
SoftwareX 17 (2022) 100861

J
a

b

c

d

w
g
b
g
s

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

PowerDynamics.jl—An experimentally validated open-source package
for the dynamical analysis of power grids
Anton Plietzsch a,b,∗, Raphael Kogler a,b, Sabine Auer c, Julia Merino d, Asier Gil-de-Muro d,
an Liße c, Christina Vogel c, Frank Hellmann a

Potsdam Institute for Climate Impact Research, Germany
Humboldt-Universität zu Berlin, Germany
elena international GmbH, Germany
TECNALIA, Basque Technology and Research Alliance (BRTA), Spain

a r t i c l e i n f o

Article history:
Received 15 December 2020
Received in revised form 26 August 2021
Accepted 19 October 2021

Keywords:
Power systems
Dynamic simulation
Microgrids
Inverters
Julia

a b s t r a c t

PowerDynamics.jl is a Julia package for time-domain modeling of power grids that is specifically
designed for the stability analysis of systems with high shares of renewable energies. It makes use
of Julia’s state-of-the-art differential equation solvers and is highly performant even for systems with
a large number of components. Further, it is compatible with Julia’s machine learning libraries and
allows for the utilization of these methods for dynamical optimization and parameter fitting. The
package comes with a number of predefined models for synchronous machines, transmission lines
and inverter systems. However, the strict open-source approach and a macro-based user-interface also
allows for an easy implementation of custom-built models which makes it especially interesting for the
design and testing of new control strategies for distributed generation units. This paper presents how
the modeling concept, implemented component models and fault scenarios have been experimentally
tested against measurements in the microgrid lab of TECNALIA.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
Code metadata

Current code version v2.5.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-20-00105
Legal Code License GPL-3.0 License
Code versioning system used git
Software code languages, tools, and services used Julia
Compilation requirements, operating environments & dependencies see Project.toml
Link to developer documentation https://juliaenergy.github.io/PowerDynamics.jl/stable
Questions and support https://github.com/JuliaEnergy/PowerDynamics.jl/issues
1. Motivation and significance

The massive integration of renewable energy sources comes
ith challenges for the dynamic stability and control of power
rids. In conventional grids the dynamical stability is ensured
y controlling a relatively small number of large conventional
enerators that are synchronized over the high voltage transmis-
ion grid. The inertia of the rotating generator masses stabilizes

∗ Corresponding author.
E-mail address: plietzsch@pik-potsdam.de (Anton Plietzsch).
ttps://doi.org/10.1016/j.softx.2021.100861
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access art
the operating state against short term fluctuations. In contrast,
solar and wind power plants produce much less power and are
therefore typically installed in the distribution grid, interfaced by
inverters with control schemes that lock onto the grid frequency.
A transition towards a larger share of renewable energy sources
therefore not only implies a decentralization and an increase in
the number of generating units but also significantly decreases
the total amount of stabilizing inertia. To tackle this issue, the de-
velopment of more decentralized control schemes and so-called
grid-forming inverter controls has recently become a very active
research field [1].
icle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100861
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100861&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-20-00105
https://juliaenergy.github.io/PowerDynamics.jl/stable
https://github.com/JuliaEnergy/PowerDynamics.jl/issues
mailto:plietzsch@pik-potsdam.de
https://doi.org/10.1016/j.softx.2021.100861
http://creativecommons.org/licenses/by/4.0/


Anton Plietzsch, Raphael Kogler, Sabine Auer et al. SoftwareX 17 (2022) 100861

b
r
r
S
m
i
c

o
f
(
t
n
f
l
f
b
O
h

n
I
i
p
P
t
D

m

2

c
o
o
i
i
h
i
s

2

r
r
a
T
f
t
o
i
a
n
e

i
f
t
m
T
f

2

i

d
t
i
i
o
f
t
t
a
t

However, models of grid-connected inverters represent black-
ox models, do not allow a transparent verification of the model
esults and therefore do not allow a fast transfer of the latest
esearch results. As the International Council on Large Electric
ystems (CIGRE) also emphasizes, different inverter types and
anufacturer models are often available in different software and

n different degrees of complexity. Therefore, harmonization in a
ommon simulation model is impractical [2].
At the same time, the energy transition requires rapid devel-

