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Abstract. To date, most regional and global hydrological
models either ignore the representation of cropland or con-
sider crop cultivation in a simplistic way or in abstract terms
without any management practices. Yet, the water balance
of cultivated areas is strongly influenced by applied man-
agement practices (e.g. planting, irrigation, fertilization, and
harvesting). The SWAT+ (Soil and Water Assessment Tool)
model represents agricultural land by default in a generic
way, where the start of the cropping season is driven by accu-
mulated heat units. However, this approach does not work for
tropical and subtropical regions such as sub-Saharan Africa,
where crop growth dynamics are mainly controlled by rain-
fall rather than temperature. In this study, we present an ap-
proach on how to incorporate crop phenology using decision
tables and global datasets of rainfed and irrigated croplands
with the associated cropping calendar and fertilizer applica-
tions in a regional SWAT+ model for northeastern Africa.

We evaluate the influence of the crop phenology represen-
tation on simulations of leaf area index (LAI) and evapotran-
spiration (ET) using LAI remote sensing data from Coperni-
cus Global Land Service (CGLS) and WaPOR (Water Pro-
ductivity through Open access of Remotely sensed derived
data) ET data, respectively. Results show that a representa-
tion of crop phenology using global datasets leads to im-
proved temporal patterns of LAI and ET simulations, es-
pecially for regions with a single cropping cycle. However,

for regions with multiple cropping seasons, global phenol-
ogy datasets need to be complemented with local data or re-
mote sensing data to capture additional cropping seasons. In
addition, the improvement of the cropping season also helps
to improve soil erosion estimates, as the timing of crop cover
controls erosion rates in the model. With more realistic grow-
ing seasons, soil erosion is largely reduced for most agricul-
tural hydrologic response units (HRUs), which can be con-
sidered as a move towards substantial improvements over
previous estimates. We conclude that regional and global hy-
drological models can benefit from improved representations
of crop phenology and the associated management practices.
Future work regarding the incorporation of multiple cropping
seasons in global phenology data is needed to better represent
cropping cycles in areas where they occur using regional to
global hydrological models.

1 Introduction

Even though cropland cultivation covers over 40 % of the
planet’s ice-free land surface, most regional and global hy-
drological model applications overlook the necessity of ad-
dressing crop phenological development and/or distinguish-
ing between different crops (Chen and Xie, 2012; Srivas-
tava et al., 2020). In some regional applications (e.g. Schuol
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and Abbaspour, 2006; Schuol et al., 2008; Chawanda et
al., 2020), the model applications consider one uniform
generic crop as a simplification for agricultural land use rep-
resentation despite the existing wide variety of crops in agri-
cultural land use (Sood and Smakhtin, 2015). Using a uni-
form generic crop for agricultural land use modelling fails
to account for any variability in vegetation attributes, such
as leaf area index (LAI), corresponding to several crops in
real-world scenarios (Viña et al., 2011). Detailed agricultural
land use representation in hydrological models is important
as heterogeneity in agricultural land use can have a signifi-
cant effect on hydrological fluxes such as evapotranspiration
(ET) and soil moisture (Srivastava et al., 2020). Through ET
and interception (Siad et al., 2019), the water balance of agri-
cultural land use areas is strongly influenced by the applied
management practices (e.g. planting, irrigation, fertilization,
and harvesting) and their precise timing (Twine et al., 2004;
Raymond et al., 2008). In the context of global change stud-
ies, a realistic representation of agricultural systems is a ma-
jor concern as changes in climatic factors affect crop growth
and the productivity of agricultural systems (Makowski et al.,
2014). Therefore, hydrological models that simulate crop-
land ecosystems should have a reasonable representation of
crop phenology and the associated management practices of
these ecosystems (Lokupitiya et al., 2009).

The SWAT+ model (Bieger et al., 2017; Arnold et al.,
2018), which is a restructured version of SWAT (Soil and
Water Assessment Tool; Arnold et al., 1998) utilizes the
principles of the Environmental Policy Integrated Climate
(EPIC) crop growth model (Williams and Singh, 1995) to
simulate agricultural land by default in a generic way, where
the phenological development of crops from planting is
driven by accumulated heat units (Arnold et al., 1998). How-
ever, the primary controlling factor for the start of the grow-
ing season in tropical and subtropical regions such as sub-
Saharan Africa is rainfall (Lotsch et al., 2003; Alemayehu et
al., 2017). Waha et al. (2013) describes the crop growing sea-
son in sub-Saharan Africa as the period in which temperature
and moisture are suitable for growth determined by the start
and end of the main rainy season. Zhang et al. (2005) showed
that the onset of seasonal vegetation green-up across Africa
can be directly linked to rainfall seasonality. Several studies
(e.g. Msigwa et al., 2019; Nkwasa et al., 2020) have further
pointed out how the existing multiple cropping seasons in
tropical and subtropical climates within an agricultural year
coincide with the rainfall and irrigation patterns. Therefore,
the use of heat units to trigger the start of the cropping sea-
sons could lead to inconsistencies in crop phenology simula-
tions for tropical and subtropical regions.

Croplands include various types with associated dif-
ferences in crop physiology and management practices
(Lokupitiya et al., 2009; Yin and Struik, 2009). The phe-
nological change during the vegetation cycle of crop types
actively controls the ET process through internal physiol-
ogy by increasing the number of leaf stomata with canopy

growth (Gong et al., 2014). In the SWAT+model, plant tran-
spiration is simulated as a linear function of leaf area index
(LAI) and potential evapotranspiration (PET; Neitsch et al.,
2005). Thus, inconsistences in crop simulations could lead
to inaccurately estimating canopy properties such as LAI
and canopy height, resulting in uncertain estimates of ET
(Alemayehu et al., 2016). Accurate estimations of ET in a
hydrological model are important because ET is the central
flux that defines land–atmosphere interactions (Mueller et al.,
2011; Fisher et al., 2017).

