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Abstract The Earth’s climate is a complex system characterized by multi-scale nonlinear interrelation-
ships between different subsystems like atmosphere and ocean. Among others, the mutual interdependence
between sea surface temperatures (SST) and precipitation (PCP) has important implications for ecosys-
tems and societies in vast parts of the globe but is still far from being completely understood. In this
context, the globally most relevant coupled ocean–atmosphere phenomenon is the El Niño–Southern Oscil-
lation (ENSO), which strongly affects large-scale SST variability as well as PCP patterns all around the
globe. Although significant achievements have been made to foster our understanding of ENSO’s global
teleconnections and climate impacts, there are many processes associated with ocean–atmosphere inter-
actions in the tropics and extratropics, as well as remote effects of SST changes on PCP patterns that
have not yet been unveiled or fully understood. In this work, we employ coupled climate network analysis
for characterizing dominating global co-variability patterns between SST and PCP at monthly timescales.
Our analysis uncovers characteristic seasonal patterns associated with both local and remote statistical
linkages and demonstrates their dependence on the type of the current ENSO phase (El Niño, La Niña or
neutral phase). Thereby, our results allow identifying local interactions as well as teleconnections between
SST variations and global precipitation patterns.

1 Introduction

The heterogeneous latitudinal distribution of incoming
solar radiation at the Earth’s surface leads to a merid-
ional imbalance with excess energy in the tropics and a
corresponding deficit in the polar regions [1]. Meridional
heat transport balancing this gradient is realized by
two main mechanisms: via ocean currents transporting
warm surface water towards the poles and cold subsur-
face water towards the tropics, and by large-scale atmo-
spheric circulation patterns [2,3]. While the oceanic
mechanism mostly dominates in the tropics, meridional
heat transport in the mid-to-high latitudes contains a
considerable atmospheric component [4].

In general, the ocean and atmosphere interact via
different types of energy fluxes and thereby exchange
heat via conduction and convection [5]. This ocean–
atmosphere coupling has been found to be essential
for explaining various key climate phenomena, rang-
ing from the seasonal cycle characteristics in the trop-
ics over the El Niño–Southern Oscillation (ENSO)

a e-mail: reik.donner@h2.de (corresponding author)

to various patterns of decadal-scale climate variabil-
ity [6,7]. Among others, dynamical patterns of sea-
surface temperatures (SST) generate energy and mois-
ture fluxes from the ocean into the troposphere, air
pressure variations and, hence, circulation patterns, and
thereby emerging spatio-temporal precipitation pat-
terns around the globe [4].

To better understand ocean–atmosphere coupling
mechanisms, there have been many studies investigat-
ing which climate variability mode can trigger which
spatio-temporal response patterns in different variables,
with a particular focus on precipitation. For instance,
several papers have investigated the influence of El Niño
(i.e., the warm phase of ENSO) across Southeast Asia,
Indonesia, Australia and the United States [8–10]. For
Europe, the corresponding effect of the North Atlantic
Oscillation (NAO) has raised particular interest [11,12],
whereas for Australia, the precipitation responses to
the changing states of the Interdecadal Pacific Oscilla-
tion (IPO) and Southern Oscillation Index (SOI) have
been studied [13]. In addition to these mostly region-
ally focused studies, the effects of the ENSO, North
Pacific Oscillation (NPO) and NAO on global precipi-
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tation patterns have been explored, revealing distinct
regional response patterns to all these modes of cli-
mate variability [14]. However, especially precipitation
extremes are most substantially affected by ENSO [15],
which can be seen all over the world, including India,
Africa, South America, the Pacific Rim, North Amer-
ica, and, more weakly, Europe [14].

The aforementioned studies have in common that
certain index variables representing different large-
scale spatio-temporal climate variability patterns have
been taken as references for studying linear responses
in terms of correlation or regression maps. Notably,
this viewpoint reduces the complexity of the prob-
lem under study considerably, but leads to a system-
atic loss of information on which parts (i.e., regions)
of the addressed climatological field actually corre-
late strongly with, e.g., rainfall at a specific point in
space. This general conceptual limitation can be over-
come by considering the recently developed method-
ological framework of functional climate network anal-
ysis [16–18]. This approach takes the established frame-
work of complex network theory as a basis for develop-
ing and employing a suite of characteristics describing
the placement of strong mutual statistical associations
among climate time series that may represent one or
more climatological fields.

Complex network representations of climate vari-
ability can be used in parallel for data representa-
tion, analysis and visualization [19]. Thereby, they can
help uncovering spatio-temporal patterns at multiple
scales, ranging from local properties to global phenom-
ena, which potentially improve our understanding of
the overall dynamical organization of climate variabil-
ity [20,21]. In the last 15 years, various studies have
employed this modern framework to gain insights into
essential patterns of climate dynamics. Statistical asso-
ciation between different climate time series, represent-
ing functional relationships between different parts of
the climate system, has been typically characterized
by either correlations or conceptually related nonlin-
ear dependency measures [22–24] or based on the syn-
chronous co-occurrence of extreme events [25–28]. In
most cases, the individual time series correspond to
nodes on some regular spatial grid covering either the
entire globe or a specific region under study. Functional
climate networks have been successfully used to hind-
cast extreme events, such as extreme precipitation in
South America [29]), or to predict the occurrence of El
Niño episodes [30]. In the context of the present work,
we particularly highlight results on differential spatial
organization patterns of climate variability associated
with different ENSO phases [31,32] and the associated
discrimination of different El Niño and La Niña flavors
[33,34].

Most of the aforementioned climate network stud-
ies have exclusively focused on the dynamics within a
single climatological field. Recently, some studies have
extended this framework to the study of interdepen-
dences among different variables or atmospheric layers
[35–37]. For this purpose, the idea of correlation-based
single-variable networks has been thoroughly gener-

alized into so-called coupled climate networks. This
paper takes up a corresponding approach by focus-
ing on the co-variability between SST and precipita-
tion (PCP) during different seasons and ENSO phases,
which is motivated by the known distinct telecon-
nection patterns triggered by El Niño and La Niña
[38,39]. Thereby, we attempt to characterize the time-
dependent ENSO teleconnection patterns with global
precipitation variability from a complex network per-
spective.

