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Gravity models do not explain, and cannot predict,
international migration dynamics

Robert M. Beyer® 1% Jacob Schewe'! & Hermann Lotze—Campen®1'2

The major social and economic impacts of international migration have led to a strong
interest in better understanding the drivers of cross-border movement. Quantitative models
have sought to explain global migration patterns in terms of economic, social, climatic, and
other variables, and future projections of these variables are increasingly being used to
forecast international migration flows. An important implicit assumption in the most widely
used class of these approaches, so-called gravity models, is that their parameterisation based
on panel data enables them to describe the effects of predictor variables on migration flows
across both space and time, i.e., that they explain flow variation both across country pairs at a
given time and across time for a given country pair. Here we show that this assumption does
not hold. Whilst gravity models describe spatial patterns of international migration very well,
they fail to capture even basic temporal dynamics, indeed, often worse than even the time-
invariant average of the historical flows. We show that standard validation techniques have
been unable to detect this important limitation of gravity models due to the different orders of
magnitude of migration flows across spatial corridors, on the one hand, and over time, on the
other hand. Our analysis suggests that gravity-model-based inferences about the effects that
certain variables have had, or will have, on international migration over time may in reality
represent statistical artefacts rather than true mechanisms. We argue that future predictions
based on gravity models lack statistical support and that, in its current form, this class of
models is not suited for informing policy makers about migration trajectories in the coming
years and decades.
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Introduction

nternational migration has shaped global socio-political dis-

courses in recent decades unlike any other demographic

process and has had lasting effects on domestic political
landscapes (Kapur, 2014; Trauner and Turton, 2017; Blinder and
Allen, 2020) and international relationships, both between
countries of origin and destination and between different coun-
tries of destination (Papademetriou and Banulescu-Bogdan, 2016;
Martin, 2017). A strong interest in better understanding the
drivers of cross-border movements, coupled with an increasing
availability of global bilateral migration estimates (Ozden et al.,
2011; Abel, 2018), has led to the development of quantitative
models in which migration flows are estimated as a function of
predictors such as country- or country-pair-specific geographic,
demographic, political, economic, environmental, linguistic, or
cultural variables (e.g., Belot and Ederveen, 2012; Backhaus et al.,
2015; Adsera and Pytlikova, 2015; Poot et al., 2016; Cai et al,,
2016; Cattaneo and Peri, 2016).

Gravity models represent the most widely used, and still
rapidly growing (Ramos, 2016), class of such approaches. Ori-
ginally referring to a characterisation of migration flow in terms
of the population sizes of the countries of origin and destination
and the geographic distance between them (in analogy to New-
ton’s law of gravitation), the term has since been used more
generally for linear or nonlinear regressions that relate migration
flows to relevant predictor variables (Beine et al., 2016; Poot et al.,
2016; Ramos, 2016). Unknown parameters in the regression
function are estimated based on panel data observations from
across both countries and time. Gravity models have been used to
explain historical migration patterns, and are being used
increasingly to seek insights into future global migration flows.
For example, gravity models have been used to infer that
migration from poor countries will increase as national income
levels rise in the coming decades (Docquier, 2018; Rikani and
Schewe, 2021), and, in the context of future climatic changes, that
migration increases as the result of environmental degradation
(Afifi and Warner, 2008; Reuveny and Moore, 2009), more fre-
quent natural disasters (Afifi and Warner, 2008; Ragazzi, 2012;
Groschl and Steinwachs, 2017), higher temperatures (Backhaus
et al,, 2015; Maurel and Tuccio, 2016; Cai et al., 2016; Cattaneo
and Peri, 2016; Helbling and Meierrieks, 2021), or exposure and
vulnerability to climate change (Benveniste et al., 2020).