Additionally, changes in cropland use and crop manage-
ment have received little attention in hydrological impact as-
sessments, yet these may have significant impacts on model
outputs (O’Neal et al., 2005). For example, Sietz et al. (2021)
demonstrated the sensitivity of key hydrological processes
(runoff, groundwater seepage, and ET) to crop rotations in a
central European region by combining a crop generator with
an ecohydrological model. By coupling a hydrological model
(Variable Infiltration Capacity – VIC) with a crop growth
model, soil moisture and ET were more accurately simu-
lated by implementing crop rotations (Zhang et al., 2021).
According to Abaci and Papanicolaou (2009), cropland use
and cropland management practices can significantly affect
the impact of rainfall on soil erosion. The crop canopy of-
ten intercepts rainfall and hinders water droplets to reduce
the splash erosion through loss of speed (Hilker et al., 2014).
In addition, cropland practices cause great variations in the
erodibility of cropland since soil erosion depends on what
crop is grown and the crop cover density (Sundborg and
White, 1982). The crop cover is crucial in the estimation of
the C (crop management) factor in erosion models such as
the Modified Universal Soil Loss Equation (MUSLE) used
by SWAT+ (Lin et al., 2014). Other crop management prac-
tices, such as the amount of fertilizer, alters the soil’s ability
to produce biomass and, thus, alters soil resistance to erosion
(Souza et al., 2017). The timing and duration of soil cover on
cropland are affected by the planting and maturity dates of
the crop.

Previous studies have applied the SWAT model at a
regional scale within and including sub-Saharan Africa
(Schuol and Abbaspour, 2006; Schuol et al., 2008). However,
these studies utilized the default generic way of representing
agricultural land use without any management practices. Yet,
Arnold et al. (2012) emphasized the need for a realistic rep-
resentation of local and regional crop processes to reliably
simulate the water balance, erosion, and nutrient yields in a
SWAT model. Chawanda et al. (2020) describe one of the
few regional applications of the latest SWAT+ version in a
tropical region. The study highlighted that the inclusion of
irrigation and reservoirs in the model set-up, using decision
tables (Arnold et al., 2018), led to an improvement in the sim-
ulations of discharge and ET. Hence, there is need to have a
proper representation of land use and agricultural processes
in Africa, as very few studies report on crop phenology and
land use representation in SWAT (Griensven et al., 2012).
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Regional cropping phenology datasets and management
practices have been developed using remote sensing ap-
proaches (Li et al., 2014; Estel et al., 2016; Xiong et al.,
2017) and non-remote sensing approaches, including obser-
vational census data (Potter et al., 2010; Portmann et al.,
2010; Lu and Tian, 2017; Iizumi et al., 2019; Hurtt et al.,
2020; Jägermeyr et al., 2021), to integrate into regional agri-
cultural and hydrologic modelling frameworks. However, re-
mote sensing approaches have been criticized as not being
able to detect crop types and cropping sequences without lo-
cal knowledge or ground truth data (Bégué et al., 2018). Nev-
ertheless, these spatially explicit global cropping phenology
datasets have not been utilized in regional hydrological mod-
els to improve the land use and crop representation.

The novelty of this study is in improving land use and crop
process representation for large-scale hydrological mod-
elling using SWAT+ by the following: (1) proposing an ap-
proach that reasonably incorporates crop phenology using
decision tables and global datasets of rainfed and irrigated
croplands with the associated management practices in a re-
gional SWAT+ model for northeastern Africa; (2) evaluat-
ing model improvements of crop representation by using the
remote sensing LAI from Copernicus Global Land Service
(CGLS) and ET derived from WaPOR (Water Productiv-
ity through Open access of Remotely sensed derived data;
FAO, 2018); and (3) evaluating how the consideration of crop
phenology and the associated management practices affects
long-term water-driven soil erosion estimates. We do not in-
tend to fully model soil erosion but show to how improve-
ments in crop representation can impact soil erosion esti-
mates.

2 Material and methods

2.1 Study area

Our study focused on the northeastern part of Africa (Fig. 1)
that covers 4 489 000 km2 for a period of 7 years (2009–
2015). This area wholly (or partially) covers countries of
the Nile Basin, including Uganda, Kenya, Tanzania, Rwanda,
Burundi, Sudan, South Sudan, Ethiopia, and Egypt.

The area includes the main Nile River basin with sub-
basins, such as the Blue Nile, White Nile, Atbara, Baro–
Akobo–Sobat, Bahr El Jebel, and Bahr El Ghazal. The major
basins are the Blue Nile basin and the White Nile basin. The
Blue Nile basin, which originates from Lake Tana in Ethiopia
is considered as the major tributary to the main Nile River
due to its high contribution towards the total Nile River dis-
charge. The White Nile starts from the great lakes region
through Lake Victoria, Uganda, and South Sudan (Eldard-
iry and Hossain, 2019). A strong latitudinal wetness gradi-
ent characterizes the climate of the region. The area north of
18◦ N remains dry mostly of the year, while there is a grad-
ual increase in monsoon rainfall amounts in the south (Cam-

Figure 1. The study area in northeastern Africa (Nile Basin).

berlin, 2009). The distribution of the mean annual rainfall
is spatially contrasted in the region, with about 28 % of the
region receiving less than 100 mm annually. Rainfall in ex-
cess of 1000 mm yr−1 is restricted mainly to the equatorial
region and the Ethiopian highlands, with negligible rainfall
(below 50 mm yr−1) from northern Sudan and across all of
Egypt (Onyutha and Willems, 2015). The agricultural sector
is responsible for nearly 75 % of the water withdraw within
the basins (Swain, 2011). Agriculture is practised in all el-
evation categories but predominantly in the low-lying areas
(less than 500 m) and medium areas (890–1450 m). Shrub-
land is dominant in elevation areas ranging between −47 to
1450 m and in steep slopes, while forest is dominant in areas
with an elevation range of 500 to 2150 m. In low-lying areas,
mainly in the desert area of the Nile, bare land is dominant
(Nile Basin Initiative, 2016).

