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a b s t r a c t

Identifying and characterising dynamical regime shifts, critical transitions or potential tipping points in
palaeoclimate time series is relevant for improving the understanding of often highly nonlinear Earth
system dynamics. Beyond linear changes in time series properties such as mean, variance, or trend, these
nonlinear regime shifts can manifest as changes in signal predictability, regularity, complexity, or higher-
order stochastic properties such as multi-stability. In recent years, several classes of methods have been
put forward to study these critical transitions in time series data that are based on concepts from
nonlinear dynamics, complex systems science, information theory, and stochastic analysis. These include
approaches such as phase space-based recurrence plots and recurrence networks, visibility graphs, order
pattern-based entropies, and stochastic modelling. Here, we review and compare in detail several
prominent methods from these fields by applying them to the same set of marine palaeoclimate proxy
records of African climate variations during the past 5 million years. Applying these methods, we observe
notable nonlinear transitions in palaeoclimate dynamics in these marine proxy records and discuss them
in the context of important climate events and regimes such as phases of intensified Walker circulation,
marine isotope stage M2, the onset of northern hemisphere glaciation and the mid-Pleistocene transi-
tion. We find that the studied approaches complement each other by allowing us to point out distinct
aspects of dynamical regime shifts in palaeoclimate time series. We also detect significant correlations of
these nonlinear regime shift indicators with variations of Earth's orbit, suggesting the latter as potential
triggers of nonlinear transitions in palaeoclimate. Overall, the presented study underlines the potentials
of nonlinear time series analysis approaches to provide complementary information on dynamical
regime shifts in palaeoclimate and their driving processes that cannot be revealed by linear statistics or
eyeball inspection of the data alone.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Past climate conditions, variability, and transitions are essential
to understand current and future climate changes. In particular, the
Plio-Pleistocene can be used as an analogue of future greenhouse
climate and how and which regime shifts in large-scale atmo-
spheric and ocean circulation can be expected in a warming world
(Burke et al., 2018; Steffen et al., 2018). Moreover, it has been a
period of important steps in human evolution, where significant
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climate regime shifts have most likely influenced the evolution and
the migration of human ancestors (deMenocal, 1995; Potts, 1996;
DeMenocal, 2004; Trauth, 2005; Staubwasser and Weiss, 2006;
Donges et al., 2011b). A better understanding of abrupt climate
changes, the pattern of variations, long-distance interrelationships,
feedback loops, or the type of dynamics can further help to build
our picture of the world and improve corresponding modelling
approaches.

The last decades have shown an increasing availability and
progress of quantitative approaches in geosciences, ranging from
provenance analysis, over rock magnetic measurements, X-ray
fluorescence analysis, to isotope geochemistry. Such quantitative
approaches have enriched the qualitative studies significantly and
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http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marwan@pik-potsdam.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.quascirev.2021.107245&domain=pdf
www.sciencedirect.com/science/journal/02773791
http://www.elsevier.com/locate/quascirev
https://doi.org/10.1016/j.quascirev.2021.107245
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.quascirev.2021.107245


N. Marwan, J.F. Donges, R.V. Donner et al. Quaternary Science Reviews 274 (2021) 107245
allowed new insights that would not have been able to get without
them (Sauramo, 1918; Stanley, 1978; Haug and Tiedemann, 1998;
Trauth et al., 2021). Most quantitative analysis is traditionally
focusing on linear methods of statistics and time series analysis
(such as correlations, power spectra, regression analysis, detection
of breakpoints, etc.; Trauth (2021); Mudelsee and Stattegger
(1997)) as well as partially on extensions thereof (e.g., time-
frequency decomposition employing continuous wavelet trans-
forms, Bayesian approaches to breakpoint detection and regression
replacing classical maximum likelihood or least squares estimators
(e.g. Schütz and Holschneider, 2011)). Such analyses provide
important information on the levels displayed by certain proxy
variables and, thus, allow tracing long-term changes of time-
average environmental and climatic conditions. However, their
application potential can be limited by the fact that real world
systems usually consist of many interacting components with
feedbacks and nonlinear interrelationships, behave in a more
chaotic rather than periodic way, vary in a fashion that cannot be
described by a normal distribution (Sch€olzel and Friederichs, 2008),
exhibit distinct behaviours in terms of their extreme event statistics
(Albeverio et al., 2006), or represent critical transitions to qualita-
tively different dynamical regimes (such as tipping points) (Lenton
et al., 2008; Schellnhuber, 2009). Concepts from complex systems
science, complex networks, and nonlinear dynamics are more
appropriate for such problems (Boers et al., 2021; Fan et al., 2021).
In the light of the critical impacts of climate and environmental
changes on human societies, quantitative investigations of large-
scale regime shifts (Rocha et al., 2018; Boers and Rypdal, 2021),
early warning indicators of such shifts (Dakos et al., 2008; Scheffer
et al., 2009; Boettner et al., 2021), and short-term ecosystem re-
sponses (Scheffer and Carpenter, 2003; Prasad et al., 2020) on the
base of palaeoclimate archives are required. Such insights on crit-
ical regime shifts and other large-scale nonlinear changes in Earth
system dynamics are highly relevant for determining planetary
boundaries delineating a safe operating space that allows for sus-
tainable development of human societies in the Anthropocene
(Rockstr€om et al., 2009; Hughes et al., 2013; Steffen et al., 2015).

In this study, we review and discuss a selection of data analysis
methods that have been widely applied to study complex systems
and have their origin in nonlinear dynamics, stochastic modelling,
and information theory to identify regime shifts of the palae-
oclimate dynamics. While there are many more methods of
nonlinear data analysis or machine learning that could be applied
in principle, we focus here only on a selection that might be of
particular interest for the palaeoclimate researcher when studying
regime transitions. After a brief look at linear methods, wewill first
introduce concepts of nonlinear methods before demonstrating
their abilities on marine palaeoclimate records that represent the
Plio-Pleistocene climate variation on the northern African
continent.
2. Methods

A plethora of quantitative methods to study palaeoclimate
processes have been developed and are available for different
purposes. This includes linear and nonlinear methods, or methods
using frequentist and Bayesian inference. The selection of the
appropriate method depends, of course, on the specific research
question.

Transitions in climate records can occur at different levels.
Related to the time scale, the signal can change abruptly, such as the
global temperature after an asteroid impact (Brugger et al., 2017), or
gradually, such as the slower glaciation (compared to the abrupt
warming during the interstadials) during the stadials of the
2

glaciation (Dansgaard et al., 1993). We can consider changes of the
statistical moments of the time series, such as a change in themean
value (e.g., changing global temperature; Westerhold et al. (2020))
and the variance, or even in higher moments (e.g., skewness of the
amplitude distribution). Gradual changes of the signal's mean
correspond to trends and are commonly studied by ramp fit models
(Mudelsee and Schulz, 1997). More subtle changes in the underly-
ing dynamics can be even more interesting, because they are usu-
ally not so obviously visible in the time series, like a change in the
mean or variance. For example, the period of a cyclical climate
variation can change, as it was found for the mid-Pleistocene
transition (MPT) with a shift from a 41 ka to 100 ka climate cycle
(Clark et al., 2006). With respect to tipping points, the autocorre-
lationwithin the signal can be of additional benefit, indicating early
warnings of critical climate transitions (such as during the Cenozoic
climate (Boettner et al., 2021)). When considering the climate as a
dynamical system, it might also be of interest to determine the
dimension of the system (i.e., how many differential equations
would be necessary to describe the observed dynamics) or whether
the system's dynamics can be characterised as a stochastic, peri-
odic, or chaotic process. Albeit the latter type of behavior corre-
sponds to a deterministic process (which means that its states can
be computed), it is difficult to predict.

Transitions in climate records based on changes of first statis-
tical moments, trends or periodicity can be analysed with linear
methods. For example, to statistically identify transitions of mean
and variance, a running Mann-Whitney or Ansari-Bradley test can
be used (Trauth et al., 2009). Regression-based models (Mudelsee
and Schulz, 1997) and Bayesian change point detection (Schütz
and Holschneider, 2011) are further suitable tools for this
research question. Changes in the cyclicities can be analysed with
evolutionary power spectra (Trauth, 2021) or with wavelet analysis
(Lisiecki, 2010). Further developments consider decompositions of
the palaeoclimate time series using wavelet transform or singular
spectrum analysis (Vautard and Ghil, 1989; Ghil, 2002).

