production 618 
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systems is especially pertinent in hilly coffee regions, where field mapping is tricky due to 619 

remoteness and steep terrain of coffee growing areas and remote sensing can offer an 620 

information base layer for tracking sustainability and climate adaptation implementation.  For 621 

example, we hypothesize that the visual hot spot of intercropping close to Buon Ma Thuot 622 

(Figure 4D &4E) could be attributed to the cluster of coffee companies, universities and 623 

research institutes on coffee that are supporting implementation of sustainable practice in 624 

coffee production including not only intercropping, but management of inputs, access to 625 

credit among other factors.   626 

 627 

We present a method based on the landscape and agroecological characteristics in Dak Lak, 628 

however our approach was designed to scale from the district level, with calibration in Ea 629 

H’Leo, to the province level, in Dak Lak. Particularly, feature reduction through VIF was 630 

implemented to reduce overfitting, potentially allowing a better re-application or extrapolation 631 

of our method in similar areas. With similar agroecological characteristics through the 632 

Vietnamese Central Highlands, we imagine our feature set would perform well in neighboring 633 

coffee growing landscapes. In order to generalize our approach to other coffee growing 634 

regions, the optical seasonal composites would need to be adapted for other climates, and 635 

may depend on the number of seasons per year as well as onset, cessation and precipitation 636 

distribution. Using a similar approach, Kelley et al. (2018) maps coffee in a region of 637 

Nicaragua which has three seasons and the primary coffee production system is shade or 638 

traditional coffee. We hypothesize that our approach can be transferred to another climate 639 

conditions and coffee production systems, by changing the region-specific features, but the 640 

general transferability is not yet tested. 641 

 642 

Tree crops are often completely excluded or have a high uncertainty in remote sensing 643 

based mapping (Fritz et al., 2011; Inglada et al., 2015; See et al., 2015). While our model 644 

targets coffee, we drew from mapping literature on similar tree crops: shade cocoa, coconut, 645 

rubber, and oil palm. While separating tree crop from surrounding land cover such as forest 646 
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and other agriculture land, we would emphasize, in continuation of previous work, the added 647 

value of texture features in distinguishing landscape and cropping systems (Burnett et al., 648 

2019; Gao et al., 2015; Gomez et al., 2010; Liu and Chen, 2019; Numbisi et al., 2019). We 649 

would also make the distinction between tree crops with a regular clearing rotation (such as 650 

rubber) and fruit and nut trees (such as a coffee and cocoa), and between monoculture 651 

dominated landscape, agroforestry dominated landscapes, and mixed monoculture and 652 

agroforestry. Aspects of our feature selection and processing, particularly the combination of 653 

multiple sensor and feature permutations, could be adapted specifically for fruit and nut tree, 654 

in mixed smallholder landscapes (Table 6). The adoption would need to be context specific in 655 

terms of seasonal characteristics and confounding land cover and crops.  656 

 657 

The dataset we developed can serve as a baseline for a future time-series study. This could 658 

entail change detection for non-coffee (such as forest) to coffee, sun coffee to intercropped 659 

coffee, or the identification of replantation or abandonment of coffee. All of these land cover 660 

pathways can add a temporal dimension to the applications of deforestation and 661 

sustainability in coffee production. These land cover pathways would be extremely useful in 662 

building a timeline of a spatial continuous proxy for, e.g. forest vulnerability as done in 663 

Meyfroidt et al., (2013), or sustainable growing or climate adaptation proxies, an emerging 664 

interdisciplinary field between spatial sciences and sustainability science.  665 

 666 

6. Conclusion 667 

The work here offers a scalable method for mapping coffee production systems, and more 668 

broadly plantation and agroforestry systems, as well as presents a coffee map for a major 669 

world coffee-growing region, Dak Lak, Vietnam. In addition to benefiting from open 10m 670 

Sentinel-2 optical data and Sentinel-1 radar data, our method demonstrates the added value 671 

of heterogenous input features for a heterogenous landscape. Notably, cloud-independent 672 