2.2 Modelling approach using SWAT+

SWAT+ is a revised version of SWAT that offers greater
flexibility in connecting spatial units in the representation of
management operations (Bieger et al., 2017; Arnold et al.,
2018). This is a semi-distributed river-basin-scale model that
relies on the physical characteristics of a catchment. It di-
vides a basin into subbasins connected by a stream network,
which are further divided into hydrologic response units
(HRUs). HRUs represent areas within the subbasin that com-
prise of the same land use, soil, slope, and management prac-
tices (Neitsch et al., 2005). SWAT+ also introduces land-
scape units (LSUs) to allow separation of lowland (wetland)
processes from upland process (Bieger et al., 2017). SWAT+
applies the hydrological water balance concept, with Eq. (1)
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as the basic driver of all hydrological processes.

WBf = WBi+
∑

(Pj − Rj − Ej − Dj − RFj ) ·1t, (1)

where WBf and WBi are the final and initial soil water con-
tent, respectively (millimetres per day; hereafter mm d−1),
Pj is the amount of rainfall (mm d−1), Rj is the amount of
surface runoff (mm d−1), Ej is the ET amount (mm d−1),
Dj is the percolation amount (mm d−1), RFj is the return
flow amount (mm d−1), 1t is the change in time (days), and
j is the index. The model estimates erosion and sediment
yield for each HRU, using the Modified Universal Soil Loss
Equation (MUSLE; Williams and Berndt, 1977; Eq. 2). The
MUSLE uses runoff energy rather than rainfall to estimate
sediment yields, making it suitable at daily timescales.

Sed=11.8 (QsurfqpeakAreahru)
0.56
× KUSLE

×CUSLE × PUSLE× LSUSLE × CFRG, (2)

where Sed is the sediment yield (tonnes per day; hereafter
t d−1), Qsurf is the surface runoff volume (mm d−1), qpeak
is the peak runoff rate (cubic metres per second; hereafter
m3 s−1), Areahru is the area of the HRU (hectares), KUSLE
is the Universal Soil Loss Equation (USLE) soil erodibility
factor, CUSLE is the USLE crop management factor, PUSLE
is the USLE support practice factor, LSUSLE is the USLE
topographic factor, and CFRG is the coarse fragment factor.

2.2.1 Decision tables in SWAT+

Land use and management operations in SWAT+ can be
scheduled by using either decision tables or management
schedules or both. However, decision tables enable the user
to model intricate sets of rules and their subsequent actions
by allowing them to add conditions for scheduling manage-
ment (Arnold et al., 2018). Metzner and Barnes (2014) de-
scribe decision tables as a way of organizing and document-
ing complex events in a logical way so that it is easy to in-
terpret. Nkwasa et al. (2020) compared the use of decision
tables to management schedules and concluded that decision
tables provided higher flexibility in representing agricultural
practices. The use of decision tables in the SWAT+ model
is broadly described in (Arnold et al., 2018). Scheduling in
this study was done using decision tables as discussed in the
subsequent sections.

2.2.2 Crop growth cycle with heat unit scheduling

SWAT+ uses the simplified version of the EPIC growth
model to simulate plant growth (Neitsch et al., 2005). As in
the EPIC model, phenological plant development is based on
the daily accumulated heat units or by calendar dates, while
plant growth can be inhibited by temperature, water, nitro-
gen, and phosphorus nutrients (Neitsch et al., 2005; Arnold
et al., 2012). The heat unit theory assumes that plants have
requirements that can be quantified and linked to maturity.

The total number of heat units required by the plant to start
growing or to reach maturity is calculated as in Eq. (3).

PHU=
∑n

d=1
(Tav− Tbase) when Tav > Tbase, (3)

where PHU is the total heat units required to plant maturity,
Tav is the mean daily temperature (degrees Celsius), Tbase is
the plant’s minimum temperature for growth (degrees Cel-
sius), d = 1 is the day of planting, and n is the number of
days required for a plant to reach maturity. Planting is sched-
uled by a second heat index, where heat units are summed
over the entire year using Tbase = 0 ◦C. This heat index is
solely a function of climate calculated by SWAT+ using
the provided long-term weather data (Neitsch et al., 2005).
While scheduling by heat units is convenient for temperate
regions that are mainly driven by temperature, users need to
consider that cropping seasons in tropical and subtropical re-
gions are primarily driven by water availability (Alemayehu
et al., 2017). Hence, the use of heat units easily leads to in-
correct cropping seasons for these regions.

2.3 Global datasets used for SWAT+ modelling

Modelling was done using the freely available global datasets
in Table 1. Of specific interest in this study is the GGCMI
dataset (Jägermeyr et al., 2021), which provides a cropping
calendar that is an observation-based product, combining
first-hand data sources from various agricultural ministries.
In the GGCMI crop calendar, the planting dates and cultivar
selection are based on real-world observational planting and
harvest data. Planting, thus, happens at the prescribed day
per crop in each 0.5◦ grid cell, and on average, cultivars are
selected to match the observational harvest day. The devel-
opment of this dataset is explicitly discussed in Jägermeyr
et al. (2021). The climate data (EWEMBI; Lange, 2016) in-
cludes records of rainfall, maximum and minimum tempera-
ture, wind speed, solar radiation, and relative humidity avail-
able at a spatial resolution of 0.5◦. Irrigation data (Food and
Agriculture Organization – FAO, 2018; Siebert et al., 2013)
were provided as the area fraction equipped for irrigation and
the area fraction that is actually irrigated per year. Nitrogen
fertilizer and phosphorus fertilizer were provided as a global
time series of gridded synthetic fertilizer use rate in agricul-
tural lands at a spatial resolution of 0.5◦.

2.4 Spatiotemporal analysis of rainfall

Rainfall distribution and amount determines the suitability of
crops and related agronomic management at different loca-
tions (Muthoni et al., 2019). Thus, long-term mean for the an-
nual rainfall of the study period (2009–2015) was generated
and plotted to visualize regional spatiotemporal patterns. The
annual spatiotemporal variation in rainfall (interannual vari-
ability) was analysed by calculating the coefficient of varia-
tion (CV) in Eq. (4). Additionally, long-term mean monthly
rainfall for the region was analysed to identify the seasonal-
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Table 1. Global datasets used for the model set-up.

