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Abstract
We consider trends in the m seasonal subrecords of a record. To determine the statistical significance of the m trends, one 
usually determines the p value of each season either numerically or analytically and compares it with a significance level 𝛼̃ . 
We show in great detail for short- and long-term persistent records that this procedure, which is standard in climate science, 
is inadequate since it produces too many false positives (false discoveries). We specify, on the basis of the family wise error 
rate and by adapting ideas from multiple testing correction approaches, how the procedure must be changed to obtain more 
suitable significance criteria for the m trends. Our analysis is valid for data with all kinds of persistence. Specifically for 
long-term persistent data, we derive simple analytical expressions for the quantities of interest, which allow to determine 
easily the statistical significance of a trend in a seasonal record. As an application, we focus on 17 Antarctic station data. We 
show that only four trends in the seasonal temperature data are outside the bounds of natural variability, in marked contrast 
to earlier conclusions.
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1  Introduction

In recent years, mainly due to climate change, the estimation 
of the statistical significance of climate trends has become an 
important issue, since the question whether a climate trend 
is of anthropogenic or natural origin is of great relevance 
for mitigation and adaptation measures alike (IPCC 2014). 
Of particular interest are, for instance, trends in temperature 
or precipitation records, river flows, and Arctic or Antarc-
tic sea-ice-extent. Here we are particularly interested in the 
statistical significance of trends in seasonal records. Signifi-
cant seasonal climate trends are of great importance, since 
they may affect considerably ecological systems, agricultural 
yields and human societies, this way creating major chal-
lenges for crop rotation management (Troost et al. 2015), 
river-borne transportation (Caldwell et al. 2002) and power 

generation (Rübbelke and Vögele 2013), as well as for the 
control of pests and vector-borne diseases (Rao et al. 2015).

Seasons are usually the four meteorological seasons win-
ter, spring, summer and autumn, but also the 12 months, the 
52 weeks or the 365 calendar days (without leap days) can 
be considered as generalized “seasons”. Also annual data 
can be considered as seasonal data where the season spans 
the whole year. The trends are usually obtained from a linear 
regression analysis. The relevant quantity is the positively 
defined relative trend x ≥ 0 which is the ratio between the 
trend amplitude |�| and the standard deviation � around the 
trend line (see, e.g., Ludescher et al. 2017).

For obtaining the p values of the trends in the m seasonal 
records, one needs to choose an appropriate model for the 
persistence of the record. Prominent examples are Gaussian 
white noise (for records without persistence), autoregressive 
processes of first order (AR(1)) for records with short-term 
memory, and scale-free processes for records with long-
term memory (see Sect. 2). The surrogate data generated by 
these models allow to determine numerically, for each of the 
m trends, the probability p(m)

�
(x) (p value) that in season � , 

� = 1,… ,m , a relative trend above x is observed due to the 
record’s natural variability. Since no season is distinguished 
a priori from the others, there is no explicit dependence on 
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� and p(m)
�

(x) ≡ p(m)(x) . This implies that the largest relative 
trend has the smallest p value. For white noise p(m)(x) is 
known exactly (Bronstein et al. 2004).

In climate science, one usually does not follow this route 
but instead assumes that the m seasonal records are inde-
pendent and described by m different AR(1) processes with 
m detrended lag-1 autocorrelations C�(1), � = 1,… ,m . 
Only in this approach, which we will refer to as the standard 
approximation, p(m)

�
(x) depends explicitly on � via C�(1) [(for 

details, see Sect. 2 and the discussions in (Mitchell et al. 
1966; Santer et al. 2000)]. Here the largest relative trend 
does not have necessarily the smallest p value.

To decide whether one of the m relative trends x� is sta-
tistically significant, i.e., cannot be solely explained by the 
natural variability of the record, one usually compares its 
p-value with a certain significance level 𝛼̃ (typically 𝛼̃ = 0.05 
or 0.01). A trend x� , � = 1,… ,m is considered as significant, 
when the condition

is met. For recent applications of this procedure in the 
important context of Antarctic temperatures, we refer to 
(Steig et al. 2009; O’Donnel et al. 2011; Bromwich et al. 
2014; Jones et al. 2014; Chapman et al. 2007; Monaghan 
et al. 2008; Turner et al. 2016, 2019) and references therein.

By definition, when in a record the trend of at least one 
of the m seasons is found statistically significant, the record 
cannot be solely of natural origin. The question is how reli-
able the crucial significance criterion (1) is. Here we show 
in great detail that (1), in particular together with the stand-
ard approximation, is inadequate since it produces too many 
false positives (false discoveries, Type I errors). We explain 
in detail, on the basis of the family wise error rate and by 
adapting ideas from maximum statistics and multiple test-
ing correction approaches (Bonferroni 1936; Holm 1979), 
how (1) must be changed to obtain appropriate significance 
criteria, this way confirming and considerably extending our 
recent work on this subject (Ludescher et al. 2017). Our 
analysis holds for Gaussian white noise, as well as for short-
term persistent data (where the autocorrelation function C(t) 
decays exponentially with time t) and long-term persistent 
data (where C(t) decays algebraically), and also holds for a 
combination of both. Specifically for long-term persistent 
data, which are of great relevance in geoscience (Hurst 1951; 
Mandelbrot and Wallis 1968; Koscielny-Bunde et al. 1998; 
Malamud et al. 1999; Eichner et al. 2003; Blender et al. 
2003; Vyushin et al. 2004; Cohn and Lins 2005; Santhanam 
and Kantz 2005; Kiraly et al. 2006; Livina et al. 2005; Varot-
sos and Kirk-Davidoff 2006; Lennartz et al. 2011; Mudelsee 
2007; Yuan et al. 2010; Franzke 2010; Bogachev and Bunde 
2012; Bunde et al. 2012; Lovejoy and Schertzer 2013; Dan-
gendorf et al. 2014; Bunde et al. 2014; Yuan et al. 2015; 

(1)p(m)
𝜈

(x𝜈) ≤ 𝛼̃,

Blender et al. 2015; Ludescher et al. 2016; Blesic et al. 2019; 
Blesic 2020; Ludescher et al. 2020), we derive simple ana-
lytical expressions for all quantities of interest, which allows 
to determine straightforwardly the significance of a trend in 
a seasonal record. As an important application, we focus on 
the significance of the observed trends in seasonal Antarctic 
temperature data in the past 50 years.

2 � Statistical models and p values

We are interested in daily or monthly climate records y(i), 
i = 1, 2,… ,N  and their m seasonal subrecords y�(j) . The 
annual index j runs from 1 to L. For obtaining the p-values 
of the observed relative trends x� , one needs to choose an 
appropriate model for the persistence of the record.