Sentinel-1 SAR time series and texture features complement the established seasonal 673 

optical composites and SRTM topographic variables. The results present a binary coffee 674 
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mask, with an overall accuracy of 89.4%, and a 9-class land cover map in a first effort to 675 

distinguish sun coffee, intercropped coffee and newly planted coffee, to broaden the 676 

applications of remote sensing in deriving thematic agricultural information at finer spatial 677 

scale. 678 

 679 

 680 
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Links to GEE script: 689 
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Classification: https://code.earthengine.google.com/ee13aca08dd96f0ab0fe87f6c14dbdad 691 

 692 

  693 

https://code.earthengine.google.com/268aad86925d374806d942635317d42c
https://code.earthengine.google.com/ee13aca08dd96f0ab0fe87f6c14dbdad


36 
 

7. References 694 

Agergaard, J., Fold, N., Gough, K.V., 2009. Global-local interactions: socioeconomic and spatial 695 
dynamics in Vietnam’s coffee frontier. Geogr. J. 175, 133–145. https://doi.org/10.1111/j.1475-696 
4959.2009.00320.x 697 

Amarasinghe, U.A., Hoanh, C.T., D’haeze, D., Hung, T.Q., 2015. Toward sustainable coffee 698 
production in Vietnam: More coffee with less water. Agric. Syst. 136, 96–105. 699 
https://doi.org/10.1016/j.agsy.2015.02.008 700 

Assefa, A., Gobena, A., 2019. Review on Effect of Shade Tree on Microclimate, Growth and 701 
Physiology of Coffee Arabica: In case of Ethiopia. Int. J. For. Hortic. 5. 702 
https://doi.org/10.20431/2454-9487.0503004 703 

Belgiu, M., Drăguţ, L., 2016. Random forest in remote sensing: A review of applications and future 704 
directions. ISPRS J. Photogramm. Remote Sens. 114, 24–31. 705 
https://doi.org/10.1016/j.isprsjprs.2016.01.011 706 

Bey, A., Sánchez-Paus Díaz, A., Maniatis, D., Marchi, G., Mollicone, D., Ricci, S., Bastin, J.-F., Moore, 707 
R., Federici, S., Rezende, M., Patriarca, C., Turia, R., Gamoga, G., Abe, H., Kaidong, E., 708 
Miceli, G., 2016. Collect Earth: Land Use and Land Cover Assessment through Augmented 709 
Visual Interpretation. Remote Sens. 8, 807. https://doi.org/10.3390/rs8100807 710 

Bourgoin, C., Oszwald, J., Bourgoin, J., Gond, V., Blanc, L., Dessard, H., Phan, T.V., Sist, P., 711 
Läderach, P., Reymondin, L., 2020. Assessing the ecological vulnerability of forest landscape 712 
to agricultural frontier expansion in the Central Highlands of Vietnam. Int. J. Appl. Earth Obs. 713 
Geoinformation 84, 101958. https://doi.org/10.1016/j.jag.2019.101958 714 

Brandt, J., Stolle, F., 2021. A global method to identify trees inside and outside of forests with 715 
medium-resolution satellite imagery. Remote Sensing 18. 716 

Breiman, L., 2001. Random Forests. Machine Learning. 717 

Breunig, F.M., Galvão, L.S., Dalagnol, R., Santi, A.L., Della Flora, D.P., Chen, S., 2020. Assessing the 718 
effect of spatial resolution on the delineation of management zones for smallholder farming in 719 
southern Brazil. Remote Sens. Appl. Soc. Environ. 19, 100325. 720 
https://doi.org/10.1016/j.rsase.2020.100325 721 

Burnett, M.W., White, T.D., McCauley, D.J., De Leo, G.A., Micheli, F., 2019. Quantifying coconut palm 722 
extent on Pacific islands using spectral and textural analysis of very high resolution imagery. 723 
Int. J. Remote Sens. 40, 7329–7355. https://doi.org/10.1080/01431161.2019.1594440 724 

Byrareddy, V., 2020. Win-win_ Improved irrigation management saves water and increases yield for 725 
robusta coffee farms in Vietnam. Agric. Water Manag. 12. 726 

Chemura, A., Mutanga, O., 2016. Developing detailed age-specific thematic maps for coffee (Coffea 727 
arabica) in heterogeneous agricultural landscapes using random forests applied on Landsat 8 728 
multispectral sensor. Geocarto Int. 32, 759–776. 729 
https://doi.org/10.1080/10106049.2016.1178812 730 