Following the progress in nonlinear dynamics and complexity
science in the 1970s and 1980s, additional and novel concepts have
found their way into Earth sciences. Fractal dimensions and Lya-
punov exponents have been promising ideas to better understand,
model, and predict the climate system. However, after a first
euphoria, it became clear that palaeoclimate data, in particular,
comes with problems that make it almost impossible to apply such
methods reliably (Grassberger, 1986; Maasch, 1989; Schulz et al.,
1994): the data is non-stationary, the sampling is irregular, the
uncertainties are too high due to dating uncertainties, many degree
of freedom, and bad signal-to-noise ratio. Despite the problems
with some methods, other methods were more successful, such as
the already mentioned singular spectrum analysis (Vautard and
Ghil, 1989), potential analysis (Livina et al., 2010), or recurrence
analysis (Marwan et al., 2007). In the following, we will focus on
selected methods based on concepts of complex systems and
nonlinear dynamics that can be used to study different aspects of
transitions in palaeoclimate dynamics (see Table 1). We will also
add information about available software packages. The corre-
sponding links to the software can be found in the Sect. 7, Table 4.

2.1. Windowing approach

The detection of transitions in the dynamics is based on the idea
that some statistical properties change with time. To evaluate such
changes, we have to calculate a certain quantity or measure at a
certain point in time and compare it with previous or later values of
this quantity. Most of the quantities need, however, a larger num-
ber of values to be calculated, i.e., we need to divide our time series
into short pieces or time windows of lengthw. Such a time window



Table 1
Overview on the methods of nonlinear time series analysis discussed and partly compared for applications to Plio-Pleistocene palaeoclimate variability in this study.

Type Method Focus References

Stochastic modeling potential analysis multi stability of underlying
processes

Kwasniok and Lohmann (2009); Livina et al. (2010); Kwasniok
and Lohmann (2012)

Statistical mechanics and
information theory

entropies, order patterns Time series complexity Bandt and Pompe (2002); Balasis et al. (2013); Zanin and
Olivares (2021)

Phase-space based approaches recurrence plots, recurrence
networks

time series classification, dynamical
transitions

Marwan et al. (2007); Boers et al. (2021); Zou et al. (2019)

Visibility relationships time-directed visibility
graphs

temporal reversibility Lacasa et al. (2012); Donges et al. (2013)
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is then moved over the entire time series. The window has a
starting point t1, an endpoint t2, and a center point (t2 � t1)/2. The
quantity calculated within this window is then assigned to this
centre point and, thus, provides a new time series of this quantity.
The moving step of this window ws sets the temporal resolution of
the new quantity time series. However, the smaller ws, the larger
the overlap and the more redundant the information of subsequent
quantity values. We have, therefore, to find a good trade-off be-
tween redundant information and temporal resolution. A change of
this quantity over time can then be interpreted concerning the
investigated regime transition. Moreover, we have to consider the
window size when interpreting the results. For example, using a
time window of length 410 ka, an abrupt increase of a transition
measure at 2 Ma before present (BP) would mean that the transi-
tion happened not earlier than approximately 1.795Ma BP (because
of the used centre point of the window). A single point covers a
period of 410 ka; for a used offset of 41 ka, two consecutive points of
time correspond to 410 þ 41 ka, and so on.

2.2. Statistical mechanics and information theory

Complexity is a concept that characterizes the dynamical
behaviour of a given complex system whose many parts interact in
many different ways. Complex behaviour (and chaotic dynamics)
usually appear in nonlinear systems and can be measured with
various complexity measures. One of the most well-known
complexity measures is the entropy (a measure of information
theory), which measures the uncertainty in a system (Shannon,
1948). The entropy measure has been used to detect abrupt
changes and regime transitions from data in different disciplines
such as life sciences, engineering, economics, and Earth sciences
(Gapelyuk et al., 2010; Li et al., 2013; Afsar et al., 2016; Zhao et al.,
2020).

Shannon entropy. For a given time series x(t), the Shannon en-
tropy S is defined as

S ¼ �
X
x
rðxÞlog rðxÞ; (1)

where r(x) is the probability density function (PDF) of the values x
of the time series (in practice, this is approximated by n discrete
bins i, with hi the probability that the time series value x falls within
the interval i and S ¼ �

Pn
i hilog hi). The PDF is a function that

specifies the probability of a randomly picked point from the
observation x(t) existing within a particular interval (range of
values). As an intuitive point of view, if the probabilities are
approximately the same for each specified interval (i.e., when
having a homogenous probability distribution), the entropy is ex-
pected to be high since the randomly picked point can be in one of
the intervals with equal probability. In other words, there is no way
to find an interval in which a randomly chosen number would be
with high probability. Contrarily, if the distribution is heteroge-
neous, then the entropy is expected to be low and we will be much
3

less uncertain in predicting a random pick from the data (Fig. 1).
Hence, the Shannon entropy defined solely on individual time se-
ries data is a purely distributional property. Nevertheless, a change
of the entropy over time can be used to identify exceptional states,
an application that is used, e.g., to detect intense magnetic storms
(Balasis et al., 2008).

Simple PDF dependent statistical measures like Shannon en-
tropy do not consider the order of samplings, i.e., they neglect
deterministic changes in the data. Therefore, we have to be careful
in interpreting the Shannon entropy value calculated directly from
the data with respect to the complexity of the dynamics (Fig. 2).

In order to incorporate different aspects of the data, such as the
dynamics, various concepts and approaches have been developed
for the construction of a suitable PDF. These different procedures
led to various entropy measures such as the Tsallis entropy, order
(permutation) entropy, and block entropy (Balasis et al., 2013;
Boaretto et al., 2021). Further and more advanced information
based measures, derived from the dynamical systems theory, are,
e.g., Kolmogorov-Sinai entropy or correlation entropy (Grassberger
and Procaccia, 1984).

Order Entropy (Permutation Entropy). As mentioned above,
changing the order of the numbers in a time series does not change
the value of the Shannon entropy. Dynamically different systems
can have very similar PDFs and, therefore, similar entropy values
due to order ignorance (Fig. 2).

To take into account the dynamics of the system, short se-
quences of the time series have to be considered. A simple approach
for such is to consider the local rank order of subsequent values of
the time series (Zanin and Olivares, 2021). Such order pattern re-
duces the value range to only a few numbers and encodes the
dynamical behaviour. For calculating the entropy, the PDF of the
order patterns is used.

In the simplest case (pattern of order two, d ¼ 2), a time series
(x1, x2, …, xN) can be discretized by comparing the values at two
time points

pi ¼
�
0 xi < xiþt;
1 xi > xiþt;

(2)

where t is a delay parameter that allows some adjustment to a time
scale of interest (such as the typical period of a cyclic signal). In the
present study, we use order patterns of degree d ¼ 3, providing six
different order patterns (Fig. 3). A degree of d ¼ 3 is usually suffi-
cient to describe the important dynamical properties of the time
series (Bandt and Shiha, 2007). Moreover, the number of possible
order patterns is d! In order to estimate a reliable PDF of the d!
different order patterns, we need longer and longer time series for
larger d, which are often not available in real applications.

Then, the order (or permutation) entropy is the Shannon en-
tropy of the PDF of the order patterns

Sorder ¼ �
Xd!

i¼1
rðpiÞlog rðpiÞ: (3)



Fig. 1. Illustration of (A, B) random time series u and v and (C, D) their probability density functions r(u) and r(v). The entropy of (A, C) uwith uniform distribution is Su z 3.0 and (B,
D) v with normal distribution is Sv z 2.37.

Fig. 2. Entropy measures can fail detecting different dynamical regimes, as such of (A) a sinusoidal wave u and (B) a chaotic signal (generated using logistic map
v(t þ 1) ¼ 4v(t)(1 � v(t))). Although the dynamics represented by u and v is entirely different, the (C, D) PDFs are similar. Therefore, the entropy of u and v are Su z Sv z 2.84.

Fig. 3. Order patterns of dimension d ¼ 3.
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Such entropy measure enables us to detect different dynamical
regimes (Boaretto et al., 2021), because some dynamics is related to
a tendency to certain order patterns (e.g., periodic dynamics),
where others can lead to more equally frequent order patterns (e.g.,
stochastic dynamics; Fig. 4). Because it does not characterize the
PDF of the amplitude distribution, processes with the same dy-
namics but different PDF cannot be distinguished (Fig. 5). Thus, the
use of the Shannon entropy and the order entropy depends on the
research question, i.e., whether we need to characterize the
amplitude distribution or the dynamics.

Order entropy can be a useful measure to check anomalies in the
data or to identify such segments that are not associated with the
climatic processes of interest (Garland et al., 2018). It has also be
used to detect periodic changes in climate proxies of the late
Silurian and to establish a corresponding astrochronology
4

(Spiridonov et al., 2020).
Confidence intervals. Applying the windowing approach, the

entropy measures are changing over time. We might ask, how
significant such variation is. To assess the significance, we consider
a null-hypothesis of “no temporal change” in the considered char-
acteristic of the time series, given the properties of this time series.
Unfortunately, for nonlinear data analysis, no general significance
test is available with tables and significance values in textbooks.
Therefore, we have to create the test individually, incorporating the
specific settings and conditions given by the research question. To
test the above null-hypothesis, we use the original time series to
create artificial time series which comply with the specific null-
hypothesis. Such time series are also called surrogates. We can
create such surrogate time series by bootstrapping values from the
original time series. The entropy measure is then calculated from
the surrogate. By repeating this procedure many times, we get an
empirical test distribution of the entropy measure, which repre-
sents the entropy values to be expected under the null-hypothesis.
Now, we can use the 5% and 95%-quantiles of this test distribution
to define a two-sided 90%-confidence interval. If the entropy
measure in a certain window exceeds the confidence interval, we
consider this value as significantly different and the dynamics has
changed.