Gaussian white noise: Here the data are independent and the 
m relative trends x ≡ x� follow (Bronstein et al. 2004; Mitch-
ell et al. 1966; Santer et al. 2000) a Student’s t distribution

with t = x∕a and the scaling factor

Here, � = L − 2 is the number of degrees of freedom.
From the Student’s t distribution one can easily obtain the 

p value p(m)(t) = ∫ ∞

t
dyP(m)(y) . Note that P(m)(t) and p(m)(t) 

do not depend explicitly on m since the data are uncorre-
lated. For p(m)(t) = 0.05 and 0.01, the corresponding quan-
tiles t05 and t01 are listed in mathematical tables for fixed � . 
From t05 and t01 one obtains x0.05 = at05 and x0.01 = at01.

Short-term memory: In records with short-term memory, a 
measure for the strength of the correlation is the lag-1 auto-
correlation C(1). To eliminate effects of external trends, one 
often detrends the data by subtracting the linear trend and 
then uses the detrended data to determine the detrended C(1) 
[see, e.g., (Santer et al. 2000)]. Unless otherwise stated, C(1) 
refers here to the detrended lag-1 autocorrelation.

The simplest model that only requires the knowledge of 
C(1) is an AR(1) process, where y(i) and y(i + 1) are cou-
pled by

Here, b is the persistence parameter and �(i) is Gaussian 
white noise; in the limit of N → ∞ , b is identical to C(1). 
For finite N, however, C(1) is distributed around b. Accord-
ingly, for instance, an observed C(1) = 0.4 may also arise 
from records with b below and above 0.4.

(2)P(m)(t) ∝

(
1 +

t2

�

)−
�+1

2

,

(3)a =
√
12∕� + O(L−3∕2).

(4)y(i + 1) = by(i) + �(i), i = 1,… ,N − 1.
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For obtaining surrogate data with fixed C(1) = c1 , one 
needs to simulate a large number of records with b between 
− 1 and + 1. In each record, one determines C(1) and then 
selects only those records where C(1) is in a narrow interval 
around c1 , this way obtaining a set of K surrogate records 
with the desired lag-1 autocorrelation c1.

Next, we divide each of these K records into m seasonal 
subrecords and determine the relative seasonal trends x� . 
This way we obtain a set of Km = mK relative trend val-
ues. Next we order them in descending order, such that 
x(1) < x(2) < ⋯ < x(Km) . Then, by definition,

The relevant quantiles x0.05 and x0.01 are obtained from 
k = 0.95Km and k = 0.99Km , respectively.

For annual data (m = 1) , one can obtain a reasonable 
approximation for p(1) by replacing � in (2) and (3) by 
�
eff = L(1 − C(1))∕(1 + C(1)) − 2 (see, e.g., (Mitchell et al. 

1966; Santer et al. 2000)). When assuming that the m sea-
sons can be considered as independent, then this relation 
also holds for the m seasonal subrecords, i.e.,

Under the above assumptions, (2), (3), and (6) offer a simple 
way to obtain the desired p values and the relevant quantiles 
also in the presence of correlations. Since this approximation 
is very popular in climate science (see, e.g., (Turner et al. 
2019)), we refer to it as the standard approximation.

Long-term memory: While in data with short-term memory 
the lag-t autocorrelation function C(t) decays exponentially, 
C(t) decays algebraically in data with long-term memory, in 
the limit of N → ∞ . For finite record length N (Lennartz and 
Bunde 2009b), the (undetrended) autocorrelation follows

where 0 < 𝛾 < 1 denotes the correlation exponent. Such cor-
relations are named "long-term" since the mean correlation 
time diverges in the limit of infinitely long series.

According to (7), C(t) shows strong finite size effects 
such that the power-law dependence can only be seen for 
very small time lags t (for � = 0.4 and the comparatively 
large record length N = 16, 000 only for t < 10 ) (Lennartz 
and Bunde 2009b). In addition, C may depend on external 
trends. Since C(t) is inappropriate to quantify the long-term 
memory in the relatively short climate records, one usually 
considers the Detrended Fluctuation Analysis 2 (DFA2) and 
its fluctuation function F(s) (Kantelhardt et al. 2001). To 
obtain F(s), one divides the seasonally detrended monthly 

(5)p(m)
(
x = x(k)

)
= (Km − k + 1)∕Km, k = 1,… ,Km.

(6)�
eff

�
= L

1 − C�(1)

1 + C�(1)
− 2, � = 1,… ,m.

(7)C(t) ≅
1

1 − N−�

( (2 − �)(1 − �)

2
t−� − N−�

)
, t ≥ 1,

(or daily) record {y(i)}, i = 1,… ,N , into non-overlapping 
windows � of lengths s. Then one focuses, in each segment 
� , on the cumulated sum Yi of the {y(i)} , and determines the 
variance F2

�
(s) of the Yi around the best polynomial fit of 

order 2. After averaging F2
�
(s) over all segments � and taking 

the square root, one arrives at the desired fluctuation func-
tion F(s). One can show that in long-term persistent records 
(Kantelhardt et al. 2001)

where the exponent h can be associated with the Hurst 
exponent (Hurst 1951; Mandelbrot and Wallis 1968) and 
is related to the correlation exponent � by h = 1 − �∕2 . By 
construction, h is not affected by external linear trends.

Long-term persistent records can also be characterized 
by their power spectral density S(f) which decreases with 
frequency f as S(f ) ∼ f −� with � = 1 − � = 2h − 1 for large 
record lengths N. This relation can be used to generate a set 
of long-term correlated surrogate data with length N = mL 
and fixed DFA2 exponent h (for detailed descriptions of the 
method, we refer to (Lennartz and Bunde 2009a; Tamazian 
et al. 2015). Then following the procedure described above, 
one can easily determine numerically, for each m of interest, 
the relevant p(m) values of the m observed relative trends.

For annual data, analytical descriptions of p(1)(x) and 
the quantiles are available. For example, for monthly 
data with L = 50 years, the quantiles x0.05 and x0.01 fol-
low the relations x0.05 ≃ 0.2 + h2| ln(0.05∕1.6)| and 
x0.01 ≃ 0.2 + h2| ln(0.01∕1.6)| (Lennartz and Bunde 2009a).