Chemura, A., Mutanga, O., Dube, T., 2017. Integrating age in the detection and mapping of 731 
incongruous patches in coffee ( Coffea arabica ) plantations using multi-temporal Landsat 8 732 
NDVI anomalies. Int. J. Appl. Earth Obs. Geoinformation 57, 1–13. 733 
https://doi.org/10.1016/j.jag.2016.12.007 734 

Clerici, N., Valbuena Calderón, C.A., Posada, J.M., 2017. Fusion of Sentinel-1A and Sentinel-2A data 735 
for land cover mapping: a case study in the lower Magdalena region, Colombia. J. Maps 13, 736 
718–726. https://doi.org/10.1080/17445647.2017.1372316 737 



37 
 

Copernicus Sentinel-1 & Sentinel-2 data [2018-2019]. Retrieved from Google Earth Engine [12-11-738 
2019], processed by ESA. 739 

Cordero‐Sancho, S., Sader, S.A., 2007. Spectral analysis and classification accuracy of coffee crops 740 
using Landsat and a topographic‐environmental model. Int. J. Remote Sens. 28, 1577–1593. 741 
https://doi.org/10.1080/01431160600887680 742 

DaMatta, F.M., Ronchi, C.P., Maestri, M., Barros, R.S., 2007. Ecophysiology of coffee growth and 743 
production. Braz. J. Plant Physiol. 19, 485–510. https://doi.org/10.1590/S1677-744 
04202007000400014 745 

Dawson, I.K., Leakey, R., Clement, C.R., Weber, J.C., Cornelius, J.P., Roshetko, J.M., Vinceti, B., 746 
Kalinganire, A., Tchoundjeu, Z., Masters, E., Jamnadass, R., 2014. The management of tree 747 
genetic resources and the livelihoods of rural communities in the tropics: Non-timber forest 748 
products, smallholder agroforestry practices and tree commodity crops. For. Ecol. Manag. 749 
333, 9–21. https://doi.org/10.1016/j.foreco.2014.01.021 750 

De Beenhouwer, M., Aerts, R., Honnay, O., 2013. A global meta-analysis of the biodiversity and 751 
ecosystem service benefits of coffee and cacao agroforestry. Agric. Ecosyst. Environ. 175, 1–752 
7. https://doi.org/10.1016/j.agee.2013.05.003 753 

de Carvalho, A.F., Fernandes-Filho, E.I., Daher, M., Gomes, L. de C., Cardoso, I.M., Fernandes, 754 
R.B.A., Schaefer, C.E.G.R., 2020. Microclimate and soil and water loss in shaded and 755 
unshaded agroforestry coffee systems. Agrofor. Syst. https://doi.org/10.1007/s10457-020-756 
00567-6 757 

Defourny, P., 2019. Near real-time agriculture monitoring at national scale at parcel resolution_ 758 
Performance assessment of the Sen2-Agri automated system in various cropping systems 759 
around the world. Remote Sens. Environ. 18. 760 

Denize, J., Hubert-Moy, L., Betbeder, J., Corgne, S., Baudry, J., Pottier, E., 2018. Evaluation of Using 761 
Sentinel-1 and -2 Time-Series to Identify Winter Land Use in Agricultural Landscapes. Remote 762 
Sens. 11, 37. https://doi.org/10.3390/rs11010037 763 

Duong, P., Trung, T., Nasahara, K., Tadono, T., 2018. JAXA High-Resolution Land Use/Land Cover 764 
Map for Central Vietnam in 2007 and 2017. Remote Sens. 10, 1406. 765 
https://doi.org/10.3390/rs10091406 766 

ESA- S1TBX Sentinel-1 Toolbox. http://step.esa.int (accessed: 05-02-2021). 767 
FAO. Food and Agriculture Organization of the UN. FAOSTAT Statistical Database. Rome, 1997. 768 

http://www.fao.org/faostat/en/#data (accessed 20-01-21). 769 

Fridell, G., 2014. Fair trade slippages and Vietnam gaps: the ideological fantasies of fair trade coffee. 770 
Third World Q. 35, 1179–1194. https://doi.org/10.1080/01436597.2014.926108 771 