Whilst gravity models have been assumed to map effects “both
over time and across countries” (Beine and Parsons, 2015) given
the spatio-temporal panel data used to parameterise them, it is
important to note that it is entirely possible for a gravity model to
match the calibration data very well without describing any
temporal patterns correctly. This is because migration flows
across countries vary over several orders of magnitude, whereas
flows to or from a given country over time generally do not. As a
result, a strong performance of a gravity model in terms of cap-
turing spatial patterns can mask a poor performance in terms of
mapping temporal trends. This becomes problematic when
gravity models that essentially describe only spatial patterns of
migration are used to draw inferences about how migration
changes through time, both in terms of explaining past and
predicting future flows. For example, a spatial correlation between
out-migration and some climatic variable, represented in a gravity
model, may be used as a statistical basis for predicting how cli-
matic changes will affect out-migration in a certain country over
time; however, when correlating the country’s historical out-
migration and climatic record, the direction of the relationship
may actually be opposite to that found at the spatial level (ie.,
across countries). This fallacy in the application of gravity models
may lead to false conclusions about past or future migration
dynamics.
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Here, we demonstrate that these caveats are not merely theo-
retical, but form an important part of the statistical mechanics of
gravity models. We consider simple and complex examples of two
important categories of gravity models and parameterise them
using global panel data. Whilst the models fit the spatio-
temporally pooled data very well, they fail to capture even basic
temporal trends in the observations. Our analysis reveals that the
implicit assumption made in gravity models used in temporal
contexts—that migration dynamics follow statistical rules similar
to those that describe spatial migration patterns—is generally not
justified, and that the former rules are considerably more complex
than the latter ones. We conclude that gravity models calibrated
based on spatio-temporally pooled data are not suited for pre-
dicting future international migration.

Methods

Model design and parameterisation. We considered bilateral
gravity models representing two model categories characterised
by the presence of origin—destination-specific fixed effects in the
one case and their absence in the other. Nicolli and Bettin (2012),
Beine and Parsons (2015), Backhaus et al. (2015), Cai et al. (2016)
represent examples of the former category, Docquier (2018),
Reuveny and Moore (2009), Rikani and Schewe (2021), and
Cohen et al. (2008) of the latter. Whilst sharing important
similarities in the way they statistically represent migration flows,
models from these two categories differ in key aspects with regard
to how they map spatial and temporal patterns, to which we
return later on. For each of the two categories, we examined a
simple and a complex gravity model, based on only a few pre-
dictors in the one case and a larger number in the other. This
allows us to show that the deficiencies of gravity models emerge
already for a simple setup and do not necessarily subside as model
complexity increases. First, we considered

Model 1 :log(Mijt) ~ po+py -log(Py) +p, - log(Pjt)
+p; - log(I;) +py - log(Ijt) +ps- 10g<Dij)7
(1

where M;; denotes the number of migrants that move from
country i to country j in year t, P;, and I;; represent the population
size and per-capita gross domestic product (GDP) in country i in
year t, respectively, and D; denotes the geographic distance
between countries i and j. The predictors in Eq. (1) are present in
almost all gravity models in previous studies and are often used as
a basis on top of which the roles of specific additional variables of
interest are investigated.

Our second model provides an example of such a more
complex model. In addition to the above variables, it includes
additional economic as well as social, political, educational,
demographic, linguistic, historical, geographical, and health-
related predictors:

Model 2 : log(M,»jt) ~ po+py - log(P;) +p, ‘log<Pjt>

+ps ‘log(lit) + Py 10g(ljt)

+ps5 - Uy +ps- Uy +p7 - Ey

+ps - Ey +po - Hy +pyo- Hy @
+pu S TP St Yy

+pi6- B+ P17 Cj+pis - Ly

+ 19 - log <D1j>

Here, Uj, represents the unemployment rate in country i in
year t, E; represents education measured in expected years of
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schooling, H;; represents general health measured in life
expectancy at birth, S;, represents political stability, Y;, represents
the proportion of the population aged 20-35 (associated with
increased mobility), and B; represents immigration restrictive-
ness. With the exception of Y; and Bj, which are likely relevant
only in the country of origin and destination, respectively, we
included all of the aforementioned variables from both the
country of origin and destination. The origin-destination-specific
and time-invariant variables Cj and L; take the value 1 if
countries i and j share a colonial link and an official language,
respectively, and 0 otherwise. Unlike My, Py, Ii», and Dy, the
additional variables in Model 2 are not approximately log-
normally distributed and were therefore not logarithmised.