3 � Fraction of statistically significant records 
and family wise error rate

When the respective p values have been obtained as 
described in Sect. 2, the significance test (1) can be applied 
to all kinds of seasonal data, from m = 1 (annual data) until 
m = 365 (where each calendar day is one season). The tests 
are well calibrated and consistent with each other when for 
a large number K of surrogate records (where by definition 
no external trends are present), at most K� (usually � = 0.05 
resp. 0.01) of them are found significant. In other words, it 
is required that the family wise error rate F(m, 𝛼̃) , which 
denotes the probability that in a record with m seasons at 
least one of them has a p-value below 𝛼̃ , satisfies

The question is how 𝛼̃ in (1) must be chosen, in dependence 
of m and � , such that Eq. (9) is satisfied.

Before considering F(m, 𝛼̃) in greater detail, we first put 
the standard approximation to a direct test. We have used 
Eq. (4) to generate 1000 short-term correlated daily records 

(8)F(s) ∼ sh, 10 < s < N∕4,

(9)F(m, 𝛼̃) ≤ 𝛼.
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with L = 50 years. In each record, b has been chosen such 
that the detrended lag-1 autocorrelation between successive 
months was 0.4, which is typical for temperature data sets. In 
each record, we determined the p values of the trends in (i) 
the annual record ( m = 1 ), (ii) the 4 records for the 4 mete-
orological seasons, (iii) the 12 records for the 12 months, 
(iv) the 52 records for the 52 weeks, and finally (v) the 365 
records for the 365 calendar days.

In each of these sets of m subrecords we first focus on the 
trend with the lowest p value. By averaging over all 1,000 
data sets, we obtain the mean lowest p value and the stand-
ard deviation from this average. Then we do the same for 
the 2nd, 3rd and 4th lowest p value in each data set. The 
results are shown in Table 1: already for m = 4 there is a 
good chance ( 20.2% ) that the trend with the minimum p 
value is significant, and for m above 52 the chances are high 
that even 2 trends or more are highly significant. Accord-
ingly, when testing whether a record is of natural origin or 
not, the standard method together with (1) produces a large 
fraction of false positives (false alarms) for m ≥ 4 and thus 
is not applicable.

To obtain a more quantitative picture, we now focus 
directly on the family wise error rate F(m, 𝛼̃) . Figure 1 
shows F(m, 𝛼̃) with 𝛼̃ = 0.05 for (a) short-term persistent 
data where the p values have been determined both numeri-
cally and by the standard approximation, (b) white noise 
records, and (c) long-term correlated records ( h = 0.75 ) 
where p(m)(x) has been obtained numerically. For each kind 
of data set, we considered 20,000 records, with length 50 
years.

The figure shows that in all cases, F(m, 𝛼̃) increases 
monotonously with m. For m above 52, most of the 20,000 
records are falsely indicated as significant, irrespective of 
their persistence properties.

For Gaussian white noise, we can estimate F(m, 𝛼̃) ana-
lytically: Since the m seasonal records are independent of 
each other, the probability that none of them has a p value 
below 𝛼̃ is (1 − 𝛼̃)m . Therefore,

Equations (9) and (10) imply 𝛼̃ ≤ 1 − (1 − 𝛼)1∕m. Together 
with (1), this yields

Accordingly, a trend x� is significant when its p value is 
below 1 − (1 − �)1∕m . Only for annual data ( m = 1 ), (11) 
reduces to (1).

Inequality (11), known as Šidák correction (Šidák 1967), 
is slightly less conservative than the Bonferroni correction 
(Bonferroni 1936; Ludescher et al. 2017) p(m)(x�) ≤ �∕m 
which holds quite generally when multiple tests are per-
formed on uncorrelated or positively correlated data. How-
ever, both (11) and the Bonferroni correction are too con-
servative for short- or long-term persistent records since the 
m subrecords are not fully independent of each other.

We find it convenient to describe the effect of persistence 
in the data by an effective exponent meff(m) ≤ m , such that

This choice can be motivated as follows. Assume that in 
a (synthetic) monthly temperature record the correlations 
are such that in each year, the temperatures of months 1–3, 
4–6, 7–9, and 10–12 are identical but uncorrelated with the 

(10)F(m, 𝛼̃) = 1 − (1 − 𝛼̃)m.

(11)p(m)(x�) ≤ 1 − (1 − �)1∕m, � = 1,… ,m.

(12)F(m, 𝛼̃) = 1 − (1 − 𝛼̃)meff .

Table 1   Mean p values and standard deviations �
p
 for the 4 lowest p 

values obtained by the standard approximation (Eq. (1) with (2) and 
(6)), in short-term correlated records with C(1) = 0.4 , for annual 
data ( m = 1 ), meteorological seasons ( m = 4 ), months ( m = 12 ), 
weeks ( m = 52 ), and days ( m = 365 ). Shown are averages over 1000 
records. The length L of the data is 50 years

m p̄(x
m
), 𝜎

p
p̄(x

m−1), 𝜎p p̄(x
m−2), 𝜎p p̄(x

m−3), 𝜎p

1 0.489, 0.294 – – –
4 0.186, 0.163 0.383, 0.207 0.585, 0.210 0.791, 0.172
12 0.069, 0.073 0.142, 0.103 0.215, 0.121 0.290, 0.135
52 0.013, 0.016 0.028, 0.025 0.044, 0.032 0.061, 0.037
365 0.001, 0.001 0.002, 0.002 0.004, 0.003 0.005, 0.004

m

0.01

0.1

1

F(
m

, α
∼  =

 0
.0

5)

AR1 (C(1)=0.4)
AR1 (C(1)=0.4, sim)
analytic/WN
LTP h=0.75

1 4 12 52 365

Fig. 1   Family wise error rate F(m, 𝛼̃) based on Eq. (1). The figure 
shows how F(m, 𝛼̃) increases with increasing number m of seasons 
in records of length 50y, for 𝛼̃ = 0.05 . The red circles show F for 
data generated by an AR(1) process where each record is character-
ized by the detrended lag-1 autocorrelation C(1) = 0.4 between suc-
cessive months. The open circles refer to the standard approximation 
of the p values, (2) with (3) and (6), while the full circles refer to a 
rigorous treatment. The figure also shows F(m, 𝛼̃) for long-term per-
sistent records with Hurst exponent h = 0.75 (triangles). To obtain F, 
we generated 20,000 records for each kind of data set. The full line 
shows the exact curve for Gaussian white noise. The dashed line rep-
resents � = 0.05 , which is the expected value of F in a correct analy-
sis
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other temperatures. In this case, F(m, 𝛼̃) = 1 − (1 − 𝛼̃)meff 
with meff = 4.

For the long-term correlated records from Fig. 1, where 
𝛼̃ = 0.05 , we have meff(m) ≈ 2.4, 5.9 , and 28 for m = 4, 12 , 
and 52. For the short-term correlated records where 
the p values have been obtained numerically, we have 
meff(m) ≈ 3.8, 11.5 , and 47 for m = 4, 12 , and 52.

