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Abstract
Community detection is of great significance for understanding network functions and behaviors.
With the successful application of deep learning in network-based analyses, recent studies have
turned to utilizing graph convolutional networks (GCNs) to this problem due to their capability in
capturing network attributes. Nevertheless, most existing GCN-based community detection
approaches are semi-supervised and local structure-aware, even though community detection is an
unsupervised learning problem essentially. In this paper, we develop a novel GCN method for
unsupervised community detection under the framework of mutual information (MI)
maximization, called UCDMI. Specifically, a novel MI maximization mechanism is developed to
capture more fine-grained information of the global network structure in an unsupervised
manner. Moreover, a new aggregation function is proposed for GCN to distinguish the importance
between different neighboring nodes, which enables our method to identify more high-quality
node representations and improve the community detection performance. Our extensive
experiments demonstrate the effectiveness of our proposed UCDMI compared with several
state-of-the-art community detection methods.

1. Introduction

Community structures are common in complex networks, which can be described as some groups where
nodes within the same group are closely connected [1–3]. The purpose of community detection is to detect
such community structures from complex networks, which helps understand the hidden information of
complex systems, e.g. the functions and units of a social group [4–6] and urban traffic systems [7, 8]. In
reality, community detection owns many valuable applications and solves many practical problems, which
have been widely focused in fields ranging from medicine and engineering to social science and biology
[9–11]. For example, detecting community structure in World Wide Web networks can reveal different
topics and facilitate social recommendations [12].

Up to now, numerous algorithms have been developed to detect communities by utilizing network
structures, including generative models [13, 14] and metric-based methods [15, 16]. Besides the topology of
networks, the effective utilization of attribute features also play a very important role in improving the
accuracy of community detection [17]. Such attributes provide additional rich information of networks and
indicate possible states of nodes in a network [18]. For example, in a citation network, papers are equipped
with title and areas of keywords [19]. Since the topology structure and node attributes are two different
types of information in networks, it poses a challenge to detect communities in such attributed networks.

Several methods have been proposed to detect communities of attributed networks by considering
attributes of nodes, which include methods based on the nonnegative matrix factorization [6], spectral
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clustering [20], graph convolutional networks (GCNs) [21], etc. Among them, GCN-based methods (e.g.
DGI [22]) have recently gained a lot of attention due to their abilities to effectively integrate network
topology information and attribute information. However, there are some issues which require further
consideration. First, these methods typically update node features by aggregating the features of their
neighboring nodes, which means treating all neighbors equally [23]. However, since different neighbor
nodes have different positions in a network, their importances to the target node may also be different.
Although the graph attention networks-based methods have considered this issue, they are implicit and may
involve interpretability issue [24]. Second, most exiting methods require some data with labels to train
GCN. Nevertheless, the information of labels is often expensive or even unavailable due to the privacy
policy [25]. Hence, it is crucial to develop a method that can detect high-quality community structures of
networks in an unsupervised fashion. Third, most of these methods pay little attention to the global
information of networks, which can be attributed to the fact that they are based on the local convolutional
strategy [22]. Nevertheless, the global information may indicate the global status of nodes in a network, e.g.
revealing the similarities between two nodes that are far away from each other but have similar connection
patterns [26].

To fully inherit such global information and attributed features in an unsupervised manner, we execute
community detection in attributed networks based on the mutual information (MI), inspired by the success
of the Deep InfoMax method [27] on images processing. Deep InfoMax exploits global representations of
an image by maximizing MI between images (i.e. the inputs) and hidden vectors (i.e. the outputs) [27].
Some recent works transfer Deep InfoMax to the network domain, such as deep graph infomax (DGI), for
node classification and link prediction [22]. More specifically, they assume that the learned representations
of each node should contain information of the entire graph. For this purpose, similar to the image
processing, these methods discover useful node representations by implementing MI maximization based
on the representation of the whole network. Nevertheless, learning the representation of nodes by capturing
information from the entire network is crude and cannot reflect the intrinsic structural information. As
mentioned before, there are community structures in networks, where nodes within the same community
tend to share more similar information than nodes from different communities. In fact, for specific nodes,
the information of their corresponding subnetworks (e.g. community structures) can better reflect their
status and functions in the network than the information of the whole network. For example, a more
accurate class information can better reflect the status of a specific student, such as the information of their
major and grades, rather than a broader school information. However, existing methods which implement
the MI maximization based on the whole graph cannot make use of this structure characteristic effectively,
leading to rough node representations and efficiency decrease in community detection.

