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Human migration is often studied using gravity models. These models, however, have known limitations,
including analytic inconsistencies and a dependence on empirical data to calibrate multiple parameters for
the region of interest. Overcoming these limitations, the radiation model has been proposed as an alternative,
universal approach to predicting different forms of human mobility, but has not been adopted for studying
migration. Here we show, using data on within-country migration from the USA and Mexico, that the radiation
model systematically underpredicts long-range moves, while the traditional gravity model performs well for
large distances. The universal opportunity model, an extension of the radiation model, shows an improved fit
of long-range moves compared to the original radiation model, but at the cost of introducing two additional
parameters. We propose a more parsimonious extension of the radiation model that introduces a single parameter.
We demonstrate that it fits the data over the full distance spectrum and also—unlike the universal opportunity
model—preserves the analytical property of the original radiation model of being equivalent to a gravity model
in the limit of a uniform population distribution.
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L. INTRODUCTION remain the most widespread tools to model migration [14-17],
it is of interest to test whether the radiation model offers a
viable or even preferable alternative.

In this paper, we compare the performance of four different
models for internal (within-country) migration: the gravity
model, the radiation model, and two extensions of the radia-
tion model: the universal opportunity model [18], and a more
parsimonious extension that we call the damped opportunity
model. In the following we briefly introduce the models. We
apply them to data sets of internal migration flows in the
USA and Mexico and show that the radiation model captures
short-range moves well but underestimates longer-distance
migration. Both extensions of the radiation model remedy
this shortcoming. In addition, the damped opportunity model
transforms into a gravity model in the limit of uniform popu-
lation distribution, like the original radiation model, though
with more realistic parameter values, thus reconciling both

Two fundamental approaches to modeling human migra-
tion have found widespread application. The gravity model
estimates flows between two locations depending on their
relative distance and their respective population sizes [1]. In
the intervening opportunities model, on the other hand, the mi-
gration flow depends not on the distance but on the population
sizes of the locations in between origin and destination [2].
Conceptually, in both cases, the population size of a potential
destination is thought of as a proxy indicator of attainable
incomes or amenities.

More recently, building on the idea of intervening oppor-
tunities, the radiation model was developed [3]. In contrast to
the gravity model, as well as earlier intervening opportunities
models, it can be analytically derived from a simple particle
emission-absorption model and is parameter free, making it
attractive for data-limited applications.

Both gravity and radiation models have been applied to approaches.
different problems, ranging from commuting patterns [4,5] to
urban and public transport movement [6,7] to the spreading IL. MODELS
of diseases [8—10]. Several studies have compared the two ap-
proaches for commuter flows and other short-term trips; often A. Gravity model
finding that the gravity model matches the data better but the The first model we describe here is the widely used gravity

radiation model performs acceptably given its parameter-free model (GM), so named because of its mathematical similarity
nature [3,11-13]. However, there is no systematic comparison with Newton’s law of gravity [1,19,20]. One of the most
for longer-term, internal migration flows. As gravity models  general forms in which it can be expressed is

mmb
. . M = A— z L. (D
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Here M;; describes the total number of migrants moving from
origin i to destination j. The population sizes of the origin and
destination sites are given by m; and m;, with d;; representing
the distance between them, and A, a, b, and g are fitting
parameters. Sometimes, the distance dependence is expressed
through an exponential decay term, instead of a power law,
i.e., e72% in the denominator. The exponential approach has,
however, been shown to perform less accurately in many cases
[3]. We focus on the power-law approach. The GM model
used for our comparison has been introduced in Ref. [21]. It
consists of a superposition of two simple GMs as described
in Eq. (1). They use a cutoff distance enabling one GM to
estimate short-distance migration, whereas the second GM
estimates migration over longer distances. Both the USA and
Mexico can be divided into several states which then consist of
smaller counties or municipalities, respectively. Therefore, we
decide to separate long- and short-distance migration by using
intrinsic state borders. As a result, we differentiate between
inter- and intrastate migration, yielding

m;"m?'
M;; = A i + A
ij

m:? m?z
()

g
df;

where the parameters subscripted with 1 and 2 are associated
with intrastate and interstate migration, respectively.