Global datasets Resolution Source

Digital elevation model 90 m resampled Shutter Radar Topography Mission (SRTM; Farr et al., 2007)
(DEM) to 250 m

Land use 0.25◦ Harmonized land use (LUH2; Hurtt et al., 2020)

Soil 250 m Africa Soil information Service (AfSIS; Hengl et al., 2015)

Climate 0.5◦ EartH2Obseve, WFDEI, and ERA-Interim data merged
and bias corrected for ISIMIP (EWEMBI; Lange, 2016)

Irrigated areas 0.083◦ Food and Agriculture Organization (FAO; Siebert et al., 2013)

Plant and harvest dates 0.5◦ Global Gridded Crop Model Intercomparison
(GGCMI; Jägermeyr et al., 2021)

Fertilizer – nitrogen (N) 0.5◦ Hurtt et al. (2020)

Fertilizer – phosphorus (P) 0.5◦ Lu and Tian (2017)

ity of the monthly rainfall as the success or failure of the crop
is more dependent on seasonal rainfall distribution (Ngetich
et al., 2014).

CV=
(

SD
mean

)
× 100, (4)

where mean and SD are the mean rainfall and standard
deviation for a selected temporal scale. According to As-
faw et al. (2018), CV is used to classify the degree of
variability in rainfall events as low (CV < 20 %), moderate
(20 % < CV < 30 %), and high (CV > 30 %).

2.5 Default model set-up

The SWAT+model (revision 60.5) was set up with the QGIS
(Quantum Geographic Information System) interface, using
the data in Table 1 and run for a period of 7 years (2009–
2015). The harmonized land use product (LUH2; Hurtt et
al., 2020) used in this study is formatted as NetCDF; hence,
the SWAT+ code had to be adapted to include subroutines
to read the NetCDF data, using an approach proposed by
Chawanda et al. (2020). The land use map is a composite
of land use layers, with each layer representing a fraction of
a given land use. The fraction layers representing cropland
include; C3 annual crops (C3ann), C3 perennial crops (C3per),
C4 annual crops (C4ann), C4 perennial crops (C4per), and C3
nitrogen-fixing crops (C3nfx). In the default model set-up, the
cropland use in the land use map was represented with a uni-
form generic crop as per the default in the SWAT+ database
(Arnold et al., 2013) for all the heterogenous cropland areas
and heat units used to trigger the cropping seasons.

The study area was discretized into 768 landscape units
and 12 526 unsplit HRUs. The USDA Soil Conservation Ser-
vice (SCS) curve number method was used to estimate sur-
face runoff, the variable storage method was selected for flow

Table 2. Representative crop for LUH2 cropland used in SWAT+.

Cropland (LUH2) Representative crop (SWAT+)

C3 annual Wheat
C3 perennial Banana
C4 annual Maize
C4 perennial Sugarcane
C3 nitrogen fixing Soybean

routing, and the Penman–Monteith method (Monteith, 1965)
was used to calculate the potential evapotranspiration.

2.6 Proposed scheduling in the revised SWAT+ model
– crop scheduling with global phenology datasets

In the proposed scheduling, the fraction layers (C3ann, C4per,
C4ann, C4per, and C3nfx) representing cropland in the land use
map (LUH2) were extracted, and a comparison was made on
a pixel-by-pixel basis. Whichever crop layer fraction occu-
pied a larger percentage for the rainfed and irrigated agricul-
tural areas within a pixel was selected to represent cropland
for irrigated and rainfed areas in that pixel. For example (in
Fig. 2), if the C4ann and C3nfx crop occupied a larger fraction
within a pixel compared to other cropland use fraction lay-
ers for irrigated and rainfed cropland, respectively, then they
were selected to represent cropland use in that pixel. A crop
map was developed from this pixel-by-pixel analysis, and a
representative crop was selected for each cropland use frac-
tion based on the literature (Leff et al., 2004), as shown in
Table 2.

For both rainfed and irrigated areas, the representative
crops with the corresponding crop phenology (plant and har-
vest dates) and crop management practices (irrigation and
N and P fertilizers) were extracted from the respective global
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Figure 2. Workflow for incorporating crop phenology and crop management data from global datasets into the model.

Table 3. Remote sensing datasets used for model evaluation.

Dataset Resolution Source

LAI 1 km CGLS (https://land.copernicus.vgt.vito.be/,
last access: 26 February 2021)

ET 250 m WaPOR (FAO, 2018)

datasets (Table 1). The extracted data were written in a deci-
sion table for each cropland HRU using a Python code. The
default model was rerun with the modified crop scheduling
with data from global datasets and is referred to as “revised
SWAT+” model from here on.

2.7 Validation of model results

Our study focused on improved cropland use representation.
We evaluated our simulations for LAI and ET for a period
of 7 years (2009–2015), using the remote sensing products
in Table 3. Studies (e.g. Alemayehu et al., 2017; Ha et al.,
2018; Nkwasa et al., 2020) have demonstrated the capabil-
ity of using remote sensing products to evaluate hydrological
model outputs.

Representative basins in the model (as shown in Fig. 3)
were selected to highlight the importance of incorporating
global phenology datasets on LAI simulations in regional
hydrological modelling. The selected basins were based on
the reported cropping patterns that start with the rainy season
(Waha et al., 2013), i.e. the Upper Blue Nile basin with a pre-

dominantly single cropping season, the Victoria Basin with
a double cropping season, and the Nile Delta with mainly a
double irrigated cropping season (Sugita et al., 2017; M. El-
Marsafawy et al., 2018). Crop HRUs within the selected sub-
basins that occupied the largest areas were selected to reduce
the effect of mixed LAI from different land cover classes
when comparing with the remote sensing LAI.

Additionally, the correlation coefficient matrix in Eq. (5)
was used for the model evaluation of LAI.

r =
6n

i−1
(
Ymi−Ȳm

)
(Yoi−Ȳo)√

6n
i−1

(
Ymi−Ȳm

)√
6n

i−1
(
Yoi−Ȳo

) , (5)

where Ymi
and Yoi

are the simulated and observed values at
every time step, with Ȳm and Ȳo being the respective mean
values.