pment and continuous improvement of reliable simulation tools
or dynamic network analysis [3]. For this reason, Open-Source
OS) solutions are an important contribution to the implementa-
ion of a grid-stable energy transition. While in the area of static
etwork analysis (for load flow calculations and optimal power
low problems) there are already numerous OS tools, there is
ittle open source available in the area of dynamic modeling of
requency and voltage stability as well as the synchronization
ehavior of the network in the seconds and sub-seconds range.
ne reason for the lack of current OS solutions is the lack of a
igh-performance software environment.
PowerDynamics.jl [4] is an open source software for the dy-

amic simulation of energy systems that aims to fill this gap [5].
t is based on the programming language Julia [6] and developed
n a collaboration between the Potsdam Institute for Climate Im-
act Research (PIK) and the company elena international GmbH.1
owerDynamics.jl has been shown to easily beat the simulation
imes of common commercial simulation environments, such as
IgSILENT PowerFactory or MATLAB Simulink [7]. This opens up

the possibility to run very large test cases or apply Monte Carlo
sampling based methods [8,9].

PowerDynamics.jl comes with a library of predefined compo-
nent types for generators, loads, inverters, transmission lines and
transformers, as well as a number of fault scenarios. Users can
easily build their own test cases or read in existing test case files.
We encourage users to also implement their own component
types and eventually share it with others by making a pull request
on GitHub.2

The construction of the differential equation system is based
on NetworkDynamics.jl [10], a Julia package for simulating large
dynamical systems on complex network structures that is also
developed at PIK. The numerical integration is based on Julia’s
DifferentialEquations.jl package [11]. This makes PowerDynamics.jl
also compatible with Julia’s scientific machine learning ecosys-
tem3 and thereby opens up the possibility to apply machine
learning methods to transient stability analysis.

2. Software description

2.1. Software architecture

The general workflow for a dynamic simulation with Pow-
erDynamics.jl is shown in Fig. 1. A power grid is defined by
specifying the grid structure and the dynamic equations for the
node and line components. Once a power grid is defined, the
data can be stored in a .json-file by using write_powergrid and
loaded again by using read_powergrid. The function
find_operationpoint is used to find fixed points of the dy-
namical system. Different fault scenarios can be applied to the
system in operation state.

1 https://www.elena-international.com/
2 https://github.com/JuliaEnergy/PowerDynamics.jl
3 https://sciml.ai/
2

2.1.1. Nodes
Synchronous machines, inverters and loads are considered

as node components. PowerDynamics.jl contains a library of al-
ready implemented node components. Additionally, users can
define their own node components by using the node macro
@DynamicNode.

2.1.2. Lines
Transformers and electrical lines are considered as line com-

ponents. As for the node components, PowerDynamics.jl includes a
standard library of different line and transformer types, including
a static admittance line, StaticLine, a dynamic admittance
line, RLLine, the (static) PiModelLine and a simple transformer
odel based on the Pi-model.

.1.3. Grid structure
A power grid in PowerDynamic.jl is a composite type that

ontains the line and node components, as well as the graph
f the grid structure. It can either be constructed from arrays
r ordered dictionaries of the line and node components us-
ng the PowerGrid constructor or loaded from a .json file us-
ng read_powergrid. For the dynamical simulations the right-
and-side ODEFunction of the differential equation is build us-
ng NetworkDynamics.jl. This way the model definitions and the
imulation engine are decoupled.

.1.4. Operationpoint
In PowerDynamics.jl the global reference frame is the co-

otating frame of the nominal grid frequency (50 or 60 Hz,
espectively). Every stable operating state therefore represents
stable steady state solution of the dynamic power system.

hese states can be found using the find_operationpoint
unction for which different solver methods are implemented. For
he operation point search we primarily build on solver meth-
ds from the SteadyStateDiffEq.jl package.4 The default setting
s :rootfind that uses the SSRootfind method to perform
NLsolve.jl-based root finding algorithm. Alternatively, :dy-
amic uses the DynamicSS method to integrate the dynamical
quations until a steady state is reached.
For very large systems with a high number of dynamical states

t might be useful to first find a solution for the static power
low in the network before finding the steady state solution for
he internal (control) variables of complex machine and inverter
odels. This can be done by setting solve_powerflow = true.
he power flow solution is found using the AC power flow solver
rom the PowerModels.jl5 package [12].

