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Abstract
Pathways toward limiting global warming to well below 2 ◦C, as used by the IPCC in the Fifth
Assessment Report, do not consider the climate impacts already occurring below 2 ◦C. Here we
show that accounting for such damages significantly increases the near-term ambition of
transformation pathways. We use econometric estimates of climate damages on GDP growth and
explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment
Model we use includes the climate system and mitigation technology detail required to derive
near-term policies. We find an optimal carbon price of $115 per tonne of CO2 in 2030. The
long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon
price. Accounting for damages on economic growth increases the gap between the currently
pledged nationally determined contributions and the welfare-optimal 2030 emissions by two
thirds, compared to pathways considering the 2 ◦C limit only.

The mitigation of climate change is motivated by
the risk of large, pervasive and persistent climate
impacts. Policies to mitigate climate change in a
welfare-optimal way are usually derived in one of two
different approaches: cost-benefit analysis (CBA) or
cost-effectiveness analysis (CEA). These approaches
account for climate impacts in different ways. CBA
weighs climate damages against mitigation costs to
find optimal temperature levels and climate policies
in an integrated model system [1–3]. A compre-
hensive CBA would require monetizing all climate
impacts, including non-market damages. For that to
be possible, costs and benefits would have to be traded
off in the presence of deep uncertainty about those.
Particularly hard to evaluate is the risk of large-scale,
irreversible disruptions triggered by warming bey-
ond a threshold value (tipping point) [4]. Examples

include the melting of the ice sheets of Greenland and
West Antarctica or the dying of coral reefs [4–6]. As
a result, many CBA do not account for the risk of cli-
mate impacts from crossing tipping points. Account-
ing for such risks is known to increase the social cost
of carbon (SCC) [7].

The second approach, CEA, is used to model
pathways that minimize mitigation costs subject to
a temperature guardrail. CEA is directly applicable
to the climate-policy paradigm of preventing danger-
ous anthropogenic interference with the climate sys-
tem [8] and the associated target to keepwarmingwell
below 2 ◦C or even 1.5 ◦C [9]. CEA is motivated in
part by temperature guardrails beyond which the risk
of climate impacts from passing tipping points in the
Earth System rises rapidly [10, 11]. Another motiva-
tion for temperature guardrails is the precautionary
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Figure 1. Explicit or implicit economic damage functions in climate policy analysis. CBA accounts for gradual economic damages
in deriving optimal climate change mitigation pathways (A). CEA seeks to minimize mitigation costs for limiting warming below
a threshold, implicitly assuming zero damages below and infinite damages above the threshold (B). Least-total cost (LTC) analysis
combines the two: the resulting welfare-optimal policy accounts for damages occurring below the temperature threshold and
limits warming to below it.

principle: avoiding areas of deep uncertainty about
climate impacts where trade-offs between costs and
benefits of mitigation can no longer be properly
assessed [8, 12]. In its Fifth Assessment Report [13]
and Special Report on Global Warming of 1.5 ◦C
[14], the Intergovernmental Panel onClimateChange
used insights from a type of CEA model, detailed-
process integrated assessment models (IAMs) [15],
for its climate mitigation scenario assessment. In
contrast to CBA, CEA does not account for any
climate impacts that occur below the temperature
guardrail.

The omission of damages in CEA is becoming
more relevant, as empirical evidence of on-going
climate impacts accumulates. Gradually intensify-
ing impacts of climate change include, for example,
changes in agricultural yields, water availability, the
occurrence and intensity of extreme events, sea-level
rise, effects on health, labor productivity, and eco-
system services [16]. Many of these already occur
throughout societies and economies today [17].
There is evidence that such gradual impacts from cli-
mate change cause persistent socio-economic dam-
age, for example by affecting long-run economic
growth or societal stability [17–20]. The uncertainty
about the long-term consequences of such gradual
climate damages, however, remains large.

Figure 1 compares CBA with CEA by contrast-
ing their damage functions. The damage function
in CBA models is continuous and is an explicit ele-
ment of the analysis. By contrast, the damage func-
tion implied by CEA assumes no damages below
the temperature limit and infinite damages above
that. CBA and CEA can be combined into the least-
total-cost (LTC) approach. LTC pathways are welfare-
optimal climate change mitigation strategies for stay-
ing below a temperature limit in the presence of
gradual climate-change damages that already occur
below this temperature limit [21, 22].

