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Abstract. Atmosphere and ocean dynamics display many complex features and are characterized by a wide
variety of processes and couplings across different timescales. Here we demonstrate the application of multi-
variate empirical mode decomposition (MEMD) to investigate the multivariate and multiscale properties of a
reduced order model of the ocean–atmosphere coupled dynamics. MEMD provides a decomposition of the orig-
inal multivariate time series into a series of oscillating patterns with time-dependent amplitude and phase by
exploiting the local features of the data and without any a priori assumptions on the decomposition basis. More-
over, each oscillating pattern, usually named multivariate intrinsic mode function (MIMF), represents a local
source of information that can be used to explore the behavior of fractal features at different scales by defining
a sort of multiscale and multivariate generalized fractal dimensions. With these two complementary approaches,
we show that the ocean–atmosphere dynamics presents a rich variety of features, with different multifractal
properties for the ocean and the atmosphere at different timescales. For weak ocean–atmosphere coupling, the
resulting dimensions of the two model components are very different, while for strong coupling for which cou-
pled modes develop, the scaling properties are more similar especially at longer timescales. The latter result
reflects the presence of a coherent coupled dynamics. Finally, we also compare our model results with those
obtained from reanalysis data demonstrating that the latter exhibit a similar qualitative behavior in terms of mul-
tiscale dimensions and the existence of a scale dependency of the statistics of the phase-space density of points
for different regions, which is related to the different drivers and processes occurring at different timescales in
the coupled atmosphere–ocean system. Our approach can therefore be used to diagnose the strength of coupling
in real applications.

1 Introduction

The atmosphere and the ocean form a complex system whose
dynamical variability extends over a wide range of spatial
and temporal scales (Liu, 2012; Xue et al., 2020). As an
example, the tropical regions are markedly characterized by
inter-/multi-annual processes like the El Niño–Southern Os-
cillation (ENSO) (Neelin et al., 1994; Meehl et al., 2003),

while the North Atlantic Oscillation (NAO) affects extrat-
ropical northern hemispheric regions at seasonal and decadal
timescales (Ambaum et al., 2001). The sources of these pro-
cesses have been widely investigated by means of multi-
ple data analysis methods and various types of modeling
(e.g., Philander, 1990; Czaja and Frankignoul, 2002; Van der
Avoird et al., 2002; Mosedale et al., 2006; Kravtsov et al.,
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2007; Feliks et al., 2011; Liu, 2012; L’Hévéder et al., 2014;
Farneti, 2017; Vannitsem and Ghil, 2017; Wang, 2019; Xue
et al., 2020, and references therein), highlighting how the at-
mospheric low-frequency variability (LFV) is related to the
ocean. The latter develops thanks to the interaction with the
ocean mixed layer (OML) driven by a mixing process due
to the development of an instability within the water col-
umn (Czaja and Frankignoul, 2002; D’Andrea et al., 2005;
Wunsch and Ferrari, 2004; Gastineau et al., 2012) that also
shows a strong seasonal variability. The relation between the
OML and the LFV can be investigated from a dynamical
system point of view by developing suitable reduced order
ocean–atmosphere models dealing with the modeling of the
coupling between the atmosphere and the underlying surface
layer of the ocean. Recently, by means of a 36-variable model
displaying marked LFV Vannitsem et al. (2015) demon-
strated that the LFV in the atmosphere could be a natural
outcome of the ocean–atmosphere coupling. Other sources
could be invoked to explain and to contribute to the devel-
opment of LFV in the atmosphere, such as the long-range
system memory as a consequence of the heat storage mech-
anism of the land–ocean–atmosphere system (e.g., Lovejoy,
2021; Lovejoy et al., 2021), the internal dynamics of the at-
mosphere itself (e.g., Legras and Ghil, 1985), or even the in-
teraction between the tropical and extratropical regions (e.g.,
Alexander et al., 2002; Vannitsem et al., 2021), just to quote
a few.

The current work presents an investigation on how a re-
cently introduced concept of multiscale generalized fractal
dimensions can be used to analyze the statistics of attrac-
tors in coupled ocean–atmosphere systems (Alberti et al.,
2020a). This demonstration is done by means of the re-
duced order model developed in Vannitsem et al. (2015). In-
deed, the dynamical properties of physical systems can be
related to their support fractal dimension as well as its sin-
gularities by means of different established concepts like the
box-counting dimension (e.g., Steinhaus, 1954; Mandelbrot,
1967; Ott, 2002), generalized correlation integrals (Grass-
berger, 1983; Hentschel and Procaccia, 1983; Pawelzik and
Schuster, 1987), the pointwise dimension method (Farmer
et al., 1983; Donner et al., 2011), and related characteris-
tics (Badii and Politi, 1984; Primavera and Florio, 2020).
These methods are based on partitioning the phase space
into hypercubes of size ` to define a suitable invariant mea-
sure through the filling probability of the ith hypercube by
Nk points as pk =Nk/N , with N being the total number of
points. With M(`) denoting the number of filled hypercubes,
we can define some useful dynamical invariants such as the
box-counting (or capacity or simply fractal) dimension

D0
.
=− lim

`→0
lim
N→∞

logM(`)
log`

, (1)

the information dimension

D1
.
= lim
`→0

lim
N→∞

∑M(`)
k=1 pk logpk

log`
, (2)

and the correlation dimension

D2
.
= lim
`→0

lim
N→∞

1
N2

∑
i 6=j2

(
`− |xi − xj |

)
log`

, (3)

with 2(· · ·) being the Heaviside function. More specifically,
D0 is a measure of the sparseness of the phase space by the
studied system’s dynamics, D1 is a measure of the informa-
tion gained on the phase space with a given accuracy, while
D2 is a measure of correlations, i.e., mutual dependence, be-
tween phase-space points. All these fractal dimension mea-
sures, as well as their higher order extensions Dq measur-
ing qth order correlations between points in the phase space,
have been used to characterize the statistics of the phase-
space scaling of a given system (Hentschel and Procaccia,
1983). More details on the estimation of generalized frac-
tal dimensions are provided in the Supplement. However, the
above concepts only give us a global view on the phase-space
system’s properties, without exploring how these evolve at
different scales in the real space (Alberti et al., 2020a). More
recently, by means of a suitable combination between a state-
of-the-art time series decomposition method (the empirical
mode decomposition) and the concept of generalized fractal
dimensions, Alberti et al. (2020a) introduced a multiscale ap-
proach to deal with the investigation of the evolution of the
statistics of the phase-space scaling in dynamical systems.

Here, we extend for the first time the concept of multiscale
generalized fractal dimensions in a multivariate framework
by means of the multivariate empirical mode decomposition
(MEMD), allowing us to investigate the multiscale and mul-
tivariate properties of a reduced order model of the ocean–
atmosphere coupled dynamics. By using the oscillating pat-
terns forming the decomposition basis of the MEMD algo-
rithm, usually named multivariate intrinsic mode functions
(MIMFs), we define the new concept of multiscale and mul-
tivariate generalized fractal dimensions. The MEMD results
allow us to capture the essential dynamics of the phase-space
trajectory that can be used for reconstructing the skeleton of
the phase-space dynamics, while the evaluation of the frac-
tal dimensions at different timescales provides a quantitative
characterization of the intrinsic complexity of oscillating pat-
terns that can be related to the attractor properties. Our results
also allow for associating the statistics of the phase-space
scaling to the dynamical regimes at different timescales of
the coupled ocean–atmosphere system. Finally, our findings
for the reduced order model well reconcile with correspond-
ing results for reanalysis data, thus supporting and encour-
aging the use of reduced order models for investigating the
essential aspects of the coupled ocean–atmosphere system in
terms of the statistics of the phase-space scaling.
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2 The reduced order ocean–atmosphere model

Reduced order coupled ocean–atmosphere models are key
tools in the hierarchy of climate models, allowing for an ex-
tensive analysis of the features of the coupled dynamics that
would otherwise be impossible to evaluate (Lorenz, 1984;
Nese and Dutton, 1993; Roebber, 1995; Jin, 1996; Timmer-
mann et al., 2003; Van Veen, 2003; De Cruz et al., 2016;
Vannitsem, 2017). These models allow for obtaining key in-
sights into the role of coupling for the development of LFV
in the atmosphere associated with the presence of the ocean.

Recently, dynamical analysis has been conducted by
means of the development of a suitable reduced order model
of the coupled ocean–atmosphere system. This model has
been developed starting from the quasi-geostrophic equa-
tions describing the interaction between a two-layer at-
mosphere and a one-layer ocean over an infinitely deep
quiescent ocean layer (Vannitsem et al., 2015; Vannitsem,
2015, 2017; De Cruz et al., 2016, 2018). The ocean flow
passively advects the temperature within the ocean, while
momentum, radiative, and heat transfer mechanisms realize
the coupling between the atmosphere and the ocean. By ex-
panding the solutions of these equations into Fourier series,
by truncating them at low wavenumbers, and by projecting
onto the Fourier modes retained, a set of ordinary differen-
tial equations is derived. The fields are defined over a rect-
angular domain with 0≤ x ≤ 2πL/n and 0≤ y ≤ πL, with
n denoting the aspect ratio between the meridional and the
zonal extents of the domain and L the characteristic spatial
scale. Moreover, periodic boundaries along the zonal direc-
tion and free slip along the meridional direction are chosen
for the atmosphere, while a closed basin with no flux through
the boundaries is imposed for the ocean.

