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Abstract Episodically occurring internal (climatic) and external (non-climatic) disruptions of normal cli-
mate variability are known to both affect spatio-temporal patterns of global surface air temperatures
(SAT) at time-scales between multiple weeks and several years. The magnitude and spatial manifestation
of the corresponding effects depend strongly on the specific type of perturbation and may range from weak
spatially coherent yet regionally confined trends to a global reorganization of co-variability due to the
excitation or inhibition of certain large-scale teleconnectivity patterns. Here, we employ functional climate
network analysis to distinguish qualitatively the global climate responses to different phases of the El
Nino-Southern Oscillation (ENSO) from those to the three largest volcanic eruptions since the mid-20th
century as the two most prominent types of recurrent climate disruptions. Our results confirm that strong
ENSO episodes can cause a temporary breakdown of the normal hierarchical organization of the global SAT
field, which is characterized by the simultaneous emergence of consistent regional temperature trends and
strong teleconnections. By contrast, the most recent strong volcanic eruptions exhibited primarily regional
effects rather than triggering additional long-range teleconnections that would not have been present oth-
erwise. By relying on several complementary network characteristics, our results contribute to a better
understanding of climate network properties by differentiating between climate variability reorganization
mechanisms associated with internal variability versus such triggered by non-climatic abrupt and localized

perturbations.

1 Introduction

The empirical analysis of climate data is fundamen-
tal to understand the evolution (and subsequently
develop more accurate methods for forecasting) of cli-
mate phenomena like El Nino. Typically, such data
sets comprise time series representing temperature, pre-
cipitation or other climate variables, which have been
observed at distinct locations distributed around the
globe. Their common properties include long-range spa-
tial and often also temporal correlations [1], interactions
at and among multiple scales [2] and nonlinearity [3].
With the Earth’s surface being subdivided into regions
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for which individual “grid points” and associated local-
ized records of climate variability are considered rep-
resentative, the evolution of the climate system can be
approximately described by a high-dimensional multi-
variate time series composed of a multitude of interde-
pendent signals.

While the analysis of such big climate data sets
has been traditionally attempted by means of clas-
sical statistical approaches like empirical orthogonal
function (EOF) or maximum covariance analysis [4], it
has recently been realized that these methods exhibit
fundamental intrinsic limitations, including their lin-
earity and associated condition of pairwise orthogonal
patterns (e.g. [5]). As a consequence, the traditional

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjs/s11734-021-00269-9&domain=pdf
mailto:reik.donner@h2.de

3076

view that the corresponding decompositions of global
spatio-temporal co-variability patterns actually provide
dynamical (or at least statistical) modes that unam-
biguously coincide with specific key climatic processes
has been challenged [6]. Along with modern method-
ological developments in complex system theory and
computer sciences, there is a growing body of litera-
ture demonstrating examples of successful applications
of nonlinear methods to climate problems and their
ability to unveil relevant dynamical characteristics that
may be hidden to traditional analysis techniques [7—10].

One specific example of such methodological devel-
opments are complex network representations of cli-
mate variability [11-19]. Although they share some
common roots with classical techniques like EOF anal-
ysis, they generalize the corresponding scope and can
potentially relieve some of the aforementioned concerns
[20]. In this work, we focus on the so-called functional
climate network analysis, in which the individual grid
points or cells are considered as nodes of a spatially
embedded graph. Connections among these nodes are
established according to dynamical similarities between
the individual (local) climate time series [11,13,21].
By construction, the network structures thus obtained
highlight essential statistical interrelationships among
spatio-temporal climate data [13].

The application of functional climate networks has
already provided several important insights. For
instance, centrality measures, such as betweenness cen-
trality, have been found to serve as tracers of global
circulation patterns in the atmosphere and oceans [12].
Moreover, climate networks have been used to iden-
tify dipole patterns which represent pressure anomalies
of opposite polarity appearing in two different regions
simultaneously [22]. The study of the coupling struc-
ture between interdependent climate variables [23], the
temporal evolution and teleconnections of the North
Atlantic Oscillation [24,25], the distinction of different
types of El Nifio phases [26,27], and even the predic-
tion of El Nino occurrences [28,29] and magnitudes [30]
have also been subjects of corresponding recent inves-
tigations. Many of the aforementioned methodological
achievements have been integrated in open source soft-
ware packages [31,32] contributing to the increasing use
of functional network analysis in climatological studies
[21].

One rather fundamental property of large networks
is their (possibly hierarchical) organization in terms of
communities — an aspect that has also been addressed
recently in the context of key patterns in climate data
[14,33,34]. Here, a community is a subset of densely
connected nodes which exhibit only few interactions
with the rest of the network [35,36]. In a climate net-
work context, communities would ideally have some
climatological interpretation. Specifically, Tsonis et al.
[14] argued that each community in a climate net-
work should be considered as a subsystem which oper-
ates relatively independent of the other communities.
Besides corresponding connectivity structures in indi-
vidual climate variables, community detection algo-
rithms [36] can also be used to detect multi-variable
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clusters [37]. Conceptually related to the aforemen-
tioned line of research are approaches attempting to
define climate areas, i.e., regions with coherent climate
variability, based on spatial clustering of grid cells in a
fully connected weighted climate network [38] or other
multivariate analysis techniques [10,39].

In this paper, we present an attempt to further clar-
ify the distinct nature of modifications in the climate
network configuration arising along with either differ-
ent types of El Nino and La Nino episodes or strong
volcanic eruptions. Previous work has demonstrated
that global surface air temperature (SAT) anomaly
based networks exhibit clear temporary changes in some
global network characteristics such as transitivity, aver-
age path length or global clustering coefficient [26] for
the East Pacific types of El Nifio and La Nifio [27] while
not for their Central Pacific counterparts, but have also
shown similar anomalies in the aftermath of the Mount
Pinatubo eruption. To further address the aforemen-
tioned aspects in greater detail and differentiate more
clearly between different mechanisms affecting the con-
nectivity reorganization processes in evolving climate
networks, we complement the previously employed net-
work transitivity metric with information on the modu-
lar organization of the climate network and the presence
of long-range teleconnections. Specifically, we study the
co-variability structure of the global SAT field for run-
ning windows in time in two different ways: On one
hand, we consider spatial fields of two simple network
properties that represent the number of strong statis-
tical connections associated with a given grid point, as
well as the average spatial distance between the con-
nected grid points (i.e., an indicator for possible tele-
connectivity). On the other hand, the associated tem-
poral variations in global network connectivity proper-
ties are traced by a suite of scalar-valued characteristics
quantifying (i) the transitivity of strong correlations,
(ii) the modular organization of the network, and (iii)
the average distance between mutually connected grid
points. We show that these three measures capture com-
plementary aspects of the spatial organization of sur-
face air temperature co-variability and when combined
allow distinguishing the effects of large-scale climate
disruptions into regional and teleconnectivity effects.
Specifically, we provide empirical evidence that strong
ENSO episodes are able to generate both enhanced
regional as well as long-distance connectivity patterns
simultaneously, whereas the strongest volcanic erup-
tions since the mid-20th century rather had predom-
inantly regional effects. Moreover, the conditions under
which specific ENSO phases result in qualitative large-
scale connectivity reorganization of the SAT network
are further detailed by analyzing the network patterns
in dependence on both ENSO diversity (i.e. East Pacific
versus Central Pacific flavors) and transitional complex-
ity (i.e. the succession of ENSO phases).

The remainder of this paper is organized as follows:
Sect. 2 provides brief information on the climatologi-
cal background of ENSO and volcanic eruptions as the
two types of major climatic disruptions studied in this
work. The data and methodology used in this work are
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described in detail in Sect. 3. Finally, our results are
presented and discussed in Sect. 4, followed by conclud-
ing remarks. Additional information on the robustness
of our findings along with modified analysis settings is
provided in two brief appendices.

2 Climatological background

2.1 El Nifio—Southern Oscillation

Among the dominant spatio-temporal variability pat-
terns in the global climate system, the El Nino—
Southern Oscillation (ENSO) is the probably most
remarkable phenomenon in terms of both the magni-
tude of associated variations in sea-surface tempera-
ture (SST) and sea-level pressure, as well as its spe-
cific impacts on different aspects of regional climate
variability worldwide [40,41]. During the positive phase
(El Nifo) of this complex oscillation of the coupled
atmosphere—ocean system in the tropical Pacific, the
eastern tropical Pacific exhibits some anomalous warm-
ing with respect to “normal” mean conditions, while
the negative phase (La Nifa) is characterized by a
corresponding cooling. In comparison with the normal
mean climatology, this surface temperature anomaly
results in marked shifts of key atmospheric pressure
systems [42]. Such shifted pressure patterns cause large-
scale changes in the atmospheric circulation, leading to
prominent shifts of precipitation patterns. More specif-
ically, tropical Pacific SST anomalies associated with
different ENSO phases alter the location of main trop-
ical convection zones, which modify the location and
intensity of diabatic heating as the main driver of trop-
ical and extratropical circulation patterns. In this con-
text, the response of atmospheric circulation to El Nino
or La Nina events is not restricted to the tropical
Pacific, but also affects the extratropics via the excita-
tion of atmospheric waves migrating towards the extra-
tropics and/or interacting with midlatitude dynamics
[43,44]. It has been shown that the resulting effects of
both ENSO phases can be observed in remote regions
including North and South America, Africa, the Indian
subcontinent, and even Antarctica [45-50].

The interannual variability of ENSO is dominated by
some irregular oscillations with a period of 2-7 years
and remarkable variations in the associated character-
istic frequencies and amplitudes of both temperature
and pressure anomalies [40]. Following its prominent
spatial structures in tropical SST and sea level pres-
sure, ENSO is commonly traced by indices that take
up the variability of the aforementioned observables in
some key region of the tropical Pacific ocean. Notably,
a set of indices has been defined in terms of average
SST anomalies taken over distinct regions in the east-
ern and central tropical Pacific, referred to as Ninol14-2,
Nino3, Nino4 and Nino3.4, respectively [51] (see Fig. 1
and Table 1). In this work, we will utilize the so-called
Oceanic Nifo Index (ONI) for differentiating between
different phases of ENSO. It is defined as the running
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three-month mean SST anomaly for the Nino 3.4 region
(5°N-5°S, 120°-170°W) in comparison with centered
30-year base periods that are updated every 5 years [52].
When the ONI exceeds 0.5°C for at least five consecu-
tive months, the corresponding situation is classified as
an El Nino, and the magnitude of the ONI is taken as
an indicator of the strength of the corresponding event.
In turn, if the ONI drops below —0.5°C for at least five
consecutive months, this indicates a La Nina episode.