.1.5. Fault scenarios
In PowerDynamics.jl there are different simulation scenarios

mplemented.
On the one hand simulation scenarios are faults, that are

erived from AbstractPerturbation and persist for a certain
ime span tspan_fault. The AbstractPerturbation scenario
s implemented using Callbacks,6 i.e. the system is numerically
ntegrated until the fault begins, then the system parametrization
r topology is changed and the integration is continued until the
ault ends. At the moment there are four faults implemented: For
he LineFailure fault a line is removed from the topology of
he grid. For the NodeShortCircuit fault the shunt admittance
t a node can be changed to a high value. With the NodeParame-
erChange fault, any parameter of a dynamic node model can be

4 https://github.com/SciML/SteadyStateDiffEq.jl
5 https://github.com/lanl-ansi/PowerModels.jl
6 https://github.com/SciML/DiffEqCallbacks.jl

https://www.elena-international.com/
https://github.com/JuliaEnergy/PowerDynamics.jl
https://sciml.ai/
https://github.com/SciML/SteadyStateDiffEq.jl
https://github.com/lanl-ansi/PowerModels.jl
https://github.com/SciML/DiffEqCallbacks.jl


Anton Plietzsch, Raphael Kogler, Sabine Auer et al. SoftwareX 17 (2022) 100861

c

Fig. 1. Simple data and workflow between components of PowerDynamics.jl.
hanged to a different value. The PowerPerturbation is a spe-
cial case, where the power infeed parameter at a node is changed.
This can for example be used to model a load drop at a load node.
A detailed example for simulating faults in PowerDynamics.jl can
be found in Section 3.

On the other hand, there is the theoretical ChangeInitial-
Conditions scenario that allows the user to set dynamic vari-
ables at single nodes to certain dynamic states out of the equilib-
rium. This is especially useful for applying probabilistic stability
analysis [8,9] that rely on sampling the phase space.

2.1.6. Numerical solution & plotting
The simulation of a fault scenario is done with the func-

tion simulate. It builds a right-hand-side ODEFunction using
NetworkDynamics.jl, numerically integrates it using the Differ-
entialEquations.jl package and returns a PowerGridSolution.
This solution can then be easily plotted with Plots.jl7 using a
predefined plotting recipe for the solution type.

2.2. Software functionalities

PowerDynamics.jl allows for modeling symmetric 3-phase
power grids in dq-coordinates. Voltage and current are both
represented by complex phasors, where the real part represents
the d-coordinate and the imaginary part the q-coordinate. The
advantage of this complex representation is that the complex
power can be calculated by s = p + jq = u · i∗.

The package is designed for transient stability analysis. Dy-
namics on shorter timescales such as harmonics and inverter
switching cannot be modeled using the phasor approach (see
Fig. 2).

2.3. Sample code snippets

The following code snippet is an explanatory example of how
to use the DynamicNode-Macro to define new inverters, genera-
tors or loads in PowerDynamics.jl. It starts with the definition of
parameters as arguments and the definition of the mass matrix.
The boolean is true for differential equations and false for alge-
braic constraints. The assertion statements on the parameters is
followed by a list of dynamics variables and finally the system
of ordinary differential equations (ODEs) itself. The ODE system
is expected to contain the right-hand-side for all dynamic vari-
ables stated before. The complex voltage u is always required
for all dynamic nodes, however it can be replaced by an alge-
braic constraint by setting m_u=false. The given example of a
grid-informing inverter, VSIVoltagePT1, corresponds to the one
visualized in the block diagram in Fig. 3.

7 https://github.com/JuliaPlots/Plots.jl
3

Fig. 2. Source code for a droop controlled voltage source inverter as described
by Schiffer et al. [13].

2.4. Future developments & improvements

The PowerDynamics.jl community has just started to work
heavily on the modularization of PowerDynamics.jl such that
power generators, inverters and other equipment can be rep-
resented in the well-known block diagram structure. We plan
to undertake this modularization with the help of Modeling-
Toolkit.jl,8 that uses symbolic equations for modeling differential
equations systems [14]. The basic idea of this package is to
optimize the performance of the simulation by so called trans-
formations that include symbolic manipulations of the equations
but also automatic parallelization of the simulation. Hereby, it
aims to take away the responsibility from the modeler to write
performant code. It thus takes a similar approach to the modeling
language Modelica, but at the same time has the feature of great
composability with other packages in Julia’s differential equations
ecosystem [15]. In Fig. 3 a block diagram is shown for the example
of a grid-forming inverter. It consists of active- and reactive
power droop control (as an outer control loop), a frequency
integrator and active as well as a reactive power filters. The causal
modeling representation from the block diagram is planned for
the new major PowerDynamics.jl release. A prototype for an MTK
based block structure is already available via the BlockSystems.jl
package.9

