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Supplementary Table S1|Sensitivity scenarios. The sensitivity scenarios listed below were
conducted as variations to 1.5C-Elec to study the importance of specific technology assumptions in
explaining differences between the 1.5C-Elec and 1.5C-Conv pathways. Results are shown in Suppl.
Fig. S1.

HiBio Bioenergy according to agro-economic potential (up to 300 EJ),
as in 1.5C-Conv. All other assumptions as in 1.5C-Elec.

HiCCS Global CCS injection capacity of 20 GtCO,/yr, as in 1.5C-Conv. All
other assumptions as in 1.5C-Elec.

HiBioCCS Global CCS injection capacity of 20 GtCO,/yr and Bioenergy
according to agro-economic potential (up to 300 EJ), as in 1.5C-
Conv. All other assumptions as in 1.5C-Elec. All other
assumptions as in 1.5C-Elec.

ConvTrans No market introduction policies and infrastructure policies for
electric vehicles resulting in prolonged dominance of combustion
engine vehicles, as in 1.5C-Conv. All other assumptions as in
1.5C-Elec. All other assumptions as in 1.5C-Elec.

HilntCost Lower flexibility of electricity demand resulting in greater storage
requirements for VRE integration, as in 1.5C-Conv. All other
assumptions as in 1.5C-Elec. All other assumptions as in 1.5C-
Elec.

SlowPVLearning Lower learning rate (20%) and higher floor cost (200S/kW),
resulting in a slower degression of solar PV capital cost to around
460 $2015/kW in 2050), as well as lower flexibility of electricity
demand resulting in greater storage requirements for VRE
integration (as in HilntCost). All other assumptions as in 1.5C-
Elec.

NoPVLearning No further cost degression for PV technology from 2025,
resulting in quasi-constant capital cost of ~930 $2015/kW. All
other assumptions as in 1.5C-Elec.




Supplementary Table 2| Comparison of investment costs and emergent levelized costs of
electricity with other literature for solar PV, wind energy, nuclear power and battery costs. LCOEs
only account for investment, operation and maintenance costs, fuel costs, but not for costs related
to systems integration of variable renewable electricity. Comparison of LCOE is more straightforward
than comparison of capital costs in S/kW, as the latter depend on system configuration details, e.g.
hub heights in the case of wind power, or if solar photovoltaics are installed with fixed tilt or with

tracking.

A: Solar Photovoltaics

This study

Other literature

LCOE 2030:

1.5C-Elec: 13-36 US$2015/MWh
1.5C-Conv: 21-56 $2015/MWh
Reference: 27-71 USS2015/MWh
LCOE 2050:

1.5C-Elec: 10-17 US$2015/MWh
1.5C-Conv: 19-34 $2015/MWh
Reference: 22-38 US$2015/MWh

LCOE 2020:

29-42 $/MWh US utility-scale (Lazard 2020%)
63-94 S/MWh community (Lazard 2020%)

24-41 $/MWh US utility-scale (NREL ATB 2020?)

LCOE 2030:

18-30 $/MWh EU utility-scale (Vartiainen 20203)
11-365/MWh US utility-scale (NREL ATB 2020?)
LCOE 2050:

10-18 $/MWh EU utility-scale (Vartiainen 2020°)
8-23 $/MWh US utility-scale (NREL ATB 2020?)

Investment cost 2030:
1.5C-Elec: 250-400 $2015/kW
1.5C-Conv: 400-640 $2015/kwW
Reference: 510-830 $2015/kW
Investment cost 2050:
1.5C-Elec: 190 $2015/kW
1.5C-Conv: 380 $2015/kwW
Reference: 440 $2015/kwW

Investment cost 2019:
770 S/kW (median of 2019 market prices) (IEA PVPS 2020%)

Investment cost 2030:
230-320 $/kW (Vartiainen et al 20203)

Investment cost 2050:
120-220 $/kW (Vartiainen et al 20203)




B: Onshore wind power

This study Other literature
LCOE 2030: LCOE 2020:
1.5C-Elec: 60-140 $2015/MWh 26-54 S/MWh US (Lazard 2020%)
1.5C-Conv: 60-135 $2015/MWh 49-95 $/MWh India (Lazard 2020%)
Reference: 59-128 US$2015/MWh 26-123 $/MWh US, class 1-10 (NREL ATB 2020?)
LCOE 2050*: LCOE 2030:
1.5C-Elec: 39-69 $2015/MWh 22-43 S/MWh (Wiser 2021)
1.5C-Conv: 38-67 $2015/MWh 20-385/MWh (BNEF New Energy Outlook 2020°)
Reference: 42-67 USS2015/MWh 16-101 $/MWh US, class 1-10 utility-scale (NREL ATB
2020?)
LCOE 2050:

17-37 $/MWh (Wiser 2021°)
15-28 S/MWh (BNEF New Energy Outlook 2020°)
11-91 $/MWHh US, class 1-10 utility-scale (NREL ATB

2020?)
Investment cost 2030: Investment cost 2019:
1.5C-Elec: 1000-1350 $2015/kW 1050-1450 $/kW (Lazard 2020%)
1.5C-Conv: 1100-1300 $2015/kW 1170-1500 $/kW (25th-75th percentile) (Wiser 2021°)

Reference: 1170-1600 $2015/kW
Investment cost 2035:

Investment cost 2050: 890-1670 S$/kW (25th-75th percentile) (Wiser 2021°)
1.5C-Elec: 1180-1190 $2015/kW
1.5C-Conv: 1180-1190 $2015/kwW
Reference: 1200 $2015/kW

* Note: Wind LCOE increase in 1.5C-Elec compared to other scenarios in some regions due to greater
deployment resulting in greater reliance on inferior wind resource.

C: Nuclear power

This study Other literature

LCOE 2030: LCOE 2020:

70-115 $2015/MWh 129-198 $/MWh (Lazard 2020%)
LCOE 2050:

86-109 $2015/MWh

Investment cost 2030 (all scenarios): Investment cost 2020:

4700-8000 $2015/kW 7675-12500 S/kW (Lazard 2020%)

Investment cost 2050 (all scenarios): Range of costs for reactors under construction or planned in
5900-7500 $2015/kW EU & US*: 6000-11000 $/kW

*Note: In the US and Europe, new constructions (since 2000) have all experienced massive time and cost overruns.
Costs for reactors currently under construction or recently finished are in the range of 6,000-11,000 S/kW. As even the
latest European Prressurized Reactor in planning (Sizewell C) shows no reduction in costs compared to the previous
constructions of the same kind, we only expect weak cost reductions in the future.

Furthermore, we assume that low costs currently reported for Russia and China are at least partially due to lower
security and environmental regulation as well as cheap labor, and expect that as per-capita income grows in these
regions, so will security and environmental regulations. Accordingly, we assume that ALL energy technology investment
costs converge globally until 2070.




D: Battery storage

This study Other literature

Investment cost 2030: Investment cost:

1.5C-Elec: 71 $2015/kWh 2023: ~100 $/kWh battery pack (BNEF, 2020°)

1.5C-Conv: 91 $2015/kWh 2030:

Reference: 105 $2015/kWh 64-289 S/kWh Lithium-ion batteries (Schmidt et al
20177)

Investment cost 2050: 58 $/kWh battery pack (BNEF, 2020°)

1.5C-Elec: 69 $2015/kWh

1.5C-Conv: 82 $2015/kWh 2050

Reference: 86 $2015/kWh 39-251 S/kWh Lithium-ion batteries (Schmidt et al
20177)

References on wind, solar and battery technology costs

1. Lazard. Levelized Cost of Energy and of Storage. Lazard.com
http://www.lazard.com/perspective/levelized-cost-of-energy-and-levelized-cost-of-storage-2020/
(2020).

2. NREL. Electricity Annual Technology Baseline (ATB) Data Download.
https://atb.nrel.gov/electricity/2020/data.php (2021).

3. Vartiainen, E., Masson, G., Breyer, C., Moser, D. & Roman Medina, E. Impact of weighted average
cost of capital, capital expenditure, and other parameters on future utility-scale PV levelised cost
of electricity. Prog Photovolt Res App! 28, 439-453 (2020).

4. IEA PVPS. TRENDS IN PHOTOVOLTAIC APPLICATIONS. https://iea-pvps.org/wp-
content/uploads/2020/11/IEA_PVPS_Trends_Report_2020-1.pdf (2020).

5. Bloomberg Finance L.P. BNEF New Energy Outlook 2020. (2020).

6. Wiser, R. et al. Expert elicitation survey predicts 37% to 49% declines in wind energy costs by
2050. Nature Energy 1-11 (2021) doi:10.1038/s41560-021-00810-z.

7. Schmidt, O., Hawkes, A., Gambhir, A. & Staffell, I. The future cost of electrical energy storage
based on experience rates. Nature Energy 2, 17110 (2017).



Supplementary Table 3|Investment costs (IC) and conversion efficiencies (eff.) for crucial fossil and
biomass-based technologies as well as hydrogen electrolysis.