The present work shall serve as an initial case study
highlighting what kind of information on SST–PCP
coupling can be obtained with coupled climate networks
by exploring relatively basic characteristics of the asso-
ciated network connectivity structures. It is anticipated
that follow-up work will continue along the outlined
lines of research, for example, to differentiate between
“local” (short-range) and “remote” (long-range) sta-
tistical SST–PCP linkages, which would be necessary
for an appropriate process identification and associ-
ated attribution of the mutual connectivity patterns
described in the course of the present work.

This paper is structured as follows: Sect. 2 describes
the utilized data sets and methods. The obtained results
are presented in Sect. 3. Here, we will first take a look
at the local connectivity (i.e., the number of strong sta-
tistical associations) within one field with respect to the
other variable (i.e., from SST to PCP and vice versa)
as quantified by the so-called n.s.i. cross-degree. We
will perform this analysis separately for strong absolute,
positive and negative correlations, respectively. Subse-
quently, we employ the concept of network communities
to the two coupled subnetworks, highlighting densely
correlated regions across the two variables of interest.
Finally, we provide a discussion of our findings in Sect. 4
and summarize them in Sect. 5.

2 Data and methods

2.1 Data

In this study, we utilize monthly globally distributed
SST values from the Extended Reconstruction Sea Sur-
face Temperature (ERSST v3) data set with a spatial
resolution of 2◦ × 2◦ [40] and associated precipitation
data with a spatial resolution of 2.5◦ ×2.5◦ provided by
the Global Precipitation Climatology Project (GPCP)
version 2 [41]. For the corresponding time series at each
respective grid point, we first remove the mean annual
cycle that otherwise would dominate the co-variability
patterns among the studied series. In our analysis, we
focus on the common time period of both data sets
from 1979–2015. All grid points containing missing val-
ues (for example, due to temporary sea ice cover) have
been removed from the data prior to our further anal-
ysis. As a result, the total number of considered SST
and PCP grid points is Ns = 9456 and Np = 10, 368,
respectively.
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As already emphasized in the introduction, the aim
of this study is to analyze the spatial placement of
strong correlations between ocean (SST) and atmo-
sphere (PCP) variability during different seasons, i.e.,
boreal winter (DJF), spring (MAM), summer (JJA)
and autumn (SON). In addition, we further differen-
tiate the time series into El Niño, La Niña and neu-
tral ENSO phases based on the Oceanic Niño Index
(ONI), whereby the two former are identified if the val-
ues of the 3-month running mean SST anomalies in the
tropical Pacific Niño 3.4 region exceed 0.5K (fall below
−0.5K) for a minimum of 5 consecutive months [42].
As a result, we associate 156 months with El Niño, 120
with La Niña, and 168 with neutral ENSO phases. In
the following, we will consider the corresponding data
subsets and, due to their relatively small sizes, focus
on linear (Pearson) correlation as a statistical associ-
ation measure, since more complex measures typically
cannot be estimated reliably from the given relatively
small sample sizes.

We note that we use here monthly data instead of
daily ones for different reasons: First, the two consid-
ered variables of interest exhibit very different spec-
tral properties, with relatively smooth variations (weak
high-frequency variability) of SST opposing strong
high-frequency variability in PCP. Second, global pre-
cipitation data at daily timescales would be largely
dominated by zero values hampering their appropri-
ate statistical analysis in the context of the present
work. Taking both aspects together, we have rea-
sons to believe that comparing SST and PCP time
series at daily resolution would provide results that
are markedly affected by synoptic (weather) timescales
rather than unveiling statistically robust interdepen-
dencies on longer timescales.

While providing a reasonable degree of robustness (in
a statistical sense) to the obtained results, our choice
of using monthly data implies that we cannot per-
form an evolving network analysis (i.e., studying spatio-
temporal co-variability structures of SST and PCP for
sliding windows in time) in a statistically meaning-
ful way. Accordingly, comparing patterns between, for
example, different El Niño episodes is not possible for
simple statistical reasons (each season comprises only
three, and each ENSO episode just a few consecutive
months, which does not allow for reliable correlation
estimates based on such short segments of monthly
data). Hence, the choice of monthly timescales taken
for the reasons already discussed above does not allow
us studying differences in spatio-temporal co-variability
patterns of SST and PCP among different time inter-
vals with the same type of ENSO state, but only pro-
vides an integral picture averaging over all periods on
record with either El Niño, La Niña or neutral ENSO
conditions during a certain season. We are aware of the
fact that this perspective does not take the important
aspect of ENSO diversity [43] (i.e., different El Niño or
La Niña flavors) into account, which however cannot
be circumvented within the specific analysis framework
employed in this work.

2.2 Coupled climate network analysis

We consider the spatial fields of the two climate vari-
ables under study (tailored to the specific situation of
interest as described above) as being described by two
sets of univariate time series

{
X

(s)
n (t)}N(s)

n=1 (for SST)
and

{
X

(p)
m (t)}N(p)

m=1 (for PCP). In what follows, we will
use the superscript index s (p) to refer to properties of
the SST (PCP) field.