To illustrate the impact of revised cropland use repre-
sentation on model outputs, we compare the differences in
soil erosion simulations between the default and the revised
SWAT+ models. However, due to the sparse and poor qual-
ity records of erosion and sediment yield in this region
(Haregeweyn et al., 2017), it was not possible to quantita-
tively validate erosion model results. Instead, we adopted a
plausibility check approach that is suitable for cases when
observations for comparison with model outputs are lim-
ited. We compared our erosion estimates for some catch-
ments, e.g. Upper Blue Nile, with those from a few previ-
ous studies (Hurni, 1985; Betrie et al., 2011; Haregeweyn
et al., 2017). Additionally, the improvement in the represen-
tation of crop phenology and crop management practices is
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Figure 3. Crop area percentage and selected basins for LAI evalua-
tion.

expected to minimize errors associated with estimating soil
erosion, specifically the crop management factor estimation
in the MUSLE.

Both model set-ups were uncalibrated but checked for
the water balance. The study targets improving the default
model simulations by better representing the physical land
processes (crop growth and ET estimation). Thus, default
parameterization was used, and we assume that the differ-
ences seen in the model set-ups originate primarily from
the crop representation and management practices. This ap-
proach could not only isolate the uncertainty in the model
due to crop representation but also allowed the model re-
sults be compared in default parameter conditions, consid-
ering that parameter calibrations vary with different catch-
ments. Nkwasa et al. (2020) suggested that improved repre-
sentation of crop and agricultural land use processes should,
in fact, precede any model calibration efforts. Qi et al. (2020)
highlighted the importance of improving process representa-
tion in a default SWAT model to ensure the reliability of the
model in large ungauged basins. Besides, SWAT was devel-
oped with the objective of predicting the impact of manage-
ment on water, sediment, and agricultural yields in large un-
gauged basins (Arnold et al., 1998; Srinivasan et al., 2010).
This paper aims for a better physical representation of the
land surface processes of the default model. Hence, we do
not address issues concerning the SWAT+ model calibration
and validation in this paper.

3 Results and discussion

3.1 Spatiotemporal variability in rainfall for the region

The long-term mean rainfall for 7 years (2009–2015) in the
region ranged from 0 to 2200 mm (Fig. 4a). The highest an-
nual rainfall values are recorded around the equatorial re-
gion (Victoria Basin) and within parts of Ethiopia (Blue Nile
basin). Most arid areas (parts of Egypt) were the driest re-
gions, receiving zero to negligible rainfall within the study
period. Figure 4b shows the annual spatiotemporal variation
using the coefficient of variation (CV) metric. Interannual
variability was highest (CV > 50 %) in the driest region (parts
of Egypt) that coincides with the lowest long-term mean rain-
fall. The rest of the region had low (CV < 20 %) to mod-
erate (20 % < CV < 35 %) interannual variability in rainfall,
which means that, in most parts of the region, the total an-
nual rainfall remained relatively stable. A study by Muthoni
et al. (2019) in East Africa also reported relatively low inter-
annual variability (<10 %) within the Victoria Basin.

Figure 5 shows the long-term mean monthly rainfall pat-
tern for selected HRUs in the selected basins (Fig. 3) of
the region. The rainfall in the Victoria Basin, located within
the equatorial region, exhibits a bimodal pattern with the
main wet season in March–May and a short rainy season
in October–December. In the Upper Blue Nile basin located
within Ethiopia, there is only one main wet season in the
months of June–September. For the Nile Delta in Egypt,
it is seen that the wet seasons occur in March–May and
October–February, with values far lower than the other re-
gions. These monthly patterns are consistent to those indi-
cated by Onyutha and Willems (2015). The wet seasons (start
and end of the rainy period) represent the major cropping sea-
sons in the Nile Basin, as rainfall is the primary controlling
factor for leafing and senescence in tropical and subtropical
regions (Ma et al., 2019).

3.2 LAI simulations

The simulated LAI from both the default and revised
SWAT+ models was compared with the remote sensing LAI
extracted for the maize, wheat, and soybean HRUs in the
three selected subbasins (Upper Blue Nile, Lake Victoria,
and Nile Delta). In the Upper Blue basin (Fig. 6a and c),
there is an improved LAI simulation in the revised SWAT+
model, with the phenological development being captured in
the correct major cropping season within the rainy season
for both the rainfed and irrigated maize HRUs. Additionally,
the revised SWAT+ model LAI strongly correlates (rd>0.5)
with the remote sensing (RS) LAI. Figure A1a and A1c in
Appendix A also show the improvement in LAI simulations
for rainfed and irrigated wheat HRUs in the Upper Blue Nile
basin.

In the Victoria Basin (Fig. 7a and c), the revised SWAT+
model captures only one cropping season in comparison to
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Figure 4. (a) Long term mean annual rainfall (2009–2015). (b) Coefficient of variation in annual rainfall.

Figure 5. Long-term monthly mean and standard deviation (lines) rainfall pattern for selected HRUs in selected basins within the region.

the RS LAI that shows a double seasonal pattern agreeing
with the rainfall. This is because the global dataset (Jäger-
meyr et al., 2021) utilized captures only the main cropping
season per pixel per crop; hence, the model misses the ad-
ditional cropping seasons. Additionally, Fig. A2a and A2c
in Appendix A also show a single cropping season captured
in the Victoria Basin for irrigated maize HRUs, with some
HRUs having a cropping season from April to November
(irrigation in the dry season), while others have a cropping
season from September to January (irrigation in the second
rainy season). There is also a slight improvement in the LAI

correlations for the default and revised SWAT+ models with
RS LAI in the Victoria Basin, as the LAIs simulated by the
revised SWAT+ model are indicative of the representative
crops planted in the basin as compared the generalized crop
representation in the default model.