The three main contributions of this study are:
first, we construct a new damage function based
on recent empirical damage estimates that explicitly
reflects uncertainty about the long-term persistence
of such gradual climate damages. Second, we develop
a new technique for implementing LTC pathways
in an IAM with high process detail in mitigation
technologies. Third, we derive implications for emis-
sions pathways and near-term ambition for interna-
tional climate policy.

1. Persistence of climate damages and the
social costs of carbon

Empirical studies quantify impacts of global warm-
ing on economic output. Recent studies find impacts
through changes in the growth rate of GDP with
increasing temperatures [18, 23–27]. These studies
are not conclusive about whether the income reduc-
tions due to such growth damages are temporary
(‘level effect’) or permanent (‘growth effect’). The
presence of growth effects implies a slow or no recov-
ery from income damages from global warming.

Most integrated analyses of impacts and mit-
igation model damages as level effects only. This
is implemented as a contemporaneous reduc-
tion in economic output through a damage func-
tion [3, 28, 29]. The damage function in a given year
is affected only by temperature in that year, but not
by temperatures in the past. In such models, eco-
nomic growth is, except through investment effects,
not affected by rising temperatures. These studies
commonly find moderate overall damages and costs
from global warming.

A number of recent studiesmodel climate impacts
on the growth rate of output. Such studies find
much higher overall damages [24, 30] and con-
sequently recommend more stringent optimal mitig-
ation action [31–36]. For more details about how the
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model we use differs from DICE-like models, see the
comparison in the next section.

Two controversial aspects in these studies are
the application of empirical estimates for out-of-
sample temperatures that are expected to occur in the
future and the implied total lack of adaptation despite
continually increasing climate impacts [30, 38]. We
address this issue with the introduction of a finite per-
sistence time for damages.

The question ofwhether level or growth effects are
dominant—with the resulting stark differences in the
long-term consequences—is thus a key uncertainty
for the long-term economic impacts of global warm-
ing [39]. Piontek et al [40] show that cumulative cli-
mate damages depend on the persistence of annual
climate impacts. This persistence depends, in turn, on
whether impacts affect output, production factors, or
labor productivity. A comprehensive empirical quan-
tification of these damages channels is not published.
Consequently, our study includes the persistence
time, which is defined as the typical time a damage
in a given year persists into the future, as a parameter.
This parametric approach to macro-economic dam-
ages reflects uncertainty due to different economic
impact channels and the scope for adaptation under
future climate change. A range of persistence times
interpolates between level effects (a persistence time
of zero) and growth effects (a persistence time of
infinity). For this study, we choose a range of persist-
ence times from 5 to 30 years (see the supplement-
ary material (available online at stacks.iop.org/ERL/
16/104053/mmedia) for more details). This allows
mapping out the consequences of the damage uncer-
tainty for mitigation policies.

To compare different empirical damage specific-
ations and persistence times, we calculate the SCC,
that is, the damage caused by the additional emis-
sion of one ton of CO2. We use the IAM REMIND
to derive the SCC in a CBA. The persistence time
strongly influences the SCC (figure 2): the SCC is 201
$(tCO2)−1 for the original specification from Burke
et al [24] (abbreviated BHM15) with its infinite per-
sistence time. This is consistent with the results of
Ricke et al [30]. For a persistence time of zero years,
the SCC is only 9 $(tCO2)−1. The damage function
from the DICE2016 model, in comparison, yields an
SCC of 11 $(tCO2)−1 in our model.

Consistent with the CBA literature [34, 35], the
resulting level of warming in our model is 1.7 ◦C
above pre-industrial for the original BHM15 dam-
age function with infinite persistence. By contrast,
using the DICE2016 damage function (which has no
persistence of damages) in our model results in a
warming of 2.7 ◦C above pre-industrial8.

8 In recent literature, parameter updates for the DICE model [41]
yield optimal temperatures below 2 ◦C.

2. Modeling mitigation pathways with
climate damages

We use the IAM REMIND [42, 43] to derive welfare-
optimal transformation pathways. The model is
a welfare-maximizing, Ramsey-type general equi-
librium model with 12 world regions that spans
the 21st century [44, 45]. REMIND includes an
energy system model that captures inertia and path-
dependencies by representing more than 50 energy
conversion technologies as capital stocks. Energy
prices reflect resource scarcities, resource trade, and
final energy taxes. The combination of both detailed
abatement options and long-term scope allows for
the assessment of near-term climate policies com-
patible with long-term climate targets [46–48].
The most relevant greenhouse gas emissions in
energy and land-use systems are accounted for
[43].