2.2.1 Network construction

In a functional climate network, each time series is rep-
resented by a node embedded on the Earth’s surface at
the spatial position of the respective grid or measure-
ment point. In our case, the corresponding links indi-
cate strong linear (Pearson) correlations between pairs
of such series. Since we have to consider all time series
(respectively, their subsets corresponding to the same
season and type of ENSO phase) from both fields, we
first estimate the full N ×N lag-zero correlation matrix
between all N = N (s)+N (p) time series individually for
each combination of season and ENSO phase. This cor-
relation matrix contains all pairwise correlations among
SST grid points, among PCP grid points, and between
pairs of SST and PCP time series, which can be conve-
niently represented by a block structure

P =
(
P(ss) P(sp)

P(ps) P(pp)

)
. (1)

Here, the two sub-matrices P(ss) (of size N (s) × N (s))
and P(pp) (N (p)×N (p)) represent the correlation matri-
ces of the SST and PCP fields, respectively, which con-
sist of elements

P (ss)
nm = C(ss)

nm

σ
(s)
n σ

(s)
m

, n,m = 1, . . . , N (s), (2)

P (pp)
nm = C(pp)

nm

σ
(p)
n σ

(p)
m

, n,m = 1, . . . , N (p). (3)

In the above equations, σ(•) and C(••) denote the
respective standard deviation vectors and covariance
matrices of the two considered fields defined in the stan-
dard way. In full analogy, we identify the sub-matrices
P(sp) and P(ps) as containing all correlation coefficients
between time series in SST and PCP (respectively, PCP
and SST). Since we use only lag-zero correlations in this
study, the two latter matrices can easily be transformed
into each other by simple transposition.

To transform the correlation matrix P into the binary
adjacency (connectivity) matrix of the associated net-
work representation (describing whether (1) or not (0) a
link between two grid points exists), we employ a fixed
yet individual threshold to each of the submatrices,
retaining only those pairs of grid points for which the
correlation exceeds the respective threshold. Here, for
the submatrices describing only one field (SST or PCP,
respectively), we select these thresholds T (ss) and T (pp)
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so that a fraction ρ(s) = ρ(p) = 0.01 (i.e., 1%) of all pairs
of grid points (the so-called (internal) link density) are
represented by links in each of the two subnetworks.
This threshold implies that we only consider correla-
tions above the empirical 99th percentile of all correla-
tions between all time series within each field. For the
linkages between both fields (i.e., the so-called bipar-
tite or cross-links between SST and PCP nodes in the
coupled climate network representation), we proceed in
a similar way by choosing a threshold T (sp) = T (ps) so
that a fraction ρ(sp) = ρ(ps) = 0.005 < ρ(s), ρ(p) (i.e.,
the corresponding cross-link density) is retained.

Taken together, we obtain the coupled network’s
adjacency matrix as

A+ =
(

Θ(|P(ss)| − T (ss)) Θ(|P(sp)| − T (sp))
Θ(|P(ps)| − T (ps)) Θ(|P(pp)| − T (pp))

)
, (4)

where Θ(•) denotes the Heaviside function. Note that
we use here the so-called extended adjacency matrix,
which also contains self-loops since each SST (PCP)
grid point is trivially correlated with itself with the
maximal possible correlation coefficient of 1. This set-
ting is motivated by the further use of area-weighted
network measures as discussed below [44]. Regarding
the block structure of the extended adjacency matrix, it
may be noted that the two diagonal blocks correspond
to adjacency matrices of two single-variable (unipar-
tite) networks, while the off-diagonal blocks describe
bipartite (two-variable) networks exhibiting links only
between different types of nodes (corresponding here to
the two different climatological fields under study).

As a justification of our choices of internal and cross-
link densities, we note that commonly, the correlations
within one climatological field tend to be stronger than
between two different fields. Therefore, taking just a
global common threshold to all submatrices might effec-
tively eliminate most cross-links, which are, however,
the properties of interest in this work. To account for
this, we enforce the presence of both, internal and cross-
links, by imposing the aforesaid constraints via the
different link densities, ensuring that the number of
cross-links is still generally smaller than the number of
internal links within each of the two considered fields.
This setting is relevant to be able to properly interpret
the resulting mathematical structure as the adjacency
matrix of two coupled yet still identifiable subnetworks.

In summary, the analysis as described above depends
on two parameters, the internal link and cross-link den-
sities, which determine the thresholds to the elements of
the different correlation matrices forming the blocks of
P. In this study, we present only the results for one spe-
cific choice of both values for the sake of brevity, which
have been guided by choices from previous works on
functional climate networks [33,34,37]. One may expect
the presented results to change quantitatively as any of
the two parameters (or even both) are gradually varied,
while moderate variations of both link densities do not
alter the presented results qualitatively. As systematic

exploration of this aspect is however beyond the scope
of the present work.

2.2.2 Area-weighted cross-degree

By computing certain statistical properties on the adja-
cency matrix, we can obtain different network measures
that help understanding different aspects of the under-
lying network structure at either local or global scale
[45,46]. In case of climate data, we, however, need to
account for the spatially heterogeneous spacing between
neighboring grid points, which commonly decreases
towards the poles, to avoid an over-representation of
the high latitudes in the climate network characteris-
tics. This can be done by assigning a weight to each
node corresponding to the spatial area it represents,
i.e. [21]

wn = cos λn, (5)

with the latitudinal position λn of node n on the grid.
In a more general context, this idea of area-weighting
has been formalized in terms of node-weighted net-
work characteristics (so-called node-splitting invariant
or shortly n.s.i. measures) [44].

In this study, we solely focus on the simplest possible
network measure, the n.s.i. version of the cross-degree
[35] as previously studied in [36,37], which characterizes
the areal share of the entire globe that one node in a
given field is connected to in the other field:

kj∗
m =

∑

n∈Vj

wnA+
mn, (6)

where Vi and Vj denote the respective sets of nodes
describing the two subnetworks (i.e., SST and PCP
field).

2.2.3 Community structure

Communities are groups of nodes within a network that
are relatively tightly connected with each other while
being only weakly connected to the rest of the network
[47]. This general feature can be characterized by dif-
ferent more specific properties (for example, the cor-
responding network modularity [47]) and has recently
found its first applications in the context of functional
climate network analysis [48–51]. Together with the
practical relevance of communities as serving as mean-
ingful subsystems that are solely determined by the
overall connectivity structure [52], the broadness of this
concept has made community detection an active area
of research within complex network science [53,54]. As
a result, there exist a great variety of algorithms for
community detection based on different optimization
targets. While most commonly employed methods do
not distinguish between different types of nodes and,
hence, implicitly assume unipartite network structures,
there also exist algorithms that are specifically tailored
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for the case of bipartite networks [55,56]. Coupled net-
work structures like those explored in the present work,
comprising both uni- and bipartite constituents, have
received less specific attention, but can generally be
studied using the same methodologies as standard uni-
partite networks.