Analogous to Models 1 and 2, respectively, we additionally
considered the fixed-effects models

Model 3 : log(Mij,) ~p;- log(Pit) +p,- log(Pﬂ)

(3
+p; - log(I;) +py - log(ljr>+cij

and
Model 4 : log(Mijt> ~py- log(Pit) +p- lOg(Pjt)

+Dps 'log(Iit) + Py ’log(Ijt)

+ps5- Uy +pe- Uy +p;- Ey (4)
+pg - By +po - Hy + pyo - H

+Pu S+ P S+ Pz Ry

+pu - Ry +p1s - Yy + P16 - Byt ¢

in which the ¢;; are constants depending on the country of origin
and destination. They are meant to capture the effects of time-
invariant factors, including the geographic distance between
countries and whether they share a common language and
colonial history, which in Models 1 and 2 had been assumed to
follow a specific functional relationship.

For the four models, we estimated the parameters p,,, and ¢; in
Models 3 and 4, using a least-squares approach based on the
following observational data. Historical migration flows, M;;,
were obtained from a dataset covering 206 countries of origin, 37
OECD countries of destination, and the period 1995-2019 in
annual time steps (OECD, 2021). We selected these data for our
main analysis because their annual resolution allows us to assess
temporal trends particularly well. Corresponding annual national
per-capita GDPs, I;;, during 1995-2019 were obtained from an
updated version of the dataset in James et al. (2012), population
sizes, P;;, and unemployment rates, Uy, were obtained from The
World Bank (2021), the expected number of schooling years from
UNDP (2021a), life expectancy at birth from UNDP (2021b), the
proportion of 20-35 year-olds from Lutz et al. (2018), political
stability from the Economist Intelligence Unit (2019), and
immigration restrictiveness (available only until 2010) from
Helbling et al. (2017). After removing zero flows and missing
data, we retained a total of 17,759 and 9166 data points for the
parameterisation of Models 1 and 3 and of Models 2 and 4,
respectively.

To demonstrate that our findings are not merely the result of
the annual temporal resolution of the above data, we repeated our
analyses using a global dataset of bilateral migration flows in
5-year intervals (Abel and Cohen, 2019). For comparability with
our main analysis, we subset these data to the same country pairs
and the time period as in the annual data. Corresponding
predictor variables were computed as 5-year averages of the
relevant annual data. For this setup, a total of 5265 and 3957 data
points were available for the parameterisation of Models 1 and 3
and of Model 2 and 4, respectively.

The estimated parameter values for the different setups are
provided in Supplementary Table 1.

Model comparison against spatio-temporally pooled data.
Using the estimated parameters, we computed the R? value of
each model to assess the proportion of the variance in the
observed data that the model explains,

e Zije (log(Mljt> — 10g<Mﬁt)>2 )

2
i (log (Mz]t) - log(M))
where M;;; and Mijt, respectively, denote the observed and the
(model-specific) simulated migration flow from country i to
country j at time t, and where log(M) denotes the mean of the
logarithmised observed flows across all i,jt.

The different orders of magnitude of the spatial, compared to
the temporal, variation in the observed migration flows make it
possible, in principle, for a gravity model to achieve a high R?
value despite not capturing temporal patterns, as noted above.
We can largely isolate the models’ performances in terms of
describing temporal, rather than spatial, signals (see Supplemen-
tary Note 1) by comparing the available observed and simulated
relative changes in migration over time,

~ ~

def Mijt - Mz'j(t—l) def Mijt - Mij(t—l)

AMy, = and AM;, =—— (6)
ij(t—1) Mij(tfl)
Note that AMj; is the discrete derivative of log(Mj;) with

respect to time. Analogous to the above-described comparison of
the two models against absolute flow data, we computed R? values
for each model based on the observed and simulated relative
changes in flows,

N2
(AM,.J, - AMW)

Zi,j,t

__\2 "
Zij,t (AMijt - AM)

ARP¥ ] — ?)

If a gravity model describes temporal trends in the migration
data very well, then AR? ~ 1, whereas if AR?<0, then even the
constant (time- and country-invariant) mean of all observed rates
of change, denoted AM, provides an overall better estimate than
the modelled data.