In the last years, it has been recognized that the
commonly observed spatial patterns associated with El
Nino (as well as La Nina) related SST anomalies are
far from being homogeneous across the set of observed
events. Consequently, it has been suggested to further
distinguish both phases into two respective flavors (see
[27] and references therein). The first type is the canon-
ical or East Pacific (EP) El Nifo [53,54], the main
SST anomaly pattern of which is located in the east-
ern tropical Pacific and characterized by strong posi-
tive SST anomalies close to the western coast of South
America. Opposed to this, the El Nifio Modoki or Cen-
tral Pacific (CP) El Nifio exhibits marked SST anoma-
lies in the central tropical Pacific close to the dateline
[42]. Notably, both spatial structures (EP and CP) can
also be observed in the context of La Nina, yet com-
monly appearing less distinct in the corresponding SST
anomaly fields. Noticing that there had been contradic-
tory classifications in the literature for some past ENSO
events, Wiedermann et al. [27] recently presented a new
indicator for the ENSO flavor based on functional cli-
mate networks (i.e., the same methodology that is also
used in the present work). In the remainder of this
paper, we will follow their classification for consistency
reasons, which is summarized in Table 2.

2.2 Volcanic eruptions

Besides distinct ENSO episodes and their known global
climate impacts, another type of events that can sub-
stantially affect climate at considerable spatial and tem-
poral scales are strong volcanic eruptions. Similar to El
Nino and La Nina episodes, such events can result in
large-scale spatially coherent temperature trends that
may last up to several years depending on the magni-
tude of the event [55]. During strong volcanic eruptions,
large amounts of sulphate aerosols are injected into
the stratosphere, which have a typical residence time
of the order of one year. The presence of the volcanic
aerosol cloud has differential effects on temperatures
in the covered region, including tropospheric cooling
(via a reduction of solar radiation reaching the surface)
and stratospheric warming (via an enhanced absorp-
tion of radiation). These modifications in the radiation
balance and atmospheric chemistry may affect climate
variability in different ways, depending on the spatial
location (specifically, its geographical latitude) of the
volcano and the season of the eruption. Details on the
corresponding processes can be found in [55]. As a con-
sequence, volcanic eruptions can again cause changes
of precipitation and temperature patterns from synop-
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Fig. 1 Main regions of interest used within this paper.
Sets of blue dots labeled with “El Chichon”, “Agung” and
“Pinatubo” indicate grid points within a 5° radius around
the corresponding volcanoes. The numbers 3, 3.4 and 4 iden-
tify the corresponding Nino regions (cf. Table 1) commonly
used for defining characteristic indices of ENSO variability

Table 1 Overview on different regions commonly used for
defining characteristic temperature-based indices associated
with ENSO variability

region latitudes longitudes
Ninol+2 10°S-0°N 90°W-80°W
Nino3 5°S—5°N 150°W—-90°W
Nino4 5°S-5°N 160°E-150°W
Nino3.4 5°S—5°N 170°W—-120°W
ENSO-big 30°S-10°N 180°W-60°W

In addition, we include the definition of the “ENSO-big”
region studied in this work, which corresponds to the region
that is discarded in our analyses of the impacts of strong
volcanic eruptions on global temperature teleconnectivity

tic (weather) time scales to relatively persistent multi-
annual effects [55] and even trigger long-lasting climate
disruptions [56,57] and corresponding societal impacts
[58].

It is interesting to note that the respective climate
disruptions caused by ENSO and volcanic eruptions
may not be mutually independent. In fact, there exists
some evidence for volcanic eruptions having different
effects on El Nino depending on the latitude and tim-
ing of the eruption [59,60] or even serving as triggers of
El Nifio events [61], which yet seems to be poorly rep-
resented in existing tropical Pacific paleoclimate prox-
ies [62]. The specific climatological questions related
with volcanic effects on ENSO and, more generally,
climate variability, including the episodic synchroniza-
tion between ENSO and Indian monsoon rainfall in the
presence of strong volcanic activity [63], have recently
triggered enormous research efforts among the climate
modeling community.

@ Springer

(marked with green background color, red line, and blue
background, respectively). The region “ENSO-big” (dashed
green line) will be removed from the complete global data
set when analyzing the spatial imprints of volcanic eruptions
to ensure that ENSO-related regional effects are excluded

In the past decades, several large volcanic eruptions
have injected up to some millions of tons of sulfur diox-
ide into the atmosphere, which can get rapidly dis-
tributed around the globe once entering the strato-
sphere. In this study, we focus on the global effects of
the three major volcanic eruptions during the second
half of the 20th century. Within this period, the largest
and most influential event, the Mount Pinatubo erup-
tion [64], took place between April and September 1991
in the Philippines, followed by the Mount Agung erup-
tion in Indonesia (February 1963 to January 1964) and
the El Chichon eruption in Mexico (March to Septem-
ber 1982) (see Fig. 1).

3 Data and methods

3.1 Data

We use daily mean surface air temperature (SAT) data
(at sigma level o = 0.995) from the National Cen-
ter for Environmental Prediction (NCEP) and National
Center for Atmospheric Research (NCAR) Reanalysis
I project [65,66]: The data cover the years 1948-2015
at a global grid with equi-angular spatial resolution of
2.5° in both latitude and longitude, thus comprising
10,512 individual temperature time series. To remove
leading order effects of seasonality in the temperature
recordings, the long-term average temperatures for each
calendar day of the year have been subtracted from the
raw data independently for each grid point, resulting in
so-called SAT anomalies.

Equi-angular gridded data have, by construction,
a higher density of grid points close to the poles
than around the equator. This would result in system-
atic biases of statistical characteristics overemphasiz-
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Table 2 Classification of past ENSO episodes into the four types Eastern Pacific (EP) El Nino, Central Pacific (CP) El

Nino, EP La Nifia, and CP La Nina as proposed by [27].

Event Years

EP El Nino 1957, 1965, 1972, 1976, 1982, 1997

CP El Nino 1953, 1958, 1963, 1968, 1969, 1977, 1979, 1986, 1987, 1991, 1994, 2002, 2004, 2006, 2009
EP La Nina 1964, 1970, 1973, 1988, 1998, 2007, 2010

CP La Nina 1954, 1955, 1967, 1971, 1974, 1975, 1984, 1995, 2000, 2001, 2011

The year given in the table refers to the December of that year, which is the calendar month commonly coinciding with the
peak of an El Nifio or La Nina season in terms of the largest positive or negative value of the ONI. For example, “1997”
indicates the 1997/98 very strong (“extreme”) El Nifio event. In the main text, we will specify the full season including
both affected years for better transparency whenever referring to a specific ENSO event. All years not listed here have been

classified as “neutral” years with no distinct ENSO event

ing the polar regions with apparently more data if not
properly accounted for. For the latter purpose, area-
weighted measures have been developed and subse-
quently applied in recent works [11,67,68]. As an alter-
native, we follow here the approach of Radebach et al.
[26], where the original data have been remapped onto
a grid with a much higher spatial homogeneity. Specif-
ically, we use an icosahedral grid as described in [69],
which finally leads to a decomposition of the Earth’s
surface into Voronoi cells of almost the same area. In
the present case, the corresponding remapping proce-
dure results in a set of N =10,242 grid points that
exhibit a narrowly peaked distribution of geodesic dis-
tances between direct neighbors.

In [26], the time series associated with each new grid
point have been determined based upon the values at
the respective four surrounding grid points forming a
spherical rectangular cell of the original equi-angular
grid. In this work, we use a slightly different approach
by taking the four closest points in space instead, which
in some cases may deviate from the former setting. This
modification is motivated by the fact that the consid-
eration of the spatially closest “observational” values
may provide a better approximation of climate vari-
ability at the new grid point. Moreover, these spatial
neighbors can be determined efficiently using spatial
search trees. Due to the commonly rather large spa-
tial correlation length of the SAT field (as compared
to other climate variables like precipitation) and its
resulting spatial smoothness, we do not expect the time
series resulting from both algorithmic variants to dif-
fer markedly, which is also supported by the results on
the time-dependent network transitivity measure (see
below) in [26] in comparison with those obtained in our
study (see Sect. 4.1.1, Fig. 2a).

Notably, differences between the two interpolation
strategies can be expected to arise mainly in regions
with very asymmetric original grid cells, i.e., close to
the polar where the spherical rectangular cells of the
original data grid are extremely stretched. When using
the four nearest grid points for interpolation in the cur-
rent work, we may accept that this can lead to using
four points from the same latitudinal circle, thereby
overemphasizing zonal correlations while possibly dis-
carding meridional ones. Despite the existence of phys-

ical processes linking tropical and polar climate vari-
ability (typically via stratospheric pathways implying a
considerable time lag), we may argue that the strength
of instantaneous co-variability in the tropics (being the
main source of climate disruptions studied in this work)
and the Arctic and Antarctic is very likely relatively
small, so that the polar regions potentially affected
by the aforementioned zonal correlation bias can be
expected to not contribute much to our analysis results.
A more detailed quantitative evaluation of this assump-
tion is, however, beyond the scope of the present work.
In terms of correlation based functional climate network
properties studied in this work, a possible zonal corre-
lation bias could be identified by employing directional
linkage statistics, which for the case of complex net-
works embedded in a spherical geometry have recently
been introduced and discussed by Wolf et al. [70].

Finally, we note that when using the global data set
as described above, the temporal correlations associ-
ated with the key ENSO region and the surrounding
parts of the Pacific ocean are known to dominate cli-
mate variability globally. This leads to undesired out-
comes when aiming to resolve the effects of individ-
ual volcanic eruptions on global temperature patterns,
since they might be masked by ENSO variability, espe-
cially in cases where the corresponding effects take place
simultaneously with some El Nino (or La Nina) event.
To account for this problem of temporal co-occurrence
between the effects of volcanic eruptions and ENSO
events, there exist different possible strategies.

On one hand, we may attempt to remove the effect of
ENSO variability from all considered SAT time series,
commonly by considering the residuals of a correspond-
ing linear regression [71,72]. In this case, all further
analyses would be based on pairwise partial correlations
between SAT time series conditional on ENSO. Simi-
lar approaches of partial correlation or partial regres-
sion maps have been considered in previous climatolog-
ical studies. To this end, we, however, have to recall
that this approach would involve strong assumptions
and some associated conceptual disadvantages. First,
it is not clear which specific index of ENSO variabil-
ity should be used for regression, and the results may
depend on a corresponding choice. Second, using linear
regression makes assumptions on the way ENSO may
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Fig. 2 Time series of climate network a transitivity 7, b
modularity Q and c global average link distance ((d)). Back-
ground colors highlight different ENSO phases (red: El Nino
(EN), blue: La Nina (LN)) according to the Oceanic Nifio

affect local SAT variability, which appear not quite jus-
tified for a complex nonlinear phenomenon like ENSO.
Using other (nonlinear) functional parameterizations
of those effects would not quite solve this conceptual
problem while introducing additional numerical efforts.
Third, ENSO itself is strongly entangled with variabil-
ity at other time scales like annual or quasi-biennial
ones [5,73], so that a sufficient removal of its effects by
simple regression appears unlikely. Finally, it may well
be that the ENSO background state can pre-condition
the response of the global climate system to specific vol-
canic eruptions [61,63], which would not be accounted
for in this approach.