In the reduced order coupled model version proposed in
Vannitsem et al. (2015), a long-periodic attracting orbit com-
bining atmospheric and oceanic variables emerges from a
Hopf bifurcation for large values of the meridional gradient
of radiative input and frictional coupling. Beyond a certain
value of the meridional gradient for the radiative input, a
chaotic behavior appears, which is still dominated by LFV
on decadal and multi-decadal timescales.

Here we use the original version of the model (Vannit-
sem et al., 2015) where the four relevant fields, i.e., the
barotropic and baroclinic atmospheric streamfunctions, the
ocean streamfunction and the ocean temperature, are given
by ψa =

∑10
i=1ψa,iFi , θa =

∑10
i=1θa,iFi , 9o =

∑8
i=19o,iφi

and To =
∑8
i=1To,iφi , where Fi and φi are simplified nota-

tions for the sets of modes used, compatible with the bound-
ary conditions of both the atmosphere and the ocean. The
parameter values used are the ones given in Figs. 8 and 9
of Vannitsem (2017). Depending on the choice of the sur-
face friction coefficient C, different solutions are found with
a highly chaotic dynamics without marked LFV in the atmo-
sphere for small values of C, but a more moderately chaotic

dynamics with stronger LFV in both the ocean and the atmo-
sphere (related to the development of a coupled mode) for
larger values of C.

3 Methods

Traditional multivariate and/or spatiotemporal data analysis
methods are commonly based on fixing an orthogonal de-
composition basis, satisfying certain mathematical properties
such as linearity and/or stationarity (Chatfield, 2016). How-
ever, these conditions are not usually met when real-world
geophysical data are analyzed, which calls for more adap-
tive methods (Huang et al., 1998). Indeed, adaptive meth-
ods can be helpful for overcoming some limitations of fixed-
basis methods, which implicitly assume that a given nat-
ural phenomenon or a superposition of physical processes
can be represented in terms of a priori defined mathemati-
cal functions like sine and/or cosine or some other kinds of
wave functions (Chatfield, 2016). Since this cannot be as-
sured, adaptive methods (as the MEMD) could be more suit-
able for reducing some mathematical assumptions and a pri-
ori constraints (Huang et al., 1998; Huang and Wu, 2008;
Rehman and Mandic, 2010). Moreover, geophysical data are
usually also characterized by scale-invariant features over a
wide range of scales with different complexity and show a
scale-dependent behavior due to several factors like forcings,
coupling, intrinsic variability, and so on (e.g., Lovejoy and
Schertzer, 2013; Franzke et al., 2020). For the above rea-
sons, in this work we put forward a novel approach based on
combining two different data analysis methods for investi-
gating the multiscale fractal behavior of the coupled ocean–
atmosphere system: multivariate empirical mode decompo-
sition (MEMD; Rehman and Mandic, 2010) and generalized
fractal dimensions (Hentschel and Procaccia, 1983). One of
the main advantages of combining the MEMD with general-
ized fractal dimensions instead of classical approaches deals
with the limited number of intrinsic components that can
be also visually inspected. Indeed, if we, for example, use
Fourier decomposition we will have a large number of (har-
monic) oscillating components at different fixed frequencies
that should be summed up for exploiting our proposed proce-
dure. Furthermore, if we, for example, use wavelets we will
deal with some a priori assumptions on the decomposition
basis onto which we are projecting our data that could pro-
duce misleading results in our procedure of evaluating frac-
tal measures on a priori fixed scales. Another advantage is
that MEMD allows to preserve some intrinsic properties of
signals related to the nonlinear and/or non-stationary nature
of processes they are associated with, since the decompo-
sition is based on the local characteristic scale of the data
in deriving intrinsic components with time-dependent ampli-
tudes and phases (Huang et al., 1998; Huang and Wu, 2008;
Rehman and Mandic, 2010). However, we do not question
the appropriateness of conventional analysis techniques but
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rather acknowledge that other approaches can provide a new
perspective on what we can learn from the respective system
under study (Alberti et al., 2020a).

3.1 Multivariate empirical mode decomposition (MEMD)

The multivariate empirical mode decomposition (MEMD) is
the “natural” multivariate extension of the univariate em-
pirical mode decomposition (EMD) (Huang et al., 1998;
Rehman and Mandic, 2010). MEMD directly works on the
data domain, instead of defining a conjugate space as for
Fourier or wavelet transforms, with the aim of being as
adaptive as possible to minimize mathematical assumptions
and definitions (Huang et al., 1998) in extracting embed-
ded structures in the form of so-called multivariate intrin-
sic mode functions (MIMFs) (Rehman and Mandic, 2010).
Each MIMF is an oscillatory pattern of the multivariate co-
ordinates having the same number (or differing at most by
one) of local extremes and zero crossings, and whose up-
per and lower envelopes are symmetric (Huang et al., 1998;
Rehman and Mandic, 2010). MIMFs are derived through the
sifting process (Huang et al., 1998). This process is easily
realized for univariate signals (Huang et al., 1998), while
it needs to be carefully implemented for multivariate pro-
cesses (Rehman and Mandic, 2010), since it is based on
the cubic spline interpolation of local extremes that cannot
easily be defined on a k-dimensional space (Rehman and
Mandic, 2010). Rehman and Mandic (2010) proposed an
alternative definition of local extremes for multivariate sig-
nals by considering the k-variate data as composed by k-
dimensional signals projected onto appropriate directions in
this k-dimensional space. This allows us to perform cubic
spline interpolation in each direction, with the suitable direc-
tions chosen by means of a combination of a quasi-Monte
Carlo-based low-discrepancy sequences and a uniform an-
gular sampling method (Rehman and Mandic, 2010). These
allow providing a more uniform set of direction vectors over
which to compute the local mean of envelopes, without intro-
ducing any smoother dynamics in the data, via the following
procedure:

1. Given a k-dimensional space we need to find the direc-
tion vectors by considering that these reduce to points
in a (k− 1)-dimensional space.

2. The simplest choice is to employ uniform angular sam-
pling on a k-dimensional hypersphere, but this will lead
to a non-uniform filling of the k-dimensional space (a
higher density of points would be observed near the
poles).

3. A quasi-Monte Carlo method is used to provide a more
uniform distribution of direction vectors.

4. Once the direction vectors are chosen, the signal is
projected onto these vectors, the extrema of the re-
sulting projected signals are evaluated and interpolated

component-wise to yield multidimensional envelopes
that are then averaged to obtain the multivariate mean.

This means that the quasi-Monte Carlo method is needed
only for selecting a uniform sampling of direction vectors,
thus avoiding implicitly preferred directions that could be
more dominant with respect to the others, which could in-
troduce a source of errors in evaluating signal projections
(Rehman and Mandic, 2010).

Having now defined the procedure needed to compute en-
velopes over each direction, the main steps of the sifting pro-
cess acting on a k-variate signal s(t)= [s1(t), s2(t), . . ., sk(t)]
can be summarized as below:

1. identify local extremes (i.e., data points where abrupt
changes in the local tendency of the series under study
are observed);

2. interpolate local extremes separately by cubic splines
(i.e., produce continuous functions with smaller error
than other polynomial interpolation);

3. derive the upper and lower envelopes u(t) and l(t), re-
spectively;

4. derive the mean envelope m(t) as m(t)= u(t)+l(t)
2 ;

5. evaluate the resulting candidate MIMF as h(t)= s(t)−
m(t).

The previous steps are iteratively repeated until the obtained
candidate MIMF h(t) can be identified as a multivariate
intrinsic mode function (also called multivariate empirical
mode) (Huang et al., 1998; Rehman and Mandic, 2010),
while the full sifting process ends when no more MIMFs
cj (t) can be filtered out from the data. Hence, we can write

s(t)=
Nj∑
j=1

cj (t)+ r(t). (4)

In this way a multivariate signal is decomposed into Nj k-
dimensional functions, each containing the same frequency
distribution, e.g., into a set of k-dimensional embedded os-
cillating patterns cj (t) which form the multivariate decom-
position basis, plus a multivariate residue r(t).

For each MIMF we can define a k?-variate mean timescale
as

τj,k? =
1
T

T∫
0

t ′cj,k? (t ′)dt ′, (5)

representing the typical oscillation scale of the j th mode for
the k?th univariate component cj,k? extracted from the mul-
tivariate signal sk? (t) for k? ∈ [1,k]. Similarly, by ensemble
averaging over the k-dimensional space we can introduce the
concept of a multivariate mean timescale as
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τj =
1
T

T∫
0

t ′〈cj (t ′)〉kdt ′, (6)

with 〈· · ·〉k denoting an ensemble average over the k-
dimensional space. Thus, the k?-variate timescale τj,k? is
evaluated for each mode and for each k?-dimensional data,
while the multivariate mean timescale τj is the mean over all
k? ∈ (1,k]. Moreover, as for univariate EMD (Huang et al.,
1998), we can introduce the concepts of instantaneous am-
plitudes aj (t) and phases φj (t) of each MEMD mode via
the Hilbert transform along the different directions of the k-
dimensional space. The instantaneous energy content is then
derived as Ej (t)= aj (t)2. Thereby, we can characterize the
spectral content by introducing an alternative yet equivalent
definition of the power spectral density (PSD) as

S(τ )=
1
T 2

T∫
0

〈Ej (t ′)〉kdt ′ ·

T∫
0

t ′〈cj (t ′)〉kdt ′
.
= σ 2(τ ) · τ, (7)

with σ 2(τ ) being the k-variate variance of MIMFs and τ the
mean timescale defined as in Eq. (6). Moreover, from the in-
stantaneous energy content Ej (t) the relative contribution ej
can be derived as

ej =

1
T

∫ T
0 〈Ej (t ′)〉kdt ′∑Nj

j=1
1
T

∫ T
0 〈Ej (t ′)〉kdt ′

. (8)

Finally, as for the univariate decomposition (Huang et al.,
1998), also the MIMFs are empirically and locally orthogo-
nal with respect to each other, the decomposition basis is a
complete set (Rehman and Mandic, 2010), and partial sums
of Eq. (4) can be obtained (Alberti, 2018; Alberti et al.,
2020b).