8 https://github.com/SciML/ModelingToolkit.jl
9 https://github.com/hexaeder/BlockSystems.jl.

https://github.com/JuliaPlots/Plots.jl
https://github.com/SciML/ModelingToolkit.jl
https://github.com/hexaeder/BlockSystems.jl


Anton Plietzsch, Raphael Kogler, Sabine Auer et al. SoftwareX 17 (2022) 100861

i
a

Fig. 3. Example block diagram for a grid-forming inverter.
f

t

4

4

p
m
n
t
s

g
[
k

Another goal for the next major release of PowerDynamics.jl is
to make it compatible with the power system data management
package PowerSystems.jl10

We further plan to implement more fault scenarios, such as
noise perturbations [17,18] and dynamically induced cascading
failures [19]. These enhancements will make use of the state-
of-the-art stochastic differential equations solvers and callback
functions of DifferentialEquations.jl [11].

We also want to extend the library of component models
for lines and nodes. Here, we also expect user contributions for
various inverter controls that can be shared via pull requests on
GitHub.

More future contributions are expected from the MARiE-
project (Dynamic modeling for analysis and control of intelligent
energy networks) undertaken by BTU Cottbus together with elena
international GmbH and funded by the German Federal Ministry
for Economic Affairs and Energy (BMWi). The key innovation
of the project is the development of canonical base models of
grid-connected power converters by BTU Cottbus. Together with
elena international, the models are then implemented in Julia
and integrated in PowerDynamics.jl. To ensure practical relevance
of the models they are finally experimentally validated with a
Power-in-the-loop test bed by BTU Cottbus.

3. Illustrative example

Our illustrative example is the simulation of a tripping line
in the IEEE 14-bus system. This system contains 5 generators,
11 loads, 17 lines and 3 transformers. We model the loads as
constant power loads and the generators by a 4th order generator
model [20]. The parameters are taken from [21].

The implementation of this introductory example can be found
in the package PowerDynamicsExamples.11 It is available both
as a Julia script and a Jupyter Notebook. The latter can also be
directly launched in a browser by using BinderHub (see Fig. 4).

The simulation of this test case is straightforward and requires
only a few lines of code. PowerDynamics.jl is a registered package.
This means it can be directly installed from the Julia REPL (read-
eval-print loop) with: For creating a new test case we would
have to define an Array or OrderedDict of buses and lines
and execute the function PowerGrid(buses,lines). Here, we
assume that the IEEE-14bus testcase is already saved as a .json

10 https://github.com/NREL-SIIP/PowerSystems.jl [16], in order to use its abil-
ty to parse larger testcases in the industry standard data formats MATPOWER
nd PSS/e.
11 https://github.com/JuliaEnergy/PowerDynamicsExamples
4

Fig. 4. Installing PowerDynamics.jl.

Fig. 5. Source code for simulating the IEEE14 grid with PowerDynamics.jl. The
unction create_plot is defined in the script plotting.jl that can be found
in the PowerDynamicsExamples repository. The plotting script has additional
dependencies on Julia packages, that need to be installed similar to Fig. 5.

file that we can read in with read_powergrid. As the initial
state for the simulation we determine the operation point with
find_operationpoint. The fault scenario is the predefined
function LineFailure, which removes a line from the grid. The
numerical integration is done with the simulate function and
he results are shown in Fig. 6.

. Software validation

.1. Testlab description

An experimental validation of PowerDynamics.jl was under-
taken in January 2020 at the Smart Grid Technologies Laboratory
at TECNALIA12 within the context of the ERIGrid13-funded Valeria
roject. The primary goal was to implement detailed dynamical
odels for different inverter controls, loads and perturbation sce-
arios in PowerDynamics.jl and to validate the numerical simula-
ions against experimental measurements of different dynamical
cenarios in a small test grid setup.
The laboratory at TECNALIA comes with a grid-forming and a

rid-following inverter that both have self-built control schemes
22,23]. Therefore, the dynamic equations and parameters are
nown and can be translated into PowerDynamics.jl code. The

12 https://www.tecnalia.com
13 European Research Infrastructure supporting Smart Grid Systems Technology
Development, Validation and Roll Out (https://erigrid.eu/).