B. Radiation model

The second model we discuss is the radiation model (RM)
[3]. It can be derived (see supplementary information of
Ref. [3]) from a particle diffusion process, where each migrant
is represented as a particle X, emitted in origin i and having
an absorption threshold z;). This threshold can be thought of
as the maximum level of income or amenities that the migrant
may be able to attain when staying in i. When migrating, he
or she will choose (will be “absorbed” by) a destination j that
offers a higher level of income or amenities. The threshold z§('>
is defined as the maximum number obtained after m; random
extractions from a distribution p(z), where m; is the popula-
tion size of i, and p(z) is an underlying distribution of incomes
or amenities whose exact choice is not relevant. Similarly,
any hypothetical destination j has a certain probability to
absorb the particle X, with the absorbance z§{ ) defined as the
maximum of m; random extractions from p(z).

The probability of a move from i to j to occur can then be
expressed as

P(Umi, my, s;) = / d2Py (P, (<P, (>2).  (3)
0

where s;; is the total population size within a circle of radius
d;j around i, excluding m; and m;. P,, (z) is the probability that
the absorption threshold is exactly z, i.e., that the maximum
value extracted from p(z) after m; trials is equal to z:

dP,, (<z) dp(<z)
dz dz

Similarly, the probability that all locations within the
radius d;; have absorbances lower than z, i.e., are not ac-
ceptable to the migrant, is given by the probability of
obtaining a maximum value smaller than z after s;; random

P, (2) = = mip(<z)" ! )

extractions:
Py, (<z) = p(<2)". 5

The probability that the next location, j, has an absorbance
greater than z is given by the probability that among m;
extractions from p(z) at least one is greater than z:

P, (>2) =1 - p(<z)™. (6)
Thus, Eq. (3) becomes

dp(<z g
p( )[p(<z)m,+ ij 1
dz

o0
P(1lm;, mj, s;;) = mi/ dz
0

_ p(<Z)mi+mj+.Y,/—l]

1 1
=m,-< - ) @)
m,’-l-S,'j mi+mj+sij

The total number of migrants moving from origin i to destina-
tion j can, therefore, be expressed as

m,-mj

M; ; ®)
(m; + s;;)(m; +m; + s;;)

M,'jz

where M, is the total number of migrants leaving the origin i.
It has been shown that Eq. (8) is accurate only in the limit
of very large numbers of location units with uniform popula-
tion distribution, while for real systems a normalization factor
1 . . . . .
ey applies, with M = ), m; [11]. For our application, given

that the numbers of counties in the USA and of municipalities
in Mexico are relatively large and the population distribution
is relatively homogeneous, the normalization factor is small
and we neglect it for simplicity.

Compared to the GM, the RM offers several advantages
[3]: it is parameter free and, therefore, does not require any
calibration; it can be analytically derived from a theoretical
framework; and it shows reasonable limits for large desti-
nation population sizes. Moreover, a GM with parameters
a+b=1 and g=4 can be derived from the RM in the
limit of a uniform population distribution, offering a way to
reconcile both approaches.

C. Universal opportunity model

The universal opportunity model (UOM) [18] is a general-
ization of the RM, allowing us to modify the relative weight
given to opportunities in the origin and the surrounding:

o0
My =M, / 2Py sarsy ()Pys, (<2)Pa (52)
0

_ M, (m; + as;j)m; )
[mi + (e + B)sijllmi + (@ + B)sij + my]

with o + B8 < 1. Here, the parameter o (termed the “ex-
ploratory tendency”) can be thought to represent a migrant’s
level of ambition regarding incomes or amenities in the des-
tination, while 8 (the ‘“cautious tendency”) can be thought to
represent the extent to which a migrant evaluates the interven-
ing opportunities s;;, before deciding to move to j. Fora = 0,
B = 1 the RM is obtained, while for « > 0 and 8 < 1, more
samples are drawn from p(z) at the origin, meaning a larger
probability for higher absorption thresholds. At the same time,

fewer samples are drawn in the surrounding d;;, meaning a
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smaller probability that any location there is found acceptable.
This results in larger flows to more distant destinations com-
pared to the radiation model. As shown further below, this
model, in its general form, does not simplify into a gravity-
type model in the limit of uniform population distribution.