Fritz, S., See, L., McCallum, I., Schill, C., Obersteiner, M., van der Velde, M., Boettcher, H., Havlík, P., 772 
Achard, F., 2011. Highlighting continued uncertainty in global land cover maps for the user 773 
community. Environ. Res. Lett. 6, 044005. https://doi.org/10.1088/1748-9326/6/4/044005 774 

Gaertner, J., 2017. Vegetation classification of Coffea on Hawaii Island using WorldView-2 satellite 775 
imagery. J. Appl. Remote Sens. 11, 1. https://doi.org/10.1117/1.JRS.11.046005 776 

Gao, T., Zhu, J., Zheng, X., Shang, G., Huang, L., Wu, S., 2015. Mapping Spatial Distribution of Larch 777 
Plantations from Multi-Seasonal Landsat-8 OLI Imagery and Multi-Scale Textures Using 778 
Random Forests. Remote Sens. 7, 1702–1720. https://doi.org/10.3390/rs70201702 779 

Gomez, C., Mangeas, M., Petit, M., Corbane, C., Hamon, P., Hamon, S., De Kochko, A., Le Pierres, 780 
D., Poncet, V., Despinoy, M., 2010. Use of high-resolution satellite imagery in an integrated 781 



38 
 

model to predict the distribution of shade coffee tree hybrid zones. Remote Sens. Environ. 782 
114, 2731–2744. https://doi.org/10.1016/j.rse.2010.06.007 783 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017. Google Earth 784 
Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 785 

Griffiths, P., Nendel, C., Hostert, P., 2019. Intra-annual reflectance composites from Sentinel-2 and 786 
Landsat for national-scale crop and land cover mapping. Remote Sens. Environ. 220, 135–787 
151. https://doi.org/10.1016/j.rse.2018.10.031 788 

Grogan, K., Pflugmacher, D., Hostert, P., Kennedy, R., Fensholt, R., 2015. Cross-border forest 789 
disturbance and the role of natural rubber in mainland Southeast Asia using annual Landsat 790 
time series. Remote Sens. Environ. 169, 438–453. https://doi.org/10.1016/j.rse.2015.03.001 791 

Ha, D.T., Shively, G., 2007. Coffee Boom, Coffee Bust and Smallholder Response in Vietnam’s 792 
Central Highlands. Rev. Dev. Econ. 15. https://doi.org/10.1111/j.1467-9361.2007.00391.x 793 

Haralick, R.M., Shanmugam, K., Dinstein, I., 1973. Textural Features for Image Classification. IEEE 794 
Trans. Syst. Man Cybern. SMC-3, 610–621. https://doi.org/10.1109/TSMC.1973.4309314 795 

Hebbar, R., Ravishankar, H.M., Trivedi, S., Manjula, V.B., Kumar, N.M., Mukharib, D.S., Mote, J.K., 796 
Sudeesh, S., Raj, U., Raghuramulu, Y., Ganesha Raj, K., 2019. Nationa Level Inventory of 797 
Coffee Plantations using High-Resolution Satellite Data. ISPRS - Int. Arch. Photogramm. 798 
Remote Sens. Spat. Inf. Sci. XLII-3/W6, 293–298. https://doi.org/10.5194/isprs-archives-XLII-799 
3-W6-293-2019 800 

Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B.M., Gräler, B., 2018. Random forest as a 801 
generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 6, 802 
e5518. https://doi.org/10.7717/peerj.5518 803 

Housman, I., Chastain, R., Finco, M., 2018. An Evaluation of Forest Health Insect and Disease Survey 804 
Data and Satellite-Based Remote Sensing Forest Change Detection Methods: Case Studies 805 
in the United States. Remote Sens. 10, 1184. https://doi.org/10.3390/rs10081184 806 

Hu, L., Li, W., Xu, B., 2018. Monitoring mangrove forest change in China from 1990 to 2015 using 807 
Landsat-derived spectral-temporal variability metrics. Int. J. Appl. Earth Obs. Geoinformation 808 
73, 88–98. https://doi.org/10.1016/j.jag.2018.04.001 809 

Hung Anh, N., Bokelmann, W., Thi Nga, D., Van Minh, N., 2019. Toward Sustainability or Efficiency: 810 
The Case of Smallholder Coffee Farmers in Vietnam. Economies 7, 66. 811 
https://doi.org/10.3390/economies7030066 812 