On the other hand, given the aforementioned con-
siderations on the partial regression method, we will
approach the problem of separating the respective
effects of ENSO and volcanic eruptions from a spatial
perspective, considering that the ENSO phenomenon
itself is (despite its global teleconnectivity) confined to
a region which does not overlap spatially with any of
the three major volcanic eruptions in the last decades.
Thereby, removing all grid points from the greater
ENSO region in the tropical Pacific Ocean allows us
studying the spatiotemporal organization of SAT co-
variability that is not explained by direct linkages with
this region of the globe. Following this idea, we are
going to use the full set of data when studying the
effects of ENSO on global temperature teleconnectiv-
ity, while excluding the main ENSO region and its sur-
roundings (referred to as “ENSO-big” in Fig. 1 and
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Index (ONI), with opacity representing the corresponding
index value. Ticks on the time axis indicate the 1st of Jan-
uary of a given year; all values are shown according to the
midpoint dates of the respective time windows

Table 1) when studying the impacts of specific volcanic
eruptions. Note that this excluded region has been cho-
sen rather large on purpose (as an outcome of more sys-
tematic studies with variable regions to be discarded,
which are not further discussed here for brevity) such as
to ensure an as complete as possible separation between
the direct ENSO impacts and the effects of volcanic
eruptions, especially in cases of simultaneous events.
In fact, when considering the full global SAT data set
in the context of the impacts of volcanic eruptions,
only the signatures of the Mount Pinatubo eruption
are clearly visible [26].

3.2 Functional climate network analysis

Functional climate networks provide a coarse-grained
spatial representation of the co-variability structure
among globally or regionally distributed measurements
of some climate variables [11,15,19,21]. Starting from a
set of records of the variable of interest, the geographi-
cal positions associated with the individual time series
are identified with the N nodes of some abstract net-
work embedded on the Earth’s surface. The connectiv-
ity of this network is then formed by establishing links
between pairs of these nodes that fulfill some statistical
similarity criterion (see below). Thus, links in such cli-
mate networks represent strong statistical associations
between climate variability at different points in space.
These associations may potentially indicate certain cli-
matic processes or mechanisms interlinking the variabil-
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ity at the corresponding locations. Hence, the resulting
linkage structure is referred to as functional connectiv-
1ty.

Since there exists a growing body of literature on
applications of functional climate network analysis, we
refer the reader to some of the existing reviews [19,21]
for a more exhaustive description of the methodology.
To this end, let us consider evolving climate networks
constructed from sliding windows of daily SAT anoma-
lies (with the local mean annual cycle being removed)
with a width of Ad = 365 days and mutual offset §
between subsequent windows. In this work, we have
generally set 6 = 1 day.

For the resulting time series segments correspond-
ing to a specific one-year time window, we compute
the classical lag-zero pair-wise Pearson correlation coef-
ficients ¢;; and identify the empirical 99.5% quantile
q|¢|,0.995 of all absolute values |c;;| for each time window
(the effects of different thresholds will be briefly sum-
marized in Appendix A). With this quantile, which is
empirically determined individually for each time win-
dow and thus changes with time, we define the adja-
cency (connectivity) matrix A of the climate network
for a window centered at time d,,;q as

Aij(dmia) = O(|cij|(dmia) — qic|,0.995(dmia)) — dij , )
(1

where ©(e) is the Heaviside function and d;; denotes
Kronecker’s Delta. Notably, A (d,,;q) contains the com-
plete structural information on the evolving network
representation of the global surface air temperature
field.

Based on the thus obtained adjacency matrices, we
consider the following network properties in dependence
on time:

— The degree k; = Zjvzl A;; of a node ¢ measures how
densely this node is connected within the network.
In case of a functional climate network, it provides
a proxy for the importance (or centrality) of a cer-
tain grid point in the spatio-temporal correlation
structure of the variable of interest. Network mea-
sures like the degree, which are defined individually
for each node #, will be referred to as local network
characteristics or spatial fields in the following.

— The local average link distance [21]

1
di = (dij) 4,21y = T Z dij

" {ilAi=1}
1 N

= > Aydiy, (2)
K3 ]:1

measures the mean spatial distance covered by all
links associated with a given node i, where d;; =
2D;; JUEartn, With D;; being the geodesic distance
between two nodes ¢ and j and ugg-p the circum-
ference of the Earth. A low average link distance
indicates very localized connections, while a high
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value points to a node with long-ranging spatial
connections (teleconnections). Taking the average of
d; over all nodes i of the network gives the global
average link distance ((d)) = (d;),. For the sake of
brevity, we will use the abbreviated term average
link distance in this manuscript for describing both
the local (d;) and global ({{d)) versions of this prop-
erty as long as the corresponding context is unam-
biguous.

The transitivity

N
2ijik=1 Aij Ak Ari
N
Zi,j,k:l AijAjk

T = (3)

quantifies how strongly the connectivity of a net-
work is clustered, i.e., the fraction of cases in which
the presence of two links between nodes ¢ and j as
well as ¢ and k also implies a link between j and k
[26,74]. Like the global average link distance ((d))
(but unlike degree and local average link distance),
7T does not define a field, but returns one single
scalar value for each network.

The modularity [75]

1 kik;
Q—QmZ<Azj 2mj>A” (4)

ij

(where m is the total number of links and A;; an
indicator function informing whether or not two
nodes i and j belong to the same subgraph in a given
partition of the network) measures the degree of het-
erogeneity within the network structure, i.e., how
well different groups of nodes can be distinguished
that are densely connected within each group, but
only sparsely among different groups. In the context
of a climate network, modularity provides a single
scalar-valued property that discriminates between a
relatively homogeneous link placement (low mod-
ularity) and the existence of (commonly region-
ally confined) clusters of nodes (time series) that
exhibit relatively coherent variability (high modu-
larity). The individual subgraphs in the partition
that maximizes the modularity Q are called commu-
nities. The higher the modularity, the more split-up
(or modular) the network. There are a plethora of
community detection algorithms [36], which provide
different solutions and, hence, different resulting
modularity values. Here, we employ the WalkTrap
method [76], which has been found to exhibit com-
parably high values of modularity and relatively sta-
ble values in case of strongly overlapping windows
(see Appendix B for details). We note that due to
the relatively large computational efforts associated
with the community detection, we have performed
this analysis step not for all possible time windows
of observations with mutual offset of 6 = 1 day, but
only for every 15-th window (i.e. with an effective
offset of § = 15 days between subsequent values).
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Table 3 Overview on the three largest volcanic eruptions during our study period, along with the spatial location of
the volcano and the center of functional climate network connectivity changes (degree anomalies) in the aftermath of the
eruption (see Sect. 3.3.2 for details on how the latter have been obtained)

Eruption Starting Latitudes Longitudes Latitudes Longitudes
date volcano volcano response response
Mount Agung 18 February 1963 8.343°S 115.507°E 11.657°N 110.507°E
El Chichon 15 March 1982 17.359°N 93.231°W 15.000°N 120.000°W
Mount Pinatubo 15 June 1991 15.143°N 120.350°E 0.143°N 130.350°E

It is important to highlight that different from other
studies, we do not impose the same threshold value to
the absolute correlation coefficients for constructing our
functional climate networks (which would allow the net-
works’ link densities to vary in time), but initially select
the link density and let the threshold vary accordingly.
This strategy of a fixed link density has the important
advantage that the network characteristics obtained
for different time windows are comparable, while they
could otherwise exhibit an intrinsic dependence on the
link density. This applies, for example, to the modu-
larity — if we prescribe a certain network organization
principle (e.g. a random graph or preferential attach-
ment procedure), varying the link density can lead to
quite different modularity values. Similarly, since most
links in a climate network span short distances due to
spatial autocorrelation effects of the global SAT field,
elevating the link density (and thereby lowering the
absolute correlation threshold) will give rise to more
and more longer links to emerge, thereby systemati-
cally elevating the average link distance. To exclude
such implicit density effects and focus on the rearrange-
ment of connectivity between different spatial scales, all
results reported in this work will be based on network
configurations with the same fixed link density of 0.5%
(unless stated otherwise). This setting is in agreement
with previous studies [26,27].

3.3 Regionalization of field measures

As already noted above, node degree and average link
distance constitute two important local network charac-
teristics. In some of our following investigations, it will
be useful to study the associated spatial fields in full
detail. However, when focusing on the specific impacts
of certain climate phenomena, it can be beneficial to
perform a regionalization of these measures. Specifi-
cally, for a subset of nodes X C {1,..., N} representing
a certain part of the globe, a regionalized version of the
degree would be given as

1
kv = Y ki, (5)
Ep>

where |X| denotes the number of nodes in the consid-
ered set. Note that we split here the already constructed
network representation into subsets of nodes and eval-
uate their respective features instead of constructing
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separate networks for each subset. As a consequence,
we can not only assign a degree value to an individual
node, but also (as a mean degree) to a subgraph. Note
that this regionalized degree differs from the concepts of
cross-degree and cross-link density between subgraphs
[23], since unlike ky, the latter exclude contributions
due to links between nodes within X in their definition.

For the average link distance, the corresponding
regionalized property dy can be defined in full analogy.

Below, we detail some reasonable choices for A" to be
utilized in the context of the present work, which focus
on specific spatially contiguous regions of the Earth’s
surface that are associated with ENSO or volcanoes
with strong past eruptions.

3.3.1 El Nifo—Southern Oscillation regions

As already detailed in Sect. 2.1, there exist a variety
of indices that measure the “strength” of a particular
ENSO state. Among others, four regions (Ninol+2, 3,
4 and 3.4) have been previously defined to capture SST
anomalies in different parts of the tropical Pacific.
The regionalization approach described above can
be applied to these four regions by taking all nodes
located within the respective spatial domains and
applying Eq. (5). Thereby, we obtain a set of eight new
scalar-valued characteristics: kNino142, dNino1+2, KNino3,
dNino3> kNino4s Ninod, kNino3.4 and dnino3.4. To reduce
this vast amount of information, in what follows, we
will not make use of the (anyway less frequently stud-
ied) Ninol+2 region, but focus on the Nino3.4 region
(which is also the basis of the nowadays most common
ONI index) and its two contributors, Nino3 and Nino4.