Model comparison against bilateral data. The previous two
types of model evaluation based on spatio-temporally pooled data
can provide very general indications of the models’ performance
in terms of describing absolute flows and temporal change rates;
however, these statistical summaries may be of limited informa-
tive value with regard to the flows over time between any specific
pair of countries. For the four models, we therefore also com-
pared, separately for each country of origin i and destination j, the
modelled and observed migration flows over time, {M;;}; and

{]\A/IW} . We assessed how well each model explains the migration
t

flows from a country i to a country j by means of the R? between
the modelled and observed time-series,

~ \2
Zt (Mijt - Mijt)
—_—,
Zt (Mijt - Mij)

2 def
28—

®)

where M;; denotes the temporal mean of the observed migration

flows from country i to country j. A gravity model explains the

. . . 2 ~ 2 _
flows from country i to country j very well if Rj; ~ 1. If Rj; =0,

then the modelled flows are constant and equal to the mean of the
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historical flows between countries i and j across the study period.
For Rfj <0, the model provides a worse estimate than the mean of
the historical flows. We summarised the performances of our four
models with respect to bilateral migration flows in terms of the
distribution of the Rfj across countries i;j.

Analogous to our assessment based on the spatio-temporally
pooled rates of change in flows through time, we also examined
how well the models explain the temporal dynamics of a given
country pair by computing the R? between the relevant modelled
and observed time-series,

~ 2
5, (AMW - AM,.ﬁ)

ARZE ] — )

-
5, (AM,.], - AMU)

If AR? = 0, then the slope of the modelled data is constant and
equal to the mean slope of the observed migration flows between
countries i and j across the study period. Note that ARfj (in

contrast to Rfj in Eq. (8)) is indifferent to whether the modelled
and observed absolute flows are similar, as it only accounts for
relative changes in the flow through time. If ARizj = 0, then these
changes are captured less well than by the mean of the
observations, AM;;.

Comparison against bilateral models. The role of the parameters
P1>---pa in the Models 1 and 3 (Eqs. (1) and (3)) is to describe
how changes in the four time-dependent predictor variables
(population size and per-capita GDP in the country of origin and
destination) affect migration flows. We can estimate the same
parameters separately for each combination of country of origin i
and destination j, and compare these estimates to the ones we had
obtained based on the spatio-temporally pooled data. This allows
us to test whether the migration dynamics between any given two
countries follow similar statistical rules as those established in the
pooled analysis. For each pair i,j, we considered

log (M1, ~ 27+ 7 - tog(Py) + 57 - log (B1)

+ 7 og(1,) +p” - 10g(1,)

and estimated, for each i,j with at least six data points available
for calibration, the parameters pgy), e pgy) based on the annual
observational data also used for Egs. (1) and (3). We used a
robust, bisquare weighting approach (Huber and Ronchetti, 2009)
for the parameterisation, so as to minimise the sensitivity to
potential outliers in the time-series that may confound signals
(however, estimates were overall almost identical when using a
standard least-squares approach instead). Distributions across all
i,j of the estimated parameters pf”), vy pﬁ"), associated with the
four time-dependent predictors, were obtained after weighing
each entry by the inverse of the corresponding standard error
obtained from the regression, so as to give more weight to
stronger signals (however, almost identical distributions were
obtained without weighing entries). This allowed us to compare
the distributions of the pf”), cees pfj’) to the specific values
P1>-- P4 that we had previously estimated in Eqgs. (1) and (3). The
relatively short lengths of the country-pair-specific migration
time-series {Mj;}; in relation to the number of parameters in Eq.
(10) mean that the distributions of the pﬂ") need to be interpreted
cautiously and should be used only to assess whether or not the
coefficients estimated based on the spatio-temporally pooled data
and those estimated based on country-pair-specific data are
roughly in the same order of magnitude. For the same reason, we

(10)

4

did not conduct an analogous analysis for the larger set of time-
dependent predictors in the Models 2 and 4.