D. Damped opportunity model

In addition to the three existing models, we propose a
more parsimonious (compared to the UOM) extension of the
radiation model, which we call the damped opportunity model
(DOM):

o0
Mi; = Mi/ dzPp, ()P (<2)Pn; (>2)
0
m;m; .
(mi + sf])(m, +m; + s;f/.)

=M, (10)

Again, for k = 1, the original RM is obtained. A choice
of k < 1 means that the number of intervening opportunities
evaluated by the migrant grows more slowly with distance
from the origin than does the population number s;;. An intu-
itive motivation for such a choice is that complete knowledge
about all intervening opportunities becomes harder to obtain
the larger s;; grows.

III. DATA AND CALIBRATION

A. Data
1. USA

Data on internal migration flows in the USA between 2007
and 2008 are obtained from the Internal Revenue Service
(IRS) [22]. The IRS estimates the number of internal migrants
based on the mailing addresses given in the tax returns. If
a person’s address has changed compared to the previous
year, the person is considered a migrant. One of the major
disadvantages of this data set is that it only captures move-
ments of people who are required to file income tax returns,
leading to an under-representation of poor and older people.
Furthermore, tax returns after September of the filling year are
excluded. This small percentage of tax returns mostly consists
of complex tax returns, reportedly belonging to high-income
persons. For comparison of intra- and interstate migration
[Fig. 4(a)], data on migration flows between 2005 and 2017
were obtained from the U.S. census [24]. Both data sets in-
clude 3140 counties within 50 states (excluding Alaska and
Hawaii). Additional data sets include county and state borders
[25], county population data [26], and distances in between
counties [27].

2. Mexico

Internal migration data for Mexico is obtained from the
IPUMS-International database [28]. Since [IPUMS only pro-
vides microcensus data, we use the method introduced in
Ref. [29] to calculate a full set of bilateral migration flows.
The population data were taken from the National Institute
of Statistics and Geography [23]. Lastly, we used the borders
of each municipality [30] to calculate its center. These centers
were then used to calculate the distances. The data set includes
2448 municipalities within 31 states.

TABLE I. Gravity model coefficients for the USA and Mexico
datasets.

Type State A a b g

Inter All (USA)
Intra All (USA)
Inter Texas

Intra Texas

Inter All (MEX)
Intra All (MEX)
Inter San Luis Potos
Intra San Luis Potos

5.94x10710 1.20 1.03 0.75
4.62x107* 0.74 0.60 0.66
7.74x107° 1.06 0.94 1.58
5.33x1073 0.64 0.78 1.30
2.03x1077 1.05 0.80 0.72
7.45%10~* 0.92 0.40 0.91
2.95x107° 1.33 0.93 0.90
7.29x10~* 1.45 0.33 3.51

B. Calibration

All RMs are normalized with the corresponding number of
migrants obtained from the observed data.

1. USA

For the GM we use all bilateral flows to estimate the fit
parameters. All parameters are estimated using a least mean
square optimization algorithm and are displayed in Table I.
Table II shows the total number of migrants estimated by
the GM, compared to the census data. These differ because
unlike the RM, the GM explicitly models the number of moves
between a given pair of locations. The implications of this are
discussed further below.

For the DOM we used «k = 0.92. For the UOM we chose
a = 0.2 and g = 0.7. All parameters were obtained by maxi-
mizing the related R? value.

2. Mexico

For the GM we use all bilateral flows to estimate the fit
parameters. All parameters are estimated using a least mean
square optimization algorithm and are displayed in Table I.
The total numbers of migrants obtained by the census and
estimated by the GM are given in Table II. For the DOM we
used k = 0.75. For the UOM we chose « = 0.2 and 8 = 0.1.
All parameters were obtained by maximizing the related R?
value.

IV. RESULTS

A. Data analysis

In this section we evaluate all four models against empiri-
cal data of internal migration flows in the USA and Mexico.

We evaluate models with respect to the distribution of
migrant flow size over travel distance and over destination

TABLE II. Number of migrants from census and gravity for the
USA and Mexico data.