However, when using the standard approximation, 
meff(m) even exceeds m for m = 1 , 4, and 12: meff(1) ≈ 1.5 , 
meff(4) ≈ 5.9, and meff(11) ≈ 14.5 . This is a serious incon-
sistency of the method: Since the seasonal records are con-
sidered as independent within this treatment, the family-wise 
error rate should follow Eq. (10).

The fact that even for annual data ( m = 1 ) and for short-
term correlations the standard approximation is too lib-
eral, is another serious drawback of this approach [see also 
(Mitchell et al. 1966; von Storch and Zwiers 1999)], which 
has been widely used to evaluate climate change (Hartmann 
et al. 2013). The reason is that even for m = 1 , (6) is valid 
only in the limit of L → ∞ and thus is incorrect for the 
comparatively short records usually considered in climate 
science.

4 � The statistical significance of the largest 
relative trend

As described above, a record with m seasonal subrecords 
is called significant, when at least one of its subrecords has 
a significant trend. Since the largest relative trend in the m 
subrecords has the smallest p value, the record is significant, 
when the probability p(m)max(x) that the largest trend x ≡ xmax 
is above x, satisfies

Accordingly, when (13) is used as a significance condition, 
the familiy wise error rate automatically satisfies (9). Ine-
quality (13) has been suggested before, but based on differ-
ent arguments (Ludescher et al. 2017).

It is easy to see that p(m)max(xmax) is not simply p(m)(xmax) : 
For i.i.d. data, the probability that the relative trend in season 
� is below x, is 1 − p(m)(x) . Therefore, the probability that in 
all m seasons the relative trends are below x, is (
1 − p(m)(x)

)m

 . Thus the probability p(m)max(x) that at least in 
one season the relative trend is above x, becomes

Accordingly, (13) and (14) allow to determine whether the 
p-value of the largest trend x = xmax in i.i.d. data is signifi-
cant. By combining (13) with (14) we recover (11).

(13)p(m)
max

(x) ≤ �.

(14)p(m)
max

(x) = 1 −
(
1 − p(m)(x)

)m

.

By definition, p(m)max(xmax) is the minimum p-value one of 
the m relative trends can have. Therefore, p(m)max(xmax) yields 
a lower bound for the p values of the m − 1 smaller trends: 
When p(m)max(xmax) is above some threshold � , the p-values 
of the remaining trends must be also above �.

In Sect. 3 we have argued that the influence of short- 
and long-term persistence on the family wise error rate 
can be described by an effective m value. The question 
is, whether this argument also applies here, i.e., whether 
the general relation (14) between p(m)(x) and p(m)max(x) is 
still valid, at least approximately, for short- and long-term 
persistent data, when instead of m an effective meff(m) is 
introduced.

To see whether this is the case, we have numerically 
generated 600,000 short-term correlated monthly records 
with C(1) = 0.4 and 600,000 long-term correlated monthly 
records with h = 0.75 , both with length 50y as in Fig. 1. 
For the long-term correlated records, the mean C(1) value 
is also close to 0.4. We determined numerically p(m)(x) and 
p
(m)
max(x) for m = 4 and 12 (for details, see Section 8). The 

results are shown in Fig. 2. In each of the 4 panels, the top 
curve shows p(m)max(x) and the bottom curve p(m)(x) . In black, 
we show the original curves and in red the approximation

10
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-1

10
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Fig. 2   Adjusted p-value p(m)max(x) of the largest relative trend (upper 
curves) compared with p(m)(x) (lower curves) in persistent records. 
The figure shows, for the monthly long- and short-term persistent 
data of Fig. 1 with h = 0.75 (a, b) and C(1) = 0.4 (c, d), respectively, 
that p(m)max is related to p(m)(x) by the power law (15), with about the 
same values of meff(m) as in Fig. 1. The left panels (a, c) refer to the 4 
meteorological seasons, the right panels (b, d) to the 12 months. The 
figure also shows that in the relevant p-regime between 10−1 and 10−3 , 
the curves can be well approximated by simple exponentials. The 
length L of the data is 50 years
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with roughly the same meff(m) values as determined in 
Sect. 3. In all cases, it is very difficult to distinguish between 
the exact curve p(m)max(x) and its approximation (15). From 
(15) we can verify that our guess (12) is correct for arbitrary 
values of 𝛼̃.

Equation (15) generalizes nicely the maximum statistics 
for i.i.d. numbers to short- and long-term correlated num-
bers; as in Fig. 1, meff(m) describes the effective degrees of 
freedom in the m seasonal subrecords. When they are all 
independent, we have m degrees of freedom, and when they 
are coupled by long-term memory, the degrees of freedom 
decrease. We will show in Fig. 4 that the stronger the long-
term persistence is, the stronger the decrease of meff is.

Figure 2 also shows how different the p values are for 
short- and long-term correlations. When the record is short-
term persistent, then, for instance, xmax = 1.6 is highly sig-
nificant. However, in the long-term correlated record with 
roughly the same C(1) value, xmax = 1.6 is far from being 
significant. This shows how crucial it is to use the proper 
surrogate data when determining the p values of the relative 
trends. The figure also shows that for h = 0.75 , the p value of 
the maximum trend depends only very weakly on m.

Combining (13) with (15) we rediscover (11), where 
now m is substituted by meff(m) . While (13–15) describe, 
in a rigorous way, the p value of the season with the largest 
relative trend x = xmax , they are very conservative for the 
seasons with the smaller trends. It is possible that by apply-
ing (13–15) to the smaller trends, significant trends in these 
seasons can be overlooked. Our next aim is to obtain better 
estimations for the adjusted p-values of the nth largest trend 
x ≡ xmax, n.

5 � The statistical significance of the smaller 
relative trends

First, we consider the 2nd largest relative trend xmax, 2 . Fol-
lowing the argumentation of Holm (Holm 1979) for cor-
recting for multiple testing, we consider in a Gedanken-
experiment a very large set of K records with m seasonal 
subrecords and eliminate, in each record, randomly one of 
the m seasonal subrecords. It is clear that in the remaining 
K(m − 1) subrecords, the K(m − 1) trends form the same 
distribution as the Km trends in the Km subrecords and thus 
have the same p-function p(m)(x).

By definition, the largest trend in the new set of m − 1 
trends cannot be larger than the 2nd largest trend in the origi-
nal set of m trends. Thus the p value p(m−1)max (x) of the maxi-
mum of these (m − 1) trends represents, by construction, an 
upper bound for the desired p value of the 2nd largest trend.