Technology 2020 2035 | 2050
Biomass Electricity (IGCC) IC [$2015/kW] 2600 2696 | 2780
w/o CCS n [%] 35 43 46
Biomass Electricity (IGCC) | IC [$2015/kW] 6672 3852 | 3967
w/ CCS n [%] 29 32 35
Coal Electricity (pulverized | IC [$2015/kW] 1499 2147 | 2090
coal) w/o CCS n [%] 41 45 46
Coal Electricity (pulverized | IC[$2015/kW] 5612 5184 | 4614
coal) w/ CCS n (%] 34 35 36
Coal Elctricity (IGCC) IC [$2015/kW] 6012 5360 | 4555
w/ CCS n [%] 35 40 43
Gas Electricity (IGCC) IC [$2015/kW] 983 790 892
w/o CCS n [%] 55 61 63
Gas Electricity (IGCC) IC [$2015/kW] 3018 2459 | 2049
w/ CCS n (%] 49 54 56
Biomass Hydrogen IC [$2015/kW] 3176 1892 | 1892
w/o CCS n [%] 61 61 61
Biomass Hydrogen IC [$2015/kW] 4301 2345 | 2406
w/ CCS n [%] 55 55 55
Coal Hydrogen IC [$2015/kW] 1884 1793 | 1748
w/o CCS n [%] 59 59 59
Coal Hydrogen IC [$2015/kW] 3236 2022 | 2032
w/ CCS n [%] 57 57 57
Gas Hydrogen IC [$2015/kW] 647 652 | 648
w/o CCS n [%] 73 73 73
Gas Hydrogen IC [$2015/kW] 781 718 | 726
w/ CCS n [%] 70 70 70
Electrolysis Hydrogen IC [$2015/kW] 1698 647 434

n [%) 80 80 80
Biomass-to-Liquids IC [$2015/kW] 6422 3482 | 3508
(Fischer-Tropsch) w/o CCS n [%] 40 40 40
Biomass-to-Liquids IC [$2015/kW] 8109 4363 | 4483
(Fischer-Tropsch) w/ CCS n [%] 41 41 41
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Supplementary Figure 1| Transformation characteristics in 2050 for 1.5°C sensitivity scenarios with
varying technology assumptions. Sensitivity scenarios are variations of 1.5C-Elec, as defined in Table
S1. (a) Absolute values of indicators. (b) Difference of indicators to 1.5C-Elec case. GDP effects are
given as percentage losses relative to Reference in 2050.
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Supplementary Figure 2| Installation costs and levelized cost of electricity for key regions. (a)
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the China, EU-28, India and USA model regions as well as the global average. (b) Resulting levelized
costs of electricity generation from solar PV, wind and nuclear power. Note that LCOEs only account

for investment, operation and maintenance costs, fuel costs, but not for costs related to systems
integration of variable renewable electricity.
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Supplementary Figure 4| Sankey flow diagrams of global energy system structure for Reference,
WB2C-Elec, 1.5C-Elec and the years 2030, 2050, 2100. The lowest panel indicates modeled energy
system flows for 2015. Energy flows are given in units of EJ per year and describe secondary energy
generation by primary energy input (left to middle), and final energy provision by energy carrier

(middle to right).
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Supplementary Figure 8| Transformation of the mobility sector. Global evolution in the Reference,
WB2C-Elec and 1.5C-Elec scenarios of (a) final energy demand by end-use and energy carrier, (b)
passenger transportation in light duty vehicles, and (c) freight transport.
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Supplementary Figure 9| Final energy demand in the buildings sector in the Reference WB2C-Elec
and 1.5C-Elec scenarios.
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Supplementary Figure 10| Transformation of the industry final energy demand. Global evolution of
final energy demand by end-use and energy carrier in industrial sub-sectors.
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Supplementary Figure 11|Energy service and material demands. Developments of passenger
transport in terms of total global passenger transport, road passenger transport, international
aviation (top row), as well as freight transport, total steel production and cement production
(bottom row).
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Supplementary Figure 12| Global Energy Supply Investments. Mitigation pathways in line with the
1.5-2°C climate targets are characterized by a rapid ramp-up in overall energy supply investments.
Overall investments in the 1.5C-Conv scenario tend to be higher than in 1.5C-Elec due to more
pessimistic assumptions about further cost degression for solar power as well as additional
investment cost into biomass-to-liquids conversion. Note that investments into fossil resource
extraction are not included.
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Supplementary Figure 13| Carbon price development. (a) Evolution of globally averaged carbon
prices in the four climate change mitigation scenarios 1.5C-Elec, 1.5C-Conv, WB2C-Elec and WB2C-
Conv. Funnels in the background indicate CO,-price levels from SR15 scenarios with comparable
climate stabilization targets. (b) Regional carbon prices in the WB2C-Elec and 1.5C-Elec scenarios.
Global averages were calculated by weighting regional prices with the share in global gross fossil
emissions (net of carbon dioxide removal).
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