3.2 Multivariate and multiscale generalized fractal
dimensions

The dynamics of complex systems is usually characterized
by a multitude of scales whose dynamical features determine
their collective behavior. Nevertheless, vast efforts have been
made to determine collective properties of systems (e.g.,
Hentschel and Procaccia, 1983), instead of considering to
measure scale-dependent features. Recently, Alberti et al.
(2020a) introduced a new formalism allowing measuring in-
formation at different scales by combining a data-adaptive
decomposition method and the classical concept of general-
ized fractal dimensions. The starting point is that a multivari-
ate signal manifesting a multiscale behavior can be written
as

s(t)= 〈s〉+
∑
τ

δsτ (t)= s0+ s1(t), (9)

with 〈· · ·〉 representing a steady-state average operation and δ
indicating a fluctuation at scale τ . For any given τ we can in-
troduce a local natural probability measure dµτ such that the
probability pi of visiting the ith hypercube Bs∗,τ (`) of size
` centered at the point s∗ on the considered (d-dimensional)
phase space of s1(t) can be defined as

pi
.
=

∫
s1∈Bs∗,τ (`)

dµτ . (10)

By defining a qth order partition function

0q (µτ ,Bs∗,τ (`))=
∑
i

p
q
i =

∫
dµτ (s)µτ (Bs∗,τ (`))q (11)

and taking the limit `→ 0, the multiscale generalized fractal
dimensions are derived as

Dq,τ =
1

q − 1
lim
`→0

log0q (µτ ,Bs∗,τ (`))
log`

. (12)

Here we identify the intrinsic oscillations by using the
MEMD, and then we investigate the phase-space properties
at different scales by deriving the generalized dimensions
(Alberti et al., 2020a). We summarize this process as follows:

1. We extract multiscale components from s(t) by using
the MEMD.

2. We evaluate the intrinsic scale τj of each MIMF.

3. We evaluate reconstructions of modes by means of
Eq. (4):

∑
τ

δsτ (t)→ Fj? (t)=
j?∑
j=1

cj (t), (13)

with j ? = 1, . . .,Nj (by construction, MIMFs are or-
dered from short to long scales, i.e., τj < τj ′ if j < j ′).

4. We evaluate the generalized dimensions Dq,τ from
Fj? (t) for each j ? (i.e., for each scale τj? ).

5. We evaluate the singularities and singularity spectrum:

ατ =
d

dq

[
(q − 1)Dq,τ

]
(14)

fτ = f (ατ )= qατ −
[
(q − 1)Dq,τ

]
. (15)

From Eq. (13) we can inspect the local properties of fluc-
tuations in terms of the geometry of the phase space, thus
providing a characterization of dynamical features of differ-
ent regimes and disentangling the different dynamical com-
ponents of (possibly) different origin.

Our proposed formalism provides a novel way to inves-
tigate how phase-space properties (geometry, correlations)
change when dynamical components at different mean scales
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Figure 1. 3-D projection of the full system attractor in the subspace (To,2,9o,2,ψa,1) for C = 0.008 (red) and C = 0.015 (black), respec-
tively.

with different dynamics are considered. In other words, we
can highlight the role of scale-dependent phenomena in
defining the global properties of a system. Indeed, global
measures proposed in the past (e.g., Grassberger, 1983;
Hentschel and Procaccia, 1983) only allow us to investi-
gate the statistics of the phase-space scaling properties of the
whole system; conversely, our proposed approach allows us
to investigate how the different scales contribute to the global
properties of a system (Alberti et al., 2020a). Moreover, our
framework also provides consistency with established mea-
sures for characterizing time series from an integral (not
scale-resolved) perspective, since the scale-dependent mea-
sures we evaluate converge to the associated global measures
as all scales are considered, i.e., when the full system dynam-
ics, composed by all accessible scales, is reached (Hentschel
and Procaccia, 1983). Within this framework, our approach
is promising for investigating scale-dependent properties, as
measured by fractal dimensions, of the system. Furthermore,
since we are indeed interested in nonlinear variability char-
acteristics at different timescales, employing perfectly linear
and/or stationary (harmonic) functions as components would
leave out any information on nonlinear dynamics. Moreover,
simply looking at the behavior of spectral densities would
leave out any higher-order statistical properties, only focus-
ing on the autocorrelation function (i.e., the second-order
moment). By looking at the behavior of fractal dimensions
we can explore how the different scales contribute to change
the phase-space properties for higher-order statistics (i.e., for
different values of q).

4 Results

4.1 Multivariate empirical mode decomposition

Figure 1 reports the 3-D projection of the full system attractor
in the subspace (To,2,9o,2,ψa,1) for two representative val-
ues of the friction coefficient C (0.008 and 0.015 kgm−2 s−1

as indicated by red and black points, respectively). In the fol-
lowing, we will omit the physical units of this parameter for
the sake of brevity. The considered subspace characterizes
the dynamics of the system as represented by the dominant
mode of the meridional temperature gradient in the ocean
(To,2), by the double-gyre transport within the ocean (9o,2),
and by the vertically averaged zonal flow within the atmo-
sphere (ψa,1), respectively.

The behavior of the system is clearly dependent on the
friction coefficient, with both the location and the topology
of the attractor changing as C is increased from 0.008 (red
points in Fig. 1) to 0.015 (black points in Fig. 1). This be-
havior has also been previously reported by Vannitsem et al.
(2015) and Vannitsem (2015), indicating a drastic qualita-
tive change of the nature of the dynamics at about C = 0.011
above which substantial LFV emerges (Vannitsem et al.,
2015; Vannitsem, 2015, 2017). However, all model com-
ponents are clearly characterized by multiscale variability,
spanning a wide range of timescales that can contribute to
the dynamics in different ways, depending on the values of
the friction coefficient and the intrinsic variability of the cou-
pled ocean–atmosphere system.

Figure 2 displays the behavior of the spectral energy
content S(τ ) of the different MIMFs as a function of
their mean timescales τ as in Eq. (7) for the full system
(atmosphere+ocean) and for the two subsystems separately
(i.e., the atmosphere and the ocean, respectively).

Earth Syst. Dynam., 12, 837–855, 2021 https://doi.org/10.5194/esd-12-837-2021
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Figure 2. Spectral energy content S(τ ) of the different MIMFs as a function of their mean timescales τ as in Eq. (7) for the full system
(atmosphere+ocean, blue circles), only for the atmosphere (orange asterisks), and only for the ocean (yellow diamonds). Panel (a, b) refer
to the two values of the friction coefficient, C = 0.008 and C = 0.015, respectively.

First of all, it is important to underline that a different
number of MIMFs has been identified for the two different
cases: Nj = 17 for C = 0.008 and Nj = 22 for C = 0.015.
This underlines that the respective dynamical behavior of the
system is different, being characterized by different sets of
empirical modes and consequently by a different number of
relevant timescales. Moreover, by keeping in mind that for
pure noise the expected number of MIMFs is log2N with N
being the number of data points, both situations cannot be
related to a purely stochastic dynamics. Indeed, in both cases
we have used N = 105 data points; thus the expected num-
ber of MIMFs is Nnoise

j = 16 (Flandrin et al., 2004). How-
ever, an interesting feature is that for the lower C value a
number of MIMFs closer to that expected for noisy data are
found, possibly related to the more irregular dynamics in this
low-friction coefficient case. Conversely, a marked departure
from Nj = 16 is found for the higher C case, corresponding
to a more regular dynamics characterized by significant LFV.

Furthermore, from Fig. 2 it is easy to note that the behav-
ior of S(τ ) depends on both the friction coefficient C and the
different components of the model. For the full system (i.e.,
atmosphere+ocean) S(τ ) decreases as τ increases for both
values of C, while it is characterized by increasing spectral
energy content at larger scales (i.e., at lower frequencies). By
discriminating between the atmospheric and the oceanic con-
tribution we are able to see that (as expected), the short-term
variability of the full system can be attributed to the atmo-
sphere, while the long-term one is a reflection of the ocean
dynamics. Moreover, when C increases we note an increase
of the spectral energy content at all timescales, together with
a flattening of the atmospheric spectral behavior, while the
ocean dynamics seems to preserve its spectral features. These

behaviors can be related to the existence of multiscale vari-
ability of the full system that can be linked to the different
components operating at different timescales and to the dif-
ferent dynamics of the system as the friction coefficient C is
changed.