Considering these limitations, this paper proposes a new method for unsupervised community detection
in attributed networks based on the MI maximization, called UCDMI. Specifically, we first analyze the
potential cluster structure, namely fine-grained subnetworks, based on the attributed features of networks.
Then, we develop a new MI maximization mechanism to maximize the MI between node representations
and the corresponding fine-grained subnetwork representations. Based on such a mechanism, the more
fine-grained information of the global network structure and attributes can be effectively captured in an
unsupervised manner. Moreover, we design a new aggregation function of GCN that can aggregate the
features of neighbors in preference according to the importance between nodes. Finally, the community
structure of networks can be obtained by applying a clustering algorithm on node embedding. The main
contributions of this paper are as follows:

(a) A novel aggregation function for GCN is proposed in which more important neighbor nodes can
contribute more in the process of the feature aggregation.

(b) A new MI maximization mechanism is designed in which more fine-grained global information of
networks is captured in an unsupervised fashion, which helps get high-quality community structures in
attributed networks.

The remainder of this paper is organized as follows. Section 2 reviews the related work. Section 3
introduces the proposed UCDMI, which describes the formulations of the proposed aggregation strategy
and the new MI maximization mechanism. Section 4 presents comprehensive experiments to demonstrate
the effectiveness of UCDMI. Finally, section 5 draws the conclusions of this paper.

2. Related work

Existing community detection methods related to this work fall into two categories: structural community
detection and attributed community detection [28]. Structural community detection only utilizes the
structure of networks (i.e. node connectivity [29, 30]). Specifically, the graph Laplacian eigenmaps-based
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Figure 1. The example of community detection in an attributed network between two kinds of solutions, i.e. traditional
solutions and our solution. (a) Traditional solutions for community detection in attributed networks, which aims to separately
detect the community structure based on the information structure and attributes, and finally fuse together. (b) Our
joint optimization solution for community detection in attributed networks, which simultaneously learns these two types of
information. As the outputs, two communities c1 and c2 are detected by these two kinds of solutions from the original network G,
where nodes within the same community are closely connected.

methods assume that similar nodes should be mapped closer [31]. To exploit more structural relationships,
the matrix factorization-based methods factorize the adjacency matrix and other relationship matrices of
networks into node representations [32]. For example, a recent method proposes an NMF-based method to
detect community structures by solving the majorization-minimization principle [2]. However, the matrix
factorization has high time complexity due to the frequent matrix operations. Therefore, the random
walk-based methods are used instead to maximize the probability of neighborhoods for each node to
overcome this problem [33]. Moreover, although the autoencoder-based methods can also exploit
relationships of the network structure by using the learned node representations to reconstruct the
adjacency matrix, these methods only exploit network structures [34]. Besides, some methods, e.g.
NSGAMOF, apply the modularity-based technology for community detection in order to further exploit the
structures [35]. However, some attributes that can provide extra profiles for users should be taken into
account.

Different from structural community detection methods, attributed community detection methods
consider both the structures and attributes of networks [36]. Specifically, some existing methods aim to fuse
the information of structure and attributes after the process of community detection. As shown in
figure 1(a), these methods first separately detect communities based on the attributes (e.g. by k-means
[37, 38]) and the structure (e.g. by Louvain [39]). Then, the resulting communities are merged in a way that
results in structure-and attributes-aware communities. For example, CFOND utilizes the consensus
factorization principle to preserve the information of the structure and attributes for co-clustering network
data. Similarly, based on the consensus clustering [40], FCCCN can be applied to networks with millions of
nodes by calculating the consensus matrix and additional node pairs [41]. In fact, the information of the
structure and attribute are interrelated, and considering the two types of information separately during the
process of community detection may sever the connection between the both [6].