(15)p(m)
max

(x) = 1 −
(
1 − p(m)(x)

)meff(m)

,
For i.i.d. data we obtain immediately

With the 3rd, 4th, … , (m − 1)th largest trend we proceed 
analogously. In general, we obtain an upper bound for the 
p value of the nth-largest trend by determining the adjusted 
p value p(m+1−n)max (x) of the maximum of (m + 1 − n) trends. 
By definition, p(1)max(x) ≡ p(m)(x) . For i.i.d. data, we obtain 
this way

For being significant, x = xmax, n must satisfy the condition

which generalizes (13). Relations (10) and (11) yield, for 
the nth-largest trend x ≡ xmax, n , the significance condition

Note that for the smallest relative trend x = xmax,m , (19) 
reduces to (1). Inequality (19) is less conservative than 
the well known Holm–Bonferroni (Holm 1979) correction 
p(m)
�

≤ �∕(m + 1 − n) , which (like the Bonferroni correc-
tion) represents upper bounds for the p values in uncorre-
lated or positively correlated data. For an application of the 
Holm–Bonferroni correction to the significance of the trends 
in seasonal records, we refer to (Ludescher et al. 2017).

For short- and long-term persistent data, we found (see 
Fig. 3) that in analogy to (15),

with an effective exponent meff(m + 1 − n) . By defini-
tion, meff(1) = 1 . For m = 12 , the p value functions for the 
three largest trends nearly coincide.We like to note that 
in persistent data, in contrast to i.i.d. data, p(m+1−n)max  and 
meff(m + 1 − n) do not depend only on (m + 1 − n) , but also 
explicitly on m. For simplicity, and since we are interested 
only in two values of m, m = 4 and 12, we have dropped this 
dependency in the notation.

By combining (20) and (18) we obtain the significance 
condition

which is identical to (19) when m + 1 − n is substituted by 
meff(m + 1 − n).

The significance condition (21) is one of our cen-
tral results. It substitutes the condition (1) in uncorre-
lated, as well as short- and long-term persistent records, 
and holds for all relative trends, from the largest (n = 1) 

(16)p(m−1)
max

(x) = 1 −
(
1 − p(m)(x)

)m−1

.

(17)p(m+1−n)
max

(x) = 1 −
(
1 − p(m)(x)

)m+1−n

, n = 1,… ,m.

(18)p(m+1−n)
max

(x) ≤ �, n = 1,… ,m,

(19)p(m)(x) ≤ 1 − (1 − �)
1

m+1−n , n = 1,… ,m.

(20)p(m+1−n)
max

(x) ≃ 1 −
(
1 − p(m)(x)

)meff(m+1−n)

,

(21)p(m)(xmax, n) ≤ 1 − (1 − �)1∕meff(m+1−n),
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to the smallest (n = m) one. For uncorrelated data, 
meff(m + 1 − n) = m + 1 − n.

For the short-term persistent monthly data with 
C(1) = 0.4 , the values of meff(m + 1 − n) are close to 
(m + 1 − n) : meff(4) ≈ 3.8 , meff(3) ≈ 2.9 , and meff(2) ≈ 1.95 
for m = 4 , and meff(12) ≈ 11.7 , meff(11) ≈ 10.7 , and 
meff(10) ≈ 9.8 for m = 12.

For the long-term persistent data, the values of the effec-
tive exponents meff(m + 1 − n) are presented in Fig. 4 and 
Table 2, for the three largest trends. In addition to h = 0.75 
chosen in Fig. 2, also the results for other relevant Hurst 
exponents between 0.5 and 1 are listed. For white noise 
( h = 0.5 ), meff(m + 1 − n) = m + 1 − n . As expected, 
meff(m + 1 − n) decreases with increasing h. For continen-
tal temperature data, where the typical h values are between 
0.6 and 0.75, m(m)

eff
 is roughly between 3.6 and 2.4 for the 4 

meteorological seasons, and between 11 and 5.9 for the 12 
months.

6 � The step‑down procedure

Adopting the arguments of Holm (Holm 1979) to seasonal 
climate records, the season with the largest relative trend in a 
record must be the most significant one. If this trend, for fixed 
but arbitrary � , turns out not to be statistically significant by 
(13), then all seasons with lower relative trends also cannot be 
statistically significant. More generally, when the n-th largest 
relative trend is not significant, i.e., does not satisfy the condi-
tion (18), then none of the lower trends can be significant, i.e., 
the condition

must hold. Accordingly, when the adjusted p value of 
the (n + 1)-th largest trend xmax,n+1 is found to be below 
the adjusted p value of the nth largest trend xmax,n (which 
may happen when both trends are very close in magni-
tude), one corrects this by setting p(m−n)max (xmax,n+1) equal to 
p
(m+1−n)
max (xmax,n).

(22)p(m−n)
max

(xmax,n+1) ≥ p(m+1−n)
max

(xmax,n), n = 1,… ,m,
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Fig. 3   Adjusted p values p(m+1−n)max (x) of the 2nd and 3rd largest trends 
(full lines, red and black) compared with p(m)(x) and p(m)max(x) from 
Fig. 2 (dashed lines). The figure shows, for the same data as in Fig. 2, 
that p(m+1−n)max  is related to p(m)(x) by the power law (21)

Table 2   List of the effective m 
values meff shown in Fig. 3 as a 
function of the Hurst exponent h 

(m,m+1–n)∖h 0.55 0.6 0.65 0.7 0.75 0.80 0.85 0.90 0.95 1.0

(4,4) 3.8 3.5 3.19 2.85 2.44 2.2 1.95 1.75 1.6 1.54
(4,3) 2.8 2.7 2.55 2.3 2.09 1.87 1.7 1.6 1.48 1.42
(4,2) 1.92 1.85 1.8 1.7 1.6 1.48 1.4 1.33 1.27 1.25
(12,12) 11.7 10.8 9.4 7.8 5.91 4.6 3.65 3.05 2.5 2.18
(12,11) 10.8 10 8.7 7.3 5.6 4.35 3.5 2.9 2.4 2.12
(12,10) 9.8 9.1 8.0 6.8 5.3 4.1 3.3 2.8 2.32 2.07
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h

0

4

8
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m
ef
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1st month
2nd month
3rd month
1st season
2nd season
3rd season
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Fig. 4   meff values of the three largest relative trends ( n = 1, 2, 3 ) as 
a function of the Hurst exponent h that specifies the strength of the 
long-term persistence, for m = 12 (months) and m = 4 (meteorologi-
cal seasons). For h = 1∕2 , we show the values for white noise: m, 
m − 1 , and m − 2 . For increasing h, all m values tend to unity. The 
length L of the seasonal records is 50 years
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7 � Analytical formula for the adjusted p 
values

In the following, we focus on long-term persistent 
data since they play a central role in geoscience. Fig-
ures  2 and 3 show that in the most relevant regime 
10−1 < p

(m+1−n)
max < 10−3 , the adjusted p values p(m+1−n)max (x) 

approximately follow a straight line in the semi-logarith-
mic plot, i.e.,

where the quantiles x0.05 and x0.01 are defined by 
p
(m+1−n)
max (x0.05) = 0.05 and p(m+1−n)max (x0.01) = 0.01 and depend, 

for fixed m, on n. We have verified that (23) holds quite gen-
erally for long-term persistent data characterized by Hurst 
exponents between 0.55 and 1, for the same length 50y.