Results

All four gravity models matched the spatio-temporally pooled
observed data well, explaining R? = 62%, 68%, 94%, and 95% of
the observed variance in the case of Models 1-4, respectively,
based on the annual migration data (Fig. 1). R? values for the
models calibrated based on the 5-year migration data were very
similar (R2 = 59%, 64%, 95%, 96%, respectively; Supplementary
Fig. 1). These values are comparable to those reported for gravity
models in earlier studies (e.g., Afifi and Warner, 2008; Cohen
et al., 2008; Beine and Parsons, 2015; Poot et al., 2016; Cai et al,,
2016; Rikani and Schewe, 2021).

All models failed to capture temporal patterns in the observed
migration flows. When evaluated in terms of the changes in
migration flows over time, the parameterised models did not
explain the observed annual data (AR?><0 in all cases; Fig. 2),
generally providing worse estimates than even the constant value
given by the mean rate of change in the observed flows across all
countries and points in time. Whilst the modelled data did not
match the observations well for any specific range of values, they
in particular substantially underestimated the magnitude of both
positive and negative deviations (Fig. 2). Results were again
almost identical for the models calibrated based on 5-year
migration flows (Supplementary Fig. 2).

The four models’ strong performance in terms of the spatio-
temporally pooled absolute migration flows in Fig. 1 did not
extend to the flows between specific countries of origin i and
destination j. For the Models 1 and 2, calibrated on annual data,
the R? between the relevant modelled and observed time-series,
Rfj (Eq. (8)), was negative for 87% and 93% of country indices i,
respectively (Fig. 3a, b). In these scenarios, the mean of the
observations provides a better fit than the modelled data. For
Models 3 and 4, Rizj was negative in 37% and 42% of cases,
respectively (Fig. 3c, d); we return to this better performance of
the fixed-effects models later on. Virtually identical results were
obtained for the models calibrated based on 5-year migration
flows (Supplementary Fig. 1). Figure 3e, f illustrates the dis-
crepancy between the modelled and observed annual time-series
for some examples.

Temporal patterns were captured overall even worse at the
bilateral level than in the spatio-temporally pooled scenario in
Fig. 2. For Models 1-4, calibrated on annual data, the R? between
the relevant modelled and observed time-series, ARfj (Eq. (9)),
was negative for 72%, 82%, 75%, and 76% of country pairs iy,
respectively (Fig. 4). In these cases, the time-invariant average
observed change in the migration flows from country i to country
j provides a better estimate than the modelled data. Results were
almost identical for the models calibrated based on 5-year
migration data (Supplementary Fig. 2).

The regression coefficients of the four time-dependent pre-
dictors estimated based on the annual migration flows between
specific pairs of countries (Eq. (10)) generally differed sub-
stantially from those estimated in Egs. (1) and (3) based on the
spatio-temporally pooled data (Fig. 5). For around half of all
country pairs, the sign of the effect of a predictor variable esti-
mated based on bilateral data was different from that estimated
based on the spatio-temporally pooled data. In addition, the
magnitude of the regression coefficients varied substantially
between the different approaches.

Discussion
Gravity models describe spatial, not temporal, migration pat-
terns. All four gravity models considered here performed well
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Fig. 1 Modelled and observed migration flows. Each marker represents the observed and modelled flow from a country of origin i to a country of
destination j in a year t. Models 1-4 (a-d) correspond to Eq. (1)-(4), respectively. R? values correspond to Eq. (5). Blue lines represent 1:1 relationships.
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Fig. 2 Modelled and observed temporal changes in migration flows. Each marker represents the observed and modelled (based on Models 1-4; a-d)
relative annual change in the number of migrants from a country of origin i to a country of destination j between a year t and the following year t + 1 (Eq.
(6)). R? values correspond to Eq. (7). For visual clarity, axes were capped. Blue lines represent 1:1 relationships.
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Fig. 3 Modelled and observed migration flows at the bilateral level. In panels a-d, the R2 values represented by markers correspond to the comparisons
shown in Fig. 1a-d, respectively. Boxplots (not showing outliers, which are as small as —663, —1.2 x 108, —7.7, and —89 for Models 1-4, respectively)
represent the set of Rf values obtained from the comparison of modelled and observed annual data over time for each specific country of origin i and
destination j (Eq. (8)). Five examples of these scenarios are shown for the models e without and f with fixed effects. Blue lines represent observed
migration flows, orange lines represent modelled data. By design of the fixed-effects models, flows simulated by the Models 3 and 4 intersect the observed
time-series at least once.
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when being compared to the spatio-temporally pooled data
(Fig. 1), but poorly in terms of describing changes in migration
over time (Figs. 2-4). This discrepancy is explained by the fact
that spatial patterns vary over several orders of magnitude
whereas temporal patterns do not, so that the structure of the
spatio-temporally pooled data is in reality dominated by the
spatial variation in migration flows, and it is this type of variation
that is captured by the models. We can illustrate this point by
considering slightly modified versions of Model 1 and of the two
fixed-effects models, designed to map no temporal patterns of
migration flows whatsoever, and by showing that these behave
very similarly to the original models and perform equally well in
terms of the evaluation in Fig. 1 and the R? in Eq. (5). Instead of
Model 1, consider the following regression in which all temporal
variation has been removed