3.3.2 Volcano regions

The locations of the three volcanoes responsible for
the largest eruptions of the recent decades are shown
in Fig. 1. To obtain interpretable information on the
(tele-) connectivity structures in the global SAT field
possibly induced by these eruptions, we need to aggre-
gate the connectivity properties of a sufficiently large
amount of meaningfully chosen grid cells. As a first
attempt, we therefore take the area within a radius of
5° around the location of each volcano (see Table 3) as
basis for the regionalization procedure of k;. This leads
to the three observables kpinatubos Kagung @nd KChichon-
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For the average link distance, one could again proceed
in a similar way.

However, the aforementioned choice might not be
optimal, since symmetric spatial regions in the geo-
graphical neighborhood of a volcano do not necessar-
ily exhibit the strongest persistent temperature effects
after an eruption. Instead, the specific local meteorolog-
ical conditions (especially wind fields) during the erup-
tion period largely control the three-dimensional pat-
terns of atmospheric aerosol concentrations and, hence,
the position of the strongest mid-term surface cooling
to be expected. Accordingly, the induced anomalous
(tele-) connectivity can be more evident within regions
that have been shifted with respect to the locations of
the volcanoes. To account for this, we also calculate
regionalized degrees for accordingly shifted regions (see
Sect. 4.2 for details), denoted as kp;,.iuher Khgung and
ké}hichon'

For determining the respective optimal spatial shifts
for the main climate network responses to each of the
three volcanic eruptions, we have examined the result-
ing degree fields for time windows with starting dates
succeeding the individual eruptions by up to one year,
seeking for the timing and position of the strongest
anomalies in the degree field that could be attributed
to each eruption. To understand this temporal offset,
it should be noted that although a volcanic eruption
may start relatively abruptly and generate the strongest
injection of sulphate aerosols into the stratosphere dur-
ing its initial stages, its larger-scale atmospheric effects
due to the modified atmospheric chemistry and thereby
affected radiation balance commonly become effective
only with a considerable delay of several months up to
two years after the start of the eruption [55,64].

In addition to examining the resulting degree fields,
the typical lower stratospheric wind fields during the
period of each eruption have been considered as a
consistency check for compatibility with a physically
plausible response. Regarding possible latitudinal off-
sets, during the initiation of the different eruptions we
may have expected no strong meridional wind compo-
nent at about 15-20 km altitude for the Mount Agung
and El Chichon eruptions, but some northward motion
during the Mount Pinatubo eruption due to the pre-
vailing seasonality of the stratospheric Brewer-Dobson
circulation [77]. The zonal displacement of volcanic
aerosols during tropical eruptions is being controlled by
the quasi-biennial oscillation (QBO), with lower tropo-
sphere easterlies in the aftermath of the Mount Agung
and El Chichon eruptions as opposed to weak westerlies
during the Mount Pinatubo eruption [78,79].

The results obtained from the described qualitative
analyses provide consistent information on the expected
as well as the empirically observed regions exhibiting
the strongest effects of the three considered volcanic
eruptions on the regional organization of network con-
nectivity. In summary, our analysis is thus able to pro-
vide the approximate locations of the strongest degree
anomalies in the SAT network (which do not necessar-
ily coincide with the strongest surface cooling effects)
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as reported in Table 3, which are subsequently used for
further study on the network connectivity reconfigura-
tion during the aftermath of the three eruptions.

4 Results

In the following, we present the results of our functional
network analysis of global SAT patterns with a focus on
the associated imprints of ENSO. Subsequently, we turn
to analyzing and discussing the modified connectivity
patterns induced by strong volcanic eruptions.

4.1 El Nino—Southern Oscillation

We start with investigating the effects of ENSO on
the spatio-temporal co-variability structure of global
SAT. From a complex network perspective, this prob-
lem has already been addressed in a variety of previous
studies (e.g. [26,27,80-83] and various others), mak-
ing use of different approaches for constructing net-
work structures from global climate data. However,
none of these works has considered the complementarity
between topological and spatial network properties in
great detail, nor utilized the concepts of modularity and
global average link distance that constitute key aspects
of this paper and provide important new insights as
demonstrated in the following.

4.1.1 Global topological network properties: transitivity
and modularity

For almost the same analysis setup as used in our
present study (same data set except for the last few
years on record, same climate network link density of
0.5%, same icosahedral grid with only minor modifica-
tion of the interpolation scheme), Radebach et al. [26]
demonstrated a striking co-variability between the
threshold value of the absolute correlation coefficients
used for the functional climate network construction,
the network transitivity and the conceptually related
global clustering coefficient, and the average path
length, all of which exhibited exceptional values along
with certain ENSO phases and the aftermath of the
Mount Pinatubo eruption. We refer to Fig. 5 of the
aforementioned reference for details and refrain from
reproducing the corresponding results at this point.
Most notably, correlation threshold and network tran-
sitivity were found to exhibit a very strong linear cor-
relation of about 0.85 at zero and one month time
lags, cf. Fig. 7 in [26]. Following upon the latter result,
we expect that the time dependence of the correlation
threshold does not add much complementary informa-
tion that is not provided by the corresponding behavior
of the network transitivity.

Importantly, the network transitivity 7 has been
shown by [27] to systematically discriminate between
the EP and CP flavors of both El Nino and La Nina.
While the mentioned reference used an area-weighted
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version of 7 on the original regular latitude—longitude
grid of the reanalysis data and included information on
the total pairwise correlation strength instead of just
binary adjacency information, we follow here the ear-
lier approach of [26] in using a remapping of the data
onto an icosahedral grid along with unweighted network
properties. Figure 2a shows the corresponding results
obtained using our slightly modified data set, which are
qualitatively almost indistinguishable from those of the
two aforementioned studies. Note that Fig. 2 shows the
results for different network measures in dependence
on the window midpoint, while [27] used the endpoint,
leading to a 6-month shift between the respective plots.

Radebach et al. [26] found that the emergence of
transitivity peaks along with EP El Nino and La Nina
phases is accompanied by a distinct reorganization of
network connectivity, which involves the simultaneous
appearance of (i) more short-range connections (lead-
ing to denser connectivity especially in the tropical
Pacific, which reflects synchronous large-scale warm-
ing/cooling trends elevating the spatial autocorrela-
tions in the region) along with (ii) more very long-
distance links (describing emerging teleconnections).
Necessarily, these two effects are compensated by a
reduced number of links with intermediate distances
because of the overall conservation of the number of
links (fixed link density). Notably, the high transitiv-
ity appears to be mainly affected by (i), i.e. enhanced
regional connectivity, because those short links are far
more abundant than the long distance connections and
therefore contribute more to the transitivity measure.
In this regard, it is questionable if the network transi-
tivity alone can differentiate between the two described
effects.

To further quantify the strength of teleconnectivity
in the global SAT field relative to local connections orig-
inating from spatial autocorrelations, we suggest that
the network modularity Q can provide a prospective
candidate measure that has not yet been exploited for
this purpose in previous studies. Recall that a high
modularity indicates a fragmented network, whereas
low values would point to a relatively homogeneous con-
nectivity structure of the network as a whole. Hence,
a marked decrease in modularity could indicate an
increase in the degree of large-scale organization of the
global SAT network, i.e., a tendency towards more bal-
anced co-variability in global temperatures across var-
ious spatial scales, particularly involving long-distance
teleconnections.

Figure 2b indicates a pronounced negative correla-
tion between transitivity and modularity for the investi-
gated SAT networks. Specifically, almost all (see below
for a more detailed discussion) time intervals that are
characterized by elevated values of network transitiv-
ity actually exhibit a marked reduction in modular-
ity, and vice versa. Consistent with previous findings
[26], most of these time windows in fact coincide with
either some El Nino or La Nina phase, indicating again
the global impact of these episodes in terms of equili-
brating spatial co-variability in the Earth’s SAT field.
Specifically, the drop in modularity appears compati-
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ble with the expected signature of emerging telecon-
nectivity that has been reported previously [26,27] to
occur along with EP events, but not CP phases—at
least not to an extent detectable by network transitiv-
ity. Note that taken alone, this process would not neces-
sarily imply a stronger synchronization between climate
variability in distinct regions, which would be reflected
by higher absolute correlation values. Specifically, in
this work, we have consistently used a fixed link den-
sity of 0.5% in all window-specific climate networks and
thus did not investigate the overall strength of correla-
tions. However, following previous results [26] demon-
strating a very strong positive correlation between abso-
lute correlation threshold g.|0.995 used for establishing
network connectivity and network transitivity at the
studied link density, we may actually expect that the
threshold exhibits maxima whenever 7 shows a peak,
thereby supporting the hypothesis of El Nifio and La
Nina episodes synchronizing global SAT variability by
establishing teleconnections.

Regarding the aforementioned co-occurrence between
transitivity peaks and modularity troughs, it is remark-
able that this observation applies to all EP El Nino
episodes, while there is a single El Niflo event (1968/69)
without transitivity peak (and hence classified at CP
type according to [27] consistent with several previ-
ous studies referenced therein) but exhibiting a marked
drop in modularity. This could point to either a specific
type of ENSO event characterized by the emergence
of teleconnectivity without markedly densified regional
connectivity in the tropical Pacific Ocean, or the emer-
gence of teleconnectivity unrelated to ENSO. We leave
a more detailed analysis of this specific CP El Nino
episode as a subject of future work.

4.1.2 Global topological network characteristics and
ENSO transitional complexity

In addition to ENSO diversity, i.e. the distinction
of El Nino and La Nina episodes into different fla-
vors, the associated transitional complexity has recently
attracted considerable interest among the scientific
community [84-86]. The latter aspect refers not to indi-
vidual ENSO events, but rather their successions, and
gives rise to distinguishing “isolated” El Nino and La
Nina episodes not followed by another event in the
subsequent year, successions of El Nino and La Nina
episodes with an abrupt reversal in tropical Pacific SST
anomalies in between, and even multi-year events of the
same type.

Unfortunately, the overall number of EI Nino and La
Nina events (of both flavors) contained in our data set
does not allow for a systematic quantitative statistical
investigation of the network characteristics associated
with all possible variations of transitional behaviors.
Indeed, because of the limited time coverage of reli-
able observational and reanalysis data sets, the transi-
tional complexity of ENSO has been commonly stud-
ied based on long-term climate model simulations [86].
Further exploring this aspect by means of functional cli-
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Degree k;

x10?

Fig. 3 Global maps showing composites of (a, c, e, g, i)
degree k; and (b, d, f, h, j) average link distance d; for
different types of ENSO phases: (a, b) EP El Nifio, (c, d)
CP El Nino, (e, f) EP La Nina, (g, h) CP La Nina and (i,
j) all other periods. The corresponding classification of dif-
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Average Link Distance d;
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ferent years is summarized in Table 2. For constructing the
composite maps, time windows corresponding to each type
of event have been selected according to their midpoints
coinciding with the end (31 December) of the calendar year
given in Table 2
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mate networks provides an interesting subject for future
research, but is beyond the scope of the present work.