Figure 5 shows x0.05 and x0.01 as a function of the Hurst 
exponent h, for m = 4 with n = 1, 2, 3, 4 and m = 12 with 
n = 1, 2, 3, 12 . For convenience, we have also listed the 
values of all quantiles in Table 3. As expected from Fig. 3, 
for m = 12 the quantiles nearly coincide for the 3 largest 
trends ( n = 1, 2, 3 ). While the quantiles increase strongly 
with h, they increase only comparatively weakly with m. 
For the maximum trend, the quantiles only depend very 
weakly on m for h ≥ 0.75.

Table 3 allows a quick and efficient check for the sig-
nificance of a trend: The nth largest trend xmax, n is signifi-
cant, when it is between its quantiles x0.05 and x0.01 , and 
highly significant, when it is above x0.01 , provided that all 
larger trends are also significant resp. highly significant 
(see previous Section). The approximate adjusted p value 
of xmax, n can be obtained from (23).

8 � Application to climate records

In general, the first step is to analyze the persistence of 
the considered daily or monthly record y(i) (see Sect. 2). 
Usually, one of the following two cases occurs:

(23)p(m+1−n)
max

(x) ≅ 0.05
(
1∕5

) x−x0.05

x0.01−x0.05 , n = 1,… ,m,
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Fig. 5   Dependence of the quantiles x0.05 and x0.01 on the Hurst expo-
nent h. a and c show x0.05 and x0.01 for the 3 meteorological seasons 
with the largest relative trends (upper 3 curves) and the meteorologi-
cal season with the smallest relative trend (lowest curve). b, d: same 
as (a, c), but for months. The length L of the data is 50 years

Table 3   The numerical values 
of the quantiles x0.05 and x0.01 
shown in Fig. 4 as a function of 
the Hurst exponent h 

(m,m+1–n) ∖h 0.5 0.55 0.6 0.65 0.7 0.75 0.80 0.85 0.90 0.95 1.0

x0.05 : (4,4) 1.287 1.352 1.445 1.572 1.742 1.942 2.189 2.482 2.803 3.179 3.588
(4,3) 1.230 1.294 1.381 1.508 1.675 1.875 2.121 2.409 2.735 3.110 3.523
 (4,2) 1.147 1.205 1.292 1.411 1.570 1.772 2.015 2.305 2.629 3.002 3.413
 (4,1) 0.998 1.049 1.129 1.243 1.399 1.595 1.835 2.120 2.444 2.823 3.238
x0.01 : (4,4) 1.599 1.693 1.833 2.028 2.281 2.592 2.956 3.398 3.877 4.445 5.031
 (4,3) 1.546 1.639 1.772 1.964 2.215 2.516 2.883 3.322 3.802 4.365 4.959
 (4,2) 1.469 1.560 1.684 1.870 2.117 2.411 2.773 3.204 3.689 4.242 4.832
 (4,1) 1.339 1.418 1.537 1.707 1.945 2.229 2.587 2.997 3.490 4.029 4.634
x0.05 : (12,12) 1.474 1.513 1.567 1.646 1.781 1.953 2.176 2.456 2.774 3.170 3.573
 (12,11) 1.460 1.497 1.550 1.627 1.762 1.935 2.158 2.439 2.747 3.146 3.550
 (12,10) 1.440 1.480 1.531 1.612 1.745 1.914 2.133 2.415 2.717 3.124 3.527
 (12,1) 0.991 1.015 1.050 1.200 1.229 1.372 1.579 1.841 2.151 2.552 2.950
x0.01 : (12,12) 1.755 1.799 1.897 2.005 2.222 2.482 2.833 3.309 3.773 4.351 4.970
 (12,11) 1.743 1.786 1.874 1.987 2.198 2.465 2.807 3.283 3.706 4.337 4.943
 (12,10) 1.724 1.764 1.861 1.965 2.180 2.444 2.773 3.258 3.683 4.301 4.925
 (12,1) 1.326 1.377 1.411 1.515 1.668 1.903 2.217 2.651 3.088 3.629 4.255
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(a) y(i) shows no persistence. Then we can proceed with 
(2) and (3) and use (14) and (17) to determine the adjusted 
p-values.

(b) y(i) is persistent and can be characterized by

When y(i) is short-term persistent, then �h(i) ≡ �(i) repre-
sents Gaussian white noise. When y(i) is purely long-term 
persistent, then b = 0 and �h(i) represents long-term corre-
lated noise with Hurst exponent h. In some cases, as for 
example, for the Antarctic sea ice extent, the records show 
both short- and long-term persistence (Yuan et al. 2017; 
Ludescher et al. 2019).

Equation (24) can be used to generate a large number K 
of surrogate records {y(i)} as described in Sect. 2. In each 
record, we identify the m seasons and determine their maxi-
mum trend xmax . This way, we obtain a set of K xmax values.

To determine the adjusted p value p(m)max in the 
most efficient way, we follow Sect.  2 and order 
the K xmax values in descending order, such that 
xmax(1) < xmax(2) < ⋯ < xmax(K) . Then, by definition,

for any k = 1,… ,K  , which allows us to determine the 
desired p(m)max(x) and the related quantiles.

For obtaining the adjusted p-value of the n-th largest trend 
p
(m+1−n)
max  , we disregard the first n seasons in all N records and 

determine the maximum values of the remaining m + 1 − n 
trends. Then we proceed as above.

In Sects. 5 and 7, we have followed this procedure to 
obtain the adjusted p values and the related quantiles in both 
short- and long-term persistent records of length L = 50y.

The standard approximation cannot be corrected this way. 
One way is to use the Bonferroni correction (Bonferroni 
1936), where 𝛼̃ in (1) is substituted by 𝛼̃∕m . However, even 
within this large correction, the results are too liberal for 
short records, as we have shown in Sect. 3.