Hunt, D.A., Tabor, K., Hewson, J.H., Wood, M.A., Reymondin, L., Koenig, K., Schmitt-Harsh, M., 813 
Follett, F., 2020. Review of Remote Sensing Methods to Map Coffee Production Systems. 814 
Remote Sens. 12, 2041. https://doi.org/10.3390/rs12122041 815 

Hurni, K., Fox, J., 2018. The expansion of tree-based boom crops in mainland Southeast Asia: 2001 to 816 
2014. J. Land Use Sci. 13, 198–219. https://doi.org/10.1080/1747423X.2018.1499830 817 

Inglada, J., Arias, M., Tardy, B., Hagolle, O., Valero, S., Morin, D., Dedieu, G., Sepulcre, G., 818 
Bontemps, S., Defourny, P., Koetz, B., 2015. Assessment of an Operational System for Crop 819 
Type Map Production Using High Temporal and Spatial Resolution Satellite Optical Imagery. 820 
Remote Sens. 7, 12356–12379. https://doi.org/10.3390/rs70912356 821 

Jain, M., Mondal, P., DeFries, R.S., Small, C., Galford, G.L., 2013. Mapping cropping intensity of 822 
smallholder farms: A comparison of methods using multiple sensors. Remote Sens. Environ. 823 
134, 210–223. https://doi.org/10.1016/j.rse.2013.02.029 824 



39 
 

Jezeer, R.E., Santos, M.J., Verweij, P.A., Boot, R.G.A., Clough, Y., 2019. Benefits for multiple 825 
ecosystem services in Peruvian coffee agroforestry systems without reducing yield. Ecosyst. 826 
Serv. 40, 101033. https://doi.org/10.1016/j.ecoser.2019.101033 827 

Jin, Z., Azzari, G., You, C., Di Tommaso, S., Aston, S., Burke, M., Lobell, D.B., 2019. Smallholder 828 
maize area and yield mapping at national scales with Google Earth Engine. Remote Sens. 829 
Environ. 228, 115–128. https://doi.org/10.1016/j.rse.2019.04.016 830 

Kath, J., Byrareddy, V.M., Craparo, A., Nguyen‐Huy, T., Mushtaq, S., Cao, L., Bossolasco, L., 2020. 831 
Not so robust: Robusta coffee production is highly sensitive to temperature. Glob. Change 832 
Biol. 26, 3677–3688. https://doi.org/10.1111/gcb.15097 833 

Kawakubo, F.S., Pérez Machado, R.P., 2016. Mapping coffee crops in southeastern Brazil using 834 
spectral mixture analysis and data mining classification. Int. J. Remote Sens. 37, 3414–3436. 835 
https://doi.org/10.1080/01431161.2016.1201226 836 

Kelley, L.C., Pitcher, L., Bacon, C., 2018. Using Google Earth Engine to Map Complex Shade-Grown 837 
Coffee Landscapes in Northern Nicaragua. Remote Sens. 10, 952. 838 
https://doi.org/10.3390/rs10060952 839 

Läderach, P., Ramirez–Villegas, J., Navarro-Racines, C., Zelaya, C., Martinez–Valle, A., Jarvis, A., 840 
2017. Climate change adaptation of coffee production in space and time. Clim. Change 141, 841 
47–62. https://doi.org/10.1007/s10584-016-1788-9 842 

Leakey, R.R.B., 2017. Agroforestry Tree Products (AFTPs): Targeting Poverty Reduction and 843 
Enhanced Livelihoods, in: Multifunctional Agriculture. Elsevier, pp. 123–138. 844 
https://doi.org/10.1016/B978-0-12-805356-0.00013-1 845 

Liu, P., Chen, X., 2019. Intercropping Classification From GF-1 and GF-2 Satellite Imagery Using a 846 
Rotation Forest Based on an SVM. ISPRS Int. J. Geo-Inf. 8, 86. 847 
https://doi.org/10.3390/ijgi8020086 848 