We use MAGICC6 [49] as a climate model.
It is coupled to REMIND, to translate greenhouse
gas emissions into global mean temperature change.
MAGICC6 emulates the results from atmosphere-
ocean general circulation models well [50] and has
been used by the Intergovernmental Panel on Climate
Change [13].

Temperature increase is approximately linear in
cumulative CO2 emissions, though this relationship
is subject to large uncertainties [49, 51–53]. These
uncertainties are accounted for by sampling from dif-
ferent MAGICC6 parameter configurations repres-
entative of the spread in temperature outcomes (see
supplementary figure 4). From a probabilistic run of
MAGICC6 with 600 outcomes for an RCP2.6 emis-
sions scenario, we select MAGICC6 configurations
at certain percentiles of the temperature distribution
in 2100. To quantify the influence of climate uncer-
tainty in our results, we run the model framework
using configurations at the 5th, 30th, 50th, 70th, and
95th percentile. Regional temperatures, which drive
the damage functions, are derived from global mean
temperature using a statistical downscaling based on
CMIP5 results [54] (section 3 of the supplementary
material).

The linked system of macro-economy, energy-
and land-system, climate and climate damages is
solved ensuring full consistency between the various
model components (figure 3).

In contrast to DICE-like IAMs [3, 35, 55],
REMIND has the climate system andmitigation tech-
nology detail required to describe near-term cli-
mate policy. Capturing the effect of starkly declin-
ing emissions over 10 or so years requires a cli-
mate model with good temporal resolution [56]. The
MAGICC6 climate model has annual time resolu-
tion, as compared to the 10-year resolution of DICE.
Furthermore, studies show that DICE significantly
underestimates the short-term temperature response
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Figure 2. The social costs of carbon in 2030 critically depend on the persistence of damages. Calculated from a CBA using the
REMIND model, for different damage functions. Persistence times are 5, 15, and 30 years. Ranges are the 20–80th percentile
interval over the two empirical damage specifications from BHM15 (see supplement for details) and climate uncertainty. Infinite
persistence is the original specification from BHM15. A persistence time of zero and the DICE2016 [37] damage function are
included for comparison. The dashed line is the value of the SCC put forward by the Interagency Working Group on Social Costs
of Greenhouse Gases (for a discount rate of 5%).

to emissions [57]. Emissions pathways compatible
with 2 ◦C often include negative emissions, which
DICE does not allow for.

The emissions reductions required for 2 ◦C path-
ways require large-scale investments and a restructur-
ing of the global energy systemwithin a couple of dec-
ades. Parameterizing the mitigation costs of such a
transition, as DICE does, misses several key effects:
capital stocks in the energy system often have very
long depreciation times. Furthermore, many energy
technologies show cost reductions through R&D
investments and learning-by-doing effects. This cre-
ates path dependencies. Mitigation costs thus depend
on the rate of emission reduction. REMIND tracks
the regional age structure of capital stocks in the
energy system. Assets stranded by climate policy
thus contribute to mitigation costs in our model.
To capture rapid technological change, endogenous
learning-by-doing effects are included. Even though
we do not show regional results, the regional res-
olution of the model makes for better modeling of
near-term emission pathways. Regions have differ-
ent mitigation potentials and pre-existing climate
policies as of today, which are included in the model.
Consequently, detailed-process IAMs are often used
in international climate policy assessments [13, 14].

3. Welfare-optimal pathways for gradual
damages and a temperature guardrail

The SCC accounts for gradual climate dam-
ages based on empirical estimates. Instead, the
temperature guardrail of the Paris Agreement
is largely motivated by the precautionary prin-
ciple, in view of tipping elements and potentially
unknown climate impacts if warming increases
beyond the range experienced in the Holocene
[10].