9 � Trends in Antarctic temperature records

For an important application, we finally apply our results to 
the temperature trends in Antarctic station data. The warm-
ing patterns of Antarctica have recently received a lot of 
attention which is especially related to the fact that the huge 
West Antarctic ice sheets belong to the crucial tipping ele-
ments in the Earth system (Kriegler et al. 2009; Lenton et al. 
2008, 2019).

While ocean warming impacts on ice shelf melting 
[e.g., (Pritchard et al. 2012)], it is still crucial to care-
fully monitor and project the temperature trends on and 
around the southern continent. Recently, Turner et  al. 

(24)y(i + 1) = by(i) + �h(i).

(25)p(m)
max

(
x = xmax(k)

)
= (K − k + 1)∕K

(2019) have comprehensively documented, analyzed and 
interpreted temperature data from 17 stations in Antarctica 
which all have near-continuous records of more than 30 
years in length. Five of the stations (Vernadsky, Esper-
anza, Marambio, Rothera and Bellingshausen) are at the 
Antarctic Peninsula or nearby, one station (Orcadas) is 
on a sub-Antarctic island, and one station (Scott Base) is 
located South of the Ross Sea. The other 10 stations are 
located in East Antarctica: Amundsen-Scott is a plateau 
station located at the South Pole, Vostok is located halfway 
between the South Pole and the coastline, and 8 stations 
(Novolazarevskya, Syowa, Mawson, Davis, Mirny, Casey, 
Dumont d’Urville, and Neumayer) are located along the 
long coastline of East Antarctica.

In their analysis of the temperature data of these stations, 
Turner et al. studied annual trends ( m = 1 ) and the trends of 
the 4 seasonal records austral winter, spring, summer, and 
fall, (i) in a range of 40 years between 1979 and 2018 and (ii) 
over the full length of the records. Most record lengths vary 
around 60 years, an exception is Orcadas with 117 years. In 
both time ranges, they used the standard approximation (2) 
with (3) and (6) to determine the p values of the trends and 
used (1) to decide whether the trends were within the bounds 
of their natural variability or not.

They concluded that 7 stations (Novolazarevskya, Vostok, 
Scott Base, Rothera, Vernadsky, Esperanza, and Orcadas) 
showed at least one highly significant warming trend, while 
1 station (Dumont d’Urville) showed at least one highly sig-
nificant cooling trend. Four stations (Casey, Bellingshausen, 
Amundsen–Scott, and Marambio) showed only a significant 
warming trend. It is interesting to note that at two stations 
(Novolazarevskya and Esperanza), the trends were found 
highly significant only over the full length of the record (57 
and 73 years, respectively). Over the shorter period of 40 
years none of both trends was found significant.

It is clear from our discussion of the family wise error 
rate (Fig. 1) that these estimations cannot be correct since 
the standard approximation considerably overestimates the 
number of significant records. If the Antarctic temperature 
data were short-term persistent, we would have to follow 
the previous Section to obtain the adjusted p values numeri-
cally (see Fig. 2). However, since the Antarctic temperature 
records are long-term persistent, as has been demonstrated 
in great detail in (Yuan et al. 2015; Ludescher et al. 2016), it 
is quite easy to obtain the relevant adjusted p values and the 
relevant bounds of natural variability x0.05 and x0.01 directly 
from Fig. 5 and Table 3.

To apply Fig. 5 and Table 3, we have focused on the past 
50 years. For Dumont d’Urville and Scott Base we had 
to consider earlier 50 years sets due to missing data. For 
Neumayer and Rothera, we took the longest available data 
set ending in November 2020 and determined the p values 
numerically. All data are from the Reference Antarctic Data 
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for Environmental Research (READER) dataset ( Turner 
et al. (2004), READER 2021).

First, we determined by DFA2 the Hurst exponents h of 
all temperature records (3rd column in Table 4.). Then we 
determined, as described in the Introduction, the trends and 
the relative trends x (note that the relative trends are posi-
tively defined). The results are listed in Table 4. Next, we 
used Fig. 5 with Table 3 to find the values of x0.05 and x0.01 
and compared them with the relative trends x to see whether 
a trend was not significant, significant or highly significant.

For example, at Vernadsky station, the Hurst exponent is 
h = 0.80 . For the annual data, the trend is 1.457◦ C. The rela-
tive trend x is 1.343, well below x0.05 = 2.41 . Thus the annual 
trend is not significant. The strongest seasonal trend occurs 
in austral winter, with x = 1.379 . Since x0.05(4, 1) = 2.189 , 
this trend is not significant and thus, none of the 4 meteoro-
logical seasons at the Vernadsky station has a significant 
warming trend.

In Dumont-d’Urville where h = 0.65 , the annual tempera-
ture decreased in the last 50y considered by – 0.709◦ C with 
a relative trend x = 1.124 . Since x0.05 = 1.58 , this trend is 
not significant. The largest cooling trend occurs in austral 
fall, where x = 1.777 . Since x is between x0.05(4, 1) = 1.572 
and x0.01(4, 1) = 2.028 , this trend is significant. The 2nd 
largest trend where x = 0.667 is not significant since 
x0.05(4, 2) = 1.508.

In Vostok ( h = 0.55 ), the annual trend ( x = 1.05 ) is well 
below x0.05 = 1.21 and thus not significant. But the warm-
ing in spring ( x = 1.724 ) is highly significant, since it is 
above x0.01 = 1.693 . The 2nd largest trend where x = 0.414 
is not significant since it is well below x0.05(4, 2) = 1.294.

In Esperanza where h = 0.64 , only the austral summer 
trend ( x = 1.653 > x0.05(4, 1) = 1.55 ) is significant, the 
second largest trend with x = 1.439 < x0.05(4, 2) = 1.483 
is not significant.

Finally, in Scott Base only the large spring trend 
( x = 1.61 > x0.05(4, 1) = 1.43 ) is significant. All other 
trends are comparatively small and not significant.

Accordingly, in the last 50 years the annual trends of all 
Antarctic stations were not significant. The island station 
of Esperanza shows a significant warming trend in austral 
fall, Dumont-d’Urville showed a significant cooling trend 
in austral spring, and two stations, Vostok and Scott-Base, 
show a highly significant resp. significant warming trend 
in austral spring.