In the following, we will nevertheless take a closer
look at the short-term temporal variability features of
transitivity and modularity that arise in transitional
complexity cases that can be identified in our reanalysis
data set. Here, we will neglect transitions solely involv-
ing CP type events, since the latter have been shown
above (as well as in [26,27]) not to result in marked cli-
mate network transitivity (and in most cases also mod-
ularity) signatures. This qualitative analysis will help us
to uncover (more subtle) differences related to the emer-
gence and magnitude of the respective transitivity and
modularity anomalies associated with EP type ENSO
events exhibiting distinct transition sequences that go
beyond the markedly negatively correlated interannual
variability of both network measures.

1. Isolated EP El Ninos (La Ninas) not fol-
lowed by La Nina (El Nino) in the subsequent
year. In our data set, we find three EP El Ninos
(1957/58, 1965/66 and 1982/83) and one EP La Nina
(2008/09) that have not been followed by another
ENSO event in the subsequent year. Commonly, such
isolated EP events are characterized by large magni-
tudes of SST anomalies and a relatively large tempo-
ral persistence. In terms of our climate networks, all
four events are characterized by fwo distinctive peaks
in transitivity along with two simultaneous breakdowns
in modularity, which peak at time windows whose
midpoints approximately coincide with the beginning
and end of the El Nino or La Nina conditions. In all
four cases, the second transitivity peak and modular-
ity trough are markedly weaker than the first one (see
Fig. 2a and b).

Given the known seasonal profile of El Nino peaking
around Christmas, it is remarkable that for all four iso-
lated ENSO events, the ONI index has remained high
(low) during a quite long period of time, resembling
a single extended event, whereas the network measures
rather seem to indicate two events—despite the absence
of an immediately following opposite ENSO event in
which case such a two-peak pattern could be expected
(see below). To understand the apparently counter-
intuitive and asymmetric behavior of 7 and Q, we recall
that 7 measures the presence of transitive structures,
which most likely originate primarily from the highly
synchronized regional dynamics in the ENSO region.
Note again that longer links are commonly less likely
to occur in a climate network than shorter ones, so that
it is easier to generate transitive structures at smaller
spatial scales than at larger ones. In contrast to this,
Q captures changes in the hierarchy of connected pat-
terns, which can be found across various possible spa-
tial scales.

Specifically, maxima in 7 indicate the predominance
of densely connected localized structures typical for
strong EP El Nino and La Nina episodes as opposed
to their CP counterparts [26], which is also consistently
observed in Fig. 3a.e. In turn, the co-occurring minima
in @ additionally highlight the relevance of the simul-
taneous emergence of teleconnectivity, i.e., long-range
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connections originating from the eastern tropical Pacific
(Fig. 3b,f), turning the resulting climate networks into
less modular structures by connecting otherwise mostly
disconnected regions of the globe. Regarding the latter,
the corresponding spatial patterns indicate that these
teleconnections are mostly inner-tropical between the
three relevant ocean basins, but partly also connect
tropics and extratropics consistent with state of the
art findings of climate research [41]. Further identifying
and quantifying these teleconnections in our network
representations would require more detailed studies on
the link placement in the associated networks by prop-
erly regionalized measures, which is beyond the scope
of the present work, but provides an interesting aspect
to be further investigated in possible follow-up studies.
Taken together, the above discussion underlines that
both 7 and Q actually capture different aspects of net-
work organization that provide complementary infor-
mation.

The emergence of two distinct anomalies of 7 and
Q along with “isolated” EP events can be understood
when taking the temporal extent and evolution of those
events into account. In the initial development phase of
El Nino or La Nifna, consistent SST anomalies emerge
and subsequently increase over a vast part of the trop-
ical Pacific Ocean. Given a sufficient temporal overlap
between the time window for which the climate net-
work is constructed and this development phase, the
large-scale trends elevate the local correlations, along
with the emergence of long-distance cross-correlations.
The first peak (trough) of transitivity (modularity) can
therefore be interpreted as a hallmark of this highly
synchronous development phase. After the El Nino or
La Nifia conditions have been fully developed (in late
boreal autumn), the SST anomalies and teleconnections
remain relatively stable over a certain period of time. If
this phase is sufficiently long, correlations between grid
points in the corresponding time window used for net-
work construction mainly reflect “background” fluctu-
ations rather than common trends, leading to a reduc-
tion of the magnitude of those correlations and, hence,
a tendency of transitivity and modularity to also return
to their “background” values. Finally, the retreat of El
Nino or La Nina conditions is again associated with
common large-scale temperature trends (and, hence,
elevated correlations), which may, however, appear less
synchronously than during the development phase. As a
consequence, the second transitivity maxima and mod-
ularity minima are commonly less well expressed than
the first one coinciding with the development phase.

In any case, it is notable that the emergence of two
directing transitivity and modularity anomalies along
with isolated EP-type ENSO phases is fostered by
the selected temporal window width of one year used
throughout this work. While using shorter time win-
dows might further magnify the corresponding effects,
they also bring about substantial seasonal variability
(not shown) that would undermine a proper inter-
pretability of the observed time evolution of network
properties.
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2. EP El Ninos (La Ninas) followed by La
Ninas (El Ninos) in the subsequent year. A
markedly different situation with a however similar evo-
lution of the two topological network characteristics
7T and Q arises in the context of immediate succes-
sions between El Ninio and La Nina phases. In our data
set, we find four successions of EP El Ninos directly
followed by EP La Ninas (1973-75, 1986-89, 1997-99
and 2009-11) and one of the opposite order (1975-77).
All five cases are again characterized by two marked
transitivity peaks associated with modularity minima,
which approximately occur for those time windows
with midpoints coinciding with the beginning of the
El Nifio or La Nina phase. While this is very simi-
lar to the case of isolated events, we find as a dis-
tinctive difference that for two-event successions, the
second maximum/minimum commonly appears with
similar or even larger magnitude than the first one.
This can be expected because of the very rapid change
between strongly positive and strongly negative tropi-
cal Pacific SST anomalies within about half a year (i.e.
less than the window width used for network construc-
tion), implying very strong common trends along with
the retreat phase of the first and following development
phase of the second (opposite) ENSO event.

In the extreme case of the shift from (very strong) El
Nino to La Nina conditions in summer 1998, a par-
ticularly fast reorganization of the global SAT field
took place. The latter transition is reflected by some
negative anomaly of 7 with respect to the baseline
value for time windows centered in boreal autumn 1998,
which presents a unique feature in the time evolution
of network transitivity over the last decades that is not
accompanied by any corresponding anomaly in Q. This
indicates that the surface air temperature field has been
spatio-temporally re-organized primarily in the ENSO
region after the onset of La Nina, while teleconnections
have already lost their relative importance as compared
to the central periods of El Nifio or La Nina phases as
visible in terms of monotonically increasing modularity
values in Fig. 2.

3. Multi-year El Ninos (La Nifias). The last
notable case of transitional complexity is the multi-
year La Nina of 1954-56, which was characterized by
persistent cold anomalies in the tropical Pacific Ocean
over two boreal winter seasons. Such behavior can be
seen as the extreme case of persistent “isolated” ENSO
events or sequences of two ENSO events of the same
type (e.g. the two El Nino years 1968/69 and 1969/70).
Strictly speaking, the 1986-88 El Nino episode also cov-
ered two ENSO seasons (with the pronounced transitiv-
ity and modularity responses occurring during the first
one), but was followed by an immediate La Nina period
in 1988/89 and has therefore already been described
above. It is notable that two-year events may be com-
posed of a succession of EP and CP type events, accord-
ingly showing only a single transitivity peak and mod-
ularity trough or even no significant anomaly. Since we
do not have more events of this type on record, it is not
possible to draw any further conclusions on the behav-
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ior in case of multi-year ENSO events from the present
analysis.

Discussion and outlook. Our detailed analysis
of the two global topological network characteristics
transitivity and modularity suggests that not only the
ENSO diversity, but also the transitional complexity of
ENSO events contributes markedly to the emerging cli-
mate network features. While network modularity and
transitivity generally evolve oppositely at interannual
time scales, both provide complementary viewpoints on
the emergence of elevated regional versus inter-regional
connectivity. High transitivity commonly coincides with
the temporary appearance of densely connected struc-
tures in the functional climate network constructed
from global SAT anomalies, which are typically well
localized in space [26]. In turn, modularity captures
the global connectivity pattern rather than primar-
ily local features. Specifically, a low modularity value
actually highlights more global connections in the cli-
mate network. Regarding the differential effects of dif-
ferent ENSO episodes’ flavors and transitional behav-
iors, we have identified characteristic features in the
emerging network structures that go beyond previously
described differences due to ENSO diversity (i.e. EP
versus CP events). Due to the very limited number of
events contained in the considered reanalysis data set,
fully exploring the reported findings and supplement-
ing them by more quantitative statistical analysis will
require larger data sets, most likely originating from
long (control) runs or large ensembles of state of the
art coupled climate model experiments. Corresponding
analyses, which we outline here as important avenues
for follow-up research, may address, among others, two
important aspects not investigated here:

1. How characteristic and statistically significant are
the qualitative findings described above on the dif-
ferent transitivity and modularity signatures along
with ENSO diversity and transitional complex-
ity, taking into account the underlying seasonality
of the ENSO phenomenon controlling the timing
of the corresponding network reorganization pro-
cesses? Being provided with a sufficiently large sam-
ple size, this aspect could be addressed using com-
posites and superposed epoch analysis, along with
proper statistical significance testing.

2. How can we explain the fact that the largest
ENSO magnitudes do not always coincide with the
strongest anomalies in the climate network charac-
teristics? In this context, it is important to note
that the strength of an El Nino (or La Nina) event
is described by the magnitude of warming/cooling
(and, because of the seasonality of ENSO, also
the associated rate of SST changes) in the tropi-
cal Pacific Ocean, but (potentially) also affects the
spatial extent and persistence of those anomalies.
By contrast, we do not necessarily have to expect
a direct effect on the magnitude of changes in net-
work properties resulting from spatial co-variability
of those SST changes. The latter aspect should be

@ Springer



3088

rather affected by (i) the synchronicity of ENSO-
related SAT changes across vast parts of the tropical
Pacific, and (ii) by whether changes in the connec-
tivity are more confined to the tropical Pacific or
also trigger strong long-distance teleconnections. It
appears reasonable that both can markedly depend
on additional factors like the state of other climate
variability modes like the Pacific Decadal Variabil-
ity, Pacific Meridional Mode, Indian Ocean Dipole,
Atlantic Nino, or Madden-Julian Oscillation, which
operate on intraseasonal to interdecadal time scales
and precondition the emergence of possible global-
scale responses to El Nino and La Nina, but also the
emergence of those ENSO episodes themselves. As a
consequence, large El Nino and La Nina amplitudes
may not be expected to coincide with the strongest
changes in the network characteristics.