Our model framework includes both gradual
damages and a temperature guardrail (figure 1(c)).
LTC pathways minimize the sum of costs from cli-
mate damages and mitigation activities for limiting
warming to below the guardrail. The theoretical lit-
erature suggests that in the presence of both climate
damages and a temperature guardrail, the welfare-
optimal carbon price is the sum of the SCC and a
price component related to the temperature guard-
rail [22]. In our LTC pathways, the carbon price is
the sum of the SCC and a price component we call
the guardrail tax. We derive analytical expressions
for both price components in a reduced model (i.e.
the relevant first-order conditions of the optimiza-
tion problem), evaluate them using variables from
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Figure 3. Illustration of the IAM REMIND. Emission and GDP pathways derived in the REMIND core model are fed into the
climate model MAGICC6; resulting in temperature and the temperature impulse responses. Climate damages, the SCC and the
guardrail tax are calculated from this information, and used in the next iteration of the REMIND core model. At the fixed point of
this iteration, the solution is the same as if a single numerical optimization model was run (supplementary material, section 2).

the REMIND and MAGICC6 models and iteratively
price them into REMIND as taxes on emissions (for
technical details, see section 2 of the supplement-
ary material). The welfare-optimal carbon price in
our framework is thus the sum of the SCC and the
guardrail tax at the solution point of our model
framework.

We implement the temperature guardrail as a lim-
ited CO2 budget until the time of CO2 neutrality;
the stringency of this budget approximately determ-
ines the temperature at peak warming [58]. As an
implementation of the 2 ◦C limit we use a budget of
1300 Gt CO2 from 2011 onward, which is derived
from the budgets given in chapter 2 of the Special
Report on Global Warming of 1.5 ◦C [14] for 67%
likelihood of stabilizing below 2 ◦C. The guardrail
tax grows exponentially at the interest rate, follow-
ing Hotelling’s rule, as long as cumulative emissions
are below the budget [13, 58]. After the budget con-
straint is reached, which happens around 2070 in
most pathways, the level of the guardrail tax is adjus-
ted to keep CO2 emissions to zero. The carbon price is
levied on CO2, CH4, and N2O emissions, aggregated
using global warming potentials [59], and implemen-
ted from 2025 on. The carbon price is globally uni-
form, as the socially optimal policy takes into account
the global effects of each region’s emissions. The tax
revenue is redistributed as a lump-sum to the single
representative household of each region.

To better understand the distinctive features of
LTC pathways, we also implement CEA pathways,
which minimize only the cost of limiting warming
to below a temperature guardrail. Gradual climate

impacts still do occur in the CEA pathways, but are
not reflected in the carbon price. The carbon price
in CEA consists only of the guardrail tax. LTC path-
ways arewelfare-optimal (‘first-best’) in the sense that
both the temperature target and climate damages are
both fully internalized, and consequently accounted
for in the carbon price. By contrast, CEA pathways
are not welfare optimal (‘second-best’) in the sense
that although the temperature target is internalized,
climate damages are not. Consequently the CEA car-
bon price does not include the SCC, even though cli-
mate damages are present.

Three key components of uncertainty are
included: (i) the persistence time in the damage func-
tion; (ii) physical uncertainties in the climate system;
(iii) future socio-economic, demographic, technolo-
gical and institutional development.

The damage function uses estimates from two
empirical specifications from BHM15 for the reduc-
tion of GDP growth through local temperature
changes, referred to as ‘long-run’ and ‘short-run’
changes. We express the uncertainty over the persist-
ence time scale by using a model ensemble with per-
sistence times of 5, 15, and 30 years, as well as their
original estimate (with the implied infinite persist-
ence time). Together, the product of two empirical
specifications and four persistence times yield eight
damage specifications that span the damage-related
dimension of the ensemble of model runs.

Physical uncertainties in the climate system are
covered by sampling configurations of theMAGICC6
model along temperature outcomes. Different pos-
sible future socioeconomic trends are represented

5
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Figure 4. Carbon prices for 2 ◦C in welfare-optimal LTC pathways (blue) are higher in the near-term than for CEA (red).
(a) Median carbon prices in 2030 are 115 (85–218) $(tCO2)−1 for LTC, significantly above the 61 (57–63) $(tCO2)−1 for CEA.
The range in brackets are the 20th–80th percentiles across the scenario ensemble, also indicated in dark ribbons in the plot; light
ribbons are the min–max range. (b) Higher near-term carbon prices of LTC are mirrored by lower prices from 2050 on; ribbons as
in (a). (c) Effect of different socio-economic baselines. (d) Uncertainty decomposition of the full ensemble of 240 runs into
contributions of socio-economic baseline, climate, and impact specifications.