In order to jointly optimize both kinds of information, as shown in figure 1(b), some recent methods
have applied deep learning-based methods on the attributed and large-scale networks to detect underlying
community structure [42]. Specifically, vGraph detects communities in attributed networks by utilizing a
generative model to jointly learn node attributes and network structures [43]. However, although vGraph
has the ability to capture node attributes, it mainly relies on the structural information of networks when
computing the scores of community distribution over nodes [25]. To make full use of the attribute
information, some methods (e.g. ARVGE [44] and DAEGC [25]) use a graph autoencoder to encode the
node attributes and topological structure of a network into a compact representation. To some extent, these
methods revealing community structures depend on adjacency matrix reconstruction, which splits the
intrinsic relationship between node attributes and network structure [45]. To overcome this problem, some
recent GCN-based methods (e.g. GUCD [42]) use the structural information (often denoted as adjacency
matrix) to guide the aggregation of node attributes, thus effectively unifying these two kinds of information
to better detect communities in networks.

However, existing GCN-based methods do not address the global information of networks because they
adopt the local aggregation strategy [21]. To overcome this, DGI proposes a MI maximization strategy to
embed the global information into node representations [22]. Nevertheless, the global information captured
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Figure 2. The high-level overview of (a) deep graph infomax (DGI [22]), (b) the idea of MI maximization, and (c) subnetwork
MI maximization (our). Note that DGI maximizes the MI representations between nodes and the whole network, which results
in the global information learned being coarse and cannot reflect the status of nodes. Thus, our UCDMI aims to better exploit
the global information by maximizing the MI between local node representations and more fine-grained subnetworks. Moreover,
we also design a new aggregation function of GCN for learning better node representations. Based on our proposed aggregation
function, a node can also directly receive the information from nodes of great value but without direct edges between them (as
shown by the red message propagation lines).

by DGI is coarse, since it maximizes MI based on the whole network. Therefore, how to develop a novel
method that can capture both the fine-grained global information and node attributes is still an open
problem.

3. The formulation of UCDMI

In this section, we first give the notations and problem definition, and then present our proposed UCDMI.
Specifically, as shown in figure 2(c), there are two key parts of UCDMI: the new aggregation strategy of
GCN and the novel MI maximization mechanism. The new aggregation strategy can adjust the
contributions of nodes in the process of feature aggregation according to the importance between nodes. As
shown in the red message propagation lines of figure 2(c), the information of features can even pass directly
between valuable nodes where no direct edges exist between them. Moreover, different from existing MI
maximization-based methods (e.g. DGI, which is shown in figure 2(a)), our proposed MI maximization
mechanism can much better capture the global information of networks by maximizing the MI between
local node representations and more fine-grained subnetworks. More differences between our approach and
DGI will be described in detail later.

3.1. Notations and problem definition
We formally define an undirected and attributed network as G = (V, E, X), where V = {v1, . . . , vn} is a set

of nodes, and E =
{

ei j

}V

i,j=1
represents a set of edges. X ∈ R

n×f is a feature matrix for all nodes, where f

means the number of features of a node. Given an attributed network G, the aim of community detection is
to find some groups where nodes within the same group are closely connected. Formally, such groups are
referred as communities, i.e. C = {c1, . . . , cm}.

3.2. Graph convolutional layer
To realize the MI maximization, we should capture the node-level information, i.e. node representations. In
this work, our encoder Eour is based on the GCNs. The original propagation rule EGCN of GCN is defied as

H = EGCN

(
X, A|W

)
= σ

(
D̂− 1

2 ÂD̂− 1
2 XW

)
, (1)

where A is an adjacency matrix of a network G, Â = A + In represents the summation of the identity matrix
and adjacency matrix. D̂ is a degree matrix where D̂i,i =