To further clarify the latter aspect, we evaluate the rel-
ative contribution (in percentage) Eχ,τ of the different
MIMFs (i.e., at different timescales τ ) for each variable
χ = {ψa,i,θa,i,9o,i,To,i} as reported in Fig. 3. It can be
clearly noted that the oceanic variability mainly contributes
to the low-frequency dynamics (Eχ,τ > 95% for χ = {9o,i ,
To,i} and τ&104 d), while the atmosphere is mainly charac-
terized by short-term variability for C = 0.008 (Eχ,τ > 95%
for χ = {ψa,i , θa,i} and τ.10 d) and by both short- and long-
term dynamics for C = 0.015. This points towards the C-
dependent behavior of the atmospheric dynamics, with the
ocean multiscale variability being less affected by changes
in the values of the friction coefficient, and to the role of the
ocean in developing LFV in the atmosphere as C increases.

Thanks to the completeness property of the MEMD we
can explore the dynamics of the system as reproduced by the
most energetic empirical modes via partial sums of Eq. (4).
By using the information coming from the energy percentage
distribution across the different timescales for each variable
χ , we can provide MIMF reconstructions accounting for a
certain percentage of energy with respect to the total spec-
tral energy content. By ordering the empirical modes with
decreasing relative contribution ej and summing up those
contributing at least 95 % of the total spectral content, we
are able to investigate the 3-D projection of the full system
attractor onto the subspace (To,2,9o,2,ψa,1) and compare it
with the projection obtained by considering all timescales (as
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Figure 3. Relative contribution (in percentage) Eχ,τ of each variable χ = {ψa,i ,θa,i ,9o,i ,To,i} in dependence on the mean timescale τ .
Panels (a) and (b) refer to the two values of the friction coefficient C = 0.008 and C = 0.015, respectively. The white line separates the
atmospheric variables from the oceanic ones.

Figure 4. 3-D projection of the full system attractor in the subspace (To,2,9o,2,ψa,1) for C = 0.008 (red) and C = 0.015 (black), respec-
tively, as obtained from reconstructions based on the multivariate empirical modes Rχ,95 %(t) accounting for 95 % of the total variance of
the model dynamics.

in Fig. 1). Thus, for each variable χ = {ψa,i,θa,i,9o,i,To,i},
we can define a reconstruction based on empirical modes,
Rχ,95 %, as

Rχ,95 %(t) .=
∑

j ′|ej ′≥95 %

cχ,j ′ (t), (16)

with cχ,j ′ (t) being the j ′th multivariate empirical mode ex-
tracted via the MEMD of the variables χ . The 3-D projec-
tion onto the subspace (To,2,9o,2,ψa,1) of Rχ,95 % is shown
in Fig. 4, while Table 1 summarizes the mode indices j ′ and
corresponding k?-variate timescales τj ′,k? (see Eq. 5) used
for the reconstruction.

Table 1. Mode indices j ′ and corresponding k?-variate timescales
τj ′,k? (see Eq. 5) used for the reconstruction based on empirical
modes Rχ,95 %.

C χ j ′ τj ′,k? [d]

ψa,1 1, 2 3, 5
0.008 9o,2 14, 15, 16 631, 1333, 2086

To,2 14, 15, 16 599, 1132, 1913

ψa,1 21 2690
0.015 9o,2 19, 20, 21 829, 1469, 2449

To,2 19, 20, 21 735, 1506, 2598
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Figure 5. Multiscale correlation dimensionD2,τ for C = 0.008 at different timescales τj for different cases: (a) for each MIMF individually

(Dj2 ), (b) for reconstructions of MIMFs as in Eq. (12) (D2,τ ), and (c) for reconstructions of MIMFs separately for each variable (barotropic
modes – blue circles, baroclinic modes – orange asterisks, transport modes – yellow diamonds, and temperature modes – violet symbol).
Each panel also shows the 95 % confidence intervals as error bars.

By comparing Figs. 1 and 4 it can be easily noted that the
underlying structure of the 3-D projection of the full attrac-
tor is essentially the same, thus suggesting that the subspace
statistics of the phase-space scaling information can be re-
covered by a subset of multivariate empirical modes. This
underlines that the dynamics of the full system can be re-
produced by only few relevant timescales without too much
loss of information, thus reducing the complexity of the low-
order model itself. These results appear relevant if put into
the wider context of coupled ocean–atmosphere dynamics,
allowing us to recover the main features by only considering
the most relevant (in terms of energy) timescale dynamical
components.

4.2 Multiscale generalized fractal dimensions

Under general conditions, the complexity of a dynamical sys-
tem can be conveniently investigated by means of the nonlin-
ear properties of its phase-space trajectory (e.g., its attractor
or repeller in case of dissipative dynamics) (Ott, 2002). One
of the most common ways to characterize the topology of an

attractor is to compute its spectrum of generalized fractal di-
mensions, allowing us to statistically characterize important
properties of the dynamics as reflected by its phase-space ge-
ometry, including its information content, complexity, and
underlying fractal structure (Grassberger, 1983; Hentschel
and Procaccia, 1983; Donner et al., 2011). However, clas-
sical approaches can only provide global information on the
phase-space topology (Hentschel and Procaccia, 1983; Ott,
2002), while multiscale dynamical systems can be charac-
terized by the statistics of the phase-space scaling changing
as different real-space scales are considered (Alberti et al.,
2020a). For this purpose, we investigate the statistics of the
phase-space scaling of the coupled ocean–atmosphere model
by evaluating the multiscale generalized fractal dimensions
described in Section 3.2. Figures 5 and 6 report the behavior
of the correlation dimensionD2 for both values of the friction
coefficient and for three different cases: (a) for each MIMF
individually (Dj2 ), (b) for reconstructions of MIMFs (D2,τ ),
and (c) for reconstructions of MIMFs performed separately
for each variable χ = {ψa,i,θa,i,9o,i,To,i}.
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Figure 6. Same as in Fig. 5, but for C = 0.015.

As expected, the multiscale correlation dimension for each
MIMF decreases with increasing timescale, being repre-
sentative of a more regular, less stochastic/chaotic, behav-
ior of large-scale MIMFs as compared with the short-term
ones (Alberti et al., 2020a). Particularly, when approach-
ing the largest timescales, D2,τ → 1 suggesting the exis-
tence of fixed-scale MIMFs, i.e., with the instantaneous fre-
quencies being almost constant (as expected, e.g., Rehman
and Mandic, 2010). Conversely, when the multiscale corre-
lation dimensions are evaluated by summing up the differ-
ent MIMFs, starting from the shortest up to the largest scale,
a clearly scale-independent behavior of D2,τ is highlighted
for both values of the friction coefficient C. This suggests
that the short-term variability mostly defines the correlations
between pairs of points in the phase space, thus setting the
minimum number of variables needed to describe the dy-
namics of the system, i.e., its degrees of freedom. However,
the role of C clearly emerges in determining the values of
D2,τ , being lower for the larger C value. Indeed, D2,τ ∼ 8
for C = 0.008, whileD2,τ ∼ 1.5 for C = 0.015. This reflects
the different statistics of the attractor scaling of the full sys-
tem associated with a different dynamical behavior of the
model variables (Faranda et al., 2019), also suggesting a less

chaotic nature of the system as C increases, together with a
reduced number of degrees of freedom. This points towards
the possibility of recovering the main features of the model
with a reduced number of variables and scales. However, the
most interesting features emerge when the different variables
of both atmosphere and ocean are separately investigated by
means of the multiscale generalized fractal dimensions. It is
indeed evident that a scale-independent behavior is found for
the atmosphere for both values of C, while a scale-dependent
behavior is observed for the ocean. The former can be easily
related to the dominant role of the short-term variability for
the atmosphere, while the latter is a reflection of the long-
term dynamics of the ocean. Moreover, it is also particularly
interesting to note that higher (lower) D2,τ values are found
for the atmosphere with respect to the ocean for C = 0.008
(C = 0.015). This reflects the role of the ocean in developing
LFV in the atmosphere as C increases, although the com-
plexity of the full system seems to be determined by the at-
mosphere for both C values, being indeed characterized by a
scale-independent behavior of D2,τ .

The described findings are not only valid for the multiscale
correlation dimensionD2,τ but are also observed for both the
multiscale capacity dimensionD0,τ and the multiscale infor-
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Figure 7. Multiscale capacity dimension D0,τ , multiscale information dimension D1,τ , and multiscale correlation dimension D2,τ for

C = 0.008 at different timescales τj for different cases: (a) for each MIMF individually (Djq ), (b) for reconstructions of MIMFs as in
Eq. (12) (Dq,τ ), and (c–f) for reconstructions of MIMFs separately for each variable (barotropic modes – c, baroclinic modes – d, transport
modes – e, and temperature modes – f).

mation dimension D1,τ as reported in Figs. 7 and 8, together
with the multiscale correlation dimension D2,τ , for both val-
ues of C.