In the present work, we apply the concept of com-
munities to the giant adjacency matrix A+ contain-
ing all links within the SST and PCP fields as well as
all cross-links between both fields. Thereby, a network
community can combine nodes representing different
variables, which is different from most previous applica-
tions of the network community paradigm. We will refer
to such multi-variable dense connectivity structures as
two-variable communities in the remainder of this work.
As all other concepts employed in this work, it can be
readily generalized to the case of multi-variable com-
munities in coupled networks comprising more than two
distinct climatological fields.

To obtain as robust communities as possible, we uti-
lize the Infomap algorithm [57]. This algorithm is par-
ticularly well suited for the purposes of this study, since
it attempts to divide weakly modular regions into small
communities. In the context of functional climate net-
works, such small communities are more likely to rep-
resent physically meaningful spatial co-variability pat-
terns because they are more strongly connected inter-
nally. Moreover, recent applications of Infomap in a cli-
mate network context have demonstrated that it pro-
vides certain climatologically meaningful features like
the spatial coherency and connectedness of the identi-
fied communities [50,51].

3 Results

In the following, we will present the results of our cou-
pled climate network analysis between SSTs and pre-
cipitation (PCP) during different seasons and ENSO
phases.

3.1 Area-weighted cross-degrees

First, we investigate the n.s.i. cross-degree patterns
formed by links from nodes in the SST field towards the
PCP field (SST → PCP) and vice versa (PCP → SST).
For example, a large n.s.i. cross-degree of SST → PCP
indicates a grid point in the SST field that is strongly
correlated with a large spatial area in the precipitation
field.

3.1.1 Absolute correlations

We start by constructing coupled climate networks
based on the largest absolute correlation values, indicat-
ing the generally strongest linear statistical associations
between variables. Figure 1 shows the corresponding
area-weighted cross-degree patterns for SST → PCP.

During boreal fall (SON), El Niño years are charac-
terized by strong cross-connectivity (i.e., strong effects
on global precipitation) arising from two regions in
the eastern equatorial Pacific and between the western
equatorial and southern subtropical Pacific (Fig. 1A).
Similar yet weaker influence patterns are also observ-
able during La Niña years (Fig. 1E), while neutral
ENSO years are characterized by the absence of the
western equatorial Pacific center of influence, which is
replaced by two other patterns in the Indian ocean and
equatorial Atlantic (Fig. 1I).

With the progressive evolution of El Niño or La Niña
conditions, the boreal winter season (DJF) is character-
ized by particularly strong influence patterns. El Niño
years primarily feature the main ENSO region in the
central to eastern equatorial Pacific exhibiting particu-
larly strong co-variability with the global precipitation
field (Fig. 1B), while a second smaller pattern emerges
over the westernmost Pacific. Interestingly, the corre-
sponding area-weighted cross-degree patterns are even
more strongly pronounced during La Niña conditions
(Fig. 1F), highlighting in particular the eastern equato-
rial Pacific and the subtropical western to northern cen-
tral Pacific. During normal ENSO conditions, we find
the strongest connectivity in the central and western
equatorial Pacific (Fig. 1J).

Boreal spring (MAM) experiences the greatest influ-
ence of SST on precipitation during El Niño condi-
tions in a small equatorial band spanning from the cen-
tral Pacific to the eastern Atlantic ocean (Fig. 1C).
A second region with high cross-connectivity emerges
in the southernmost Indian ocean. In comparison with
this, during La Niña conditions (Fig. 1G), much larger
regions are characterized by high cross-connectivity
with the precipitation field, including again the ENSO
region in the eastern equatorial Pacific, but also the
southeastern Pacific (resembling the typical spatial
location of the Amundsen Low, a key atmospheric cir-
culation pattern in the Southern hemisphere extrat-
ropics). The corresponding patterns become more dis-
persed during neutral ENSO conditions, resembling
closely those already observed during DJF (Fig. 1K).

Finally, the boreal summer season (JJA) experi-
ences strong effects of eastern equatorial Pacific SSTs
on precipitation after El Niño events (Fig. 1D), while
only relatively weak patches of elevated cross-degrees
are visible during La Niña and neutral ENSO years
(Fig. 1H,L).

Figure 2 presents the corresponding area-weighted
cross-degree between the precipitation variability at one
grid point and all grid points in the global SST field.
In comparison with Fig. 1, the strongly connected pat-
terns comprise much less grid cells than for the oppo-
site direction (yet with overall larger cross-degree val-
ues) and are mostly confined to two small bands in
the equatorial Pacific and close to the Antarctic coast-
line. Regarding the latter region, we may speculate
about a possible association with the sea ice boundary,
which might have distinct yet more regionally confined
effects on precipitation formation via sharp local gra-
dients in evaporation, albedo (i.e., radiation balance)
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Cross Degree

A B C D

E F G H

I J K L

Fig. 1 SST → PCP cross-degree (based on the strongest absolute correlations) for EN (top), LN (middle) and neutral
ENSO phases (bottom). Panels (A, E, I) correspond to SON, (B, F, J) to DJF, (C, J, K) to MAM and (D, H, L) to JJA

Cross Degree

A B C D

E F G H

I J K L

Fig. 2 Same as in Fig. 1, but for PCP → SST

and heat fluxes (possibly inducing local circulation sys-
tems). However, another possibility that we cannot rule
out here would be inaccuracies of the SST data product
in the corresponding regions.