For the Nile Delta that is predominantly irrigated, the re-
vised SWAT+ model improves the LAI simulations (from
rd =−0.53 to 0.48) as compared to the default SWAT+
model that simulates a negligible LAI (Fig. 8a). Without
management practices (irrigation and fertilization), plant
growth in the default SWAT+ model is constrained in the
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Figure 6. Monthly mean and standard deviation (bands) of LAI (a, c) and erosion (b, d) comparison for rainfed maize and irrigated maize,
respectively, in the Upper Blue Nile basin. The LAI coefficients (rd are for the default SWAT+ model and rr for the revised SWAT+ model)
are shown.

Figure 7. Monthly mean and standard deviation (bands) of LAI (a, c) and erosion (b, d) comparison for rainfed wheat and irrigated wheat,
respectively, in the Victoria Basin. The LAI correlation coefficients (rd for the default SWAT+ model and rr for the revised SWAT+ model)
are shown.

Nile Delta, which is a predominantly dry region, resulting
in low LAI simulations. However, with the cropping calen-
dar and the associated management practices, LAI simula-
tions are improved in the revised model. The revised SWAT+
model still captures only one cropping season as compared
to the RS LAI that shows two cropping seasons that are
also highlighted in previous studies (M. El-Marsafawy et al.,
2018).

The interannual variability in LAI within the selected
basins was also examined for selected crops in Fig. 9, but
no significant interannual variations were noticed. This can
be explained by the low interannual variability in rainfall for
most parts of the region (Fig. 4b) within the study period.
However, the seasonal patterns remained consistent, with the
LAI peaking in the wet/rainy seasons within all the selected
basins. The low interannual variability of the LAI within the
study period certainly does not imply that the relevance of the
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Figure 8. Monthly mean and standard deviation (bands) of LAI (a) and erosion (b) comparison for irrigated wheat in the Nile delta. The LAI
correlation coefficients (rd for the default SWAT+ model and rr for the revised SWAT+ model) are shown.

Figure 9. (a) Monthly LAI comparison for rainfed maize. (b) Monthly erosion estimates for rainfed maize in the Upper Blue Nile basin.
(c) Monthly LAI comparison for rainfed wheat. (d) Monthly erosion estimates for rainfed wheat in the Victoria Basin. (e) Monthly LAI
comparison for irrigated wheat. (f) Monthly erosion estimates for irrigated wheat in the Nile Delta.

variability in LAI interannually is unimportant in the region,
as an analysis on a longer time series could yield different
results.

From all the basins, we see an improved seasonal tempo-
ral crop growth phenological development pattern with the
revised model as compared to the default model for both
the rainfed and irrigated regions, which underscores the rel-
evance of the methodological advancements in this paper.
However, in the Victoria Basin and the Nile Delta, where
we have two dominant cropping seasons, the global datasets
still capture one cropping season. Additionally, some regions
in East Africa have been reported to have up to three crop-

ping seasons (Waha et al., 2013; Msigwa et al., 2019), which
have not been captured in these simulations. The global crop
calendars also lack a temporal time series dimension which
could be a substantial source of uncertainties in predicting
phenological events of croplands. The lack of observational
data of multiple cropping seasons at the regional scale has
been reported in previous studies (Rounsevell et al., 2003).
Some studies (Ma et al., 2019; Rajib et al., 2020) have used
remote sensing LAI datasets, e.g. MODIS, to improve LAI
simulations with SWAT in tropical subtropical regions. Re-
mote sensing can be useful for the characterization of crop-
ping systems; however, expert judgement and local knowl-
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edge is still required for crop type and crop management
mapping (Bégué et al., 2018). Combining remote sensing
datasets with existing global phenology datasets provides
the potential for addressing the gap in multiple cropping
datasets. With recent research progress in cropping patterns,
such as the crop generator (Sietz et al., 2021) that is used to
reproduce crop rotation characteristics at the regional scale,
the global phenology datasets can be improved to consider
multiple cropping seasons.

The use of remote sensing LAI data (1 km resolution) in
the evaluation could also present uncertainties, since the re-
mote sensing data do not represent a pure signal of a crop but
rather vegetation with in the pixel. Studies (Ma et al., 2019;
Nkwasa et al., 2020) have highlighted these scaling issues
when using remote sensing products in model evaluation. Re-
mote sensing pixels are usually presented in a grid system
that cannot sufficiently capture the spatial details of mixed
vegetation within a grid. Nevertheless, the remote sensing
data still provide insights on the temporal vegetation growth
relationship with seasonal weather patterns.

3.3 ET simulations

The annual average simulated agricultural ET from the re-
vised SWAT+ model improves the default agricultural ET
simulation from 732 to 837 mm yr−1 as compared to the Wa-
POR agricultural ET of 936 mm yr−1. The improvement in
the spatial distribution of the agricultural ET is shown in
Fig. 10. Figure 10a and b show the default model simula-
tion and the revised SWAT+ model simulation, respectively,
in reference to WaPOR ET (Fig. 10c). The inclusion of the
global phenology and management practices shows that ET
is one of the major components of a basin water balance that
is greatly influenced by the seasonal vegetation growth cy-
cles. This can be attributed to the improved temporal patterns
of LAI, which favours transpiration and evaporation from
canopy-intercepted water. According to Wang et al. (2014),
incorporating LAI and vegetation growing stages in mod-
elling could explain half of the variability in transpiration to
ET ratios across ecosystems. Hence, overlooking crop repre-
sentation in hydrological models is not physically meaning-
ful because a poor simulation of LAI has a cascading effect
on how the model partitions the ET fluxes.

Although, the agricultural ET is improved with the incor-
poration of the global crop phenology, there is still an un-
derestimation, especially in the Nile Delta and the equatorial
region (Fig. 10d). This underestimation could be mainly at-
tributed to the missing multiple cropping seasons, especially
in areas that are irrigated such as the Nile Delta. As men-
tioned in the previous section, the phenology datasets give
only one cropping season, which misrepresents areas with
multiple cropping seasons. Furthermore, automatic irrigation
was specified in the model, which applies water from a deep
aquifer in all irrigation fields when the water stress is below
a specified threshold (0.7) of the field capacity. However, ex-

Figure 10. Spatial distribution of agricultural ET. (a) Default
SWAT+ model ET. (b) Revised SWAT+ model ET. (c) WaPOR
ET. (d) ET difference (WaPOR ET − revised SWAT+ model ET).

tracting irrigation water from a deep aquifer at all irrigation
fields may be unrealistic, causing uncertainties in irrigation
applications which affect the ET estimates.