Type Census Gravity

All States (USA) 16 020 712 24 810 250
Texas 4 385 540 5098 056
All States (MEX) 8515 260 6181710
San Luis Potos 103 311 97 029

054311-3



LUCAS KLUGE AND JACOB SCHEWE

PHYSICAL REVIEW E 104, 054311 (2021)

NN
o wu

Migration Share
=
w

.10

.05

0.0 . A
0 50 100 150 200 2000 4000

Distance in km Distance in km

600 600 U
1500 1500
[}
o
c
{2400 2400
wn
2
3300 3300
4200 4200
2x10° 6x10° 1x10° 2x10° 6x10° 1x10°
Orig Pop (GM) Orig Pop (RM)
10° —
0
104
.
_ 103 i
[}
3
s 102
10t
0 T
0

10! 102 10° 10° 10°
Observed

0 10 102 10° 10° 10°
Observed

.20 .06
(d) Observed
15
.10
.05
0.0
0 2x10° 4x10° 1x10° 2x10% 3x10° 4x10°
Destination Population Destination Population
1.0
600 20y (h)
0.8
1500 1500
0.6
2400 2400
0.4
3300 3300
0.2
4200 4200 ]
0.0
2x105 6x10° 1x10° 2x10° 6x10° 1x10°
Orig Pop (UOM) Orig Pop (DOM)
10° 10°
" (m)
104 104
1031} 1031
102 102
10t . 10t S:
0 - e UOM 0 e DOM
0 10! 102 10® 10* 10° 0 10! 102 103 10* 10°

Observed Observed

FIG. 1. Observed (tax return based) and model data for internal migration in the USA on a county level [22]. Panels (a) and (b) show the
distribution of migrant flows over travel distance (in 20-km bins; y axis indicates share of total migrant flow), for distances below (a) and above
200 km (b). Analogously, panels (c) and (d) display the distribution of migrant flows over destination population size. Panels (e)—(h) display
the Sgrensen-Dice coefficient for each model as a function of traveled distance (150-km bins) and origin population size (33 333-inhabitant
bins). Panels (j)—(m) compare the census and the model value of each individual flow. The orange line is the identity line. Black circles indicate
the average, and error bars indicate the 25th and 75th percentile, across a range of different size classes.

population size, and with respect to individual bilateral
(county-to-county or municipality-to-municipality) flows.
Furthermore, to quantitatively compare the model perfor-
mance for different data subsets, we calculate the Sgrensen-
Dice coefficient [31,32] which is given by

: odel census
ES;z)rensen _ 2 Zi,j min (Mij ’ Mij )

- . (11)
nsus model
2o M A 3 M

ESoensen can be interpreted as a similarity measure between
simulations and observations. Zero indicates a total mismatch,
whereas ES?e™en — 1 indicates a perfect match. Since we are
interested not only in the variation but also the magnitude
of the flows, a similarity measure is more useful than, e.g.,
a measure of correlation. The Sgrensen-Dice coefficient is
similar to some other similarity measures such as the Jaccard
index [33]. It has been shown to have a high sensitivity even
for heterogeneous data and to be relatively unaffected by
outliers [34]. In the past, it has been used extensively in eco-
logical research, but has recently also been applied to human
mobility [11].

Regarding the traveled distance [Figs. 1 and 2, panels
(a) and (b)], the RM fits the data well for intermediate dis-

tances (between approximately 50 and 200 km), but slightly
overestimates flows at shorter distances and substantially un-
derestimates flows at larger distances. The GM, on the other
hand, tends to underestimate short-distance migration and
slightly overestimate migration at intermediate distances, but
performs comparatively well at predicting longer-distance mi-
gration (in particular beyond approximately 500 km).

In relation to the destination population size [Figs. 1
and 2, panels (c) and (d)], both models fit the data rela-
tively well, apart from an overestimation of flows to smaller
destination counties or municipalities (approximately 50 000
inhabitants and below) and a slight underestimation of flows
to middle-sized destinations (200 000 to 500 000 inhabitants).
The Sgrensen-Dice coefficients [Figs. 1 and 2, panels (e)
and (f)] confirm that the RM yields good results for short
and intermediate travel distances, whereas for larger distances
(above approximately 500 km), the GM generally matches the
data more closely. This difference matters, since observed
flows at these larger distances are still substantial [Figs. 3(a)
and 3(b)]. Both models have difficulty representing migration
from smaller origins.