For the neutral ENSO phase, PCP patterns in the
central equatorial Pacific and over the maritime conti-
nent are most strongly correlated with SST during the
boreal winter season (Fig. 2J). During La Niña years,
this season features a strong pattern over the central
equatorial Pacific (Fig. 2F), but also another smaller
patch over the northern part of Brazil. In turn, during

El Niño years (Fig. 2B), we observe only a single pat-
tern over the central equatorial Pacific, which is how-
ever considerably weaker than during La Niña condi-
tions.

During the boreal spring of neutral ENSO years
(Fig. 2K), the dominating cross-degree patterns spread
over a larger region in the equatorial Pacific. During
La Niña phases (Fig. 2G), the patterns closely resemble
those during DJF but appear somewhat less prominent.
Similarly, during El Niño years (Fig. 2C), the observed
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Cross Degree

A B C D

E F G H

I J K L

Fig. 3 As in Fig. 1, but considering only strong positive correlations

core regions stay qualitatively the same as in boreal
winter.

Notably, during both, boreal fall and summer, the
cross-degree patterns during neutral ENSO years are
very weak and mostly cover some tropical regions
(Fig. 2I, L). The same applies to La Niña phases, while
there are still some stronger patterns over the eastern
equatorial Pacific yet much weaker than during DJF
and MAM (Fig. 2E, H). In turn, during El Niño condi-
tions, the main cross-degree patterns stay confined to
the central-to-eastern equatorial Pacific (Fig. 2A, D).

3.1.2 Positive correlations

While having previously considered strong absolute cor-
relations, we have mixed up information on regions
where, e.g., strong positive SST anomalies trigger wet
conditions with such exhibiting precipitation deficits.
Since both have distinctively different implications for
the affected ecosystems and population, we now turn
to a separate analysis for positive and negative correla-
tions, respectively. For the positive correlations, Figs. 3
and 4 reveal strong similarities with the networks con-
structed based on absolute correlations.

The high degree of similarity between networks
based on strong absolute and positive correlations is
somewhat expected, since a vast part of the identi-
fied strongly influential SST regions (except for some
regions in the Southern Hemisphere extratropics) are
located in the tropics and subtropics. In those regions,
we may expect positive SST anomalies to result in
excess evaporation, leading to enhanced convective
activity, cloud formation and, subsequently, excess pre-
cipitation. Via cascading moisture recycling, those pro-
cesses can even affect significantly larger regions of the
globe, as well known, for example, for the case of the

Amazon rainforest receiving most of its precipitation
via such a mechanism [58–60]. Another relevant process
in this regard are recurrent intraseasonal wave phenom-
ena in the tropics, such as the Madden–Julian Oscil-
lation (MJO) [61] or the Boreal Summer Intraseasonal
Oscillation (BSISO) [62], which exert a prominent mod-
ulation especially on monsoonal rainfall in various parts
of the low latitudes.

3.1.3 Negative correlations

Finally, we study the coupled climate networks describ-
ing only the strongest negative correlations. During
boreal fall, the neutral ENSO phase is characterized
by elevated cross-degree patterns in the northern trop-
ical Atlantic, western equatorial towards southwestern
Pacific and central Indian ocean (Fig. 5I). The asso-
ciated cross-degree patterns in PCP are rather dif-
fuse and concentrate over the central equatorial Pacific
(Fig. 6I). During La Niña (Fig. 5E), high n.s.i. cross-
degrees for SST → PCP are found in the western
equatorial to southwestern Pacific and weakly over the
Indian Ocean, while the corresponding largest cross-
degrees for PCP → SST are still concentrated over
the central equatorial Pacific (Fig. 6E). El Niño phases
(Fig. 5A) are characterized by two patterns of ele-
vated cross-degrees over the eastern equatorial Pacific
and between the eastern equatorial and southwestern
Pacific. The corresponding PCP patterns (Fig. 6A) are
mainly concentrated over the western equatorial Pacific
and the maritime continent. Interestingly, the previ-
ously observed circumpolar Antarctic precipitation pat-
tern is markedly correlated with SST regardless of the
ENSO state.

In general, we emphasize that the cross-degree pat-
terns obtained based on positive and negative correla-
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Fig. 4 As in Fig. 2, but considering only strong positive correlations

Cross Degree
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Fig. 5 As in Fig. 1, but considering only strong negative correlations

tions look surprisingly similar. This points to the fact
that strong positive SST anomalies in certain regions
can trigger marked atmospheric circulation changes (as
known for ENSO related SST anomalies along with
intensity changes and dislocation of the Walker circu-
lation [63,64]), which may cause excess rainfall in some
regions (positive correlation) while dry conditions in
others (negative correlation). Note that the presented
cross-degree patterns do not distinguish between the
destinations of links emanating from the SST field. For
the latter purpose, our analysis calls for further in-
depth investigations by either utilizing measures that

capture spatially explicit information, like link distance
or directionality related network properties [50,51,65],
or systematically identifying pairs of source and target
regions of different types of links (representing positive
and negative correlations, respectively) [51,66]. Such
more detailed analyses are, however, beyond the scope
of the present work.

3.2 Communities

As a final step of our analysis, we take a look at the two-
variable community structure of the coupled SST/PCP
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Fig. 6 As in Fig. 2, but considering only strong negative correlations

network. Since we expect the most interesting differ-
ences between the three types of ENSO phases to arise
during boreal winter (where El Niño and La Niña peak),
we present here exclusively the results for this season.
Moreover, to allow for some interpretable visualization,
we disregard all communities that include less than 1%
of the nodes of the coupled network.

Figure 7 shows the identified two-variable commu-
nities for the different ENSO phases. We first recog-
nize that these communities in most cases correspond
to spatially contiguous regions in the SST field (with
a few exceptions where individual communities contain
more than one substantially large region), whereas they
appear more fragmented in the PCP field. In general,
in the SST field, many of the larger two-variable com-
munities involve those nodes that have been previously
identified as high cross-degree patterns, suggesting that
the associated communities indeed also include regions
in the PCP field (cf. the different colors in Fig. 7).