It is also important to point out that the simplifications
made in using a representative crop for the whole pixel could
have effects on the ET fluxes due to the simplifications in
the variations of the physical characteristics (e.g. LAI, root
depth, and stomata conductance) of the heterogenous crops
(Burakowski et al., 2018). This simplification can also alter
the partitioning of sensible heat fluxes to latent heat fluxes
(Eltahir, 1998) that, in turn, affect the ET estimates. There-
fore, at local scales, the heterogeneity of crops within a
pixel should be considered. The default crop parameteriza-
tion could also be an extra source of uncertainty in the ET es-
timates. Although these uncertainties exist, the incorporation
of agricultural land use and the corresponding management
practices in hydrological models provides a promising way
to improve ET estimates especially for cultivated regions.
Additionally, the ET estimates could be further improved by
model calibrations to obtain the optimal possible ET.

3.4 Erosion simulations

LAI is not only directly related to processes such as rain-
fall interception, evaporation, transpiration, soil evaporation,
and root depth but also to soil erosion through canopy cover,
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which varies during the growth cycle of the plant. With a bet-
ter representation of the cropping season, the rainfall season
also corresponds with higher LAI values, which results in
lower erosion yields.

Figures 6b, d, A1b, A2b, A3d, A4b, and A4d reveal that
the soil erosion estimates are reduced in the revised SWAT+
model because the canopy cover grows in the correct crop-
ping season (rainy season), reducing the effective energy
of intercepted raindrops. These results conform to a study
done by Zhao et al. (2013), which showed a strong correla-
tion in soil erosion reduction with the crop growth cycle. In
Fig. 7b and d, even though the cropping season in the revised
SWAT+ model captures only one cropping season as the de-
fault model, there is still a reduction in the HRU erosion esti-
mates because the revised SWAT+ LAI, which is representa-
tive of an actual crop, is greater than the default LAI, which
is representative of a generic crop. Hence, we notice that a
slight increase in the LAI magnitude has a strong impact on
the erosion simulations. Additionally, with a slightly higher
LAI magnitude in the revised SWAT+ model, more biomass
is generated, which results in more residue that could be
more effective in reducing soil erosion even after the crop-
ping season. Residue intercepts rain droplets near the soil
surface so that droplets regain no fall velocity. Thus, a given
percentage of residue is more effective than the same per-
centage of canopy cover (Neitsch et al., 2011). However in
Fig. 7b and d, the erosion peaks in the default model are
strong even though the LAI is relatively high. This can be at-
tributed to the reduction in the residue on the soil surface dur-
ing the second rainy season that occurs with no crop cover.
For the Nile Delta in Fig. 8b, the soil erosion estimates are
reduced further, even though they were already insignificant.
From Fig. 9b, d and f, it is important to highlight that the
low to moderate interannual variability in rainfall (Fig. 4b)
for most agricultural areas of the region, coupled with low
interannual variation in the simulated LAI shown in Fig. 9a,
c and e, resulted in a low interannual variability in erosion
simulations.

The average annual soil erosion estimates are reduced by a
maximum of 625 t km−2 yr−1 (mostly in the Upper Blue Nile
basin; Fig. 11a) or up to 90 % (Fig. 11b) in some areas within
the region when using the revised SWAT+ model as com-
pared to the default model. The average regional soil erosion
yield reduced by 16 %, with the greatest decrease of 37 % in
the Upper Blue Nile basin. This reduction is attributed to the
improved timing of the cropping seasons in correspondence
to the start of the rainy season, which provides more canopy
cover to intercept the raindrops. However, in some isolated
regions, the revised SWAT+ model simulated an increase in
soil erosion estimates as compared to the default model. In
most of those regions, the global phenology data captures
the irrigated cropping season, which is often occurring in the
dry seasons (Fig. A3a), which causes discrepancies by not
representing the major growing season in the rainy season.
As mentioned in the previous section, this is attributed to the

Figure 11. Change in erosion estimates (revised SWAT+model mi-
nus default SWAT+ model), with (a) absolute differences and (b)
percentage differences.

fact that the global phenology data provide a single cropping
season per pixel per year.

Among the few hydrological model applications in the
subtropics that focus on improved erosion simulations, Ma
et al. (2019) enhanced the SWAT model performance by us-
ing remotely sensed LAI to give reasonable crop cover es-
timates, leading to an accurate estimate of soil erosion and
sediment yield. However, when using remotely sensed data,
detecting crop types and cropping sequences without local
knowledge or ground truth data is not possible (Bégué et
al., 2018), which emphasizes the importance of the approach
proposed in this study.

In order to validate the regional soil erosion estimates,
the simulated soil loss from the revised SWAT+ model
was compared with the spatial patterns in the erosion rates
from the literature. From the published literature, Ethiopia
is the one of the most documented countries in northeastern
Africa, with marginal information existing for other coun-
tries (Haregeweyn et al., 2015). The revised SWAT+ model
shows that the regional soil erosion extent varies from 0 to
over 20 500 t km−2 yr−1 (Fig. 12), revealing the severity of
soil erosion in the Ethiopian highlands as compared to the
other parts of the region. The Ethiopian highlands have been
reported to have high soil erosion and sediment yield rates,
partly attributed to topography and rainfall but also due to
recent and historic land conversions to agriculture.