https://github.com/NREL-SIIP/PowerSystems.jl
https://github.com/JuliaEnergy/PowerDynamicsExamples
https://www.tecnalia.com
https://erigrid.eu/


Anton Plietzsch, Raphael Kogler, Sabine Auer et al. SoftwareX 17 (2022) 100861

v
4
a

s
c
a
t
d
t

Fig. 6. Simulation of a line tripping in the IEEE 14-bus system.
a
v
n
S
t
v
(

b

Fig. 7. Test grid setup in the laboratory. The setup includes a grid-forming
oltage source inverter (bus 3) and a grid-following current source inverter (bus
) that are connected to the grid by transformers, a load (bus 2) and a line with
dmittance Y12 . The test grid has an interconnection to the Spanish grid (bus 1)

which we model as a slack node. Measurement are taken out with two Boxes
that can measure voltage and current signals for two phases. We assume the
phases to be balanced and thereby calculate the third phase.

grid-following control consists of a low-pass filter for the voltage
signal, a phase-locked loop (PLL) and a droop control for active
and reactive power. The grid-forming control consists of several
filters for the voltage and current signals, a droop control for
frequency and voltage amplitude and a fictitious impedance.

4.2. Test case description

For demonstrative purposes in this paper we chose a test case
etup including a grid-forming, a grid-following and a load in grid
onnected mode (Fig. 7). The comparison between measurements
nd simulations for the scenario of a power set point dispatch at
he voltage source inverter is shown in Fig. 8. A more detailed
escription and a larger variety of test cases can be found in the
echnical report of the Valeria project [24].
5

5. Impact

5.1. Scientific impact

Programming languages, such as Python or the commercial
language MATLAB, are not up to the special requirements of
modeling renewable power grids. This includes the integration
of stochastic differential equations for the representation of fluc-
tuating renewable energy sources [3] as well as the simulation
of delayed differential equations to represent the influence of
measurement and delay times of inverter controls [25]. Due to
Julia’s just-in-time compilation, PowerDynamics.jl has also strong
performance advantages compared to simulations in MATLAB or
Python. It has also been shown to be much more performant
than its commercial competitors MATLAB Simulink and DIgSILENT
PowerFactory [7]. This does not only enable the dynamic simula-
tion of very large test cases with a large number of nodes but also
Monte Carlo sampling based methods. This includes for example
efficient calculations of stability and performance measures such
basin stability [8] and survivability [9] that complement standard
linear stability analysis and capture also the nonlinear behavior
of the system. Additionally, PowerDynamics.jl supports automatic
differentiation and is therefore compatible with Julia’s scientific
machine learning packages such as DiffEqFlux.jl, a package for
combining differential equations with neural networks [26]. This
will eventually lay the foundation for a new branch of research,
a machine learning based energy system stability analysis [27].

While in the context of static power flow analysis there are
already numerous OS tools (which are mostly Python-based),
e.g. PyPSA [28] and pandapower [29], there is little open source
vailable in the area of dynamic modeling of frequency and
oltage stability as well as the synchronization behavior of the
etwork in the seconds and subseconds range. Only the Power
ystem Analysis Toolbox (PSAT) library which has not been main-
ained for 10 years and therefore does not contain any current in-
erter models, and the new library PowerSimulationDynamics.jl14
another Julia package, continuation of LITS.jl [30]) are known. The
latter is developed by the National Renewable Energy Laboratory
(NREL) and uses the parsing capabilities of PowerSystems.jl to
uild their industry standard power system data structures. The

14 https://github.com/NREL-SIIP/PowerSimulationsDynamics.jl

https://github.com/NREL-SIIP/PowerSimulationsDynamics.jl


Anton Plietzsch, Raphael Kogler, Sabine Auer et al. SoftwareX 17 (2022) 100861

s
i

p
t
s

q
e
a
m
f

Fig. 8. Comparison of measurements and simulations. The scenario is a set point dispatch for the active power at the grid-forming inverter in the test grid setup
hown in Fig. 7. Voltage and power signals are calculated from the measured current and voltage signals. The dynamic models for grid-forming and grid-following
nverter have been implemented and simulated in PowerDynamics.jl.
ackage is using implicit and explicit differential algebraic equa-
ions (DAEs) representations in combination with the Sundials
olvers [31].
In contrast PowerDynamics.jl is based on the DifferentionalE-

uations.jl package which enables to simulate stochastic differ-
ntial equations (SDEs), delayed differential equations (DDEs)
nd explicit DAEs in mass matrix representation. This allows the
odeling of inverter measurement delays and renewable power

luctuations. Additionally, since PowerDynamics.jl uses the Net-
workDynamics.jl package for simulation model building which de-
couples the representation of nodes and lines, major performance
optimizations with parallelization and GPU calculations are possi-
ble. This gives the possibility to model large-scale networks. Cur-
rently, we are in contact with the developers of PowerSimulation-
Dynamics.jl and collaborate on the integration ofModelingToolkit.jl
and PowerSystems.jl.