Our formalism reveals the expected property that for q <
q ′, Dq,τ >Dq ′,τ∀τ (Hentschel and Procaccia, 1983; Alberti
et al., 2020a). Moreover, when evaluating the multiscale gen-
eralized fractal dimensions for each MIMF separately (e.g.,
Figs. 7a and 8a) a decreasing value for Djq is found as τ in-
creases, with all Djq converging towards the same value of
1 at large timescales. As for Dj2 this behavior can be easily
interpreted in terms of more chaotic vs. more regular MIMFs
when moving from short to large scales. This indeed reflects
the existence of large-scale MIMFs that are characterized by
a linear phase, i.e., a constant timescale (e.g., Rehman and
Mandic, 2010). Thus, this is a trivial result. Conversely, when
the Dq,τ are evaluated for reconstructions based on MIMFs
a scale-independent behavior is found for the full system for
both values of C (e.g., Figs. 7b and 8b). However, the key
role of the friction coefficient clearly emerges by looking at
the larger values of Dq,τ for C = 0.008 with respect to the
lower values found for C = 0.015. This clearly indicates the
existence of a completely different dynamics between the
two values of C, where the coupled ocean–atmosphere dy-
namics can be interpreted as a higher-dimensional chaotic
system for reduced ocean–atmosphere coupling (i.e., C =
0.008) as opposed to a lower-dimensional one for a strong

ocean–atmosphere coupling (i.e., C = 0.015). Although C
acts as a control parameter for the dimensionality of the sys-
tem, it is not able to change the underlying fractal nature of
the full system. Indeed, for both C values we clearly observe
different Dq,τ for different q, thus suggesting the existence
of a multifractal nature of the ocean–atmosphere dynamics
at all timescales. Furthermore, by separately looking at the
two subsystems (i.e., the ocean and the atmosphere) a com-
pletely different behavior emerges (e.g., Figs. 7c–f and 8c–
f). In this case, the atmospheric variables are characterized
by scale-independent Dq,τ , being representative of a high-
dimensional system whose prime dynamics occurs at short
timescales and with little effects of large-scale processes on
the collective dynamics of the atmosphere. By contrast, a
clearly scale-dependent behavior is found for the oceanic
variables, with the multiscale generalized dimensions de-
creasing at larger timescales, reflecting the effects of large-
scale dynamics dominating with respect to the short-term
one for the ocean variability. Again the friction coefficient C
controls the values of Dq,τ , decreasing as C increases, while
both the atmosphere and the ocean are clearly characterized
by multifractal features at all timescales.

By estimating the Lyapunov spectra (cf. Fig. S11 in the
Supplement) separately for the ocean and the atmosphere,
we obtained that for C = 0.008 the instability is large for the
atmosphere with a Lyapunov dimension DL ∼ 10, while for
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Figure 8. Same as in Fig. 7, but for C = 0.015.

C = 0.015 the instability is weaker for the atmosphere, and
the Lyapunov dimension is slightly larger than 4. Follow-
ing the Kaplan–Yorke conjecture (Kaplan and Yorke, 1979),
the Lyapunov dimension can be used as a proxy of D0.
Hence, our results are clearly consistent with the dimension
estimates for the atmosphere. For the ocean, however, there
seems to be a less good agreement, with DL ≈ 2 while we
found thatD0,τ ≈ 4. This quantitative disagreement could be
related to the fact that the ocean can be viewed as a relatively
stable system perturbed by high-frequency “noise” due to the
atmosphere. Deeper investigations will be devoted to clarify
this point in future research.

As a further step, we evaluate the full spectrum of gen-
eralized fractal dimensions for each MIMF by considering a
wide range of statistical moments q. As suggested in Lovejoy
and Schertzer (2013) the range of significant moments can be
evaluated by means of the tail of the cumulative distribution
function of the data. Indeed, the effect of sample size and its
implications for spurious scaling may be due either to first-
or second-order multifractal phase transitions (Lovejoy and
Schertzer, 2013). To mitigate these effects (e.g. Supplement)
since we deal with the investigation of scale-dependent frac-
tal dimensions, we evaluate the cumulative statistics at differ-
ent scales and we observe that extreme fluctuations follow a
power law decay leading to the divergence of the sixth-order
and the fourth-order moment for C = 0.008 and C = 0.015,
respectively. Thus we fix our range of moments −6< q < 6
and −4< q < 4 for C = 0.008 and C = 0.015, respectively.
This analysis allows characterizing how the (multi)fractal

properties of the system evolve with the timescale τ . In-
deed, there are ongoing discussions on the fractal structure
of both the atmosphere and the ocean, especially dealing with
the short-term variability and in terms of scaling-law behav-
ior and statistics of increments (e.g., Lovejoy and Schertzer,
2013; Franzke et al., 2020).

The Dq,τ spectrum is reported in Fig. 9, where colored
lines correspond to different timescales. It can be observed
that for both values of the friction coefficient C, different
values of Dq,τ are obtained for different q, with being Dq,τ
a nonlinear decreasing function of q. This means that the full
system exhibits signatures of multifractality at all timescales,
especially at very short and very long timescales. A sim-
ple and direct measure of the degree of multifractality1 is
the so-called multifractal width 1 .

=Dqmin,τ −Dqmax,τ . We
observe (see Fig. 10a, b, black circles) that 1≈ 2 for τ ∈
[τS,τL] days, while 1> 2 for both τ < τS and τ > τL, with
τS ∼ 20 d and τL ∼ 1 year. This behavior could be the reflec-
tion of processes operating at different timescales for both
the atmosphere (at short timescales) and the ocean (at long
timescales). In order to further disentangle those processes,
we also evaluated the full spectra of the generalized multi-
fractal dimensions for each subsystem (i.e., atmosphere and

1Another direct measure is the so-called co-dimension of the
mean c = d−D0 where d is the dimension of the phase space (e.g.,
Lovejoy and Schertzer, 2013). For the sake of simplicity we prefer
to use here only the multifractal width since it can be easily derived
from Dq,τ and not to introduce an additional alternative concept.
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Figure 9. Dq,τ spectra for the coupled ocean–atmosphere dynamics at different timescales τj (indicated by different line colors) for recon-
structions of MIMFs as in Eq. (12) (Dq,τ ) for (a) C = 0.008 and (b) C = 0.015.

Figure 10. Multifractal width 1 at different timescales τj for reconstructions of MIMFs as in Eq. (12) (Dq,τ ) for (a) C = 0.008 and (b)
C = 0.015. The different colors refer to the full system (atmosphere+ocean, black circles), only the atmosphere (red circles), and only the
ocean (green circles), respectively.

ocean) individually. For both values of C, the corresponding
results are shown in Fig. 11.

We clearly see that for the atmosphere, there is a scale-
independent behavior of Dq,τ for all q, rendering the differ-
ent curves almost invariant with respect to the scale. By con-
trast, a scale-dependent behavior emerges for the ocean for
the lower value ofC. Indeed, it is evident that as the timescale
increases the multiscale generalized dimensions tend to de-
crease for all values of q, moving from Dq,τ1 ∈ [5,8] to
Dq,τ17 ∈ [2,3] for C = 0.008. Conversely, although there is
an overall reduction in the Dq,τ values for C = 0.0015 with
respect to those evaluated for C = 0.008, the decrease with
the timescale is less evident for this higher C value, although
it is still present for τ > 1 year (see orange and red curves
in comparison with the blue ones in Fig. 11d). This clearly

suggests that the presence of strong multifractality in the full
system can be essentially attributed to the atmosphere, with
only a marginal role of the ocean variability in determining
the fractal structure of the full system. By evaluating the dif-
ference between Dqmin,τ and Dqmax,τ , we can clearly see that
larger values, of the order of 3, are found for the atmosphere,
at almost all timescales (and especially at shorter timescales),
for both values of C. Conversely, larger values are found at
shorter timescales for both values of C for the ocean. As
the timescale increases, this difference tends to be reduced
to values close to 1, suggesting a reduced multifractality of
the ocean with respect to the atmosphere, especially for the
lower value of C at larger timescales when the role of the
ocean becomes dominant as compared to the atmosphere (see
Fig. 2).
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Figure 11.Dq,τ spectra for the dynamics of atmosphere and ocean individually at different timescales τj (indicated by different line colors)
for reconstructions of MIMFs as in Eq. (12) (Dq,τ ) for (a, c) C = 0.008 and (b, d) C = 0.015. Panels (a, b) refer to the atmosphere, (c, d) to
the ocean.

4.3 Comparison with regional averages from reanalysis
data

As a final step we compare our previous results for the re-
duced order coupled ocean–atmosphere model with those
obtained from reanalysis data (Poli, 2015). More specif-
ically, we use three different sets of regional time se-
ries based on the European Centre for Medium-range
Weather Forecasts (ECMWF) ORA-20C project (De Bois-
séson and Balmaseda, 2016; De Boisséson et al., 2017)
that is a 10-member ensemble of ocean reanalyses cover-
ing the complete 20th century using atmospheric forcing
from the ERA-20C reanalysis (https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era-20c). Here, we fo-
cus on data from January 1958 to December 2009 at monthly
resolution in terms of different monthly averaged time series,
the set of data also used previously in Vannitsem and Ekel-
mans (2018). This period has been chosen in the latter study
because of the ocean reanalysis dataset showing here smaller
uncertainties than during the first half of the 20th century
(De Boisséson and Balmaseda, 2016).