Finally, we compare individual origin-destination flows es-
timated by each model to the data [Figs. 1 and 2, panels (j)
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and (k)]. While the RM fits the data well on average for most
flow size classes, the spread is considerably larger than for
the GM.

Next, in order to examine the spatial distribution of mi-
gration flows more closely, we analyze migration originating
from counties in a single state. We choose Texas with its 254
counties in the USA and San Luis Potos with its 58 munici-
palities in Mexico. We distinguish between moves within the
state and moves to counties in different states, and we compare
the distribution of arriving migrants. For this analysis, we
set M; in Egs. (8) to (10) to the respective total number of

2x10°> 6x10° 1x106 106 2x10°> 6x10° 1x10°
e i
108 2°°I 108
[}
104 § 400 10
3 2 600
10 [} 103
102 800
2
Orig Pop =10! 1000 Orig Pop v
(Observed) (Observed)
(a) (b)

FIG. 3. Observed migration flow density in (a) the USA (IRS)
and (b) Mexico (IPUMS), in terms of traveled distance and origin
population population size. The colorbar indicates the number of
migrants.

migrants reported in the data, separately for intrastate and
interstate migration. This allows us to focus on the models’
performance in simulating the spatial distribution of flows,
rather than the total flow size. We consider this important,
since the previous analysis already showed that, given the
countrywide total number of migrants, the radiation model
would underestimate the share of interstate moves, which tend
to be longer distance.

The spatial distribution of migrants arriving from Texas to
other U.S. states is matched relatively well by the GM. The
RM shows a concentration of moves to close-by destinations
and underestimates the magnitude of longer-distance moves,
for instance, to the northwest coast and the New England
states [Fig. 4(a), panels A—C)]. A similar behavior is found in
Mexico; however, the GM there overestimates the magnitude
of flows from San Luis Potos state to distant municipalities
[Fig. 4(b), panels A—C)]. For intrastate migration, on the other
hand, the RM performs similarly well as the GM in San
Luis Potos and better than the GM in Texas [Figs. 4(a) and
4(b), panels F-H). These results are generally in line with our
findings from Figs. 1 and 2 that the RM performs well at inter-
mediate distances but underestimates long-distance migration.

When comparing the GM and the RM, one has to keep in
mind that one fundamental difference between the two model
approaches is that the RM models exclusively the spatial
distribution of moves out of a given origin i. The total number
of moves, M;, enters in Eq. (8) as a separate parameter that
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FIG. 4. Observed and model data for inter- and intrastate migration originating in (a) Texas and (b) San Luis Potos. Observed flows
were taken from census data [23,24]. Panels A-E display the spatial distribution of arriving intrastate migrants and panels F-K display the

distribution of arriving interstate migrants.

can be set to match the observed number from census data.
In contrast, the GM models the absolute number of moves
between any pair of locations i and j. As a result, the total
number and the spatial distribution of moves out of i cannot
be clearly separated. Therefore, estimates of the total number
of migrants differ between the census data and the GM, as
displayed in Table II.

This could lead to the GM comparing unfavorably to the
RM, because the RM is provided, and therefore matches ex-
actly, the total number of moves. To test the implications of
this, we perform an additional calibration of the GM, in which
we force the total number of moves to match the observed
one (Supplemental Material [35]). The performance of the
resulting, “normalized” GM is very similar to that of the initial
GM, thus confirming the results discussed in this section (see
Supplemental Material [35]; Figs. 1 and 2, panels (a)—(e) and
(-

We now turn to the UOM and the DOM. In terms of
flow size versus travel distance, in the USA, both the UOM
and the DOM fit the data better than the RM for most of
the distance spectrum [Figs. 1(a) and 1(b), dash-dotted and
dotted lines]. The share of short-distance flows is slightly
underestimated. In Mexico, the DOM fits the data even better
than the UOM for distances below 50 km and between 150
and 700 km [Figs. 2(a) and 2(b)]. No significant difference is
found between all three radiation-type models in terms of flow
size versus destination population size [Figs. 1 and 2, panels
(c) and (d)].