Software. Entropy can be easily calculated from time series by



Fig. 4. In contrast to the Shannon entropy, the order (permutation) entropy (d ¼ 3) detects different dynamical regimes, such as (A) a sinusoidal signal u and (B) a chaotic signal
(generated using logistic map v(t þ 1) ¼ 4v(t)(1 � v(t))). Although the PDF of time series are similar (see Fig. 2), the PDF of order patterns differ from each other (C, D) and the order
entropy of u and v differs clearly, Sorder(u) z 0.98 and Sorder(v) z 1.78.

Fig. 5. Illustration of (A, B) white noise u and vwith different PDFs r(u) and r(v), but similar PDFs of the order patterns (C, D). The order entropy does not distinguish between these
two random processes: Su z 1.79 and Sv z 1.79.
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their probability distributions. This measure is often part in larger
software solutions, such as in the CRP Toolbox for MATLAB (Sect. 7,
Table 4). For order entropy, specific packages are available, e.g., for
Python the ordpy package (Pessa and Ribeiro, 2021), or for MATLAB
the Permutation entropy package.
Fig. 6. A stochastic process simulated using Eq. (6) with the double-well potential
U(x) ¼ � 2x2 þ x4. Using the generated random time series x, the potential function
ÛðxÞ is reconstructed. As the double-well potential is considered in the time series
generation, we find two wells (nU ¼ 2) in the reconstructed potential function.
2.3. Stochastic modelling (potential analysis)

The behaviour of many dynamical systems can be described by a
stochastic differential equation, e.g., a changing climate which is
forced by a stochastic process. The conceptual model for such a
process can be described by the simple equation (which is a sto-
chastic differential equation) (Gardiner, 2009; Kwasniok and
Lohmann, 2009, 2012)

dx
dt

¼ �dUðxÞ
dx

þ sdW ; (4)

with x corresponding to the slowly changing climate state, U(x) the
potential which restricts the possible states x, s the amplitude of
the stochastic process, and W a real valued continuous time sto-
chastic (Wiener) process. The complexity of the potential U(x) de-
termines the number of states, e.g., for a double-well potential
U(x) ¼ � 2x2 þ x4 we will find two different states between which
5
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the system can jump (Fig. 6A).
By exploiting the associated Fokker-Planck equation, we can

find the probability density function of the process depending on
the potential (Risken, 1989):

rðxÞ � e�
2UðxÞ
s2 : (5)

The PDF r(x) can be estimated from a time series x using a
standard Gaussian kernel estimator (Silverman,1986). Thus, we can
now find a reconstruction of the potential by (Fig. 6)

Û ¼ �s2

2
log rðxÞ: (6)

The parameters of Eq. (4) can also be estimated by more so-
phisticated approaches, such as the Kramers-Moyal or Mori-
Zwanzig approaches (Friedrich et al., 2011; Hassanibesheli et al.,
2020) or the unscented Kalman filter (Kwasniok and Lohmann,
2009, 2012), which have been mainly applied to trace dynamical
regime changes (e.g., DO events) in ice core data. However, for the
sake of simplicity, we use here the simple approach using the PDF
estimation.

Counting the wells of the reconstructed potential Û, we have an
estimate of the number of possible states nU (Livina et al., 2010).
This approach was successfully applied to study the bifurcation
behaviour of the climate in the Pliocene using benthic stable
isotope and ice core data (Livina et al., 2010, 2011, 2012).

Software. For the simple approach of kernel based PDF estima-
tion as used here, the corresponding functionality is usually already
included in many software packages (e.g., in scipy for Python or in
the Statistics and Machine Learning Toolbox for MATLAB). Parameter
estimation using the Kramers-Moyal approach or the unscented
Kalman filter can be performed using the kramersmoyal and FilterPy
packages for Python.

2.4. Phase space-based approaches

Dynamical systems theory considers the underlying dynamics
of the observed, measured system. The idea is that all n state var-
iables of the dynamical system span an n-dimensional space and
that a point in such a space corresponds to the state of the system
(Fig. 7B). With time, such a point moves in this phase space and
forms a trajectory (the phase space trajectory). Such a phase space
trajectory is the starting point for different analysis approaches, in
particular for many nonlinear measures.

Phase space reconstruction. In many practical situations, only one
observable (i.e., a single time series) is available and the phase
space has to be reconstructed (Takens, 1981). Several approaches
have been suggested for phase space reconstruction, using time
Fig. 7. Illustration of the phase space reconstruction of (A) a time series (January insolation
time series values that are shifted by a small delay t (black points in A) which serve as the co
time t2.
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shifted copies or derivatives (Lekscha and Donner, 2018; Kraemer
et al., 2021). For the sake of simplicity, here we use the widely
used approach of time-delay embedding with constant delays
(Packard et al., 1980), where the phase space vector x!ðtÞ ¼ x!i
(with t ¼ iDt and Dt the sampling time) is formed from one
observation x(t) by time-shifted copies

x!i ¼
�
xi; xiþt;…; xiþðm�1Þt

�
;

with m and t the embedding dimension and the embedding delay
(Figs. 7 and 8B). Under general conditions, the reconstructed phase
space can be considered topologically equivalent to the original
phase space. The embedding delay t has to be chosen in such away,
that a dependence between the vector components of x! vanishes.
An often usedmeans of determining the delay is the autocorrelation
function C(t) ¼ Cxi xi�tD (CxD ¼ 0, s(x) ¼ 1, and C,D denoting the
arithmetic mean). A delay may be appropriate when the autocor-
relation approaches zero for this value of delay or at least falls
below a certain de-correlation threshold (corresponding to the
autocorrelation time tc, which is where C(tc) z 1/e) (Kantz and
Schreiber, 1997), minimizing the linear correlation between the
components (absence of linear correlation does not mean neces-
sarily statistical independence in general, but only linear
independence).

A practically efficient and widely used approach for the deter-
mination of the smallest sufficient embedding dimension m uses
the number of false nearest neighbours. The basic idea is that by
decreasing the embedding dimension an increasing amount of
phase space points will be projected into the neighbourhood of any
phase space point, even if they are not real neighbours. Such points
are called false nearest neighbours (FNNs). The simplest method
uses the amount of these FNNs as a function of the embedding
dimension in order to find the minimal embedding dimension
(Kantz and Schreiber, 1997). Such a dimension has to be taken
where the FNNs vanish. Additional criteria could be applied, e.g.,
the ratios of the distances between the same neighbouring points
for different dimensions (Kennel et al., 1992; Cao, 1997; Kraemer
et al., 2021).

Phase space properties. A classical approach of analyzing the
phase space is the estimation of the correlation dimension and
general fractal dimensions (Grassberger and Procaccia, 1983).
Whereas the integer part of the dimension can give some hint on
the degree of freedom of the dynamical system (i.e., how many
variables we would need to describe such a dynamics), a possible
fractional part of the dimension value is considered to be of special
interest, because it means that the phase space trajectory has
fractal properties and the dynamics is rather irregular. However,
at latitude 20�N) by time-delay embedding (B). A state at time t1 is constructed from
ordinates in the phase space (B). Black points correspond to time t1 and white points to



Fig. 8. (A) January insolation at latitude 20�N for the last 500 ka as an exemplary time series to illustrate the phase space and recurrence plot approach. (B) Phase space repre-
sentation of the insolation time series in (A) based on a time delay embedding using a delay of t ¼ 6 ka and embedding dimension m ¼ 2. (C) Recurrence plot of the insolation time
series; the recurrence threshold e ¼ 10. The cyclical variations are visible by the periodic diagonal lines in the recurrence plot.
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despite the initial euphoria and the estimations of the fractal
dimension from numerous geophysical data sets, it finally turned
out that this measure is often too sensitive to the amount of noise
typical for this kind of data (Maasch, 1989; Schulz et al., 1994).
Moreover, the initial requirement of long and stationary records
can also not be sophisticated by the usually available data
(Eckmann and Ruelle,1992). Estimations of fractal dimensions from
real world data have been, therefore, controversial (e.g.,
Grassberger, 1986; M€oller et al., 1989; Gershenfeld, 1992).