To obtain a more comprehensive picture, we also 
averaged the 5 Peninsula records (Vernadsky, Esper-
anza, Marambio, Rothera and Bellingshausen). In the 
resulting Peninsula record, none of the trends were sig-
nificant. For the annual data, x = 1.647 is well below 
x0.05 = 1.898 , with p ≈ 0.084 . The season with the largest 
relative trend is austral fall with x = 1.71 , which is below 

Table 4   Regarded period (December–November), Hurst exponent h, relative trends x and trend magnitudes � of 17 Antarctic temperature 
records during the past 50 years for annual data and the four seasons

Significant trends (in boldface and marked by one asterisk) occur in Esperanza ( p = 0.034 ), Dumont ( p = 0.024 ), and Scott-Base ( p = 0.023 ). 
The only highly significant trend (marked by 2 asterisks) occurs in Vostok ( p = 0.0086 ). In the averaged data (Peninsula and East Antarctica), 
none of the trends is significant

Station Period Hurst Annual DJF MAM JJA SON

Amundsen–Scott 1970–2020 0.53 0.905/0.756 0.436/0.595 0.225/0.328 0.446/0.790 0.825/1.310
Bellingshausen 1970–2020 0.71 1.003/0.704 0.353/– 0.192 0.895/0.811 1.059/1.896 0.349/0.302
Casey 1970–2020 0.66 1.033/– 0.797 0.959/– 0.596 0.602/– 0.932 1.290/– 2.117 0.377/0.457
Vernadsky 1970–2020 0.80 1.343/1.457 0.130/0.076 1.352/1.057 1.379/3.405 0.879/1.290
Davis 1970–2020 0.64 0.192/0.164 0.257/– 0.166 0.138/– 0.225 0.038/– 0.071 0.848/1.117
Syowa 1970–2020 0.71 0.298/0.248 0.057/0.036 0.190/– 0.242 0.579/1.004 0.168/0.192
Mirny 1970–2020 0.64 0.186/– 0.131 0.489/– 0.374 0.508/– 0.683 0.248/– 0.377 0.761/0.910
Mawson 1970–2020 0.61 0.294/0.219 1.183/– 0.797 0.103/0.141 0.394/0.693 0.834/0.841
Orcadas 1970–2020 0.67 1.289/1.024 0.747/0.425 0.466/0.584 1.024/2.037 0.808/1.050
Novolazarevskaya 1970–2020 0.58 0.290/0.170 0.195/– 0.140 0.449/– 0.451 0.457/0.704 0.588/0.568
Esperanza 1970–2020 0.64 1.468/1.523 �.���∗/1.251 1.439/2.783 0.581/1.233 0.538/0.823
Marambio 1970–2020 0.61 1.317/1.557 1.220/1.114 1.337/3.042 0.518/1.291 0.414/0.783
Dumont 1964–2014 0.65 1.124/– 0.709 0.667/– 0.438 �.���

∗ /– 1.729 0.648/– 1.026 0.456/0.356
Vostok 1970–2020 0.55 1.056/0.914 0.414/0.405 0.093/0.146 0.374/0.732 �.���∗∗/2.372
Rothera 1977–2020 0.79 1.402/1.694 0.197/0.121 1.730/2.056 1.302/3.402 0.816/1.198
Scott-Base 1966–2016 0.59 0.573/0.554 0.110/– 0.087 0.401/– 0.716 0.152/0.322 �.���∗/2.695
Neumayer 1981–2020 0.56 0.455/– 0.282 0.122/0.104 0.521/– 0.675 0.833/– 1.525 0.737/0.968
Peninsula 1970–2020 0.70 1.647/1.399 1.132/0.539 1.710/1.999 1.116/2.221 0.694/0.839
East Antarctica 1970–2020 0.66 0.102/0.056 0.241/– 0.150 0.373/-0.358 0.144/– 0.178 1.204/0.910
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x0.05(4, 1) = 1.742 . The corresponding p value obtained 
from (23) is p = 0.055.

To obtain an East-Antarctica record, we averaged the 
rest of the stations, apart from Orcadas and Scott-Base. We 
found that all trends were far from being significant. For the 
annual data, x = 0.102 is well below x0.05 = 1.71 , with a p 
value close to 1. The season with the largest relative trend 
is austral spring. Its relative trend x = 1.204 is well below 
x0.05 ≈ 1.66 . The exact simulated p value is 0.20.

10 � Discussion and conclusions

In this article, we have shown quite generally how to deter-
mine whether a trend in a seasonal record is significant or 
not. Our results are quite general and hold for all kinds of 
persistence, for Gaussian white noise, as well as for short- 
and long-term persistent records. We discussed in great 
detail the standard approximation, which because of its sim-
plicity is very popular among climate scientists and showed 
that it considerably overestimates the significance, even in 
short-term persistent records and when only annual data are 
considered.

The standard approach can also not be applied to long-
term persistent records that play an eminent role in climate 
science. We showed how to determine numerically the 
relevant (adjusted) p values of the trends. Specifically for 
records of length 50y, we determined numerically the quan-
tiles x0.05 and x0.01 and listed them in a table as a function 
of the Hurst exponent h. Thus, when the Hurst exponent 
of the record of interest is known, the table allows to find 
out without much effort, whether a trend is not significant, 
significant or highly significant.

We applied our analysis to temperature data from Ant-
arctica, but the same procedure can also be applied to other 
climate records. Examples are river flows which are also 
long-term persistent [see the pioneering work by Hurst 
(Hurst 1951)], or the Antarctic sea ice extent (Yuan et al. 
2017; Ludescher et al. 2019), which shows both short- and 
long-term persistence. In principle, the significance of trends 
in precipitation records (where the memory is not as pro-
nounced as in temperature records) or in drought records 
(Palmer 1965; Cook et al. 2007; Griffin and Anchukaitis 
2014) can be also studied within our approach. However, 
since precipitation records also show nonlinear (multifrac-
tal) correlations (Koscielny-Bunde et al. 2006; Lovejoy and 
Schertzer 2013), which the models presented here do not 
account for, results based on the persistence models dis-
cussed here can only yield first order approximations for 
the significance of the trends. We believe that also the ques-
tion to which extent the recent decrease of the ozone hole 
(Varotsos and Kirk-Davidoff 2006; Solomon et al. 2016; 

Kuttippurath and Nair 2017) is significant can be studied 
by our formalism.

Finally, we like to note that in this article, we discussed 
purely statistical models for the natural internal climate vari-
ability. These models utilize the persistence properties of 
climate records directly and provide bounds for the natural 
variability, as well as estimates for the statistical significance 
of observed trends. Another avenue to estimate the natural 
internal variability, and thus to detect possible anthropogenic 
trends, provide general circulation climate models (GCMs) 
(Bindoff et al. 2013). The GCMs simulate physical processes 
directly and are employed to estimate natural climate vari-
ability. We like to emphasize that the issue of multiple test-
ing in seasonal records, discussed here, applies equally to 
trend significance estimations by GCMs. Thus to correctly 
determine the statistical significance of observed seasonal 
trends and to avoid false discoveries, analogous approaches 
and corrections as presented here are necessary.
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