Three different representative regions are chosen: the
North Atlantic region, corresponding to the domain de-
fined by λ∈ [55, 15◦W] and φ ∈ [25, 60◦ N], the North Pa-
cific region, i.e., a spherical–rectangle domain with λ∈ [165,

225◦ E] and φ ∈ [25, 60◦ N], and the tropical Pacific re-
gion, corresponding to λ∈ [165, 225◦ E] and φ ∈ [25◦ S,
25◦ N] (Vannitsem and Ekelmans, 2018). The individual
series for the two extratropical regions have been de-
rived by projecting the reanalysis fields on two dom-
inant Fourier modes: (i) F1 =

√
2cos

(
πy/Ly

)
and (ii)

φ2 = 2sin(πx/Lx) sin
(
2πy/Ly

)
(Vannitsem and Ekelmans,

2018). For the tropical Pacific region, the series are formed
by spatial averages. In this way, we obtain two sets of three
time series each for both the North Atlantic and the North
Pacific (i.e., one for the atmosphere and two for the ocean),
as well as a third set of three time series for the tropical Pa-
cific (two for the atmosphere at two different pressure levels
and one for the ocean). This allows us to build a 3-D pro-
jection of the local atmosphere–ocean coupled dynamics for
each region (see Vannitsem and Ekelmans, 2018, for more
details).

By using the MEMD analysis to investigate the multivari-
ate patterns of reanalysis data, we found the same number
of Nj = 9 MIMFs for each region, whose mean timescales
range from ∼ 2 months up to ∼ 20 years, suggesting the ex-
istence of multiscale variability over a wide range of scales.
As for the reduced order model, we first investigate the
behavior of the spectral energy content S(τ ) of the differ-
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Figure 12. Spectral energy content S(τ ) of the different MIMFs as a function of their mean timescales τ as in Eq. (7) for the North Atlantic
(blue circles), the North Pacific (orange asterisks), and the tropical Pacific (yellow diamonds).

ent MIMFs as a function of their mean timescales τ as in
Eq. (7) for the three different regions as shown in Fig. 12. We
clearly observe an increase of the spectral energy content up
to a timescale τ ∼ 1 year for all regions, then declining for
both the North Atlantic and the North Pacific. Conversely,
the tropical Pacific is characterized by larger spectral con-
tent also for timescales larger than 1 year, up to τ ∼ 5 years,
which coincide with the typical timescales of the El Niño–
Southern Oscillation (ENSO). Furthermore, for all regions
a decreasing spectral energy content is found at the largest
timescales (i.e., τ > 5 years).

To further compare our above model results with those
obtained for the reanalysis data, we evaluate the multiscale
generalized fractal dimensions for the three different regions.
For each region, we derive both the multifractal width 1 .

=

Dqmin,τ −Dqmax,τ and the full multiscale multifractal spec-
trum at different timescales τj for reconstructions of MIMFs
as in Eq. (12) (Dq,τ ). Figure 13 shows the corresponding re-
sults for the North Atlantic region, the North Pacific region,
and the tropical Pacific region.

First of all, it is important to underline that the multiscale
generalized fractal dimensions are clearly different with re-
spect to those obtained from the ocean–atmosphere model.
This directly follows from the different numbers of variables
(time series) in the model, being a 36-dimensional dynam-
ical system, with respect to the reanalysis data, being a 3-
dimensional projection of the regional ocean–atmosphere dy-
namics. Nevertheless, although different in terms of absolute
values, both the model and the reanalysis data show a simi-
lar qualitative behavior with varying scale τ , although some
differences are found between the different regions.

On one hand, both the North Atlantic and the North Pa-
cific regions (see Fig. 13d, e) are characterized by a scale-
dependent behavior, with decreasing Dq,τ as τ increases.
Moreover, by looking at the multifractal width as a function
of the scale (Fig. 13a, b) we find evidence for a decreasing
1 as τ increases, being representative of a transition from
a short-term multifractal nature to a long-term monofractal
one. These features can be interpreted in terms of the differ-
ent multiscale dynamical processes affecting the atmosphere
on short scales and the ocean on larger scales.

On the other hand, by looking at the tropical Pacific region
we clearly see an enhancement of 1, i.e., the emergence of
multifractal features (see Fig. 13c), at annual/multi-annual
timescales (i.e., τ ∼ 1–8 years), being also characterized by
the largest values of the multiscale generalized fractal dimen-
sions (see Fig. 13f). This could be related to the role of the
El Niño–Southern Oscillation (ENSO) cycle manifesting at
these timescales (between 2 and 7 years), which is likely re-
sponsible for the different scale-dependent behavior of Dq,τ
as compared to the two other extratropical regions.

In summary, by means of the reanalysis data, we have been
able to demonstrate that (i) the reduced order coupled ocean–
atmosphere model and the reanalysis data show some quali-
tatively similar behavior of the multiscale generalized fractal
dimensions, although they are characterized by different ab-
solute values due to the different numbers of variables con-
sidered in the model and the projections on a few modes of
the reanalysis data, and that (ii) interesting features emerge
when looking at the scale dependency of the statistics of the
phase-space scaling for different regions, being the reflec-
tion of different driving mechanisms and processes operat-
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Figure 13. (a–c) Multifractal width 1 and (d–f) Dq,τ spectra at different timescales τj for reconstructions of MIMFs as in Eq. (12) (Dq,τ )
for (a, d) the North Atlantic, (b, e) the North Pacific, and (c, f) the tropical Pacific, respectively.

ing at different timescales in the coupled ocean–atmosphere
system. However, further investigations are needed to char-
acterize the role of the different processes as well as their
intrinsic dimensionality, occurrence, and spatial dependency
in more detail. Such an in-depth investigation is outlined as
a part of our future work.

5 Conclusions

We have provided a first time systematic investigation of
the multiscale dynamics of a reduced order coupled ocean–
atmosphere model (Vannitsem et al., 2015) as described by
means of the statistics of the phase-space scaling (Alberti
et al., 2020a).

First, by means of the multivariate empirical mode decom-
position (MEMD) we have been able to detect oscillating
patterns with time-dependent amplitude and frequency that
are directly linked to a rich variety of features of the cou-
pled ocean–atmosphere system. We have found that the un-
derlying structure of the 3-D projection of the full attractor
is essentially reproduced by a subset of multivariate intrinsic
mode functions (MIMFs) corresponding to the most relevant
timescales without too much loss of information, thus further

reducing the complexity of the reduced order model itself.
These results appear relevant if put into the wider context of
coupled ocean–atmosphere dynamics, allowing us to recover
the main features by only considering the most relevant (in
terms of energy) timescale dynamical components.

Second, by exploiting the novel concept of multiscale and
multivariate generalized fractal dimensions we have inves-
tigated the different multifractal properties for the ocean
and the atmosphere at different timescales. We have demon-
strated that for weak ocean–atmosphere coupling (i.e., for
low values of the friction coefficient C), the resulting di-
mensions of the two model components are very different,
while for strong coupling (larger C) at which coupled modes
develop at low frequencies, the scaling properties are more
similar especially at longer timescales. These results suggest
that as C increases, we observe the development of a coher-
ent coupled dynamics, primarily at large timescales. In terms
of the underlying fractal structure, we have found that for
both considered values of the friction coefficient C, the full
system exhibits signatures of multifractality at all timescales,
especially pronounced at short and long as compared to in-
termediate timescales. By means of the full spectrum of gen-
eralized fractal dimensions, we have clearly evidenced that
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for the atmosphere, there is a scale-independent behavior of
Dq,τ for all q, rendering the multifractal spectra almost in-
variant with respect to the timescale. By contrast, a scale-
dependent behavior emerges for the ocean for the lower value
of C. This clearly suggests that the presence of strong mul-
tifractality in the full system can be attributed to the atmo-
sphere, with only a marginal role of the ocean variability in
determining the fractal structure of the full system.

Finally, we have compared our results for the reduced
order coupled ocean–atmosphere model with those derived
from reanalysis data (Poli, 2015) by using three sets of differ-
ent regional time series from the ORA-20C project (De Bois-
séson and Balmaseda, 2016; De Boisséson et al., 2017). Al-
though the resulting multiscale generalized fractal dimen-
sions clearly differ quantitatively from those obtained from
the ocean–atmosphere model – which can be easily under-
stood by considering the different dimensions of the model
(a 36-dimensional dynamical system) and the reanalysis data
(3-dimensional projections of the local ocean–atmosphere
dynamics) – we observed a similar qualitative behavior with
changing scale τ . Interestingly, the multiscale multifractal
features of different regions show different scale-dependent
behaviors. Specifically, both the North Atlantic and the North
Pacific regions are characterized by a scale-dependent behav-
ior, with decreasing Dq,τ as τ increases, with a transition
from a short-term multifractal nature to long-term monofrac-
tal one. These features can be interpreted in terms of the
different multiscale dynamical processes affecting the atmo-
sphere at short timescales and the ocean at longer timescales.
Conversely, the tropical Pacific region is characterized by
the emergence of multifractal features at annual/multi-annual
timescales (i.e., τ ∼ 1–8 years), being also characterized by
the largest values of the multiscale generalized fractal dimen-
sions. This behavior can be seen as a manifestation of the El
Niño–Southern Oscillation (ENSO) cycle that typically acts
at these timescales and can be considered the key driving fac-
tor of a different scale-dependent behavior of Dq,τ as com-
pared to the two extratropical regions.