Another fundamental property of interest of the phase space
trajectory is its divergence behaviour. Tiny displacements in the
phase space can result in heavily diverging trajectories, i.e., to
completely different states. In such cases, we refer to this as a
chaotic behaviour, because the states depend strongly on the initial
conditions and are not predictable. The diverging of the trajectory
due to small deviations in initial values is measured by the Lya-
punov exponent (Wolf et al., 1985; Kantz, 1994). Positive values
indicate chaotic dynamics. But similar to the estimation of fractal
dimensions, a reliable estimation of the Lyapunov exponent re-
quires also long time series (Eckmann and Ruelle, 1992). If only the
largest Lyapunov exponent is of interest, several approximating
approaches have been suggested (Kantz, 1994; Rosenstein et al.,
1993).

Recurrence plots. A more recent approach of analyzing complex
dynamics by the phase space trajectory is by investigating its
recurrence behaviour. A powerful framework for recurrence anal-
ysis is provided by the recurrence plot (RP) (Marwan et al., 2007). A
RP represents all such time points j at which a state x!i recurs:

Ri;j ¼
�
1 if x!iz x!j;
0 otherwise:

(7)
7

The recurrence of a state is usually defined by the closeness of
two states, measured by comparing their spatial distance

Di;j ¼
���� x!i � x!j

���� with a threshold e:

Ri;j ¼ Q
�
e� Di;j

�
; (8)

withQ the Heaviside function (Q(x< 0)¼ 0,Q(x� 0)¼ 1). Different
research questions and applications can require different recur-
rence definitions (Marwan et al., 2007). Here we use one based on
Euclidean norm and selecting a threshold e to ensure a predefined
recurrence point density, RR¼N�2P

ijRi,j (Kraemer et al., 2018). The
resulting recurrence matrix R is a N � N binary matrix (with N the
number of considered states, i.e., time points).

Recurrence quantification analysis. Although the RP is a visuali-
zation technique for recurrences in phase space, it is the base for
different recurrence quantification approaches. By looking at a RP
(Fig. 8C), we identify some characteristic features: lines that are
parallel to the main diagonal and some vertically extended block
structures (vertical lines). The presence of diagonal and vertical
lines reflects the dynamics of the system and is related to diver-
gence (Lyapunov exponents) and intermittency (Marwan et al.,
2002, 2007; Thiel et al., 2004). Following a heuristic approach, a
quantitative description of RPs based on these line structures was
introduced and is known as recurrence quantification analysis
(RQA) (Zbilut and Webber, Jr., 2007; Marwan, 2008) that has
demonstrated its power and potential in numerous scientific dis-
ciplines for various applications. It can be used to study regime
changes, dynamical transitions, characterizing dynamics, classi-
fying different dynamical behaviour, detecting synchronization,
and coupling directions (Marwan et al., 2007; Marwan, 2008;
Webber, Jr. et al., 2009). For palaeoclimate research, it is a



Fig. 9. Recurrence network of the insolation time series as shown in Fig. 8A. The colour
represents the time (the older the darker the colour).
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promising tool to identify climate transitions, such as the Cenozoic
climate regimes of hothouse, warmhouse, coolhouse, and cold-
house states (Westerhold et al., 2020), Pleistocene and Holocene
changes in the Asian monsoon system (Eroglu et al., 2016;
Lechleitner et al., 2017; Goswami et al., 2018; Han et al., 2020) Af-
rican climate (Trauth et al., 2021) and El Ni~no/Southern Oscillation
activity (Marwan et al., 2003), Holocene vegetation patterns and
environmental changes (Spiridonov et al., 2019, 2021), or decadal
solar variations (Voss et al., 1996). It was also used to identify global
temperature forcing in historical data (Goswami et al., 2013) and as
a test framework in a study on the volcanic impact on the coupling
between El Ni~no/Southern Oscillation and Indian Summer
monsoon (Singh et al., 2020).

Epochs of the phase space trajectory that evolve in a similar way,
i.e., run close and parallel in the phase space, cause diagonal
structures in the RP. The length of such diagonal line structures
depends on the predictability and, hence, the dynamics of the
system (periodic, chaotic, stochastic). Therefore, the histogram P(l)
of diagonal line lengths l is one of the important features used by
several RQA measures for characterizing the system's dynamics.

A central RQA measure is quantifying the fraction of recurrence
points Ri,j ≡ 1 that form diagonal lines:

DET ¼
PN

l¼lmin
l PðlÞPN

l¼1l PðlÞ
: (9)

This measure is called determinism because the relative amount
of diagonal lines vanishes for stochastic, but is high for determin-
istic processes. We can use this measure as an indicator of predi-
cability. Here, we use it in a relative manner, i.e., interpret dynamics
of increased DET values as relatively more predictable than such
with lower values. For the definition of a diagonal line, we use a
minimal length lmin that should be of the order of the auto-
correlation time (Marwan et al., 2007).

Another RQA measure is quantifying slowly changing states, as
occurring during laminar phases (intermittency). Such dynamics
result in vertical structures in the RP. Similar to the definition of
DET, we can calculate the fraction of recurrence points forming
vertical structures to all recurrence points,

LAM ¼
PN

v¼vmin
v PðvÞPN

v¼1v PðvÞ
; (10)

which is called laminarity (Marwan et al., 2007). P(v) is the histo-
gram of vertical lines of length v. Measures based on vertical
structures allow to detect chaos-chaos transitions, whereas mea-
sures based on diagonal lines detect chaos-order transitions. Here
we use this measure to evaluate the persistence of variations
relatively.

The confidence of the variations in the recurrence measures
(using the moving windows approach) can be determined with a
specific, bootstrap based statistical test (Marwan et al., 2013). For all
moving windows s, the individual distributions of diagonal line
lengths Ps(l) are merged P*(l) ¼

P
sPs(l). From this distribution, line

lengths are drawn and used to construct a new individual distri-

bution P̂sðlÞ, from which we calculate the DET measure. This
bootstrapping of line lengths is repeated many times, producing a
distribution of DET values which correspond to an overall dy-
namics, i.e., representing a baseline dynamics. The 5% and 95%-
quantiles of this empirical test distribution are then used as the
90%-confidence interval and to assess the significance of excursions
of the DET values over time. A similar approach is used for the
vertical line based measure LAM.

Recurrence networks. An extension to quantify the recurrences in
8

phase space is to identify the recurrence matrix R as a link matrix A
of a network and to use measures from complex network theory
(Marwan et al., 2009; Donner et al., 2010). Excluding self-loops, we
obtain A from the RP by removing the identity matrix,

Ai;j ¼ Ri;j � di;j; (11)

where di,j is the Kronecker delta (di,jsi ¼ 0, di,j ¼ i ¼ 1). The resulting
unweighted and undirected network consists of phase space vec-
tors (associated with their time points) as nodes and recurrences as
links (see Fig. 9). A difference to the recurrence quantification
analysis is that in a network the nodes can be reordered (meaning
the temporal sequence is not important) without changing the
network properties, while in recurrence plots and recurrence
quantification analysis the temporal ordering of the states is
fundamental.

Complex networkmeasures can characterize the network nodes
separately or the entire network as a whole, by local or global
measures, e.g., for detecting different dynamical regimes or un-
stable periodic orbits (Marwan et al., 2009; Zou et al., 2010; Donner
et al., 2011). An important measure is the network transitivity

T ¼
PN

i;j;k¼1Ai;jAj;kAk;iPN
i;j;k¼1Ai;jAk;i

; (12)

revealing the probability that two neighbours (i.e. recurrences) of
any state are also neighbours (Barrat and Weigt, 2000). Intuitively,
dynamics with fast diverging phase space trajectories will have a
rather low probability that such triangle configurations of con-
nected nodes retain for some time. In contrast, regular or periodic
dynamics will exhibit a high probability of the occurrence of such
triangles. Therefore, high values in T represent regular and low
values an irregular dynamics (Zou et al., 2010), which is supported
by the interpretation of this measure as being directly linked to a
generalized notion of the effective spatial dimensionality of the
network in phase space (Donner et al., 2011).

Another interesting network measure for recurrence analysis is
the average length of shortest paths between all pairs of nodes, the
average path length
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L ¼ 1
NðN � 1Þ

XN

i;j¼1
[i;j; (13)

where the length of a shortest path [i,j is defined as the minimum
number of links that have to be crossed to travel from node i to
node j (Boccaletti et al., 2006). Disconnected pairs of nodes are not
included in the average.

The confidence intervals for the network measures are esti-
mated in a similar way as for the entropy measures. We create
surrogate time series by bootstrapping values from the time series
and calculate the network measures from the corresponding
recurrence networks. By repeating this procedure many times, the
empirical test distributions are created, which are then used to find
the 5% and 95%-quantiles as the confidence interval.