Considering the Sgrensen-Dice coefficients for the UOM
and the DOM, one sees a clear improvement compared to the
RM. In the USA, both models show a similar performance for
travel distances up to approximately 1500 km. At even larger
distances, as well as for migration from smaller origin coun-
ties, the UOM tends to achieve higher coefficients [Figs. 1(g)

and 1(h)]. It should be noted that observed flows are generally
small at such very large distances [compare Figs. 3(a) and
3(b)]. For Mexico, both the UOM and the DOM produce
major improvements compared to the RM across most of the
travel distance—origin population space, and perform simi-
larly well as, or even better than, the GM [Figs. 2(g) and
2(h)]. For small distances (0—100 km bin), the UOM achieves
somewhat smaller coefficients than the RM, while the DOM
achieves a performance similar to that of the RM.

In terms of individual bilateral flows, both the UOM and
the DOM match the mean flows in the USA very well across
all size classes and have a spread smaller than that of the RM.
The UOM shows a spread even smaller than that of the DOM
and the GM for small flows [Figs. 1(1) and 1(m)]. Similar
results can be observed for Mexico, although here the DOM
clearly matches the data better than the UOM for large flows
[Figs. 2(1) and 2(m)].

Both the UOM and the DOM match the spatial distribution
of arriving migrants well, for both interstate and intrastate
migration from/in Texas [Fig. 4(a), panels D, E and J, K]. For
interstate migration originating in San Luis Potos, both the
DOM and the UOM come close to the observed pattern, with
the UOM showing somewhat more and the DOM somewhat
less long-distance migration than observed [Fig. 4(b), panels
D and E]. As such, both models produce a pattern more real-
istic than that of either RM or GM. For intrastate migration in
San Luis Potos, there is little difference between both models
and, in fact, between any of the models [Fig. 4(b), panels
F-K].

B. Theoretical background to the damped opportunity model

As we have seen above, the DOM fits empirical data better
than the RM and as well as the UOM, or even slightly better

054311-6



EVALUATION AND EXTENSION OF THE RADIATION ...

PHYSICAL REVIEW E 104, 054311 (2021)

in the case of the Mexico dataset. We propose the DOM as a
useful extension of the RM for the case of intrastate migration.
It is more parsimonious than the UOM, in having only a
single parameter «. Moreover, this parameter can be readily
interpreted as representing incomplete information, from an
individual migrant’s perspective, about the totality of inter-
vening opportunities between i and j. The larger the distance
between i and j, the less likely it becomes that a potential
migrant will obtain and evaluate information about all jobs or
amenities within the surrounding. Indeed, this consideration
may be less relevant for short-distance commuter mobility, but
for longer-distance migration, it is plausible that the weight
of the intervening opportunities scales sublinearly with the
population s;;.

The DOM, moreover, preserves an analytical property of
the RM that may be desirable. A conceptual difference be-
tween radiation- or intervening-opportunities-type models and
gravity-type models is that the former account for an effect
of inhomogeneities in the spatial distribution of population
on average travel distance, while the latter do not. In the
special case of a uniform population distribution (implying
m; =m; = m and s5;; X mdl-zj), the original RM can be trans-
formed into a gravity model with parameters a + b = 1 and
g = 4, which agrees well with experimental values for a grav-
ity model of commuting trips (supplementary information of
Ref. [3]). In the absence of spatial inhomogeneities, the two
modeling approaches can thus be reconciled.

We can apply the same transformation to the DOM. If the
distribution of population over space is uniform, and spatial
units have equal area F, then s;; = %ndizj. Plugging these
assumptions into the DOM [Eq. (10)] we obtain

]ﬁ _ m;ni;
Mo ) (m o+ )
m

m

m

[1+m=t (Fd2)"][2 + m! (Fd?)"]
m

(%)% =2 J4c

m372l{

d4
where we have omitted subscripts after the first line for clarity.
The result is equivalent to a gravity model witha +b =3 —
2k and g = 4k. With ¢ < 1, this makes the GM parameters
more similar to the ones we estimate for internal migration,
which are substantially different from those estimated for
commuting [3].