PowerDynamics.jl is still very young and under heavy devel-
opment but the user base is steadily growing. At the moment
the software is developed by and used for research at PIK, at
TU Berlin, at BTU Cottbus, at TU Delft and at FZ Jülich. Further,
TU Delft plans to use PowerDynamics.jl for teaching electrical
engineering courses.
6

5.2. Commercial impact

PowerDynamics.jl will serve as a basis or backend for web ap-
plications and other commercial products of elena international
which is a spin-off of the Potsdam-Institute of Climate Impact
Research. In particular, PowerDynamics.jl together with existing
Open-Source tools for static network analyses will be the backend
of an innovative web application which will be offered as an
analysis tool for the renewable conversion of power systems first
in islanded and then also in interconnected operation. Here elena
int. is already working on a prototype for the planning of micro
power grids. This software can then be used for the planning of
micro power grids (in the global south) and for the new concept
of cellular energy systems in Europe.

As an Open-Source Software PowerDynamics.jl was also al-
ready used for creating an online simulation environment for an
online course about ‘‘inertia requirements for renewable power
systems’’.15 The goal of the course is to guide participants through

15 https://www.renac.de/trainings-services/trainings/ready-made-trainings/
product/inertia-requirements-for-renewable-power-systems

https://www.renac.de/trainings-services/trainings/ready-made-trainings/product/inertia-requirements-for-renewable-power-systems
https://www.renac.de/trainings-services/trainings/ready-made-trainings/product/inertia-requirements-for-renewable-power-systems


Anton Plietzsch, Raphael Kogler, Sabine Auer et al. SoftwareX 17 (2022) 100861

t
a

6

a
e
a
a
o
t
a
p
l
t

D

c
t

A

I
f
t
s
p
e
(
a

R

he topic of inertia issues and possible solutions for highly renew-
ble power grids.16

. Conclusions

PowerDynamics.jl is an OS Julia package for transient stability
nalysis which is both suitable for highly renewable power grids,
specially relevant for microgrids, and large-scale networks with
large number of buses due to its performance advantages. It
llows for the integration of delays and fluctuation dynamics
f renewable power sources. Due to its decoupled representa-
ion of node and line components, it can be parallelized and
llows for future performance optimization with GPU (graphics
rocessing unit) calculations. PowerDynamics.jl is still a young
ibrary, however, several research projects have started that relate
o PowerDynamics.jl and push its development. Currently, it is
work in progress to integrate a causal modeling approach in
PowerDynamics.jl that allows the representation of inverters as
block diagrams as it is coming in control theory to bridge the
gap to this community and engage a wider user base into the
development and spreading of PowerDynamics.jl.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

cknowledgments

This research has been performed using the ERIGrid Research
nfrastructure and is part of a project that has received funding
rom the European Union’s Horizon 2020 Research and Innova-
ion Programme under the Grant Agreement No. 654113. The
upport of the European Research Infrastructure ERIGrid and its
artner TECNALIA is very much appreciated. We further acknowl-
dge the support by BMBF (CoNDyNet2 FK. 03EK3055A), the DFG
ExSyCo-Grid, 410409736), the Leibniz competition (T42/2018)
nd the Federal Ministry of Economics (MAriE, FK. 03Ei4012B).

eferences

[1] Schiffer J, Zonetti D, Ortega R, Stanković AM, Sezi T, Raisch J. A survey on
modeling of microgrids—From fundamental physics to phasors and voltage
sources. Automatica 2016;74:135–50.

[2] 4/C6.35/CIRED JWGC. Modelling of inverter-based generation for power
system dynamic studies. 2018, European Commission.

[3] Auer S. The stability and control of power grids with high renewable
energy share. (Ph.D. thesis), Humboldt-Universität zu Berlin; 2018.