4.1.3 Global spatial network properties: average link
distance

While the two above studied measures transitivity and
modularity present key topological network character-
istics, functional climate networks are systems embed-
ded in geographical space. Thus, the spatial placement
of nodes and links (which is not explicitly accounted
for by topological characteristics) can play a pivotal
role in network structure formation [26]. To address this
aspect, we finally present the temporal evolution of the
global average link distance ((d)) in Fig. 2c. Notably,
this measure exhibits more irregular variability with a
less clear distinction between “background level” and
“anomalies” associated with different types of climate
disruptions than the previously studied two topological
characteristics 7 and Q. Yet, the general behavior of
({(d)) displays certain similarities with respect to that
of network transitivity in the sense that ENSO-related
peaks often, but not always co-occur in both measures,
yet with marked time lags of up to several months.
This lagged co-variability is clearly visible in the ENSO
seasons 1957/58, 1965/66, 1973/74, 1982/83, 1997/98,
1998/99 and 2007/08 (with only 1982/83 showing two
({(d)) peaks along with an “isolated” El Nino event,
while all other mentioned episodes rather display a sin-
gle peak) and indicates that strong El Nifio and La Nifia
episodes do not exclusively trigger short-range (local-
ized) connectivity (high 77), but also global teleconnec-
tivity (high ({d))). This finding is in line with contem-
porary knowledge on the large-scale impacts of both
types of ENSO phases [41,87] and agrees well with
previous qualitative results of [26] on the link distance
distribution of global SAT networks.

It has to be noticed that considering a single value
of the fixed link density of 0.5% may not be the opti-
mal analysis strategy when facing a situation where the
correlations within the ENSO regions and with other
teleconnected regions are amplified by a different mag-
nitude. In such cases, we may, for example, miss the
effect of emerging teleconnectivity in the average link
distance while being able to observe densified regional
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connectivity in the network transitivity. Accordingly,
the results described here should always be interpreted
as conditional with respect to the chosen link density.
For the case of transitivity and modularity, Appendix
A demonstrates that the overall interannual variabil-
ity pattern is not affected qualitatively when increas-
ing or decreasing the link density by a factor of 5. For
the average link distance, which already presents “more
noisy” interannual variability at the link density of 0.5%
empirically determined as a reasonable choice in [26],
the corresponding effect (not shown here for brevity) is
however potentially more critical for the interpretabil-
ity of the obtained results.

Beyond the aforementioned examples displaying a
lagged co-occurrence between transitivity and aver-
age link distance peaks, we also find interesting cases
where the link distance lacks any marked peak despite
the presence of a strong EP type ENSO episode,
particularly along with the ENSO seasons 1972/73,
1986-88 and 1988/89, indicating the absence of long-
distance teleconnections (at least for the given corre-
lation threshold). In turn, in various cases (1965/66,
1970/71, 1973/74, 1982/83, 1988/89 and 1997/98) we
find the corresponding El Nino or La Nina periods
being preceded by a drop in the average link distance.
We interpret this finding such that in those cases, the
emergence of strong regional (short-range) connectivity
in the tropical Pacific actually preceded the formation
of (long-distance) teleconnections, which implies first a
drop in average link distances followed by a later peak.
This could indicate that the emerging SST anomalies
in the tropical Pacific trigger large-scale teleconnec-
tive effects to a greater extent than being themselves
triggered by large-scale teleconnections. In fact, recent
research especially on tropical basin interactions [88—
90], but also on preconditioning of ENSO by North
Pacific SST anomalies [91], points to the fact that the
emergence of ENSO episodes in the tropical Pacific cli-
mate is causally coupled with key variability modes in
other regions in both ways. In this context, the observed
behavior of the average link distance of evolving SAT
networks is well in line with those recent findings.

Unfortunately, the more “noisy” behavior of the aver-
age link distance as compared to network transitivity
and modularity does not allow us making more conclu-
sive statements at this point. One way to further pursue
into this direction could involve systematically varying
the link density to check if there is some optimum char-
acterized by a larger “signal/noise ratio”, as well as
differentiating more systematically between links con-
necting nodes within and between specific regions that
could be related to previously reported ENSO telecon-
nections. A corresponding approach might also provide
a way to further explain two additional observations
associated with the variability of ((d)) that have not
yet been discussed above.

One one hand, we find an unprecedented isolated
peak of ((d)) in 1968 (indicating emerging teleconnec-
tivity) unrelated to any obvious ENSO episode previ-
ously emerging (note that the anomalous modularity
signature of the 1968/69 CP El Nifio arises considerably
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later, not earlier, than the unexplained peak in the aver-
age link distance). This could indicate a case where tele-
connections developed along with “sub-critical” ENSO
conditions not leading to the formation of El Nino or
La Nina, the specific reasons for which would deserve
further more detailed studies.

On the other hand, two successive peaks of ((d))
emerged in early 1963 and early 1964, i.e. before and
after the short-lived 1963/64 El Nifio episode, which
coincides with an unprecedented transitivity peak and
modularity trough found only after the retreat of the
El Nino related tropical Pacific SST anomalies, whereas
the expected transitivity peak and modularity trough
at the beginning of this “isolated” event had been
largely suppressed. The latter could indicate a rever-
sal of the more common behavior along with strong
EP El Nino phases as discussed earlier in this work,
corresponding to the following “mechanistic” interpre-
tation. First, starting from elevated teleconnectivity
(large average link distance for time windows cen-
tered in early 1963), the emergence of El Nifio con-
ditions in the tropical Pacific Ocean may have been
remotely forced instead of internally generated. One
potential external triggering factor could have been
the strong Mount Agung eruption starting in early
1963 [61]. Second, these remotely forced regional SST
anomalies developed in a relatively heterogeneous/non-
synchronous manner (suppressed transitivity and mod-
ularity) and did not lead to very strong and persistent
El Nino conditions. Finally, the retreat of those “unsta-
ble” tropical Pacific SST anomalies occurred in a more
coordinated manner (large transitivity /low modularity)
than their emergence and was associated with the re-
emergence of (delayed) long-distance connections in the
climate network induced by the successive cooling of
the tropical Pacific, which however did not reach the
La Nina “threshold”. To this end, this possible inter-
pretation necessarily remains speculative and requires
further assessment.

From the results discussed above, we conclude that
to distinguish globally influential ENSO events from
episodes of minor (or more regional) relevance, a combi-
nation of transitivity with modularity and average link
distance can be useful, taking a holistic perspective in
studying the differential imprints of different types and
successions of ENSO phases. We will recall this strat-
egy when discussing the effects of volcanic eruptions on
the network organization at a global scale.

4.1.4 Spatial patterns of network connectivity

The above analysis of global network properties has
largely confirmed some known effects of certain ENSO
phases on the spatial co-variability structure of the
global SAT field. Drawing upon the insight that topo-
logical and spatial network measures can provide dif-
ferent perspectives on the corresponding network pat-
terns, we now turn to investigating the geographical
patterns of the generated functional climate networks.
Specifically, following recent observations that climate
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network properties distinguish between the EP and CP
flavors of both El Nifo and La Nina [27], we are inter-
ested in the question how the associated (tele-) connec-
tivity structures are manifested in the respective spa-
tial fields of degree and average link distance. For this
purpose, Fig. 3 shows composite plots of the spatial
patterns exhibited by both network properties during
the different types of ENSO phases, thereby averaging
the local network properties over all time windows that
have been classified as showing either of these situations
(see Table 2).

The left panels of Fig. 3 display the respective mean
degree fields for the different types of ENSO periods.
As expected, we observe a particularly strong devia-
tion from a homogeneous pattern during EP El Ninos
(Fig. 3a), while the degrees in the eastern-to-central
tropical Pacific are only slightly larger than in the rest
of the network during time windows without El Nino or
La Nina conditions (Fig. 3i). This general behavior is
expected from previous studies [27]. Still, the observed
degree patterns alone do not allow us to distinguish
between a local or global phenomenon. For this pur-
pose, the right panels of Fig. 3 show the correspond-
ing mean average link distance fields for each type of
situation. Elevated values of this measure in the typi-
cal ENSO region are present in case of all four possi-
ble types of episodes, indicating that both flavors of El
Nino and La Nina actually generate additional connec-
tions both within and out of the tropical Pacific that
span relatively large distances, but possibly to differ-
ent degrees and with different spatial teleconnectivity
patterns [42,87].

Analyzing the composite maps of the average link dis-
tance in more detail, it is important to note that beyond
the ENSO region itself, additional parts of the globe
exhibit elevated values. This indicates the presence of
localized teleconnections that possibly link climate vari-
ability in the latter regions with ENSO. Specifically, EP
El Ninos (Fig. 3b) exhibit such teleconnections with
Indonesia and Western Africa, which are also recovered
for EP La Ninas (Fig. 3f). For CP El Ninos (Fig. 3d),
the d; field highlights a weak connection with West-
ern Africa, but none with Indonesia. Similar but still
weaker teleconnections can be observed for CP La Ninas
(Fig. 3h).

Among the aforementioned patterns, the identified
teleconnection with Indonesia present during EP events
but not during their CP counterparts is particularly
interesting, as it is localized in the westernmost tropical
Pacific. Thus, it connects eastern and western Pacific
while not leading to marked long-distance connections
in the central Pacific close to the dateline. One appeal-
ing explanation of this finding could be that the corre-
sponding link is mediated via the Walker circulation
[42] and, thus, via airflow in higher altitudes rather
than near-surface atmospheric circulation. With a rel-
ative shift in the position of main tropical Pacific SST
anomalies between EP and CP episodes, the regions
exhibiting up-/downwelling airmasses are also shifted
east- /westward. Hence, the anomalies associated with
CP phases may affect regions more to the west than
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those observed along with EP phases, e.g. the Indian
Ocean region rather than the maritime continent [87]).
While accordingly elevated degree and average link dis-
tance values in the central Indian Ocean are hardly
visible in Fig. 3, the corresponding results of Wieder-
mann et al. [27] who used a weighted network represen-
tation indicated slightly enhanced connectivity in that
region along with CP episodes. In this context, it is
notable that the choice of a link density of only 0.5%
in our present work was designated to filter out only
the strongest links (largest absolute correlation values)
among different locations, thereby bearing some risk of
missing elevated but still sub-threshold values in spe-
cific regions. Systematically varying the link density
could provide a way to better highlight additional tele-
connections not visible in Fig. 3, but exceeds the limi-
tations of the present manuscript.