The UOM, on the other hand, does not generally transform
into a gravity-type model in the limit of uniform population
distribution. Applying the same transformation of variables to
the UOM [Eq. (9)] yields

My <L)2ﬁ L_eF _mo
M, \@+p)r) a* " (@+pPrd®

which is equivalent to a superposition of two GMs, one with
g =4 and one with g = 2. If § is set to zero, then the UOM

&

= (F/n)*

12)

transforms into a gravity-type model with parameters a =
b=0and g =2, i.e., the predicted flow distribution becomes
independent of the origin and destination population sizes.

V. DISCUSSION AND CONCLUSIONS

We have, for the first time, systematically evaluated the ra-
diation model for the case of internal migration and compared
it to the gravity model, for two different, large countries: the
USA and Mexico. Given its simplicity, we find the radiation
model to perform relatively well overall and partly even better
than the gravity model when it comes to short-distance mi-
gration. However, the radiation model features a fast decay
of flow size with distance and thus severely underestimates
long-distance migration, i.e., to destinations more than a few
hundred kilometers away. Unlike commuting flows, which
are very small at such large distances, long-distance moves
beyond 300 km (500 km) make up 22% (19%) of all observed
migration flows in the USA and 26% (22%) in Mexico [see
Figs. 3(a) and 3(b)]. The systematic underestimation of such
moves by the radiation model is therefore a serious drawback
for applications related to migration. Using the analogy with a
radiation process, the absorption of particles by the surround-
ing matter is too strong compared with empirical data.

We have evaluated two extensions of the radiation model
that offer the flexibility to modulate the absorptive strength.
The universal opportunity model (UOM) has been shown to
work well for a variety of different forms of human mobil-
ity [18] and, according to our analysis, works better than
the radiation model at reproducing long-distance migration.
This, however, comes at the cost of poorer performance for
short distances, at least in Mexico, and at the expense of two
parameters that need to be calibrated. The damped opportu-
nity model (DOM), suggested here as a more parsimonious
extension of the radiation model, performs well over almost
the entire travel distance spectrum in both countries, matches
the spatial distribution of flows well both at the country level
and for interstate and intrastate migration originating in se-
lected states, and has only a single free parameter that needs
calibration. Moreover, unlike the UOM, the DOM preserves
the property of the radiation model of being equivalent to
a gravity model in the limit of uniform population distribu-
tion. This allows users to reconcile the different modeling
paradigms and choose the model that best suits the structure of
the considered system and the availability of empirical data.

Considering the complexity of a phenomenon such as
human migration, both the original gravity model and the
radiation model are very simplistic, representing a given lo-
cation only by its population size. Although agglomeration
effects are a strong driver of migration [36], and population
size can generally be considered to reflect, to some extent,
the attractiveness of a given location, it is only a proxy
for various factors such as job opportunities, social ameni-
ties, public infrastructure, etc., that attract migrants [37-39].
Economists and demographers now routinely use modified
gravity models that include some of these factors and their
influence on migration in more direct ways, for instance,
representing economic opportunities through wage levels or
employment rates, and representing the migration decision
process through utility maximization frameworks [40—42].
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Nevertheless, these modified gravity models suffer from some
of the same drawbacks as the basic gravity model; notably,
a lack of mathematical consistency and a high degree of
parametrization [3]. The findings from our study suggest that
modified radiation models, as an alternative modeling ap-
proach, may have potential for future practical applications
in migration research.

To conclude, in this paper we have shown that the radia-
tion model strongly underestimates long-distance migration
and, as a result, overestimates short-range migration flows.
We have proposed an extended version of the radiation
model, which aims at solving the previously mentioned prob-
lems by including a parameter which dampens the growth
of the intervening opportunities with increasing distance.
We have compared this approach to the universal oppor-
tunity model, an existing extension of the radiation model

including two fitting parameters, and have shown that our
“damped opportunity model” yields a similar performance
despite only using a single parameter and also preserves a
desirable analytical property of the original radiation model.
Our paper demonstrates that the gravity model yields better
results than the original radiation model for within-country
migration, but that radiation-type models can be adapted
to offer competitive performance, while being analytically
more consistent and more parsimonious than the gravity
model.
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