1) 4 ) 5 wa()
+ps - log(I;) + p, - log (Tj) ~ s -log (Dif)

where the bar notation denotes the mean over all available points
in time. We parameterised Eq. (11) using annual migration and
predictor data analogously to the approach used for Eq. (1), this
time based on 970 data points representing temporal averages of
the relevant predictand and predictor variables. Both the model’s

(11)
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R? and the estimated regression coefficients are very similar to the
ones previously obtained for Model 1 (Fig. 6a and Supplementary
Table 1). In other words, whether the observed data include
temporal variation or not has almost no effect on the resulting
model; the much higher spatial variation dominates the para-
meterisation process and determines the model’s R? in Eq. (5).
The strong performance of the fixed-effects Models 3 and 4 in
Fig. 1c, d can also be achieved without describing temporal
patterns. Consider the following model consisting exclusively of
origin-destination-specific fixed effects,

log(M,»jt) ~ Gy (12)

We fitted this model based on the spatio-temporally pooled
annual observations in the same way as Eq. (2). The model
explained R%2=93% of the variation in the observed data
(compared to R? = 94%, 95% for Models 3, 4, respectively) (Fig.
6b), whilst, by design, simulating no temporal variation
whatsoever. This demonstrates that the high R? of Models 3
and 4 in Fig. 1c, d is likewise due to fact that the models capture
the spatial variation in the observed migration flows. Indeed, the
fixed effects guarantee this property, and therefore a high R?, a
priori, i.e., independently of the time-dependent elements of the
regression.
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Fig. 5 Regression coefficients based on spatio-temporally pooled data and bilateral time-series. Light and dark blue markers represent the regression
coefficients in Models 1 and 3 (Egs. (1) and (3)), respectively, estimated based on the spatio-temporally pooled annual observations (cf. Supplementary
Table 1). Boxplots represent the distributions of the analogous coefficients estimated based on the migration time-series between specific countries of
origin and destination (Eg. (10)). Outliers, ranging between [ 3730, 5746] for p;, [—9799, 5363] for p,, [—336, 386] for ps3, and [—260, 1164] for p4, are

not shown.
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Fig. 6 Spatial patterns dominate gravity model behaviour. a Comparison of modelled and observed time-averaged migration flows. Each marker
represents the mean flow from a country of origin i to a country of destination j across all available years. b Comparison of observed annual migration flows
against a time-invariant, fixed-effects-only model. The lack of temporal variation in the modelled data is visible in the form of vertical patterns, representing
country pairs for which the modelled flow is constant over time. Blue lines represent 1:1 relationships.
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Origin-destination-specific fixed effects also explain the overall
better performances of the Models 3 and 4 in terms of RZ,

compared to those of Models 1 and 2 (Fig. 2a-d). For the model
in Eq. (12), R%j would be 0 for all i,j by design. Unlike for Models 1

and 2, we would therefore expect Rfj to be non-negative for at
least half of all country pairs i,j in the cases of Models 3 and 4.