Mercier, A., Betbeder, J., Rumiano, F., Baudry, J., Gond, V., Blanc, L., Bourgoin, C., Cornu, G., 849 
Ciudad, C., Marchamalo, M., Poccard-Chapuis, R., Hubert-Moy, L., 2019. Evaluation of 850 
Sentinel-1 and 2 Time Series for Land Cover Classification of Forest–Agriculture Mosaics in 851 
Temperate and Tropical Landscapes. Remote Sens. 11, 979. 852 
https://doi.org/10.3390/rs11080979 853 

Meyfroidt, P., Vu, T.P., Hoang, V.A., 2013. Trajectories of deforestation, coffee expansion and 854 
displacement of shifting cultivation in the Central Highlands of Vietnam. Glob. Environ. 855 
Change 23, 1187–1198. https://doi.org/10.1016/j.gloenvcha.2013.04.005 856 

Mishra, V.N., Prasad, R., Rai, P.K., Vishwakarma, A.K., Arora, A., 2019. Performance evaluation of 857 
textural features in improving land use/land cover classification accuracy of heterogeneous 858 
landscape using multi-sensor remote sensing data. Earth Sci. Inform. 12, 71–86. 859 
https://doi.org/10.1007/s12145-018-0369-z 860 

Monfreda, C., Ramankutty, N., Foley, J.A., 2008. Farming the planet: 2. Geographic distribution of 861 
crop areas, yields, physiological types, and net primary production in the year 2000: GLOBAL 862 
CROP AREAS AND YIELDS IN 2000. Glob. Biogeochem. Cycles 22, n/a-n/a. 863 
https://doi.org/10.1029/2007GB002947 864 

Mukashema, A., Veldkamp, A., Vrieling, A., 2014. Automated high resolution mapping of coffee in 865 
Rwanda using an expert Bayesian network. Int. J. Appl. Earth Obs. Geoinformation 33, 331–866 
340. https://doi.org/10.1016/j.jag.2014.05.005 867 

Müller, D., Zeller, M., 2002. Land use dynamics in the central highlands of Vietnam: a spatial model 868 
combining village survey data with satellite imagery interpretation. Agric. Econ. 23. 869 



40 
 

Müller, H., Rufin, P., Griffiths, P., Barros Siqueira, A.J., Hostert, P., 2015. Mining dense Landsat time 870 
series for separating cropland and pasture in a heterogeneous Brazilian savanna landscape. 871 
Remote Sens. Environ. 156, 490–499. https://doi.org/10.1016/j.rse.2014.10.014 872 

Nesper, M., Kueffer, C., Krishnan, S., Kushalappa, C.G., Ghazoul, J., 2017. Shade tree diversity 873 
enhances coffee production and quality in agroforestry systems in the Western Ghats. Agric. 874 
Ecosyst. Environ. 247, 172–181. https://doi.org/10.1016/j.agee.2017.06.024 875 

Nguyen, M.D., Villanueva, O.B., Bui, D.D., Nguyen, P.T., Ribbe, L., 2019. Harmonization of Landsat 876 
and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan 877 
(Vietnam) and Bekaa (Lebanon). Remote Sens. 878 
https://doi.org/10.20944/preprints201910.0275.v1 879 

Nogueira, S.M.C., Moreira, M.A., Volpato, M.M.L., 2018. Relationship between coffee crop productivity 880 
and vegetation indexes derived from OLI / Landsat-8 Sensor Data with and without 881 
topographic correction. Eng. Agríc. 38, 387–394. https://doi.org/10.1590/1809-4430-882 
eng.agric.v38n3p387-394/2018 883 

Nomura, K., Mitchard, E., 2018. More Than Meets the Eye: Using Sentinel-2 to Map Small Plantations 884 
in Complex Forest Landscapes. Remote Sens. 10, 1693. https://doi.org/10.3390/rs10111693 885 

Numbisi, F.N., Van Coillie, F.M.B., De Wulf, R., 2019. Delineation of Cocoa Agroforests Using Multi-886 
Season Sentinel-1 SAR Images: Low Grey Level Range Reduces Uncertainties in GLCM 887 
Texture-Based Mapping. Int. J. Geo-Inf. https://doi.org/10.20944/preprints201901.0050.v1 888 

O’Brien, R.M., 2007. A Caution Regarding Rules of Thumb for Variance Inflation Factors 18. 889 