Moreover, it has to be noted that our present analy-
sis is based on cross-correlations only. The values of this
statistical similarity measure can be severely affected by
distinct temporal persistence properties of SAT in the
eastern and western tropical Pacific, as pointed out by
recent studies making use of modern causal inference
methods [92,93]. Accounting for this effect in terms of
replacing the correlation values by associated signifi-
cance levels in the network generation step [94] could
provide a useful yet computationally demanding avenue
for future research on this topic. From an impact per-
spective, the teleconnection suggested by our results is
compatible with the documented increased likelihood
of droughts in Indonesia during El Nifio events [95].

The teleconnection with Western Africa spans a
rather large spatial distance (about one third of the
globe). In this context, Joly and Voldoire [96] noted
that “a significant part of the West African mon-
soon (WAM) inter-annual variability can be explained
by the remote influence of El Nino—Southern Oscil-
lation (ENSO).” This previously reported teleconnec-
tion could be responsible for the elevated average link
distance over Western Africa especially during EP El
Nifios (which typically have larger absolute SST anoma-
lies than their CP counterparts).

In general, climate variability within the tropics is
typically more likely to exhibit strong correlations than
between tropical and extratropical regions, which is
mainly due to the cellular structure of meridional atmo-
spheric circulation that is effectively decoupling trop-
ics and extratropics. In this regard, the omnipresent
slightly elevated average link distance values in the
polar regions could merely be data and/or interpolation
artifacts resulting from our remapping procedure rather
than indications of actual teleconnections. Note that
there exist polar-tropical teleconnections (and even
cross-equatorial teleconnections) commonly mediated
via the stratosphere [97,98], which we however do not
expect to be observable in lag-zero co-variability. Fur-
ther examining the causes of elevated high-latitude con-
nectivity requires better understanding the origins of
the underlying long-distance links, which should be
attempted in future work.
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Related to the aspect of extratropical ENSO related
teleconnections, we emphasize that the employed
methodology of functional climate network analysis
provides a new avenue for studying tropical basin inter-
actions, i.e. processes linking coupled ocean-atmosphere
variability in the three tropical ocean basins with each
other via atmospheric (e.g. Walker circulation) and
oceanic (e.g. regulation of cross-basin water transport
through the Indonesian Throughflow). Recent work
has provided multiple evidence for such linkages, and
the elevated degree and average link distance over the
equatorial Atlantic Ocean and maritime continent may
be further assessed in the context of possible link-
ages between ENSO, parts of the Indian Ocean Dipole
(IOD), and the Atlantic Nino and Atlantic Meridional
Mode, respectively. Indeed, the Atlantic Nino has been
discussed as a possible driver of El Nifio [88] (including
the use of a different type of complex network approach
[99]), while the interrelationship between ENSO and
IOD [89,90] is still far from being conclusively under-
stood. To this end, we suggest that a more detailed
picture on those tropical basin interactions could be
obtained using regionalized network properties (like
being employed for the ENSO region only in the fol-
lowing) and/or applying the concept of coupled climate
networks [23], along with replacing instantaneous by
lagged correlations to also account for the common time
lag between relevant changes in the atmosphere-ocean
coupled variability in the three tropical basins. Further
analysis on this aspect is indeed planned as an integral
part of our future work.

4.1.5 Regionalized network characteristics

Global and local climate network properties as dis-
cussed above still provide only incomplete information
on the effects of climate variability in different parts
of the ENSO region on global SAT. To obtain fur-
ther insights into this aspect, we now turn to analyzing
the regionalized field measures introduced in Sect. 3.3
and study the specific connectivity associated with the
Nino3.4, Nino3 and Nino4 regions in terms of degree
and average link distance.

The corresponding results are summarized in Fig. 4.
We observe that the relative magnitude of variations of
regionalized degree and average link distance is even
stronger than that of the global network properties
transitivity, modularity and global average link distance
discussed above. All measures exhibit episodes of very
small values as opposed to such with much larger val-
ues, the latter often coinciding with El Nifio and La
Nina phases. Since the corresponding regions have been
previously chosen for defining ENSO-specific indices,
this result has been expected. Most importantly, degree
and average link distance based characteristics exhibit
strong positive correlations. Notably, for climatic events
with predominantly regional structure, we would expect
a strong increase of k; but only a weaker increase of
d; in the region under study. Hence, our correspond-
ing observations underline that ENSO-related climate
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Fig. 4 Time series of different regionalized climate network properties introduced in Sect. 3.3.1. Background colours and

time axis are the same as in Fig. 2

impacts are not confined to the vicinity of the ENSO
region, but are controlled by large-scale teleconnections.

Since the different ENSO regions show partial over-
lap (cf. Fig. 1), the results obtained for the individ-
ual regions exhibit a high degree of similarity. In this
regard, the information provided by the regionalized
degree and average link distance for the three consid-
ered regions is partially redundant as well. However,
regarding specific El Nifio or La Nina episodes, com-
paring the corresponding signatures for the Nino3 and
Nino4 regions still allows attributing these events to
Eastern Pacific or Central Pacific types. For exam-
ple, the strong 1997/98 El Nifio is reflected by very

high values of the regionalized degree for the Nino3
and Nino3.4 regions, but relatively weak signatures in
the more western Nino4 region, which is consistent
with its classification as an EP type event. Hence, it
might be more relevant to look at differences between
the respective regionalized degree and average link dis-
tance variations. Another valid concern in this context
is the strong inter-connectivity between the different
considered regions, which may dominate especially the
regionalized degree in comparison with extra-Pacific
or tropical-extratropical teleconnections. However, the
latter would be partially indicated by our approach,
so that studying both types of network characteris-

@ Springer



3092

tics together may still provide valuable information. A
methodological alternative would be decomposing the
entire globe into different regions of interest (e.g., dif-
ferent parts of the tropics and extratropics) and use the
framework of coupled network analysis [23] for study-
ing the presence or absence of linkages between these
regions in a more detailed way. We outline further inves-
tigations in this direction as a subject for future work.
Examining the time evolution of all six regionalized
network measures in some detail, it is notable that
between 1978 and 1982 (coinciding with the beginning
of satellite measurements assimilated in the reanalysis
data set, i.e., a source of heterogeneity in the data),
there has been considerable variability in all measures
pointing towards an episodic presence of teleconnec-
tions even though none of the time windows was clas-
sified as an El Nino or La Nina episode according to
the ONI. Moreover, we find that before the year 2000,
clear peaks can always be observed in all properties as
alternating with periods of low values. In turn, during
the last about 15 years, we rather find strong variability
without any low background level, with peaks occurring
almost annually, with the exception of 2013 and 2014.
This change in the overall temporal variability pattern
of our regionalized network measures might point to
some fundamental changes in the spatio-temporal orga-
nization of global SAT, either due to some not yet iden-
tified mode of natural variability or as a result of exter-
nal interference. An attribution of this observation is,
however, beyond the scope of the present work.

4.2 Volcanic eruptions

Besides ENSO variability, strong volcanic eruptions
have been identified as additional causes of marked dis-
ruptions in climate network properties in earlier stud-
ies [26]. In this context, the application of the com-
plementary viewpoints as used in this work for further
characterizing the impacts of such eruptions promises
interesting additional insights.

Regarding the global network properties, let us turn
back to Fig. 2. As already emphasized in our discus-
sion on the corresponding imprints of different ENSO
phases, anomalies in transitivity and modularity need
to be interpreted differently in terms of global ver-
sus more regional changes in climate network connec-
tivity. While EP El Niflos and La Niflas (but not
their CP counterparts) consistently show peaks in tran-
sitivity coinciding with breakdowns in modularity, a
similar signature has been found in the aftermath of
the Mount Pinatubo eruption, suggesting that this
event has affected the climate system globally. However,
when comparing these topological network characteris-
tics with the spatial network property of global average
link distance ((d)), we find a marked difference. Specif-
ically, for ENSO-related climate disruptions, peaks in
7T have been associated with both simultaneous drops
and delayed peaks in ({(d)), indicating the presence of
strong localized connectivity structures in the tropical
Pacific and the excitation of teleconnections, respec-
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tively. By contrast, in 1992/93 we find a persistent pos-
itive transitivity anomaly associated with an extended
through in modularity, but only a persistent drop (with-
out later peak) in the average link distance. Notably,
the corresponding period corresponds to the time win-
dows where the tropospheric cooling effects following
the Mount Pinatubo eruption should have taken their
maximum [64]. Hence, unlike for ENSO-related disrup-
tions, the peak in transitivity together with a simul-
taneous drop in ((d)) indicate that the effects of the
volcanic eruptions have rather been regionally confined
(i.e., we observe the emergence of strong regional con-
nectivity due to large-scale coherent trends, but no exci-
tation of relevant long-distance correlations). The latter
is consistent with the presence of elevated correlations
in the region that has been most directly affected by the
associated cooling trend following the eruption. Based
on this observation, we suggest that using the global
average link distance in combination with network tran-
sitivity and modularity enables us to discern disruptive
events with global effects (strong ENSO phases) from
those exhibiting more regional impacts (volcanic erup-
tions).

In general, one notable difference in comparison
with ENSO-related impacts is that large-scale effects
of volcanic eruptions on global SAT teleconnectivity
can be observed only after a sufficiently large amount
of aerosols have entered the stratosphere [55]. Along
with the resulting time shift between trigger event and
response, we may also need to consider a spatial shift
of the most affected region as compared to the location
of the volcano. In the following, we apply our region-
alization procedure described in Sect. 3.3.2 to study-
ing the impacts of the Mount Pinatubo, Mount Agung
and El Chichon eruptions. In order to avoid interference
with the effects of ENSO events, the ENSO-big region
depicted in Fig. 1 is excluded from the corresponding
computations. The results obtained from this analysis
are summarized in Fig. 5.

The largest of the three considered eruptions (Mount
Pinatubo) had a large-scale cooling effect (also markedly
affecting the global mean temperature) and has left
clearly visible signatures in all considered global net-
work measures as discussed above. Some months after
the eruption, a large region of elevated network connec-
tivity has been established, which covers essentially all
of the western tropical Pacific (Fig. 5¢). The temporal
evolution of the average degree in the region around
Mount Pinatubo displays an abrupt rise about half a
year after the eruption, then a constantly high value for
about one year (the common residence time of volcanic
aerosols in the stratosphere) before dropping again back
to its previous level (Fig. 5a). The region with the high-
est degrees is shifted northward with respect to the loca-
tion of the volcano (Fig. 5¢). When computing the aver-
age degree for this region, we observe an even stronger
rise of the regionalized degree than for the region sur-
rounding the volcano (Fig. 5b).