by different assumptions described by the shared
socioeconomic pathways (SSPs) 1, 2, and 5 [60, 61]:
Sustainable development in SSP1, a fossil-fuel
intensive high growth scenario in SSP5, and the
middle-of-the-road scenario SSP2. Assumptions for
the global population in 2100 stretch from 7 to 9 bil-
lion [62] across scenarios. GDP per capita in 2050 is
around twice as high in SSP5 as in SSP1 [63]. Energy
demand in 2100 is assumed to be more than double
and baseline emissions are around double already
in 2050 in SSP5 compared to SSP1 [61]. Baseline
radiative forcing in 2100 is slightly above RCP8.5
for SSP5, indicating high challenges, and somewhat
below RCP6.0 for SSP1, indicating lower challenges
for mitigation [61]. Lower challenges decrease the
mitigation costs for a given climate target [64].

The SSPs thus form a range of scenarios with
different mitigation costs, but other factors con-
tribute to mitigation cost uncertainty as well. For
example, uncertainty about technological availabil-
ity and costs is known to be a strong determinant of
mitigation costs [36, 65]. For this study, we assume
that all mitigation technologies are fully available.
Partial, or delayed availability of mitigation techno-
logies increases mitigation costs [13, 65].

We sample 80 runs of the REMIND model sys-
temalong the damage and climate physics uncertainty

dimensions under SSP2 as the ensemble for the main
results. We do so because SSP2 shows the least diver-
gence from socioeconomic preferences and rates of
technological improvement observed in the past [66].
Additionally, we sample 80 runs each for SSP1 and
SSP5 for a sensitivity analysis in the socio-economic
dimension. In total, there are 240 runs. We summar-
ize this ensemble ofmodel runs intomedian pathways
and percentile ranges to express uncertainty.

4. Near-term emission reduction efforts
and the adequacy of the nationally
determined contributions

The difference in near-term carbon prices between
LTC and CEA pathways for the 2 ◦C limit is shown
in figure 4(a). In 2030, the LTC carbon price is
115 (85–218) $(tCO2)−1, compared to 61 (57–63)
$(tCO2)−1 in the CEA case (medians and 20–80th
percentile range of the ensemble for SSP2 only; all
dollar values are US$2015.). Whereas the CEA carbon
price rises exponentially over time, the LTC carbon
price rises much slower (figure 4(b)). A consequence
of the high near-term ambition in the LTC pathway
is that in the long term, much lower carbon prices
are required to reach the 2 ◦C target than in the CEA
pathway.
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Figure 5. Global CO2-only emissions for 2 ◦C in welfare-optimal LTC pathways (blue) are below emissions for CEA (red) in the
near term. Projections under the nationally determined contributions (NDCs) (yellow) are included. (a) Median emissions in
2030 are 28 (23–31) GtCO2 yr−1 for LTC, significantly below the 33 (33–33) GtCO2 yr−1 for CEA, increasing the gap to the
NDCs. The range in brackets are the 20th–80th percentiles, also indicated in dark ribbons in the plot; light ribbons are the
min–max range. (b) Lower near-term emissions of LTC are mirrored by higher emissions from 2050 on. (c) Effect of different
socio-economic baselines on 2030 emissions. (d) Uncertainty decomposition of the full ensemble of 240 runs into contributions
of socio-economic baseline, climate, and impact specifications. See supplementary figure 3 for a plot that includes many
greenhouse gases.

These results are robust against different socio-
economic baselines: larger challenges for mitigation
in the socio-economic baseline, such as in SSP5,
require higher carbon prices than baselines with
lower challenges to mitigation, such as SSP1, to
meet the 2 ◦C limit (figure 4(c)). The SSP5 scen-
ario describes a future with high economic growth
and high energy demands, as well as an abund-
ant and cheap supply of hydrocarbons [67]. Both
factors combined require a higher carbon price to
keep emissions within the budget for the 2 ◦C tar-
get. This is consistent with results of earlier studies
[61].

The range of 2030 carbon prices is dominated
by uncertainty about the damage function in LTC
pathways, whereas uncertainty about socio-economic
baselines explains most of the range of CEA carbon
prices of the full scenario ensemble (figure 4(d)).
Compared to the range of LTC pathways, the range
of CEA pathways is much smaller9.

9 Additionally including the uncertainty in the carbon budget
increases the uncertainty for CEA pathways (see supplementary
figure 5 for other temperature targets).