Temporal migration patterns of are more complex than spatial
patterns. Temporal dynamics not only follow different statistical
rules than spatial migration patterns—shown by the discrepancy
in our models’ performances with respect to these two aspects—
but more complex ones. For example, Model 1 (and the related
model in Eq. (11)) imply that, other things being equal, a higher
population in a country of origin is associated with a larger
migration flow from that country. This intuitive relationship
would be fully expected across the several orders of magnitude
covered by national population sizes. However, for any specific
country, in which population size over time does not vary across
orders of magnitude, a change in population size need not gen-
erally result in a corresponding change in out-migration; instead,
the latter is affected by many other factors that may easily out-
weigh the effect of changes in population size. This complexity of
temporal migration dynamics is illustrated in Fig. 5, highlighting
the non-uniformity of the responses of bilateral flow time-series
to the four time-dependent predictor variables. Whilst a fixed set
of coefficients for these predictors is sufficient to explain a sub-
stantial proportion of the spatial variation in migration (as seen in
Eq. (11)), a set of fixed values is not able to accommodate the
temporal variation.

The poor performances of the fixed-effects Models 3 and 4 in
Figs. 2¢, d and 4c, d further illustrate the above point. By design,
the models’ fixed effects already fully capture the spatial variation
in the observed flows; thus, the coefficients in Egs. (3) and (4)
corresponding to the time-dependent predictors can in principle
be selected to specifically describe the temporal variation.
However, this does not succeed either: both on the spatio-
temporally pooled level (Fig. 2¢, d) and at the bilateral level for
the large majority of country pairs (Fig. 4c, d), Models 3 and 4 fail
to capture temporal patterns. If the migration responses to
changes in population size or per-capita GDP in the country of
origin or destination were consistent across country pairs, then
the models would perform well in all evaluations in our analysis.
The fact that responses are not consistent explains the models’
poor performances.

Gravity models cannot predict future migration. In principle,
available forecasts of country-specific population sizes P; (e.g.,
UN, 2019) and per-capita GDPs I;; (e.g., The World Bank, 2020)
could readily be applied to the parameterised regressions in Egs.
(1) and (2) to generate predictions of future international
migration. However, our results demonstrate that such predic-
tions would not be statistically supported, and most likely
represent worse temporal extrapolations than even the (time-
invariant) mean of the historical flows. Understanding how flows
vary across time in response to changes in relevant predictor
variables represents a fundamental requirement for predicting
future international migration. Our analysis shows that gravity
models generally do not possess this quality; their ability to
explain the variation in flows across countries well is of no avail
when it comes to predicting future migration.

Our result that spatial and temporal migration trends do not
coincide on the 25-year long period of the observational record
(neither for an annual, nor a 5-year, temporal resolution) does
not allow us to exclude the possibility that they converge if the
temporal scale is chosen sufficiently large, e.g., in the order

8

of centuries (cf. Clemens, 2014). However, not only would
quantitative forecasts of demographic, economic, social, political,
or environmental variables considered as relevant predictors of
migration be subject to extreme uncertainties at these time scales,
but socio-political interest in very-long-term migration scenarios
will also be limited. With regard to the nearer future, we argue
that the lack of alignment between temporal and spatial migration
patterns over the past quarter century strongly challenges the
assumption that an alignment will emerge in the coming years or
decades, which would be needed in order to justify the use of
gravity models for predicting future flows.

Our analysis cannot formally rule out the possibility that
gravity models based on additional, or different, predictor
variables than the ones in our approach can succeed at describing
temporal migration dynamics. However, given that both the
simple and the more complex models exhibit identical behaviour
in terms of mapping temporal patterns, we see little evidence to
expect the results of the model assessments in Figs. 2-4 to be
fundamentally different for other gravity models parameterised
on spatio-temporally pooled global data. Population size and per-
capita GDP in the countries of origin and destination, in
particular, have long been cited as four of the most relevant time-
dependent drivers of international migration. The fact that
migration responses to these established variables differ so
substantially at the bilateral level from those estimated in the
spatio-temporally pooled case (Fig. 5) leads us to expect similar
patterns for other predictors.