When comparing especially the respective contribu-
tions of the SST field to the individual communities, we
observe that El Niño phases exhibit a larger number of
relevant communities than La Niña or neutral ENSO
phases. This observation could have two possible rea-
sons. On the one hand, the linkage structure within the
SST field (representing connections that either directly
link different SST grid points or are indirectly medi-
ated via PCP grid points) is more fragmented during
El Niño phases. Indeed, it is well known that El Niño
leads to large-scale synchronization of climate variabil-
ity by triggering coherent climate responses in distinct
regions across the global surface temperature and pre-
cipitation fields. On the other hand, and in line with the
latter fact, the higher number of communities could also
be interpreted as reflecting a generally more homoge-
neous network structure, for which already very minor

differences in the link placement may cause the Isomap
algorithm to split larger groups of nodes into different
communities.

4 Discussion

To study ocean–atmosphere coupling from a complex
network perspective, we have generated coupled net-
work representations of global SST and precipitation
fields and evaluated the associated n.s.i. cross-degree
and two-variable community patterns.

In boreal fall, global precipitation patterns are espe-
cially linked with SSTs in the Indian Ocean, the
Caribbean Sea, the Barents Sea and a region known for
explosive cyclogenesis [67] near Newfoundland. In the
subsequent winter and spring, the n.s.i. cross-degree for
absolute correlations (Figs. 1 and 2) shows that even
during the neutral phase of ENSO (which is often con-
sidered less relevant in terms of teleconnectivity), SSTs
in the central equatorial Pacific are strongly linked
to precipitation. Interestingly, the corresponding SST
variability is accompanied by both, positive and neg-
ative correlations with precipitation patterns, whereby
positive correlations can be primarily found in the east-
ern central Pacific and negative ones in the western cen-
tral Pacific [64]. In boreal summer, these pattern are
less pronounced and more homogeneously distributed,
which could point to a stronger relevance of local-scale
(convective) processes than remote teleconnectivity. All
aforementioned regions are moreover also associated
with negative correlations. Positive SST correlations
with precipitation can be found in the central Pacific,
while negative ones arise particularly over the mar-
itime continent and Central America. Moreover, SST
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A C E

B D F

Fig. 7 SST–PCP two-variable communities based on abso-
lute correlations in boreal winter for El Niño (left), La Niña
(middle) and neutral ENSO phases (right). Panels (A, C,
E) highlight community members in the SST field, while

(B, D, F) indicate those in PCP. Colors are chosen at ran-
dom such that spatially adjacent communities are indicated
by different colors

also strongly affects precipitation close to the Antarc-
tic coastline.

During La Niña phases, the patterns observed for
neutral ENSO phases are further enhanced. This par-
ticularly applies to the cross-degree values in the equa-
torial Pacific and especially in boreal winter and spring.
A few main patterns can be identified, including an
elongated pattern in the central and eastern tropical
Pacific, an arc-shaped pattern in the western Pacific
and some patterns close to the Californian coast and
in the Amundsen Sea in the South Pacific [68,69].
Like during the neutral phase, the western Pacific SST
anomalies are linked with precipitation via negative cor-
relations and their eastern Pacific counterparts via pos-
itive correlations. Strongly affected precipitation vari-
ability can be localized in a large area in the central
Pacific (with positive correlations) and over the mar-
itime continent and the Caribbean Sea (negative cor-
relations). Precipitation is mainly associated with one
large community involving the SSTs in the central-to-
eastern equatorial Pacific.

During El Niño periods, the Walker circulation is
markedly weakened, which causes warmer SSTs in the
eastern equatorial Pacific and a cooling in the western
equatorial Pacific. These changes in the Walker circu-
lation result in excess precipitation in the central-to-
eastern tropical Pacific and less rain over the maritime
continent [64]. However, especially the SST anomalies
in the eastern equatorial Pacific are strongly linked
to precipitation. The precipitation anomalies are cor-
related with SST anomalies primarily in the central
eastern Pacific, the eastern equatorial Pacific and over
the maritime continent. Like during La Niña and the
neutral ENSO phase, the western Pacific anomalies
are related to negative correlations with precipitation,
while the eastern Pacific anomalies exhibit positive cor-
relations. Larger communities in the SST field are spa-
tially reorganized and preferentially located in the west-
ern Pacific, while associated precipitation components
commonly link to more than one SST pattern.

By studying the n.s.i. cross-degree not only for abso-
lute correlations, but also separately for strong positive
and negative correlations, we have demonstrated that
it is possible to distinguish different patterns of vari-
ability from each other. Moreover, two-variable com-
munity analysis can be employed to classify the nodes
of our coupled SST–PCP network representation into
distinct groups of strongly co-varying grid point time
series. Accordingly, the proposed two-variable commu-
nity analysis provides additional information as com-
pared with using only the n.s.i. cross-degree, which can
be exploited to further characterize the main regions in
both climate fields that mutually influence and interact
with each other.

Interestingly, SST → PCP patterns that are markedly
visible in the neutral ENSO phase are weakened during
La Niña and even suppressed during El Niño. This par-
ticularly applies to the Indian ocean (with variability
largely characterized by the Madden–Julian Oscillation
and Indian Ocean Dipole [61,70]), the Mediterranean
Sea to Caspian Sea, some region near Newfoundland,
and the Caribbean Sea (reduced during El Niño, sup-
pressed during La Niña). In turn, during El Niño phases
the natural links between SST and precipitation are
interrupted and dominated by the SST variability of
the tropical Pacific (and southern Pacific for La Niña).

Our analysis has also recovered known teleconnec-
tions between SST and PCP triggered by El Niño,
which, however, mostly correspond to wet anomalies
over the Philippines, Uganda and near the US-Mexican
border. Other regions previously identified to often
exhibit dry conditions during El Niño phases (includ-
ing Indonesia, northern Australia and the Amazonas
region) do however not match well with the patterns
obtained by our analysis. One reason for this could be
the strong links from the circum-Antarctic ocean region
that might hide other (weaker) statistical links. Dur-
ing La Niña, nearly all regions that are known to be
markedly influenced by ENSO teleconnections exhibit
elevated cross-degree, including wet regions in north-
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eastern South America and over the maritime continent
as opposed to dry areas over Taiwan and Uganda.