Oon, A., Ngo, K.D., Azhar, R., Ashton-Butt, A., Lechner, A.M., Azhar, B., 2019. Assessment of ALOS-890 
2 PALSAR-2L-band and Sentinel-1 C-band SAR backscatter for discriminating between large-891 
scale oil palm plantations and smallholdings on tropical peatlands. Remote Sens. Appl. Soc. 892 
Environ. 13, 183–190. https://doi.org/10.1016/j.rsase.2018.11.002 893 

Ortega-Huerta, M.A., Komar, O., Price, K.P., Ventura, H.J., 2012. Mapping coffee plantations with 894 
Landsat imagery: an example from El Salvador. Int. J. Remote Sens. 33, 220–242. 895 
https://doi.org/10.1080/01431161.2011.591442 896 

Padovan, M.P., Brook, R.M., Barrios, M., Cruz-Castillo, J.B., Vilchez-Mendoza, S.J., Costa, A.N., 897 
Rapidel, B., 2018. Water loss by transpiration and soil evaporation in coffee shaded by 898 
Tabebuia rosea Bertol . and Simarouba glauca dc. compared to unshaded coffee in sub-899 
optimal environmental conditions. Agric. For. Meteorol. 248, 1–14. 900 
https://doi.org/10.1016/j.agrformet.2017.08.036 901 

Pflugmacher, D., Rabe, A., Peters, M., Hostert, P., 2019. Mapping pan-European land cover using 902 
Landsat spectral-temporal metrics and the European LUCAS survey. Remote Sens. Environ. 903 
221, 583–595. https://doi.org/10.1016/j.rse.2018.12.001 904 

Pham, Y., Reardon-Smith, K., Mushtaq, S., Cockfield, G., 2019. The impact of climate change and 905 
variability on coffee production: a systematic review. Clim. Change 156, 609–630. 906 
https://doi.org/10.1007/s10584-019-02538-y 907 

Pham, Y., Reardon-Smith, K., Mushtaq, S., Deo, R.C., 2020. Feedback modelling of the impacts of 908 
drought: A case study in coffee production systems in Viet Nam. Clim. Risk Manag. 30, 909 
100255. https://doi.org/10.1016/j.crm.2020.100255 910 

Pham‐Thanh, H., Linden, R., Ngo‐Duc, T., Nguyen‐Dang, Q., Fink, A.H., Phan‐Van, T., 2020. 911 
Predictability of the rainy season onset date in Central Highlands of Vietnam. Int. J. Climatol. 912 
40, 3072–3086. https://doi.org/10.1002/joc.6383 913 

Phuc, X., Tran, H.N., 2014. Rubber Expansion and Forest Protection in Vietnam. 914 



41 
 

Pontius, R.G., Millones, M., 2011. Death to Kappa: birth of quantity disagreement and allocation 915 
disagreement for accuracy assessment. Int. J. Remote Sens. 32, 4407–4429. 916 
https://doi.org/10.1080/01431161.2011.552923 917 

Poortinga, A., Tenneson, K., Shapiro, A., Nquyen, Q., San Aung, K., Chishtie, F., Saah, D., 2019. 918 
Mapping Plantations in Myanmar by Fusing Landsat-8, Sentinel-2 and Sentinel-1 Data along 919 
with Systematic Error Quantification. Remote Sens. 11, 831. 920 
https://doi.org/10.3390/rs11070831 921 

Qadir, A., Mondal, P., 2020. Synergistic Use of Radar and Optical Satellite Data for Improved 922 
Monsoon Cropland Mapping in India. Remote Sens. 12, 522. 923 
https://doi.org/10.3390/rs12030522 924 

Schmitt, M., Hughes, L.H., Qiu, C., Zhu, X.X., 2019. Aggregating cloud-free sentinel-2 images with 925 
google earth engine. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. IV-2/W7, 145–926 
152. https://doi.org/10.5194/isprs-annals-IV-2-W7-145-2019 927 

Scornet, E., 2017. Tuning parameters in random forests. ESAIM Proc. Surv. 60, 144–162. 928 
https://doi.org/10.1051/proc/201760144 929 