Our findings for both the model and the reanalysis data
suggest that our approach can be used to diagnose the
strength of coupling in the ocean–atmosphere system and to
investigate the statistics of the phase-space scaling of the sys-
tem. We have demonstrated that the model and the reanaly-
sis data show a qualitatively similar behavior of the multi-
scale generalized fractal dimensions. However, the different
scale dependency of the statistics of the phase-space scaling
for different regions can contribute to a better understanding
of the different driving mechanisms and processes operat-
ing at different timescales in the coupled ocean–atmosphere
system. Indeed, our results highlight that the complexity of
the coupled ocean–atmosphere system significantly depends
not only on model parameters, which can be helpful for re-
producing different features of the dynamics, but also on the
particular scale we are looking at that can be related to differ-
ent phenomena and source mechanisms, of both intrinsic and

external origin to the ocean–atmosphere system. This means
that our results could also be helpful for understanding the
dimensionality of the system at different timescales, thus be-
ing useful for forecasting the dynamics at different scales and
for building empirical models based on dynamical system ap-
proaches in a similar fashion to models developed consider-
ing real space scaling behavior (e.g., Del Rio Amador and
Lovejoy, 2019, 2021). These observations suggest that fur-
ther investigations are needed to better characterize the role
of the different processes as well as their intrinsic dimen-
sionality, occurrence, and spatial dependency, which shall be
further addressed in our future work.

Code availability. All codes used for the analysis and generating
the figures can be obtained from the authors upon request.

Data availability. The time series of the model used in
the present article are available from the authors upon
request. The reanalysis dataset is available on Zenodo:
https://doi.org/10.5281/zenodo.1135134 (Vannitsem, 2018).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/esd-12-837-2021-supplement.

Author contributions. TA, RVD, and SV designed the study.
TA conducted the analysis and drafted the manuscript. RVD and
SV contributed to the interpretation of the results. All authors con-
tributed to the writing of the manuscript.

Competing interests. The authors declare that they have no con-
flict of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. This work has been partially supported by
the German Federal Ministry for Education and Research (BMBF,
grant no. 01LP2002B) and the Belgian Science Policy Office (Bel-
spo) through the JPI Climate/JPI Oceans project ROADMAP.

Financial support. This research has been supported by
the Bundesministerium für Bildung und Forschung (grant
no. 01LP2002B) and the Belgian Federal Science Policy Office
(project ROADMAP).

Review statement. This paper was edited by Rui A. P. Perdigão
and reviewed by two anonymous referees.

https://doi.org/10.5194/esd-12-837-2021 Earth Syst. Dynam., 12, 837–855, 2021

https://doi.org/10.5281/zenodo.1135134
https://doi.org/10.5194/esd-12-837-2021-supplement


854 T. Alberti et al.: Multivariate analysis of a reduced order ocean–atmosphere model

References

Alberti, T.: Multivariate empirical mode decomposition analysis of
Swarm data, Nuovo Cimento C, 41, 1–10, 2018.

Alberti, T., Consolini, G., Ditlevsen, P. D., Donner, R. V., and Quat-
trociocchi, V.: Multiscale measures of phase-space trajectories,
Chaos, 30, 123116, https://doi.org/10.1063/5.0008916, 2020a.

Alberti, T., Giannattasio, F., De Michelis, P., and Consolini, G.:
Linear Versus Nonlinear Methods for Detecting Magnetospheric
and Ionospheric Current Systems Patterns, Earth Space Sci.,
7, e2019EA000559, https://doi.org/10.1029/2019EA000559,
2020b.

Alexander, M. A., Bladé, I., Newman, M., Lanzante, J. R., Lau, N.-
C., and Scott, J. D.: The atmospheric bridge: The influence of
ENSO teleconnections on air–sea interaction over the global
oceans. J. Climate, 15, 2205–2231, 2002.

Ambaum, M. H. P., Hoskins, B. J., and Stephenson, D. B.: Arctic
Oscillation or North Atlantic Oscillation?, J. Climate, 14, 3495–
3507, 2001.

Badii, R. and Politi, A.: Hausdorff dimension and uniformity factor
of strange attractors, Phys. Rev. Lett., 52, 1661–1664, 1984.

Chatfield, C.: The analysis of time series – an introduction, 6th edn.,
Chapman and Hall/CRC, London, 2016.

Czaja, A. and Frankignoul, C.: Observed impact of Atlantic SST
anomalies on the North Atlantic Oscillations, J. Climate, 15,
606–623, 2002.

D’Andrea, F., Czaja, A., and Marshall, J.: Impact of anomalous
ocean heat transport on the North Atlantic Oscillation, J. Climate,
18, 4955–4969, 2005.

De Boisséson, E. and Balmaseda, M.: An ensemble of 20th cen-
tury ocean reanalyses for providing ocean initial conditions
for CERA-20C coupled streams, ERA report series, 24, Euro-
pean Centre for Medium-range Weather Forecasts, Reading, UK,
2016.

De Boisséson, E., Balmaseda, M., and Mayer, M.: Ocean
heat content variability in an ensemble of twentieth cen-
tury ocean reanalyses, Clim. Dynam., 50, 3783–3798,
https://doi.org/10.1007/s00382-017-3845-0, 2018.

De Cruz, L., Demaeyer, J., and Vannitsem, S.: The Modular
Arbitrary-Order Ocean-Atmosphere Model: MAOOAM v1.0,
Geosci. Model Dev., 9, 2793–2808, https://doi.org/10.5194/gmd-
9-2793-2016, 2016.

De Cruz, L., Schubert, S., Demaeyer, J., Lucarini, V., and Van-
nitsem, S.: Exploring the Lyapunov instability properties of
high-dimensional atmospheric and climate models, Nonlin. Pro-
cesses Geophys., 25, 387–412, https://doi.org/10.5194/npg-25-
387-2018, 2018.

Del Rio Amador, L., and Lovejoy, S.: Predicting the global
temperature with the Stochastic Seasonal to Interannual Pre-
diction System (StocSIPS), Clim. Dynam., 53, 4373–4411,
https://doi.org/10.1007/s00382-019-04791-4, 2019.

Del Rio Amador, L. and Lovejoy, S.: Long-range forecasting
as a past value problem: Untangling correlations and causal-
ity with scaling, Geophys. Res. Lett., 48, e2020GL092147,
https://doi.org/10.1029/2020GL092147, 2021.

Donner, R. V., Heitzig, J., Donges, J. F., Zou, Y., Marwan, N., and
Kurths, J.: The geometry of chaotic dynamics – a complex net-
work perspective, Eur. Phys. J. B, 84, 653–672, 2011.

Faranda, D., Messori, G., and Vannitsem, S.: Attractor di-
mension of time-averaged climate observables: insights
from a low-order ocean-atmosphere model, Tellus A, 71:1,
https://doi.org/10.1080/16000870.2018.1554413, 2019.

Farmer, J. D., Ott, E., and Yorke, J. A.: The dimension of chaotic
attractors, Physica D, 7, 153–180, 1983.

Farneti, R.: Modelling interdecadal climate variability and
the role of the ocean, WIREs Clim. Change, 8, e441,
https://doi.org/10.1002/wcc.441, 2017.

Feliks, Y., Ghil, M., and Robertson, A. W.: The atmospheric cir-
culation over the North Atlantic as induced by the SST field, J.
Climate, 24, 522–542, https://doi.org/10.1175/2010JCLI3859.1,
2011.

Flandrin, P., Rilling, G., and Goncalves, P.: Empirical Mode De-
composition as a Filter Bank, IEEE Sign. Proc. Lett., 11, 112,
https://doi.org/10.1109/LSP.2003.821662, 2004.

Franzke, C. L. E., Barbosa, S., Blender, R., Fredriksen, H.-B., Laep-
ple, T., Lambert, F., Nilsen, T., Rypdal, K., Rypdal, M., Scotto,
M. G., Vannitsem, S., Watkins, N. W., Yang, L., and Yuan,
N.: The Structure of Climate Variability Across Scales, Rev.
Geophys., 58, e00657, https://doi.org/10.1029/2019RG000657,
2020.

Gastineau, G., D’Andrea, F., and Frankignoul, C.: Atmospheric
response to the North Atlantic Ocean variability on sea-
sonal to decadal time scales, Clim. Dynam., 40, 2311–2330,
https://doi.org/10.1007/s00382-012-1333-0, 2013.

Grassberger, P.: Generalized dimensions of strange attractors, Phys.
Lett. A, 97, 227–230, 1983.

Hentschel, H. G. E. and Procaccia, I.: The infinite number of gen-
eralized dimensions of fractals and strange attractors, Physica D,
8, 435–444, 1983.

Huang, N. E. and Wu, Z.: A review on Hilbert-Huang trans-
form: Method and its applications to geophysical studies, Rev.
Geophys., 46, RG2006, https://doi.org/10.1029/2007RG000228,
2008.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng,
Q., Yen, N.-C., Tung, C. C., and Liu, H. H.: The Empirical Mode
Decomposition and the Hilbert Spectrum for Nonlinear and Non-
stationary Time Series Analysis, Proc. R. Soc. Lon. Ser.-A, 454,
903, https://doi.org/10.1098/rspa.1998.0193, 1998.

Jin, F.-F.: Tropical Ocean-Atmosphere interaction, the Pacific cold
tongue, and the El-Niño-Southern Oscillation, Science, 274, 76–
78, 1996.

Kaplan, J. L. and Yorke, J. A.: Chaotic behavior of multidimen-
sional difference equations, in: Functional Differential Equations
and Approximation of Fixed Points, Lect. Notes Math., edited
by: Peitgen, H.-O. and Walther, H.-O., 730, 204–227, Springer,
Berlin, Heidelberg, https://doi.org/10.1007/BFb0064319, 1979.

Kravtsov, S., Dewar, W. K., Berloff, P., Ghil, M. and
McWilliams, J. C.: A highly nonlinear coupled mode of
decadal variability in a mid-latitude ocean-atmosphere model,
Dyn. Atmos. Oceans, 43, 123–150, 2007.