The Mount Agung eruption exhibits similar, but
weaker, patterns in the respective region (Fig. 5f). How-
ever, the region with the highest degree is shifted south-
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Fig. 5 Time series of regional mean degree and associated
degree field (excluding the ENSO-big region indicated by
white color) for the three strongest volcanic eruptions dur-
ing the study period: (a—c) Mount Pinatubo, (d—f) Mount
Agung, (g—i) El Chichon. In the degree maps shown in pan-
els (c), (f) and (i), blue dots mark grid points within a
radius of 5° around each volcano, which have been used to
define the regionalized degrees shown in panels (a), (d) and
(g), respectively. Red dots indicate spatially shifted regions
of the same size where the largest changes to the degree

westward. The average degree in the region surround-
ing Mount Agung only shows weak changes after the
eruption (Fig. 5f), as opposed to a somewhat sharper
increase in the shifted region, with the peak effect
occurring significantly faster after the beginning of the
eruption than in case of the Mount Pinatubo eruption
(Fig. 5e). However, it should be noted that we can
already observe the beginning of some upward trend
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field have been observed. These regions serve as the basis for
computing the regionalized degrees shown in panels (b), (e)
and (h), respectively. Purple vertical lines indicate the tim-
ing of the respective eruptions, whereas green vertical lines
indicate the midpoints of the time windows exhibiting the
strongest signature in the regionalized network properties.
The time series have been restricted to +10 years around
the date of the respective eruption. Background colors indi-
cating the corresponding ENSO strength are the same as in
Fig. 2

in the regionalized degree before the actual eruption,
pointing to a possible interference with normal natural
variability (specifically, approaching ENSO events that
might have been (partially) triggered by the eruption
61]).

Unlike for the two other volcanic eruptions, the
degree field in the period succeeding the El Chichon
eruption showed hardly any marked changes (Fig. 51).
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Consequently, we also do not observe any marked signa-
ture in the temporal variability profile of the regional-
ized degree in the surrounding of the volcano (Fig. 5g).
Instead of a peak shortly after the eruption, we actually
find a clear drop of the average degree. However, since
El Chichon is located relatively close to the extended
ENSO region, it is possible that this could be an effect
of the strong El Nino event occurring shortly after the
eruption and eventually even being partially triggered
by the latter [61]. In general, previous studies indicate
that the El Chichon eruption caused a much weaker
summer cooling than the Mount Agung eruption [100],
which could also explain its absent signature in our
analysis.

Taken together, our results regarding the climate
network reorganization along with the largest three
volcanic eruptions since the mid-20th century clearly
indicate that strong enough eruptions can result in
the emergence of densely connected network structures
without additional long-ranging spatial correlations as
typical for strong ENSO events. Thereby, while the pre-
viously considered network measure transitivity would
mostly indicate the former effect (i.e., the emergence
of spatially localized dense connectivity structures),
combining this information with spatial characteristics
as captured by the global average link distance ({d))
allows us to discriminate large-scale climate disruptions
regarding whether or not they have excited any relevant
teleconnectivity. In this context, it is worth to recall
again the differential climate effects of volcanic erup-
tions depending on the strength, location and season of
the event. While the proposed network-based approach
is potentially useful for categorizing and quantifying
these effects, a specific process-based attribution would
require consideration of additional information, i.e., the
use of multiple relevant climatological fields instead of
SAT anomalies alone as studied in this work. We out-
line corresponding follow-up studies as a prospective
task for future research.

5 Conclusions and outlook

We have used functional climate networks constructed
from spatial correlations of daily global surface air tem-
perature (SAT) anomalies to further analyze the well-
established emergence of distinctive spatio-temporal co-
variability patterns associated with past El Nino and
La Nina events as well as strong volcanic eruptions.
Here, the main motivation was to obtain a better under-
standing of the climatological interpretation of different
network characteristics, which is of key importance for
guiding the selection of network properties to be used
in future studies on more specific problems. In this con-
text, by making use of the global network property of
modularity (Q), we have found that the East Pacific
flavors of El Nino and La Nina events lead to a global
reconfiguration of SAT variations in terms of emerging
teleconnections, whereas other climate disruptions have
rather been characterized by regional changes only. The
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corresponding perspective is markedly distinct from
that of previous studies of climate networks, which have
mostly focused on network transitivity (7)) as a dis-
criminative statistics of different types of ENSO phase
[26,27]. The results obtained in the present work clearly
indicate that 7—unlike @—may be primarily sensitive
to the presence of common regional trends (in case of
ENSO, mostly in the eastern tropical Pacific) and less
indicative of the emergence of actual teleconnections
spanning vast parts of the globe. By considering the
global average link distance as a complementary spatial
network characteristic, we have identified distinct qual-
itative differences between the imprints of these ENSO
periods and the Mount Pinatubo eruption in global
SAT co-variability patterns.

Using composites of the degree and average link dis-
tance fields, we have identified hallmarks of distinct
ENSO teleconnections in the climate network structure,
especially such linking the eastern tropical Pacific with
Indonesia and West Africa during East Pacific El Ninos,
both of which have already been reported in previous
studies [95,96]. By making use of a regionalization pro-
cedure applied to these two fields of local network prop-
erties, we have introduced a simple yet effective tool to
unveil the differential roles of different regions in the
tropical Pacific in establishing teleconnections during
different El Nifio and La Nina events.

Finally, we have analyzed the global and local con-
nectivity properties of SAT-based climate networks in
the aftermath of the strongest recent volcanic eruptions
of Mount Pinatubo, Mount Agung and EI Chichon. In
particular, while the Mount Pinatubo eruption has been
confirmed to exhibit marked impacts on SAT globally,
its dominating effect was rather regional (i.e., it did
not trigger marked additional long-range teleconnec-
tions detectable by our approach).

While most of the results presented in this work
rely on a qualitative analysis of temporal changes in
the climate network properties, additional statistical
quantification of their relationship with existing indi-
cators of ENSO wvariability and volcanic eruptions’
impacts might further strengthen our findings. Regard-
ing ENSO, many previous studies have attempted to
utilize the spatial patterns of SST anomalies to define
corresponding index variables. However, the corre-
sponding classifications of El Nino and La Nina phases
reached only partial consensus, which was in fact the
motivation of the work of Wiedermann et al. [27] pre-
senting climate network transitivity as a useful and con-
sistent index. Going one step further, one might easily
quantify, for example, the correlation between transi-
tivity and other (global or regionalized local) network
characteristics.

In turn, regarding the effects of volcanic eruptions,
the respective regionalized degrees for the spatially
shifted “major impact regions” of both Mount Pinatubo
and Mount Agung, exhibited their overall maximum
values among all time windows studied in this work in
the aftermath of the associated eruptions. This indi-
cates a high significance of our corresponding results.
Note that, however, we did not succeed in finding any
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comparatively strong impact signature in the climate
network properties after the eruption of El Chichon,
as well as after other strong volcanic eruptions of the
past about 70 years (not shown). We relate the latter
finding to the generally lower magnitude of the respec-
tive perturbations (in terms of a smaller amount of
climate-active volcanic aerosols injected into the strato-
sphere). Moreover, some of the other major eruptions
(e.g., the Mount St. Helens eruption in 1980) appeared
in the extratropics rather than the tropics, leading to
generally weaker climatic effects than for tropical erup-
tions. Together with the different seasonality of these
events, this could imply different effects on regional and
global temperature patterns, similar as shown recently
for global monsoon precipitation [101].

The fact that ENSO does not only have a strong
regional effect on SAT in terms of coherent SAT trends
in the tropical Pacific associated with a spatially con-
fined increase of network connectivity [26], but also
dynamically reconfigures climate variability globally by
triggering teleconnections especially with other tropical
regions, has been previously found in other studies uti-
lizing more classical analysis techniques. In this regard,
one possible mechanism could involve the modulation
of monsoons by strong El Nino and/or La Nifia periods,
which itself could be further affected by volcanic erup-
tions [63,102]. Confirming this hypothesis in the con-
text of climate network studies would, however, require
much more elaborated approaches than those used in
the present work, and is therefore outlined as a subject
of future research.

To this end, we are confident that the combina-
tion of different structural and spatial climate net-
work properties provides a prospective tool for making
the qualitative statements discussed in this work more
quantitative and, thus, discriminating further between
large-scale climate effects due to regional trends and
such originating from modifications of teleconnectivity.
Notably, network properties can serve as a unique tool-
box for disentangling both commonly closely intercon-
nected aspects, and hence offer some interesting nonlin-
ear research methodology for further research focusing
on specific climatological processes, e.g., in combination
with ensembles of simulations of state-of-the-art general
circulation models. By means of systematic applications
of these tools on such vast amounts of high-quality (and
at least partially “controllable”) climate data, it is likely
that important new insights may be gained that (as in
case of other successful applications of complex net-
work theory in climatology as mentioned in the Intro-
duction) classical statistical analysis techniques might
not be able to provide.
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Appendix A: Dependence of transitivity and
modularity on the link density

The selection of a link density of 0.5% in the main body
of this paper has been based on detailed investigations in
previous studies [26,27]. In general, it is a heuristic choice
that has been found to provide a reasonable trade-off in
the context of making the network characteristics relatively
sensitive to the emergence of “localized structures” in the
climate network. This does not mean that other choices are
generally worse, but for the purpose of this study (trac-
ing subtle changes in the global spatio-temporal correlation
pattern of surface air temperatures), too high link densi-
ties might blur the effects of interest while too low densities
could make the network decompose into disconnected com-
ponents, thereby prohibiting the application of the selected
network characteristics.

To illustrate the choice of 0.5%, as well as the qualitative
robustness of some of our main findings, we have repeated
our analysis with two different link densities of 0.1% and
2.5%, respectively, and did not find strong differences to
our previous analysis (see Figs. 6 and 7 for some results).
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Fig. 6 Network transitivity (a) and modularity (b) evolution for a link density of 0.1%
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Fig. 7 Same as Fig. 6 for a link density of 2.5%
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Fig. 8 Comparison of estimated modularity values for the
functional climate networks obtained for running windows
as described in the main text. We use five different algo-
rithms for detecting the underlying community structure.
Since modularity estimation resorts to a numerical max-
imization problem, higher values indicate better results.

Appendix B: Comparison of different modu-
larity estimation algorithms

In Fig. 8, we show the results of five algorithms to esti-
mate the community structure of our functional climate
networks in terms of the resulting modularity values: fast
greedy [111], infomap [112], label propagation [113], leading
eigenvector [114] and WalkTrap [76]. Further details moti-
vating the choice of WalkTrap as a reference algorithm in
the body of this paper are provided in the figure caption.
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