From the methodological perspective, we have
restricted ourselves to a specific setting involving lin-
ear correlations and a particular choice of thresholds.
According to our experiences from other studies, we
expect that the main patterns discussed above should
not be altered qualitatively when employing differ-
ent thresholds, while a detailed investigation of the
associated impacts would be beyond the scope of the
present study. Moreover, we emphasize that we have
chosen to employ monthly data and focus on lag-zero
(i.e., quasi-instantaneous) interrelationships between
SST and PCP. Another reasonable extension of the pre-
sented analysis would therefore be allowing for time-
lagged correlations. While the choice of monthly scales
in this work has put a clear focus on any kind of
SST–precipitation relationship explained by persistent
synoptic weather regimes, long planetary wave related
connections or processes mediated by secondary actors
may manifest at timescales considerably larger than one
month. Identifying such processes along with associated
spatial patterns would require a systematic variation of
the mutual time lags between SST and precipitation
field, which has been beyond the scope of our present
study.

A natural extension of the present study to be con-
sidered in future work consists of a distinction between
short-range (local) SST–precipitation connections and
long-range teleconnectivity (due to phenomena like
planetary waves and atmospheric moisture recycling).
One straightforward way would be including informa-
tion on the average spatial distance captured by the
(cross-) links emanating from each node into the anal-
ysis. It can be expected that the thus obtained addi-
tional information will provide deeper insights into the
coexistence of many strong positive and negative corre-
lations in certain parts of the SST field, which clearly
point to an effect of teleconnections either fostering or
suppressing rainfall in different regions.

From the climatological perspective, it could further-
more be useful to employ a different classification of
ENSO phases according to the state of eastern tropical
Pacific SST anomalies during the corresponding peak
season (boreal winter) only. In such case, it would be
reasonable to not only study the period from the boreal
fall before to the boreal summer after an El Niño or
La Niña event. By contrast, it would be also relevant
to consider the boreal summer season preceding such
events. Unfortunately, such an analysis would be com-
plicated by the existence of paired (multi-year) ENSO
phases, as well as close successions of El Niño and La
Niña phases in subsequent years. Moreover, another
relevant yet highly intermittent actor in the SST–
precipitation interplay is strong volcanism, which has
recently been shown to potentially foster El Niño con-
ditions [71] and also strengthen the synchrony between
ENSO variability and interannual changes of the Indian
summer monsoon [72,73]. While sufficiently strong vol-
canic eruptions are, however, rare and may therefore
not have affected the results of our presented analysis,

further investigating them in terms of long equilibrium
runs or ensemble simulations of state of the art gen-
eral circulation models remains an interesting avenue
for follow-up studies.

5 Summary

We have used the coupled climate network approach
to systematically study global ocean–atmosphere inter-
actions. Specifically, we have investigated how the co-
variability patterns between sea surface temperature
(SST, ocean) and precipitation (atmosphere) change at
monthly timescales during different seasons and phases
of the El Niño–Southern Oscillation (ENSO). Unlike
complementary multi-layer network approaches that
can be used for inter-comparing spatio-temporal cor-
relation structures of different climate fields that nor-
mally have to be provided at the same spatial grid, the
coupled network approach takes up information on co-
variability both within and among two (or more) spa-
tial fields of time series, thereby integrating unipartite
(within-field) and bipartite (between-fields) correlation
information and avoiding the restriction to equal grids
[35,37].

In the present work, we have focused on two relatively
basic structural network characteristics, the n.s.i. cross-
degree field (measuring bipartite connectivity between
SST and precipitation and thereby including both, local
and remote connections) and the two-variable commu-
nity structure (combining within and between field cor-
relations) between SST and precipitation for absolute,
as well as for positive and negative Pearson correlations.
By studying the n.s.i. cross-degree, we have demon-
strated that especially the tropical oceans affect global
precipitation in a spatially coherent way, yet differently
during different phases of ENSO. By comparing positive
and negative values of correlations, we have found that
during the neutral phase of ENSO, the western (west
of 180◦E) Pacific, Indian ocean and Atlantic SSTs (in
boreal fall) have negative effects on precipitation and
vice versa, whereas the eastern regions like the central-
to-eastern equatorial Pacific rather experience a posi-
tive SST effect on precipitation. Similar observations
can be made during La Niña phases. As expected, the
cross-degree patterns during El Niño phases reveal pos-
itive correlations between SST and precipitation espe-
cially in the eastern equatorial Pacific. Only during
boreal fall, western equatorial Pacific SSTs also exhibit
pronounced negative correlations with global precipita-
tion patterns.

Beyond the cross-degree fields, two-variable commu-
nities point to strongly interacting regions between SST
and precipitation, ignoring how each individual node
interacts with the whole climate system. Communities
highlight the main areas in which SST and precipitation
are strongly connected among each other. Accordingly,
during neutral ENSO phases the main interaction zone
between SST and precipitation is located in the cen-
tral equatorial Pacific. In turn, during La Niña phases,
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the main community in the SST fields covers much of
the central-to-eastern equatorial Pacific, while the cor-
responding precipitation region mostly coincides with
the central equatorial Pacific. These patterns are thus in
general agreement with our findings for the n.s.i. cross-
degree. During El Niño phases, two separate patches
in the eastern and central equatorial Pacific are iden-
tified as the most relevant regions in terms of SST–
precipitation co-variability.