Legras, B. and Ghil, M.: Persistent anomalies, blocking, and varia-
tions in atmospheric predictability, J. the Atmos. Sci., 42, 433–
471, 1985.

L’Hévéder, B., Codron, F., and Ghil, M.: Impact of anomalous
northward oceanic heat transport on global climate in a slab-
ocean setting, J. Climate, 28, 2650–2664, 2014.

Earth Syst. Dynam., 12, 837–855, 2021 https://doi.org/10.5194/esd-12-837-2021

https://doi.org/10.1063/5.0008916
https://doi.org/10.1029/2019EA000559
https://doi.org/10.1007/s00382-017-3845-0
https://doi.org/10.5194/gmd-9-2793-2016
https://doi.org/10.5194/gmd-9-2793-2016
https://doi.org/10.5194/npg-25-387-2018
https://doi.org/10.5194/npg-25-387-2018
https://doi.org/10.1007/s00382-019-04791-4
https://doi.org/10.1029/2020GL092147
https://doi.org/10.1080/16000870.2018.1554413
https://doi.org/10.1002/wcc.441
https://doi.org/10.1175/2010JCLI3859.1
https://doi.org/10.1109/LSP.2003.821662
https://doi.org/10.1029/2019RG000657
https://doi.org/10.1007/s00382-012-1333-0
https://doi.org/10.1029/2007RG000228
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1007/BFb0064319


T. Alberti et al.: Multivariate analysis of a reduced order ocean–atmosphere model 855

Liu, Z.: Dynamics of interdecadal climate variability: A historical
perspective, J. Climate, 25, 1963–1995, 2012.

Lorenz, E. N.: Formulation of a low-order model of a moist general
circulation, J. Atmos. Sci., 41, 1933–1945, 1984.

Lovejoy, S.: The half-order energy balance equation – Part 1: The
homogeneous HEBE and long memories, Earth Syst. Dynam.,
12, 469–487, https://doi.org/10.5194/esd-12-469-2021, 2021.

Lovejoy, S. and Schertzer, D.: The Weather and Climate: Emergent
Laws and Multifractal Cascades, Cambridge University Press,
Cambridge, 496 pp., 2013.

Lovejoy, S., Procyk, R., Hébert, R., and Del Rio Amador, L.: The
fractional energy balance equation, Q. J. Roy. Meteorol. Soc.,
147, 1964–1988, https://doi.org/10.1002/qj.4005, 2021.

Mandelbrot, B.: How Long Is the Coast of Britain? Statistical Self-
Similarity and Fractional Dimension, Science, 156, 636–638,
https://doi.org/10.1126/science.156.3775.636, 1967.

Meehl, G. A., Arblaster, J. M., and Loschnigg, J.: Coupled Ocean–
Atmosphere Dynamical Processes in the Tropical Indian and Pa-
cific Oceans and the TBO, J. Climate, 16, 2138–2158, 2003.

Mosedale, T. J., Stephenson, D. B., Collins, M., and Mills, T. C.:
Granger Causality of Coupled Climate Processes: Ocean Feed-
back on the North Atlantic Oscillation, J. Climate, 19, 1182–
1194, 2006.

Neelin, J. D., Latif, M., and Jin, F.-F.: Dynamics of Coupled Ocean-
Atmosphere Models: The Tropical Problem, Annu. Rev. Fluid
Mech., 26:1, 617–659, 1994.

Nese, J. M. and Dutton, J. A.: Quantifying predictability variations
in a low-order ocean-atmosphere model: A dynamical system ap-
proach. J. Climate, 6, 185–203, 1993.

Ott, E.: Chaos in Dynamical Systems – 2nd Edn.,
Cambridge University Press, Cambridge, 490 pp.,
https://doi.org/10.2277/0521811961, 2002.

Pawelzik, K. and Schuster, H. G.: Generalized dimensions and en-
tropies from a measured time series, Phys. Rev. A, 35, 481–484,
1987.

Philander, S. G. H.: El Niño and the Southern Oscillation, Academic
Press, New York, 1990.

Poli, P., Hersbach, H., Tan, D. G. H., Dee, D. P., Thépaut, J.-N., Sim-
mons, A., Peubey, C., Laloyaux, P., Komori, T., Berrisford, P.,
Dragani, R., Trémolet, Y., Hólm, E. V., Bonavita, M., Isaksen, L.,
and Fisher, M.: The data assimilation system and initial perfor-
mance evaluation of the ECMWF pilot reanalysis of the 20th-
century assimilating surface observations only, ERA report se-
ries, 14, European Centre for Medium-range Weather Forecasts,
Reading, UK, 2015.

Primavera, L. and Florio, E.: Parallel Algorithms for Multifrac-
tal Analysis of River Networks, in: Numerical Computations:
Theory and Algorithms, Lect. Notes Comput. Sc., edited by:
Sergeyev Y. and Kvasov D. 11973, Springer, Cham, 2020.

Rehman, N. and Mandic, D. P.: Multivariate empirical mode de-
composition, P. Roy. Soc. A-Math. Phy., 466, 1291–1302, 2010.

Roebber, P. J.: Climate variability in a low-order coupled
atmosphere-ocean model, Tellus A, 47, 473–494, 1995.

Steinhaus, H.: Length, shape and area, Colloq. Math., 3, 1–13, 1954.
Timmermann, A., Jin, F.-F., and Abshagen, J.: A nonlinear theory

for El Niño bursting, J. Atmos. Sci., 60, 152–165, 2003.
Van der Avoird, E., Dijkstra, H. A., Nauw, J. J., and Schuur-

mans, C. J. E.: Nonlinearly induced low-frequency variability in
a midlatitude coupled ocean-atmosphere model of intermediate
complexity, Clim. Dynam., 19, 303–320, 2002.

Vannitsem, S.: The role of the ocean mixed layer on the
development of the North Atlantic Oscillation: A dynam-
ical system’s perspective, Geophys. Res. Lett., 42, 8615,
https://doi.org/10.1002/2015GL065974, 2015.

Vannitsem, S.: Predictability of large-scale atmospheric motions:
Lyapunov exponents and error dynamics, Chaos, 27, 032101,
https://doi.org/10.1063/1.4979042, 2017.

Vannitsem, S.: Time series used in the manuscript “Causal depen-
dences between the coupled ocean-atmosphere dynamics over
the Tropical Pacific, the North Pacific and the North Atlantic”
[Data set], Zenodo, https://doi.org/10.5281/zenodo.1135134,
2018.

Vannitsem, S. and Ekelmans, P.: Causal dependences between the
coupled ocean–atmosphere dynamics over the tropical Pacific,
the North Pacific and the North Atlantic, Earth Syst. Dynam., 9,
1063–1083, https://doi.org/10.5194/esd-9-1063-2018, 2018.

Vannitsem, S. and Ghil, M.: Evidence of coupling in ocean atmo-
sphere dynamics over the North Atlantic, Geophys. Res. Lett.,
44, 2016–2026, https://doi.org/10.1002/2016GL072229, 2017.

Vannitsem, S., Demaeyer, J., de Cruz, L., and Ghil, M.: Low-
frequency variability and heat transport in a low-order nonlinear
coupled ocean-atmosphere model, Physica D, 309, 71–85, 2015.

Vannitsem, S., Demaeyer, J., and Ghil, M.: Extratropical low-
frequency variability with ENSO forcing: A reduced-order cou-
pled model study. J. Adv. Model. Earth Sy., 13, e2021MS002530,
https://doi.org/10.1029/2021MS002530, 2021.

Van Veen, L.: Overturning and wind driven circulation in a low-
order ocean–atmosphere model, Dynam. Atmos. Oceans, 37,
197–221, 2003.

Wang, C.: Three-ocean interactions and climate variability: a review
and perspective, Clim. Dynam. 53, 5119–5136, 2019.

Wunsch, C. and Ferrari, R.: Vertical mixing, energy, and the general
circulation of the ocean, Annu. Rev. Fluid Mech., 36, 281–314,
2004.

Xue, P., Malanotte Rizzoli, P., Wei, J., and Eltahir, E. A. B.:
Coupled ocean atmosphere modeling over the Maritime Conti-
nent: A review, J. Geophys. Res.-Oceans, 125, e2019JC014978,
https://doi.org/10.1029/2019JC014978, 2020.

https://doi.org/10.5194/esd-12-837-2021 Earth Syst. Dynam., 12, 837–855, 2021

https://doi.org/10.5194/esd-12-469-2021
https://doi.org/10.1002/qj.4005
https://doi.org/10.1126/science.156.3775.636
https://doi.org/10.2277/0521811961
https://doi.org/10.1002/2015GL065974
https://doi.org/10.1063/1.4979042
https://doi.org/10.5281/zenodo.1135134
https://doi.org/10.5194/esd-9-1063-2018
https://doi.org/10.1002/2016GL072229
https://doi.org/10.1029/2021MS002530
https://doi.org/10.1029/2019JC014978

	Abstract
	Introduction
	The reduced order ocean–atmosphere model
	Methods
	Multivariate empirical mode decomposition (MEMD)
	Multivariate and multiscale generalized fractal dimensions

	Results
	Multivariate empirical mode decomposition
	Multiscale generalized fractal dimensions
	Comparison with regional averages from reanalysis data

	Conclusions
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