Compared with estimates from the Upper Blue Nile
basin, the model estimated an erosion yield extent from
0 to 13 000 t km−2 yr−1 and a mean of 701 t km−2 yr−1,
which is slightly lower but comparable to a net soil ero-
sion mean of 734 t km−2 yr−1, as reported by Haregeweyn
et al. (2017), and soil erosion yield extents from 0 to over
15 000 t km−2 yr−1, as reported by Hurni (1985), Betrie et
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Figure 12. Spatial distribution of predicted annual average soil ero-
sion at HRU level in northeastern Africa (2009–2015).

al. (2011), and Haregeweyn et al. (2017). Tamene and Le
(2015) reported a net soil loss of 8500 and 600 t km−2 yr−1

in the Blue Nile and White Nile basins, respectively. These
estimates should be considered as indicative, as comparing
these values with the northeastern African regional model es-
timates can be challenging, mainly due to the differences in
the sizes of the areas involved that result from the different
delineation procedures.

Even though the regional model underestimates the soil
erosion in comparison with these localized studies, the order
of magnitude is within the same range. The underestimation
can be attributed to the finer resolution of datasets utilized by
the local studies as compared to the coarse datasets utilized in
the regional model. For example, Molnár and Julien (1998)
calculated soil erosion using different digital elevation model
(DEM) grid sizes and concluded that the estimated slope
gradients decreased as the cell size increased, which influ-
enced the topographic factor (LS) estimation. Additionally,
the input global weather data are at a scale of 0.5◦, which
makes the data too coarse to capture the spatial variability in
weather at a finer scale. This has been a challenge for large-
scale hydrological modelling (Chawanda et al., 2020) which
needs to be addressed for better performance.

With that background, it is not wise to entirely consider the
soil erosion estimates in this study as being an exact quantifi-
cation but rather as close approximations. It is worth noting
that the focus of this study was not soil erosion estimation
but to illustrate a concept.

4 Conclusion and recommendation

In this work, an approach has been developed for an im-
proved representation of crop phenology and management
in a regional SWAT+model using decision tables and global
datasets. In addition, global remote sensing datasets of LAI
and ET have been used for model evaluation. A compari-
son of the simulated LAI revealed improved temporal growth
patterns in agreement with remote sensing LAI, especially
for regions with a single cropping cycle. However, for re-
gions with multiple cropping cycles, only one cropping cycle
was represented, as most global phenology datasets provide
a single cropping cycle per year.

The improvements in the SWAT+model reduced the agri-
cultural ET deficit by 50 % in comparison with the WaPOR
ET, showing a strong linkage between hydrological response
and agricultural land use representation. Additionally, this
improvement in ET estimates is expected to reduce any cali-
bration efforts needed to obtain the maximum possible ET as
the physical process representation of crops is improved. A
considerable reduction of 16 % in the average regional soil
erosion estimates was noticed after implementing this ap-
proach. This impact on soil erosion estimates shows the im-
portance of the proper representation of crop processes and
is an important element for minimizing errors in soil erosion
estimates. These findings emphasize the importance of ad-
vancing process representation in physically based models to
improve the model reliability.

There is a need for global phenology datasets with mul-
tiple cropping seasons for further improvements in the crop
representation, especially for improving crop processes in ir-
rigated areas or areas with multiple rainy seasons. For exam-
ple, mapped global areas of different multiple cropping sys-
tems (Waha et al., 2020) can potentially be combined with
global phenology datasets to generate a global crop calen-
dar with different cropping systems. The approach devel-
oped in this research lays a foundation for improved agri-
cultural land use representation with associated management
practices at regional and global scales, which will further im-
prove regional- to large-scale hydrological and water quality
impact assessments of global change.
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Appendix A

Figure A1. Monthly mean and standard deviation (bands) of (a, c) LAI and (b, d) erosion comparison for rainfed wheat and for irrigated
wheat, respectively, in the Upper Blue Nile basin. The LAI correlation coefficients (rd for the default SWAT+ model and rr for the revised
SWAT+ model) are shown.

Figure A2. Monthly mean and standard deviation (bands) of (a, c) LAI and (b, d) erosion comparison for irrigated maize case 1 (irrigation
during the dry growing season) and for irrigated maize case 2 (irrigation during the main wet growing season), respectively, in the Victoria
Basin. The LAI correlation coefficients (rd for the default SWAT+ model and rr for the revised SWAT+ model) are shown.
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Figure A3. Monthly mean and standard deviation (bands) of (a, c) LAI and (b, d) erosion comparison for irrigated soybean case 1 (irrigation
during the dry growing season) and for irrigated soybean case 2 (irrigation during the main wet growing season), respectively, in the Victoria
Basin. The LAI correlation coefficients (rd for the default SWAT+ model and rr for the revised SWAT+ model) are shown.

Figure A4. Monthly mean and standard deviation (bands) of (a, c) LAI and (b, d) erosion comparison for rainfed maize and for rainfed
soybean, respectively, in the Victoria Basin. The LAI correlation coefficients (rd for the default SWAT+ model and rr for the revised
SWAT+ model) are shown.
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Code availability. This approach was created using
Python scripts available from the VUB-HYDR repository
(https://doi.org/10.5281/zenodo.5797553, Nkwasa, 2021). The
revisions of the scripts are managed there and are available on
request.

Data availability. The global datasets used in this study are
freely available. These include the harmonized land use
map (LUH2) from Hurtt et al. (2020; downloadable from
https://luh.umd.edu/), the digital elevation model from Farr
et al. (2007; downloadable from https://cgiarcsi.community/
data/srtm-90m-digital-elevation-database-v4-1/), the soil
map from Hengl et al. (2015; downloadable from https:
//www.isric.org/projects/africa-soil-information-service-afsis),
the map of irrigated areas in Siebert et al. (2013; downloadable
from https://www.fao.org/aquastat/en/geospatial-information/
global-maps-irrigated-areas/latest-version/), the crop phenol-
ogy dataset from Jägermeyr et al. (2021; downloadable from
https://doi.org/10.5281/zenodo.5062513), elemental nitrogen and
phosphorus fertilizer maps from Lu and Tian (2017; downloadable
from https://doi.org/10.1594/PANGAEA.863323) and Hurtt et
al. (2020; downloadable from https://luh.umd.edu/), and observed
weather data of rainfall, minimum and maximum temperature,
solar radiation, humidity, and wind speed from Lange (2016;
downloadable from https://doi.org/10.5880/pik.2016.004). The
model outputs are available on request.
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