Our analysis has demonstrated how the interaction
between two spatial fields of different climate variables
can be studied with complex network tools during dif-
ferent ENSO types and seasons. Besides further inte-
gration of more sophisticated coupled network char-
acteristics, including such taking up spatial informa-
tion on the linkage patterns as well, the present work
opens up several lines for follow-up research. On the one
hand, one possible subject of future research could be
extending the present approach to more than two vari-
ables, or considering two variables but focusing on two
or more distinct key regions to capture their specific
interactions. On the other hand, for studying climate
dynamics one should also consider the effect of different
timescales, i.e., how the interactions among different cli-
mate variables evolve across time and scale and how this
is related with the network topology [74–76], including
the community structure. For the latter purpose, one
could use different methods (e.g., wavelet analysis) to
decompose the time series into different timescales and
study the interaction between two or more climate vari-
ables at separate timescales or between different scales
to capture cross-scale variability [77].

Beyond its specific climatological focus, our study
provides another example for the potential usefulness
for diagnosing and attributing spatio-temporal pat-
terns of climate variability across variables and regions.
Future studies shall further take up these potentials
of the employed methodology and investigate to which
extent the gained knowledge can be further utilized for
improving climate model diagnostics and statistical cli-
mate forecasts.

Acknowledgements This work has been financially sup-
ported by the IRTG 1740/TRP 2011/50151-0, funded
by the DFG/FAPESP and by the German Federal Min-
istry for Education and Research (BMBF) via the BMBF
Young Investigators Group CoSy-CC2 (Complex Systems
Approaches to Understanding Causes and Consequences of
Past, Present and Future Climate Change, Grant No. 01LN
1306A), the Belmont Forum/JPI Climate project GOTHAM
(Globally Observed Teleconnections and Their Representa-
tion in Hierarchies of Atmospheric Models, Grant No. 01LP
16MA) and the JPI Climate/JPI Oceans project ROADMAP
(The Role of Ocean Dynamics and ocean–atmosphere Inter-
actions in Driving ClimAte Variations and Future Pro-
jections of Impact-Relevant Extreme Events, Grant No.
01LP2002B). The authors gratefully acknowledge the Euro-
pean Regional Development Fund (ERDF), the German
Federal Ministry of Education and Research and the Land
Brandenburg for supporting this project by providing
resources on the high performance computer system at the

Potsdam Institute for Climate Impact Research. All com-
putations have been performed using the Python package
pyunicorn [78].

Funding Open Access funding enabled and organized by
Projekt DEAL.

Author contribution statement

NE, CC and RVD designed the study. NE performed
the numerical analyses with the help of CC. CK and
RVD interpreted the results. NE, CK and RVD drafted
the manuscript. All authors reviewed the manuscript
and approved it for submission.

Open Access This article is licensed under a Creative Com-
mons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to
the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this arti-
cle are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons
licence and your intended use is not permitted by statu-
tory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. D.L. Hartmann, Global Physical Climatology, vol. 103
(Newnes, 2015)

2. J. Bjerknes, Atlantic air–sea interaction, in Advances in
Geophysics, vol. 10, (Elsevier, 1964), pp. 1–82

3. K. Wyrtki, Teleconnections in the equatorial Pacific
Ocean. Science 180, 66–68 (1973)

4. A.V. Fedorov, Ocean–atmosphere coupling, in Oxford
Companion to Global Change. (Oxford University Press,
Oxford, 2008), pp. 369–374

5. S.J. Woolnough, J.M. Slingo, B.J. Hoskins, The orga-
nization of tropical convection by intraseasonal sea sur-
face temperature anomalies. Quart. J. R. Meteorol. Soc.
127, 887–907 (2001)

6. M.A. Alexander et al., The atmospheric bridge: the
influence of ENSO teleconnections on air–sea interaction
over the global oceans. J. Clim. 15, 2205–2231 (2002)

7. K.E. Trenberth, J.W. Hurrell, Decadal atmosphere-
ocean variations in the Pacific. Clim. Dyn. 9, 303–319
(1994)

8. E.M. Rasmusson, T.H. Carpenter, Variations in trop-
ical sea surface temperature and surface wind fields
associated with the Southern Oscillation/El Niño. Mon.
Weather Rev. 110, 354–384 (1982)

9. E.M. Rasmusson, J.M. Wallace, Meteorological aspects
of the El Niño/Southern Oscillation. Science 222, 1195–
1202 (1983)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. Spec. Top. (2021) 230:3019–3032 3031

10. C.F. Ropelewski, M.S. Halpert, North American precip-
itation and temperature patterns associated with the El
Niño/Southern Oscillation (ENSO). Mon. Weather Rev.
114, 2352–2362 (1986)

11. W. Hurrell, Y. Kushnir, G. Ottersen, An overview of
the North Atlantic Oscillation. North Atlantic Oscill.:
Clim. Significance Environ. Impact 134, 1–35 (2003)

12. A.A. Scaife, C.K. Folland, L.V. Alexander, A. Moberg,
J.R. Knight, European climate extremes and the North
Atlantic Oscillation. J. Clim. 21, 72–83 (2008)

13. S. Power, T. Casey, C. Folland, A. Colman, V. Mehta,
Inter-decadal modulation of the impact of ENSO on
Australia. Clim. Dyn. 15, 319–324 (1999)

14. J. Kenyon, G.C. Hegerl, Influence of modes of climate
variability on global precipitation extremes. J. Clim. 23,
6248–6262 (2010)

15. M. Wiedermann, J.F. Siegmund, J.F. Donges, R.V.
Donner, Differential imprints of distinct ENSO flavors
in global patterns of very low and high seasonal precip-
itation. Front. Clim. 3, 618548 (2021)

16. A.A. Tsonis, K.L. Swanson, On the origins of decadal
climate variability: a network perspective. Nonlinear
Process. Geophys. 19, 559–568 (2012)

17. R.V. Donner, M. Wiedermann, J.F. Donges, Complex
Network Techniques for Climatological Data Analysis,
in Nonlinear and Stochastic Climate Dynamics. ed. by
C. Franzke, T. O’Kane (Cambridge University Press,
Cambridge, 2017), pp. 159–183

18. H.A. Dijkstra, E. Hernández-Garćıa, C. Masoller, M.
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