[4] Kittel T, Auer S, Horn C. Sneak preview: PowerDynamics.jl – An open-
source library for analyzing dynamic stability in power grids with high
shares of renewable energy. Wind Integr Workshop 2018 2018. URL https:
//arxiv.org/abs/2012.05175.

[5] Auer S, Kittel T. Modeling the dynamics and control of power systems with
high share of renewable energies. Wind Integr Workshop 2018 2018. URL
https://arxiv.org/abs/2012.05164.

[6] Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to
numerical computing. SIAM Rev 2017;59(1):65–98.

[7] Liemann S, Strenge L, Schultz P, Hinners H, Porst J, Sarstedt M, et
al. Probabilistic stability assessment for active distribution grids. In:
2021 IEEE madrid powertech. 2021, p. 1–6. http://dx.doi.org/10.1109/
PowerTech46648.2021.9494855.

16 https://github.com/SabineAuer/OnlineCourse-Inertia
7

[8] Menck PJ, Heitzig J, Marwan N, Kurths J. How basin stability complements
the linear-stability paradigm. Nat Phys 2013;9(2):89–92.

[9] Hellmann F, Schultz P, Grabow C, Heitzig J, Kurths J. Survivability of
deterministic dynamical systems. Sci Rep 2016;6:29654.

[10] Lindner M, Lincoln L, Drauschke F, Koulen JM, Würfel H, Plietzsch A, et
al. Networkdynamics. jl—Composing and simulating complex networks in
julia. Chaos 2021;31(6):063133.

[11] Rackauckas C, Nie Q. Differentialequations. jl–A performant and feature-
rich ecosystem for solving differential equations in julia. J Open Res Softw
2017;5(1).

[12] Coffrin C, Bent R, Sundar K, Ng Y, Lubin M. Powermodels. jl: An open-
source framework for exploring power flow formulations. In: 2018 Power
systems computation conference. IEEE; 2018, p. 1–8.

[13] Schiffer J, Ortega R, Astolfi A, Raisch J, Sezi T. Conditions for
stability of droop-controlled inverter-based microgrids. Automatica
2014;50(10):2457–69.

[14] Ma Y, Gowda S, Anantharaman R, Laughman C, Shah V, Rack-
auckas C. Modelingtoolkit: A composable graph transformation system for
equation-based modeling. 2021, arXiv:2103.05244.

[15] Rackauckas C. Modelingtoolkit, modelica, and modia: The composable
modeling future in julia. The Winnower 2021. http://dx.doi.org/10.15200/
winn.162133.39054.

[16] Lara JD, Barrows C, Thom D, Krishnamurthy D, Callaway D. Powersystems.
jl—A power system data management package for large scale modeling.
SoftwareX 2021;15:100747.

[17] Auer S, Hellmann F, Krause M, Kurths J. Stability of synchrony
against local intermittent fluctuations in tree-like power grids. Chaos
2017;27(12):127003.

[18] Plietzsch A, Auer S, Kurths J, Hellmann F. A generalized linear response
theory of complex networks with an application to renewable fluctuations
in microgrids. 2019, arXiv preprint arXiv:1903.09585.

[19] Schäfer B, Witthaut D, Timme M, Latora V. Dynamically induced cascading
failures in power grids. Nature Commun 2018;9(1):1–13.

[20] Sauer PW, Pai MA. Power system dynamics and stability. vol. 101, Wiley
Online Library; 1998.

[21] Kodsi SKM, Canizares CA. Modeling and simulation of IEEE 14-bus system
with FACTS controllers. Tech. Rep., Canada: University of Waterloo; 2003.

[22] Planas E, Gil-de-Muro A, Andreu J, Kortabarria I, de Alegría IM. Stability
analysis and design of droop control method in dq frame for connection
in parallel of distributed energy resources. In: IECON 2012-38th annual
conference on IEEE industrial electronics society. IEEE; 2012, p. 5683–8.

[23] Planas E, Gil-de-Muro A, Andreu J, Kortabarria I, de Alegría InM. Design and
implementation of a droop control in d–q frame for islanded microgrids.
IET Renew Power Gener 2013;7(5):458–74.

[24] Vogel C, Auer S, Deß T, Plietzsch A, Kogler R. Validation of low-voltage en-
ergy and renewables integration analysis. Tech. rep., European Research In-
frastructure supporting Smart Grid (ERIGrid); 2020, https://erigrid.eu/wp-
content/uploads/2020/06/ERIGrid_TA_VALERIA_Technical-Report_v01.pdf.