The recurrence network approach was used to identify palae-
oclimate regime transitions, such as the Plio-Pleistocene African
climate variability and its relationship to human evolution (Donges
et al., 2011b) or the Holocene variability of the Asian monsoon and
its impact on ecosystems (Marwan and Kurths, 2015; Prasad et al.,
2020) and ancient human societies (Donges et al., 2015a). Another
application was investigating the link between the Indian and the
East Asian monsoon (Feldhoff et al., 2012).

Further phase space based measures are available and can be
useful. These include other RQA and recurrence network measures
e.g., trapping time and mean average diagonal line length (Marwan
et al., 2002), measures evaluating similarities in phase space such as
FLUS (Malik et al., 2014), or entropy estimates, e.g., sample entropy
(Richman and Moorman, 2000) or recurrence period density en-
tropy (Little et al., 2007).

Software. The number of software packages for recurrence an-
alyses is continuously increasing due to the increasing popularity of
this method. Examples for Python are the pyunicorn package
(Donges et al., 2015b) or the PyRQA package (Rawald et al., 2017),
and for MATLAB the CRP Toolbox (Sect. 7, Table 4).
2.5. Visibility graphs

An alternative approach to transform time series to networks
and to characterize them by their network properties is based on
visibility graphs, originally introduced for the detection of obstacles
by mutual visibility relationships between points in two-
dimensional landscapes (e.g., for automatisation and architectural
design) (Lacasa et al., 2008). Similar to recurrence networks, a
network node represents a time point. A link Aij ¼ 1 is now defined
by the rule
Fig. 10. Visibility graph of the insolatio

9

xi � xk
tk � ti

>
xi � xj
tj � ti

(14)

for all time points tkwith ti < tk < tj, i.e., we can connect the values at
ti and tj by a straight line without crossing another local peak in
between them (Fig. 10). The topology of the visibility networks is
related with fractal and multifractal properties of the underlying
time series (Lacasa et al., 2009).

Another, even more interesting application of visibility net-
works is their ability to identify time irreversibility in time series.
Time irreversibility is a typical indicator of nonlinear dynamics
(Theiler et al., 1992). Visibility networks can be used to test for this
specific type of dynamics, in particular to identify nonlinear regime
shifts (Lacasa et al., 2012; Donges et al., 2013).

The basic idea is to compare the statistics of links coming from
the past (Aj < i) or going into the future (Aj > i), referred to as
retarded and advanced links (in the visibility network all links have
a clear time direction). We can use the retarded and advanced
degrees

kri ¼
X
j< i

Aij; kai ¼
X
j> i

Aij; (15)

with ki ¼ kri þ kai , or the clustering coefficient of the advanced and
retarded links

Cri ¼
�
kri
2

	
�1

X
j< i;k< i

AijAjkAki; Cai ¼
�
kai
2

	
�1

X
j> i;k> i

AijAjkAki;

(16)

denoted as retarded and advanced cluster coefficients.
Given a stationary system, time reversibility means that the

joint probability of a sequence of numbers is the same as the joint
probability of the reversed version of this sequence (Lawrance,
1991). The probability distributions of the retarded and advanced
degrees rðkri Þ and rðkai Þ would then not deviate much (same for Cri
and Cai ; Fig. 11). To test this, the distributions can be compared by a
Kolmogorov-Smirnov (KS) test. This test statistic provides p-values
p(k) and pðCÞ to assess whether the null-hypothesis of reversibility
can be rejected (Donges et al., 2013).

This approach has been used to identify a nonlinear regime shift
in the North Atlantic ocean circulation at the onset of the Little Ice
Age (Schleussner et al., 2015), indicating a multi-stability in the
Atlantic ocean circulation. Visibility graphs, in general, are useful
tools for several classification and diagnostic purposes (Ahmadlou
et al., 2010; Zou et al., 2014; Gao et al., 2016; Supriya et al., 2016).
n time series as shown in Fig. 8A.



Fig. 11. Probability distributions of (A) advanced and (B) retarded degrees rðkai Þ and rðkri Þ of the visibility graph computed from the insolation time series as shown in Fig. 10. The KS-
test reveals no significant difference between rðkai Þ and rðkri Þ by a p-value of 1.0, thus, the null hypothesis that the time series is reversible cannot be rejected.
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Software. The pyunicorn package for Python provides tools for
studying visibility graphs (and complex networks in general)
(Donges et al., 2015b).
3. Data

Marine sediments provide insights into geological processes and
are widely used to study the climatological and environmental
conditions of the past (Westerhold et al., 2020). Here we consider
marine records of different types of proxies for the long-term
Fig. 12. Map of North Africa and surrounding ocean basin

Table 2
Basic properties of the analysed palaeoclimate time series. N is the number of samples co
deviation of sampling intervals (to illustrate the spread of the sampling intervals). The des
points covering this time span.

Record N Time span (Ma BP) CDTD (ka)
ODP 662 SST 912 3.54e1.366 2.39
ODP 659 dust flux 1221 5.0e0.002 4.10
ODP 659 d18O 1170 5.0e0.002 4.28
Medisect d18O 811 5.33e1.212 5.08
ODP 967 dust flux 8417 3.028e0.0 0.36
ODP 721 dust flux 2757 5.0e0.006 1.81
ODP 722 SST 1680 3.33e0.007 1.98

10
aridification (based on terrigenous dust flux) of the northern part of
the African continent during the Plio-Pleistocene (Trauth et al.,
2009; Donges et al., 2011a) and the variations in regional temper-
ature and global ice volume (alkenone based SST and benthic d18O).
Corresponding time series are derived from five sediment records
(from West to East; Table 2, Figs. 12 and 13):

C ODP 662 (Atlantic Ocean west of equatorial Africa),
C ODP 659 (Atlantic Ocean offshore subtropical West Africa),
s with indications of the archives used in this work.

ntained in the time series, CDTD the mean sampling interval, and s(DT) the standard
ired window size isW*¼ 410 ka.W is the corresponding average number of sampling

s(DT) (ka) W Reference
1.05 171 (Herbert et al., 2010)
2.69 100 (Tiedemann et al., 1994)
2.88 95 (Tiedemann et al., 1994)
2.06 80 (Lourens et al., 1996)
0.31 1139 (Larrasoa~na et al., 2003)
1.52 226 (deMenocal, 1995; DeMenocal, 2004)
0.89 207 (deMenocal, 1995; DeMenocal, 2004)



Fig. 13. Palaeoclimate time series used in this study (blue e temperature related proxies, orange e terrigenous dust flux proxies) and important climate regimes: IWC e intensified
Walker circulation, marine isotope stage M2 with decreased global temperature, NHG e onset of northern hemisphere glaciation (transition from Pliocene to Pleistocene), 41 ka
(green shaded) and 100 ka (blue shaded) dominated glacial cycles.

Table 3
Parameters used for the selected methods in this study (t, lmin, and vmin are in
sampling time) .

Methods Parameters

Shannon entropy number of bins Nbins ¼ 20
Order entropy dimension d ¼ 3, lag t ¼ 1
Potential analysis standard deviation stochastic process s ¼ 1.5
Recurrence analysis fixed recurrence rate RR ¼ 0.05,

embedding dimension m ¼ 3,
embedding delay t ¼ 2,
lmin ¼ 2, vmin ¼ 2

Visibility graph horizontal visibility
Windowing window size w ¼ 410 ka

window step ws ¼ 41 ka
Confidence interval number of surrogates Nsurr ¼ 5, 000

5% and 95%-quantiles
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C Medisect (Mediterranean on the south coast of Sicily and
Calabria),

C ODP 967 (Eastern Mediterranean Sea),
C ODP 721/722 (Arabian Sea).
11
They have a sufficient temporal resolution of an average sam-
pling time ranging from 0.4 ka up to 4.3 ka. A high temporal res-
olution is necessary for performing time series analysis (in
particular for time-resolved/windowed analysis).

4. Results

We apply nonlinear time series analysis as described in Sect. 2 to
the marine Plio-Pleistocene proxy records in order to investigate
and characterize the dynamics of transitions between the wet and
arid climate in the Northern part of Africa (considering the time
scale given by the sampling, i.e., we discuss dynamical variations at
time scales of >1;000 years). Before we compare all proxy records,
we will focus on one record (terrigenous dust flux proxy from
ODP659) and explain our findings in more detail. The used pa-
rameters for the methods are provided in Table 3.

4.1. Results for dust flux proxy from ODP659

The studied measures of nonlinear time series analysis reveal
different aspects regarding the dynamical properties. The measures
are calculated within overlapping windows of length 410 ka (41 ka



Fig. 14. Results for exemplary dust flux proxy record from ODP659 with the important climate regimes as in Fig. 13.
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offset) to investigate changes in the dynamics (e.g., to identify
regime transitions between more periods and more erratic climate
variability). This implies that a single point in the resulting time
series of measures corresponds to a period of 410 ka, two consec-
utive points correspond to 410 þ 41 ka, and so on.