See, L., Fritz, S., You, L., Ramankutty, N., Herrero, M., Justice, C., Becker-Reshef, I., Thornton, P., 930 
Erb, K., Gong, P., Tang, H., van der Velde, M., Ericksen, P., McCallum, I., Kraxner, F., 931 
Obersteiner, M., 2015. Improved global cropland data as an essential ingredient for food 932 
security. Glob. Food Secur. 4, 37–45. https://doi.org/10.1016/j.gfs.2014.10.004 933 

Siebert, S.F., 2002. From shade- to sun-grown perennial crops in Sulawesi, Indonesia: implications for 934 
biodiversity conservation and soil fertility. Biodivers. Conserv. 14. 935 

Spracklen, B., Spracklen, D.V., 2021. Synergistic Use of Sentinel-1 and Sentinel-2 to Map Natural 936 
Forest and Acacia Plantation and Stand Ages in North-Central Vietnam. Remote Sens. 13, 937 
185. https://doi.org/10.3390/rs13020185 938 

Sun, C., Bian, Y., Zhou, T., Pan, J., 2019. Using of Multi-Source and Multi-Temporal Remote Sensing 939 
Data Improves Crop-Type Mapping in the Subtropical Agriculture Region. Sensors 19, 2401. 940 
https://doi.org/10.3390/s19102401 941 

Thi, T.P., Chaovanapoonphol, Y., 2014. An Evaluation of Adaptation Options to Climate Pressure on 942 
Highland Robusta Coffee Production, Daklak Province, Vietnam. World J. Agric. Res. 2, 205–943 
215. https://doi.org/10.12691/wjar-2-5-2 944 

Torbick, N., Ledoux, L., Salas, W., Zhao, M., 2016. Regional Mapping of Plantation Extent Using 945 
Multisensor Imagery. Remote Sens. 8, 236. https://doi.org/10.3390/rs8030236 946 

Tsai, D.-M., Chen, W.-L., 2017. Coffee plantation area recognition in satellite images using Fourier 947 
transform. Comput. Electron. Agric. 135, 115–127. 948 
https://doi.org/10.1016/j.compag.2016.12.020 949 

Waldner, F., Chen, Y., Lawes, R., Hochman, Z., 2019. Needle in a haystack: Mapping rare and 950 
infrequent crops using satellite imagery and data balancing methods. Remote Sens. Environ. 951 
233, 111375. https://doi.org/10.1016/j.rse.2019.111375 952 

Widayati, A., Verbist, B., Meijerink, A., 2003. Application of combined pixel-based and spatial-based 953 
approaches for improved mixed vegetation classification using Ikonos. 954 

 955 

  956 



42 
 

List of Figure Captions 957 

Figure 1. A) The Central Highlands region, Dak Lak province, and Ea H’Leo district; B) 958 
Elevation in Dak Lak (Farr et al., 2007) and C) Land cover map of Dak Lak,  MODIS-dervied 959 
Land cover product (Friedl & Sulla-Menashe, 2015). 960 

Figure 2. Methods workflow showing data used, pre-processing steps and classification 961 
inputs and outputs. 962 

Figure 3. Map of detailed land cover classification for Dak Lak, at 10-m resolution. 963 

Figure 4. Closer look at the detailed land cover map in order to highlight specific landscape 964 
processes being captured, along with the corresponding satellite images: A) concentration of 965 
many new coffee plots, in a sun coffee and rubber landscape in Ea H’Leo, B) establishment 966 
of newly planted coffee in M’Drak (Eastern-most district), C) area dominated by sun coffee in 967 
Krong Ana, D) high concentration of intercropped or shade coffee near Buon Ma Thuot, E) 968 
zoomed in view near Buon Ma Thuot, an area of mixed sun and intercropped plots. 969 

Figure 5. Comparison of A) the binary coffee map from this study; B) the orchard class from 970 
the 2017 JAXA Land cover map (10m), derived from S2, Landsat 7 & 8, ALOS/AVNIR-2, 971 
PALSAR, and SRTM (Duong et. al., 2018); C) Hurni and Fox's (2018) coffee class from their 972 
2014 boom crop mapping in Mainland Southeast Asia (250m), MODIS-derived; D) Monfreda 973 
et al., (2008) “fraction of harvested area,” with a threshold of more than 1% coffee area 974 
harvested, disaggregated at the 5’ (~10km) grid cell from agricultural statistics for 2000. 975 
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