[25] Schiffer J, Fridman E, Ortega R, Raisch J. Stability of a class of delayed
port-Hamiltonian systems with application to microgrids with distributed
rotational and electronic generation. Automatica 2016;74:71–9.

[26] Rackauckas C, Innes M, Ma Y, Bettencourt J, White L, Dixit V. Diffeqflux.
jl-a julia library for neural differential equations. 2019, arXiv preprint
arXiv:1902.02376.

[27] Nauck C, Lindner M, Schürholt K, Zhang H, Schultz P, Kurths J, et al.
Predicting dynamic stability of power grids using graph neural networks.
2021, arXiv preprint arXiv:2108.08230.

[28] Brown T, Hörsch J, Schlachtberger D. PyPSA: Python for power system
analysis. J Open Res Softw 2018;6(4). http://dx.doi.org/10.5334/jors.188,
arXiv:1707.09913.

[29] Thurner L, Scheidler A, Schäfer F, Menke J-H, Dollichon J, Meier F, et
al. Pandapower—An open-source python tool for convenient modeling,
analysis, and optimization of electric power systems. IEEE Trans Power
Syst 2018;33(6):6510–21.

[30] Henriquez-Auba R, Lara JD, Roberts C, Pallo N, Callaway DS. LITS. jl–An
open-source julia based simulation toolbox for low-inertia power systems.
2020, arXiv preprint arXiv:2003.02957.

[31] Hindmarsh AC, Brown PN, Grant KE, Lee SL, Serban R, Shumaker DE, et al.
SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers.
ACM Trans Math Softw 2005;31(3):363–96.

http://refhub.elsevier.com/S2352-7110(21)00134-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb1
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb2
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb2
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb2
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb3
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb3
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb3
https://arxiv.org/abs/2012.05175
https://arxiv.org/abs/2012.05175
https://arxiv.org/abs/2012.05175
https://arxiv.org/abs/2012.05164
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb6
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb6
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb6
http://dx.doi.org/10.1109/PowerTech46648.2021.9494855
http://dx.doi.org/10.1109/PowerTech46648.2021.9494855
http://dx.doi.org/10.1109/PowerTech46648.2021.9494855
https://github.com/SabineAuer/OnlineCourse-Inertia
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb8
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb8
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb8
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb9
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb9
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb9
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb10
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb10
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb10
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb10
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb10
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb11
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb11
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb11
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb11
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb11
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb12
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb12
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb12
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb12
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb12
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb13
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb13
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb13
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb13
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb13
http://arxiv.org/abs/2103.05244
http://dx.doi.org/10.15200/winn.162133.39054
http://dx.doi.org/10.15200/winn.162133.39054
http://dx.doi.org/10.15200/winn.162133.39054
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb16
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb17
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb17
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb17
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb17
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb17
http://arxiv.org/abs/1903.09585
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb19
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb19
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb19
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb20
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb20
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb20
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb21
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb21
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb21
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb22
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb22
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb22
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb22
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb22
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb22
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb22
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb23
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb23
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb23
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb23
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb23
https://erigrid.eu/wp-content/uploads/2020/06/ERIGrid_TA_VALERIA_Technical-Report_v01.pdf
https://erigrid.eu/wp-content/uploads/2020/06/ERIGrid_TA_VALERIA_Technical-Report_v01.pdf
https://erigrid.eu/wp-content/uploads/2020/06/ERIGrid_TA_VALERIA_Technical-Report_v01.pdf
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb25
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb25
http://arxiv.org/abs/1902.02376
http://arxiv.org/abs/2108.08230
http://dx.doi.org/10.5334/jors.188
http://arxiv.org/abs/1707.09913
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb29
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb29
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb29
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb29
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb29
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb29
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb29
http://arxiv.org/abs/2003.02957
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb31
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb31
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb31
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb31
http://refhub.elsevier.com/S2352-7110(21)00134-5/sb31

	PowerDynamics.jl—An experimentally validated open-source package for the dynamical analysis of power grids
	Motivation and significance
	Software description
	Software architecture
	Nodes
	Lines
	Grid structure
	Operationpoint
	Fault scenarios
	Numerical solution & plotting

	Software functionalities
	Sample code snippets
	Future developments & improvements

	Illustrative example
	Software validation
	Testlab description
	Test case description

	Impact
	Scientific impact
	Commercial impact

	Conclusions
	Declaration of competing interest
	Acknowledgments
	References