Near-term emissions are lower in the median LTC
pathway than in the CEA counterpart (figure 5). In
2030, global CO2 emissions are 28 (23–31) GtCO2

for the median LTC pathway, compared to 33 (33–
33) GtCO2 for CEA. The near-term ambition of the
median LTC pathway is similar to 1.5 ◦C pathways
with temperature overshoot from the SR1.5 (median
29.1 GtCO2), whereas the CEA pathway is in line with
their higher-2 ◦C scenarios (median 33.5 GtCO2).
The gap between 2030 emissions projected under the
currently pledged nationally determined contribu-
tions (from the SR1.5 database[14]) and the welfare-
optimal LTC pathway for the 2 ◦C limit is two thirds
larger compared to what the CEA assessment indic-
ates. In the median LTC pathway, the average emis-
sion reduction rate from 2020 to 2030 is 3.2% yr−1,
almost double the rate of the median CEA path-
way, indicating the much higher near-term mitiga-
tion effort.

To sum up, CEA pathways systematically under-
estimate the optimal near-term policy ambition and
overestimate the long-term ambition if climate dam-
ages are non-negligible below warming levels of 2 ◦C.
This conclusion holds for other temperature limits
as well, but the difference between LTC and CEA

7
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decreases for lower temperature limits, with only a
minor effect remaining for 1.5 ◦C pathways (supple-
mentary figure 5).

5. Discussion

Our main results are consistent with related findings
in the literature. In particular, [36] find that account-
ing for damages in Paris-compatible mitigation path-
ways doubles near-term carbon prices, very close to
our results. Both studies analyze the drivers of the
uncertainty of optimal carbon prices. Whereas they
find that damage and mitigation cost are the largest
drivers of uncertainty in the near-term, damage spe-
cification are the largest factor in our results. They
model a broader range in the uncertainty of mit-
igation cost and discount rate than our study. Our
study, by contrast, allows for more credible modeling
of near-term carbonprices due to the process-detailed
model (see the discussion above for details).

6. Conclusion

Climate change mitigation policies, in particular the
ambition of mitigation efforts in the current dec-
ade, not only influence the likelihood of meeting the
temperature limit set forth in the Paris Agreement,
but also the severity of climate impacts. Whereas the
policy debate largely focuses on the impacts beyond
the 1.5 ◦C and 2 ◦C thresholds, near-term impacts
at lower warming levels can be substantial and
have persistent consequences beyond their immediate
effect.

This study combines recent empirical damage
estimates and modeling of the persistence time, a key
uncertainty, into a new damage function. This dam-
age function is evaluated within an IAM with high
technological detail and a state-of-the-art climate
model. We demonstrate that welfare-optimal mitig-
ation pathways, which minimize the sum of damage
costs and mitigation costs for a Paris-based temper-
ature guardrail, result in substantially greater near-
term mitigation efforts than a pure cost-effectiveness
pathway. A pure cost-effectiveness pathway, which
postpones climate policy ambition until later in the
century, achieves the 2 ◦C target at higher cost than
least-total cost pathways.

Future research could include damages beyond
reductions in economic output. To reduce the uncer-
tainty over optimal policies, it is crucial to further
the empirical understanding of impact channels, their
persistence over time, and adaptation.

Climate impacts, mitigation costs, and adapt-
ive capacity vastly differ across regions and house-
holds. The cost-optimal policies derived in this paper
do not reflect within-region inequalities in income,
impacts, and mitigation costs. Reflecting such con-
cerns in social welfare is known to change the optimal

policy [68, 69]. In particular, a regressive incidence of
climate impacts without appropriate compensation
mechanisms has been found to increase the SCC [70],
which would further increase the difference between
cost-effectiveness and least-total cost pathways. On
the mitigation side, a redistribution of the carbon
price revenues could offset or reverse a regressive
policy incidence [71, 72]. An improved modeling
of inequality along both the mitigation and impact
dimensions, and also of adaptive capacity, are import-
ant directions for future research.

Despite the significant uncertainties, our results
have important implications for climate policy. Previ-
ous research based on CEA has pointed out the inad-
equacy of currently committed mitigation efforts to
achieve the Paris Agreement at the lowest cost. Our
results demonstrate that the gap between current cli-
mate policy efforts and optimal pathways is larger
than previously thought, as soon as climate damages
below the temperature limit are taken into account.
We argue that the least-total cost approach should be
used to inform climate policy-making, in particular
with respect to near-term action.
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