In the considered period, several known climate regime tran-
sitions occurred. The most prominent change is the transition from
the Pliocene to the Pleistocene, around 2.6 Ma ago, with the onset
of cyclical glaciations in the northern hemisphere (onset of north-
ern hemisphere glaciation, NHG). During the Pliocene, a significant
tropical climate reorganisation with the development of a strong
Walker circulation (intensified Walker circulation, IWC) occurred
between 4.5 and 4.0 Ma (Ravelo et al., 2004), and the marine
isotope stage M2 with decreased global temperature occurred at
3.3 Ma (Lisiecki and Raymo, 2005). During the Pleistocene, themid-
Pleistocene transition (MPT) between 1.1 and 0.7 Ma is important,
changing the glacial cycles from approximately 41 ka to a 100 ka
dominant periodicity (Clark et al., 2006). In the course of the early
Pleistocene between 2.2 and 1.5 Ma, another significant tropical
climate reorganisation with intensification and spatial shift of the
Walker circulation (IWC) occurred (Ravelo et al., 2004).

Potential analysis detects the number of potential wells from the
12
time series, interpreted as the number of (stable) climate states.
Singular excursions are neglected because the specific regimes
should be identified over at least two consecutive windows to
ensure the robustness of our results. The number of climate states
nU changes between one and two (Fig. 14B). For most of the time,
there is only one stable climate state, according to potential anal-
ysis. Starting at 4.6 Ma, corresponding to the time of known large
scale tropical atmospheric reorganisation, the African climate bi-
furcates to a two-state climate, lasting for approx. 800 ka (taking
the window length into account), indicating that the climate sys-
tem was alternating between two major climate states. A similar
epoch can be found at the transition from the Pliocene to the
Pleistocene between 2.8 Ma and 2.4 Ma and the MPT between 1.0
and 0.8 Ma. Further epochs with indicated double-well potential
are too short-lived to be considered as reliable.

Next, the two entropy measures are calculated. The windowed
Shannon entropy of the time series identifies changes in the
amplitude distribution of the proxy values. In contrast, the order
entropy considers the dynamics and, thus, identifies changes in the
dynamics instead of the proxy's value distribution. The values of
the Shannon entropy vary slightly between 2.4 and 2.9 (Fig. 14C). In
order to interpret the variation as tending to larger or smaller
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values, we apply a significance test based on a bootstrap-based
confidence interval. Only entropy values outside the confidence
interval will be interpreted as a significant increase or decrease.
Significant smaller values indicating an unusually peaked ampli-
tude distribution occur during the epoch between 4.8 and 4.5 Ma
(before the tropical atmospheric reorganisation) and around 1.6 Ma
(after the IWC); increased values, indicating a broader (less peaked)
amplitude distribution, occur between 2.0 and 1.6 Ma and around
1.0 Ma, corresponding to IWC and the MPT, respectively. However,
the values exceed the significance interval only slightly. The order
entropy varies within the confidence interval up to the MPT at
0.8 Ma, after which it decreases significantly to lower values
(Fig. 14D). Before this point of time, it only slightly increases indi-
cating more complex dynamics during 4.8 and 4.6 Ma (before the
tropical atmospheric reorganisation), around 2.4Ma (at the onset of
northern hemisphere glaciation), and during the tropical atmo-
spheric reorganisation between 1.8 and 1.6 Ma. At the MPT 800 ka
ago, the dynamics changed to significantly less complex dynamics.

In the following, we consider themeasures related to recurrence
analysis. The measure determinism (DET) significantly changes
over time (Fig. 14E). A significant increase occurs between 4 and
3.8 Ma (after the period of stronger Walker circulation), between
3.4 and 3.2 Ma (during M2), and around 2.2 Ma (just after the onset
of northern hemisphere glaciation). Less pronounced decreases
occurred around 4.2 Ma (before the period of stronger Walker cir-
culation), 3.5 Ma (before M2), 2.5 Ma (at the onset of glaciation),
and between 1.8 and 1.6 Ma (during the IWC). The increased
determinism values indicate intervals of more predictable (e.g.,
periodic) variability, whereas low values indicate a more random
variation. Laminarity (LAM) shows significant increases similar as
DET (Fig. 14F) after the period of stronger Walker circulation (be-
tween 4 and 3.8 Ma), during M2 (between 3.4 and 3.2 Ma), and
during the onset of the glaciation (between 2.5 and 2 Ma). Addi-
tionally, after the MPT (after 500 ka), LAM again increases.
Increased LAM can be an indication for more persistent dynamics.
In contrast, significantly lower LAM values can be found before the
period of stronger Walker circulation between 5 and 4.6 Ma, but
also during the stronger Walker circulation between 2 and 1.6 Ma.
At the MPT (between 1.0 and 0.6 Ma) the LAM is also lower than
usual.

The (recurrence) network based measure transitivity T displays
a similar behaviour as DET, with increased values during the M2
between 3.5 and 3.0 Ma and after the onset of the glaciation be-
tween 2.5 and 2.2 Ma; as well as a decrease during the period of
IWC at around 1.8 Ma. Although this measure represents different
nonlinear aspects of the dynamics, it can also be interpreted in the
sense of more regular (larger values) or more random (low values)
variability. The different regimes indicated by both measures dur-
ing the same time intervals support the hypothesis of climatolog-
ical changes between more variable and more regular climate
variability. The average path length highlights the timing of the
onsets of abrupt regime changes. This measure indicates abrupt
changes at M2 (3.3 Ma), at the transition from the Pliocene to the
Pleistocene (onset of NHG) and the Pleistocene IWC.

Finally, the temporally directed topological properties of the
visibility graphs are used to test whether the considered periods
behave like a nonlinear process (by testing for reversibility). This is
performed by considering the p-values of the KS-test (Subsect. 2.5).
Very small p-values indicate periods of time irreversibility or non-
stationarity, suggesting nonlinear behaviour during these times.
Both measures, based on degree and clustering coefficient, behave
very similarly. Only during the time intervals after the IWC (after
4.0 Ma) and up to the M2 (3.3 Ma), between the M2 and the
transition phase to the Pleistocene (3.2e2.8 Ma), as well as during
the time after the IWC (between 2.2 and 1.8 Ma), the time
13
reversibility had to be rejected, suggesting more nonlinear behav-
iour. Overall, a pattern emerges indicating more nonlinear climate
dynamics (more complex) before approx. 2.0 Ma during the Plio-
cene and early Pleistocene, and more linear variability (less com-
plex) during the Mid- and late Pleistocene.

4.2. Unified view on North African Plio-Pleistocene climate

In the following, wewill investigate and discuss the dynamics of
the dust flux and SST proxy records using the selected measures
order entropy (Sorder), number of states (nU), determinism (DET),
and time reversibility (pðCÞ). The proxy time series reflect condi-
tions of regional temperature (provided by Alkenone based SST
estimations and d18O) and African aridity (terrigenous dust flux) at
different locations.

Order entropy. The order entropy of the tropical SST records re-
veals an increase in the complexity of the temperature dynamics in
the subtropics during the IWC (Fig. 15A, G). The d18O temperature
proxy from the ODP659 site presents a similar increase in
complexity during the Pliocene IWC, but not during the Pleistocene
IWC (Fig. 15C). At the Medisect region, Sorder does not show any
(significant) influence of the IWC on the climate dynamics
(Fig. 15D).

The dynamical complexity of the dust flux records shows
regional differences. During the Pliocene IWC, the complexity is
slightly increased in the Arabian sea (Fig. 15F), while it is less
affected in the subtropical Atlantic (Fig.15B). During the Pleistocene
IWC, the dynamical complexity is only slightly increased at the end
of the corresponding time interval, when the large-scale atmo-
spheric circulation pattern is changing to less intensive Walker
circulation. In contrast, in the eastern Mediterranean, the
complexity is even significantly reduced (Fig. 15E).

During the M2 cooling event, the complexity in the dynamics in
all proxies and sites covering this event is reduced (Fig. 15B, C, D, F).

The onset of northern hemisphere glaciation is related to a short
and slight increase in the dynamical complexity of the dust flux in
the tropical Atlantic and in the eastern Mediterranean (Fig. 15B, E),
but a decrease of complexity in the Arabian sea (Fig. 15F). This
reduced complexity due to the glacial cycles is also visible in the SST
proxy of the tropical Atlantic (Fig. 15A), but not in the northern
subtropical Atlantic or the Arabian sea (Fig. 15C, G). This is a sign for
a reorganisation of the atmospheric circulation pattern due to the
beginning of the glaciation, a pattern that is later changed again
during the Pleistocene IWC.

The transition from the 41 ka to the 100 ka dominated glaciation
cycles after the MPT is related to a reduction of the dynamical
complexity in the dust flux records (Fig. 15B, E, F). In the eastern
Mediterranean, this happens later than in the Arabian sea.