Validations in previous studies using gravity models typically
do not go beyond comparisons of modelled and observed flows at
the spatio-temporally pooled level (analogous to our Fig. 1),
making it difficult to readily assess the models’ ability to map
temporal trends. Here, we mention two case examples of gravity-
type approaches used in temporal contexts, in which additional
plots hint at the limitations highlighted in our analysis. Haag et al.
(1988) model regional utility levels, which are later used to map
internal migration flows, as a function of socio-economic
predictor variables. Whilst the model performs very well at the
spatio-temporally pooled level, this is largely due to the fact that it
describes spatial patterns, whereas temporal trends are generally
not captured as well (their Fig. 4.26). The nonlinear gravity model
in Rikani and Schewe (2021), used to project future global
migration trajectories matches spatio-temporally pooled observed
flows well; however, plots of country-level migration (their Figs. 5
and 6) show that modelled and observed migration time-series
differ considerably. The time between these two publications also
illustrates the persistence of the issue.

Conclusions

Our results demonstrate that a successful calibration of gravity
models on the basis of spatio-temporally pooled observed
migration flows does not imply, or obviate the need to validate, a
model’s ability to describe flows between specific pairs of coun-
tries in general and changes in migration over time in particular.
This is critical as this latter ability represents a fundamental
requirement both for understanding past migration dynamics and
for generating statistically supported future predictions. The fact
that the example gravity models considered in our analysis
represented temporal dynamics overall worse than even the time-
invariant mean of the historical observations provides strong
evidence that predictions of international migration flows based
on these models would most likely be highly unreliable. More
generally, our results put into question suggestions made based
on gravity models in earlier studies regarding the effects that
certain economic, social, climatic, or other factors may have on
future international migration.
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Our analysis reveals that gravity models with and without
origin-destination-specific fixed effects fail to capture temporal
migration patterns for different, albeit related, reasons. The
dominance of the spatial, as opposed to temporal, variation in the
observed flow data means that parameters in gravity models
without fixed effects, such as our Models 1 and 2, will be selected
to match spatial, not temporal, patterns; and these two do not
coincide. In principle, fixed effects can compensate for this
behaviour by directly capturing spatial patterns, so that the time-
dependent predictors in the regression can target temporal pat-
terns; however, this approach is not successful either due to the
higher complexity of temporal migration dynamics. A property
shared by the two categories of gravity models is that the
apparently strong performance in explaining the variation in the
spatio-temporally pooled observational data is misleading as only
the spatial variation is accurately captured.

Our results demonstrate that gravity models used to seek insights
into past or future migration dynamics require first and foremost
better evaluation frameworks that allow for a rigorous assessment of
the models’ ability to map bilateral flows in general and temporal
variations in particular. In order for models to perform well in these
regards, different statistical approaches that accommodate the higher
complexity of temporal, compared to spatial, migration patterns will
most likely be necessary. Country-pair-specific time-series of his-
torical migration flows, in particular, provide the most valuable
source of information on the responses of migration flows over time
to changes in relevant predictors. By pooling observational data
across space and time when estimating model parameters, many
existing gravity models do not exploit this resource effectively. The
lengths of such time-series are currently very limited, especially at
the global scale; grouping countries appropriately may allow for
circumventing this limitation, and for inferring robust statistical
signals. Finally, whilst a set of fixed parameter values may suffice to
explain the spatial variation in migration well, a potentially higher
degree of stochasticity in the temporal variation may motivate to
represent model parameters in terms of probability distributions that
can be estimated using Bayesian approaches and may provide an
effective way for handling variations in migration flows that are
beyond deterministic responses (Bijak, 2011; Azose and Raftery,
2015).

Recent gravity models generally represent statistical rather than
mechanistic approaches to describing migration. Whilst the
‘original’ gravity model may be interpreted mechanistically in
analogy to Newton’s law of gravitation (Poot et al., 2016), the
inclusion of additional terms representing social, political,
environmental, or other factors in the regression (like our Egs. (2)
and (4)) has largely removed gravity models from a mechanistic
basis, making plausible extrapolation in time all the more chal-
lenging. Efforts to design the mathematical structure of
regression-based migration models using linear or nonlinear
mechanistic processes, which can ideally be independently ver-
ified prior to model calibration (cf., for example, the decom-
position of the regression formula into separate components
related to mobility, origin-destination utility differential, and
population sizes in Helbing (2010)), may prove valuable for
improving our ability to map international migration dynamics.

Data availability

Data and code associated with this study are available on the
Open Science Framework (https://doi.org/10.17605/OSF.1I0/
E7NUA).
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