Potential analysis. The potential analysis reveals an increase in
the number of states during the IWC (Fig. 16). Here we can find
slight differences between the regions and proxies. During the
Pliocene, this increase is most clearly visible in the west, in the dust
flux record, and less clear in the east, but opposite during the
Pleistocene (Fig. 16B, E, F).

The potential analysis of the SST proxy in the Arabian sea shows
different results than for the other SST proxies. It suggests more
states after the onset of glaciation, but a reduced number of states
during the IWC (Fig. 16A, D, G), which can be a sign of a different
ocean circulation regime in the Indian Ocean during this time.

Recurrence analysis. The recurrence plot based determinism
measure shows clear differences in the absolute values of the SST
proxies (<0:5) and the terrigenous dust flux records in the Arabian
sea and the eastern Mediterranean, with values up to 0.98 in the
ODP967 record. The ODP967 record should be considered a bit
different here, because larger temporal resolution (as it is the case



Fig. 15. Order entropy (or permutation entropy) of the analysed palaeoclimate proxy series.
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in ODP967) is causing more longer lines in recurrence plots and
shifts DET towards larger values. Therefore, by using the signifi-
cance test we discuss the variation in DET in a relative way.

We find an increase tomore predictable dynamics (as typical for
periodic or cyclic dynamics) after the onset of the cyclical NHG in
the terrigenous dust flux records in the eastern Mediterranean and
the subtropical Atlantic (Fig. 17B, E), but also in the SST dynamics of
the Medisect site, and slight or tending increase (although partly
not significant) in the tropical Atlantic and the Arabian sea (Fig.17A,
D, G).

The M2 event is also characterised by more predictable vari-
ability of the dust flux records (Fig. 17B, F), but does not affect the
dynamics of the temperature dynamics in general (Fig. 17A, D),
except for the subtropical Atlantic (those DET values are in general
quite low, Fig. 17C).

During the Pleistocene IWC, the dust flux in the eastern Medi-
terranean shows a remarkable increase in the DET values (Fig. 17E),
confirming the finding based on order entropy that the dynamics
becomes more regular and predictable.

After the MPT, the dynamics becomes remarkably more pre-
dictable in the Arabian sea, but less predicable in the eastern
Mediterranean (Fig. 17E and F). Interestingly, the site ODP659 does
not show significant change in this respect, although the order
entropy has shown a decrease of dynamical complexity in this re-
gion, too (Figs. 17B and 15B).
14
Time reversibility (nonlinearity) test. The test for time revers-
ibility as an indicator of nonlinearity (based on pðCÞ) of the proxy
records shows regional differences. In the tropical west, a nonlinear
behaviour in the temperature (SST) dynamics is only indicated after
NHG onset and lasting until the Pleistocene IWC (Fig. 18A). In the
subtropical west, there is almost no significant p-value for the SST
nonlinearity, except for very short times at the M2 event and in the
second half of the Pleistocene IWC (Fig. 18C). In the Mediterranean
region, nonlinear dynamics is indicated before and during the M2
event, as well as before the onset of the NHG (Fig. 18D). In the
Arabian sea, we only find nonlinear behaviour for the SST dynamics
just before and after the MPT (Fig. 18G).

The analysis of the terrigenous dust flux records indicates short
periods of nonlinear behaviour before and during the Pliocene IWC
and during the Pleistocene IWC (Fig. 18B, F), whereas the East
Arabian site responds later than the western site. In contrast, we do
not find such a nonlinear dynamics in the eastern Mediterranean
during the Pleistocene IWC (Fig. 18E), but before and after this IWC.
After the M2 cooling event, nonlinear behaviour in the dust flux
records is found in the East Arabian sea and the subtropical Atlantic.

5. Discussion

The considered methods of nonlinear time series analysis reveal
different aspects of Africa's aridification and regional temperature



Fig. 16. Potential analysis of the analysed palaeoclimate proxy series.
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variations during the Plio-Pleistocene. When directly comparing
the corresponding measures, we find that they are not or only
slightly correlated to each other (Fig. 19), but allow us to interpret
them from a dynamical point of view by providing complementary
information, as we discuss in more detail below for several key
climate events in this epoch (as mentioned above, the dynamical
variation discussed here occurs at time scales >1;000 years).

Intensified Walker circulation (IWC). The IWC appears to be
generally related to a dynamics with a larger number of possible
quasi-stable states, in Africa's aridity (represented by the proxy
records at ODP659 and ODP721) as well as in the regional tem-
perature (indicated by nU). The transition to this regime during the
Pliocene is characterised by a significant change in the amplitude
distributions of the dust flux data from less to more complex
amplitude distributions (indicated by elevated S for ODP659),
15
corresponding to the increased number of states. Similarly, during
the Pleistocene, we find a transition from high to low complexity
amplitude distribution when this specific regime terminated.
During the onset of the Pliocene IWC period, we find slight but
significant increases of the complexity in the dynamics during the
transition phase in African hydro-climate as represented by
ODP659 and ODP721 (indicated by increased Sorder). Similar to the
change in the amplitude distributions at the termination of the
Pleistocene IWC, we find a drop in the complexity of the dynamics
at this transition. The IWC also comes along with a shift from more
regular, predictable, and persistent dynamics to less regular, less
predictable, and less persistent dynamics (T , DET, LAM). Moreover,
the Pleistocene IWC seems to behave rather nonlinear, whereas
during the Pliocene IWC this cannot be clearly identified, although
a tendency is visible (indicated by low p(k) and pðCÞ values). Overall,



Fig. 17. Determinism measure of the analysed palaeoclimate proxy series.
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these results suggest that the IWC is related to a 2-state regime in
African climate (e.g., alternating between wetter and drier condi-
tions), confirmed by the more complex amplitude distribution and
the nonlinear behaviour, as well as with a less predictable and less
persistent dynamics.

The terrigenous dust flux record at ODP site 967 (eastern
Mediterranean) covers only the Pleistocene IWC and differs from
the above observations. In contrast to the subtropical Atlantic and
Arabian sea site, the eastern Mediterranean shows a remarkable
increase in regularity and predictability during the IWC (low Sorder
and large DET), suggesting a change in the tropical rainbelt.

Based on the d18O and SST proxies, we also find clear spatial
differences in the temperature dynamics in the Atlantic, Mediter-
ranean, and Arabian sea regions. With beginning IWC, in the (sub-)
tropical Atlantic the number of states is increasing whereas it is
decreasing in the Arabian sea. At the same time, temperature dy-
namics becomes less predictable and less regular during the
16
Pleistocene IWC in all regions.
Marine isotope stage M2. The marine isotope stage M2 is a

relatively short period of colder global climate. It is related to more
predictable and persistent dynamics in Africa's hydro-climate (low
Sorder and large DET, LAM, and T ). The subtropical Atlantic and
Mediterranean temperature variability is also becoming less com-
plex and more predictable (low Sorder, increase in DET to interme-
diate and larger values).

In contrast, the tropical Atlantic shows a more complex and
much less predictable dynamics during the M2 event (high Sorder
and low DET).

Following M2, the dynamics of African hydro-climate becomes
again less predictable (average values of DET, LAM, and T ) and
more nonlinear (indicated by p(k) and pðCÞ).

These results could be interpreted in the sense that the cooling
event has caused some cyclical variation between cold and warm
temperatures in the northern hemisphere (anticipating the glacial



Fig. 18. Time series irreversibility indicator based on p-values of the visibility graph clustering coefficients for the analysed palaeoclimate proxy series (only very small p-values
indicate significance).
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oscillations at high latitudes during the late Pleistocene) and wet
and dry climate in Africa, whereas in the tropics, no such cyclical
changes occurred. However, the differences between these were
not strong enough to cause a bifurcation of the system with two
clearly different emerging states.

Onset of northern hemisphere glaciation. During the transition
from Pliocene to Pleistocene, African hydro-climate dynamics
clearly shifts to a less predictable and less persistent regime (low
DET values). This appears to be related to a short-lived shift to more
regular and less complex dynamics in the Arabian sea. After this
transition phase, the dynamics becomes clearly more predictable
and persistent in African hydro-climate, the tropical Atlantic, the
Mediterranean region, and the Arabian sea, mainly as a result of the
onset of cyclical glaciations.

Mid-Pleistocene transition (MPT). The MPT is characterised by a
change from more to less complex amplitude distributions
17
(indicated by S in the ODP659 dust record), and by a decrease in
dynamical complexity (indicated by significant drop in Sorder).
Around the time of the transition, the co-occurrence of 41 ka and
100 ka cycles (Trauth et al., 2009) causes an increase in the number
of possible system states (increase in nU to 2 and even 3 in the dust
flux proxies) and a less persistent dynamics (decreased LAM). After
500 ka, the dynamics becomes more and more predictable and
persistent as the 100 ka cycles become more and more dominant
(increasing DET values, decreasing Sorder, except for the eastern
Mediterranean). Consistently, climate variability is largely time
reversible, indicating dominance of rather linear dynamics (large
values of p(k) and pðCÞ), with the remarkable exception of the
Arabian sea, which shows a more nonlinear behaviour during the
100 ka world.

The MPT has not only changed the dynamics from a dominance
of 41 ka to 100 ka cyclicity, but also caused a regime change in the



Fig. 20. (A) Pearson correlation and (B) coefficient of determination (R2) between the original proxy data and the Milankovich cycles (interpolated to the time axis of the cor-
responding proxy), indicating no pronounced linear relationship between proxies and Milankovich cycles.

Fig. 19. Comparison of selected measures of nonlinear time series analysis for the terrigeneous dust flux record ODP659 (scatter plots).
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Fig. 21. (A) Pearson correlation and (B) coefficient of determination (R2) between selected quantifiers of nonlinear time series analysis and the obliquity cycles (interpolated to the
time axis of the corresponding proxy), indicating significant relationships between some of the dynamical regime changes in temperature and African hydro-climate and the
seasonality inducing obliquity variation.

Fig. 22. (A) Pearson correlation and (B) coefficient of determination (R2) between selected quantifiers of nonlinear time series analysis and and the obliquity cycles (interpolated to
the time axis of the corresponding proxy), indicating a significant relationship between some of the dynamical regime changes in the temperature and African's hydroclimate and
the seasonality inducing obliquity variation. The colour represents the Pliocene (orange), early Pleistocene before the MPT (green) and the late Pleistocene after the MPT (blue).
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Arabian sea towards more nonlinear dynamics by additional in-
fluences, e.g., by cooling-warming cycles and changes in the
meridional overturning circulation in the Indian ocean, or
increased Indonesian throughflow after the MPT (Petrick et al.,
2019).

The nonlinear analysis applied here covers different aspects,
such as properties of the proxies’ windowed amplitude distribu-
tions, complexity and predictability of the dynamics, nonlinear vs.
linear dynamics, or multi-stability. As described above, such
properties can change on longer time scales. One of the most
important drivers of those climate regime changes are orbital var-
iations in insolation in the form of Milankovich cycles, as is already
obvious from the indicated dynamical changes when northern
hemisphere glaciation sets in or when glacial cycles change from 41
to 100 ka dominant periodicity. This relationship is not directly
visible in the proxy data, e.g., when applying linear methods, such
as correlation and regression analysis (Fig. 20).

In contrast, several measures of nonlinear time series analysis
are more clearly related to the Milankovich cycles (Figs. 14e18).
Comparing the individual components of the Milankovich cycles,
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we find that the variation of obliquity is significantly correlated to
several regime shift indicators, in particular for the proxies from
ODP662 and ODP967 (Fig. 21). A larger obliquity causes more
pronounced seasonality and its change triggers the onset of in-
terstadials and stadials. A closer look at the relationship with
obliquity reveals differences in the dynamical properties between
the Pliocene, the early Pleistocene before the MPT, and the later
Pleistocene after the MPT (Fig. 22). During the Pleistocene, the
dynamics is more regular and predictable (increasing DET), due to
the more cyclical variations (glacial cycles).

Moreover, we find spatial differences in the dynamics repre-
sented by the terrigenous dust flux proxies (e.g., Fig. 21A). The site
in the eastern Mediterranean behaves mainly opposite to the site in
the Atlantic and the Arabian sea. This result suggests a specific
pattern in atmospheric circulation or the tropical rainbelt the
change of which is affecting the subtropical regions east and west
of Africa differently than in the north.

While these measures of nonlinear time series analysis reveal
interesting insights in the changing climate dynamics, there are
some importantmethodological aspects to be considered (Marwan,
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2011). Entropy measures and potential estimation rely on good
estimates of probability density functions and, thus, require long
time series. Recurrence and network based methods can be applied
on shorter time series, but may be biased by missing data or
irregular sampling as it is common in palaeoclimate data. As we
have seen, higher temporal resolution can shift values in certain
measures (e.g., in DET). This is not a problem as long as we compare
the variations only within a single record in a relative manner (as
performed in this study). If direct comparison of absolute values is
required, the data needs to be resampled to a common time axis.
New approaches to reduce the biases induced by irregular sampling
and simple interpolation approaches have been suggested, using
time slotting, Gaussian kernel based interpolation, or trans-
formation cost approaches (Babu and Stoica, 2010; Rehfeld et al.,
2011; Ozken et al., 2015; Eroglu et al., 2016). The phase space
reconstruction by time delay embedding as employed in this study
can also cause spurious correlations, leading to an overestimation
of deterministic dynamics. Therefore, alternative embedding con-
cepts could play an increasing role in the future (Lekscha and
Donner, 2018; Kraemer et al., 2021). Further bias can be caused
by dating uncertainties and tuning to a target signal, e.g., astro-
nomical tuning to the Milankovich cycles. The latter, in particular, is
a serious problem when performing spectral or wavelet analysis
(Blaauw, 2012). Although this tuning can also change the spatial
distribution of line structures in recurrence plots, it is not a problem
for recurrence quantification analysis, because it is based on the
distribution of the line lengths, which is not strongly affected by the
tuning. Nevertheless, novel definitions of recurrences, which even
incorporate uncertainties (such as those coming from dating),
might receive interest in the future also for palaeoclimate studies
(Goswami et al., 2018). The synthesis of a large number of palae-
oclimate records is not a simple task and can lead to confusing
results. Complex networks can provide the necessary abstraction
level that helps to declutter and highlight relevant spatial and
process relationships (Rehfeld et al., 2013; Boers et al., 2021). For
such purposes, wemight also be interested in the interrelationships
or directed couplings between those records. Usually, different
sampling resolutions and dating uncertainties are a major problem
which impedes the application of methods such as Pearson corre-
lation, information transfer, synchronization analysis, or Granger
Table 4
Web addresses of selected software packages providing the methods of nonlinear time s

Method Software Language URL

Entropy CRP Toolbox MATLAB http
Order entropy ordpy Python http

Permutation entropy MATLAB http
fast

Stochastic modelling scipy Python (sta
kramersmoyal Python http
Statistics and Machine Learning
Toolbox

MATLAB (sta

FilterPy Python http
Recurrence plots, recurrence

networks
pyunicorn Python http
PyRQA Python http
CRP Toolbox MATLAB http

Visibility graphs pyunicorn Python http
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causality. Although newapproaches have been suggested in the last
years which try to overcome these challenges, the results should be
considered with care (Hannisdal, 2011; Rehfeld et al., 2011;
Smirnov et al., 2017). Finally, the interpretability of the obtained
results may depend crucially on the palaeoclimate archive or proxy
under study, related to the observability of the proxy variable
presenting a nonlinear transformation of the (usually unknown)
climatic driver (Lekscha and Donner, 2020). But this is a general
problem and applies to any statistical analysis of palaeoclimate
proxy records.
6. Conclusions

In this review we have considered selected approaches from
nonlinear time series analysis and applied them to marine palae-
oclimate proxy records of African climate variations during the
Plio-Pleistocene. We have shown that these methods reveal
different aspects in the dynamics of the palaeoclimate and com-
plement each other. In general, this approach can be used to study
palaeoclimate regime changes. We have illustrated this approach
by identifying and characterising changes in palaeoclimate during
the Plio-Pleistocene, associated to significant events and transitions
such as the marine isotope stage M2, the onset of the northern
hemisphere glaciation, and the mid-Pleistocene transition.
Compared to linear analysis or simple interpretations in terms of
cooling and stadial-interstadial cycles, nonlinear time series anal-
ysis provides deeper insights into the dynamics, such as increasing
or decreasing number of climate states (multi-stability), nonlinear
vs. linear behaviour, or increasing predictability of the variation due
to more cyclical dynamics. The synthesis of the nonlinear time
series analysis of different proxy records can be used to make in-
ferences on spatial differences in the impact of global climate
drivers such as orbital variations and in changes in large-scale at-
mospheric patterns.
7. Data and software availability

The data and analysis script used here are available at Zenodo:
https://doi.org/10.5281/zenodo.5578298.
eries analysis similar to this study.

s://tocsy.pik-potsdam.de/CRPtoolbox/
s://github.com/arthurpessa/ordpy
s://mathworks.com/matlabcentral/fileexchange/44161-permutation-entropy-
-algorithm
ndard package)
s://github.com/LRydin/KramersMoyal
ndard package)

s://github.com/rlabbe/filterpy
s://github.com/pik-copan/pyunicorn
s://pypi.org/project/PyRQA/
s://tocsy.pik-potsdam.de/CRPtoolbox/
s://github.com/pik-copan/pyunicorn

https://doi.org/10.5281/zenodo.5578298
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