∑
j Âi,j. The σ is the ReLU function, and W is a

learnable linear transformation. H = {h1, . . . , hn} denotes the matrix of node representations in which
hi ∈ R

d is a low-dimensional vector of vi, and d means the number of embedding dimensions.
Based on equation (1), the propagation rule of GCN is to aggregate features of neighboring nodes in

average, since it uses A + In to guide the aggregation, i.e. all neighboring nodes are treated equally. Besides,
some valuable nodes that are important to each other but not directly connected cannot share the
information directly. However, in the real world, the importance of different friends to a person often varies
according to the positions of these friends in society, and some indirect friends may also be important. This
motivates us to design an effective propagation rule for guiding the aggregation according to the
importance between nodes.
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To this end, we quantify the importance between nodes by measuring the Jaccard similarity of nodes
because of its empirical success in graph clustering and node classification. Specifically, given two nodes vi

and vj, the Jaccard similarity between them, i.e. Svi,vj ∈ S, is calculated as

Svi,vj =
|N(vi) ∩ N(vj)|
|N(vi) ∪ N(vj)|

, (2)

where N(vi) and N(vj) represent a set of neighbors of vi and vj, respectively. Such similarity between two
nodes indicates how important they are to each other, and will be used to guide the aggregation. Therefore,
based on the Jaccard similarity matrix S, we design our encoder Eour as

H = Eour

(
X, S, A|W

)
= σ

(
D̂− 1

2 ŜD̂− 1
2 XW

)
, (3)

where Ŝ = A + In + αS, and α is a parameter used to balance the contribution of the Jaccard similarity.
According to the encoder we designed, a node no longer aggregates the features of neighboring nodes
equally, but adopts an unequal aggregation based on the values of Ŝ instead. The information about nodes
that are important to each other but not directly connected is also taken into account.

3.3. Mutual information maximization mechanism
Since GCN-based frameworks utilize the local propagation rule, this results in the node representations
learned by equation (3) retaining only the local information of networks. Thus, we proposed a new MI
maximization mechanism that enable nodes embedding to capture the global information of networks. It is
realized in three steps: (1) finding some fine-grained subnetworks that indicate potential clusters; (2)
computing the global representations of such subnetworks; (3) maximizing the MI between the global
presentations of each subnetwork and the local representations of nodes residing in the subnetwork.

As mentioned before, different from existing MI maximization-based methods (e.g. DGI) which
design MI based on the whole graph representations, we use some more fine-grained subnetworks instead.
Given a graph G with the attributed matrix X, we aim to design a function P(X) to find some subnetworks
indicating potential clustering. In this paper, we adopt k-means to serve as such function because it works
best in experiments, which can be defined as

{g1, .., gm} = P(X) = k means(X), (4)

where gi is a fine-grained subnetwork. Having trained the local node representations in equation (3) and a
set of subnetworks {g1, . . . , gm}, we introduce a subnetwork-level representation encoder, i.e. a readout
function: R: Rp×d → R

d. To avoid notational cluttering, we assume that there are p nodes in each
subnetwork, although we reiterate that the number of nodes in each subnetwork may be different.
Specifically, for each subnetwork, we aim to obtain its global representations st

r, where 1�r � m. Formally,
we define such a readout function as

st
r = R (Hr) = σ

(
1

p

p∑
i=1

hr
i

)
, (5)

where Hr ∈ R
p×d represents the corresponding node representation matrix of subnetwork gr extracted from

H, and hr
i is the ith row in Hr. σ denotes the logistic sigmoid nonlinearity.

Finally, to enable our model to capture more fine-grained global information, for each subnetwork gr,
1�r � m, we maximize the MI between the local node representation patches

{
hr

1, hr
2, . . . , hr

p

}
and the

corresponding summary network representations sr. For this purpose, we use a discriminator D which
discriminates true samples [i.e. (hr

i , sr)] from its negative samples [i.e. (h̃i
r, sr)] and the final loss is

defined as

Lloss =

n∑
i=1

log D
(

hr
i , sr

)
+

n∑
j=1

log
(

1 −D
(

h̃r
j , sr

))
, (6)

where the negative node representations h̃r
j correspond to the jth row in H̃r. D is a discriminator used to

score the pairs (hr
i , sr). In this paper, the simple bilinear scoring function is utilized, as equation (7).

D
(

hr
i , sr

)
= σ

(
hrT

i Bt sr
)

, (7)

where Bt denotes a trainable scoring matrix, and σ represents the logistic sigmoid nonlinearity. H̃r is
extracted from H̃ in the same way as Hr. To construct the negative node representation matrix H̃, we first
shuffle the original attribute matrix X in the row-wise fashion to generate the corrupted network, i.e.
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Algorithm 1. The UCDMI algorithms.

X → X̃. Then, we reuse the encoder defined in equation (3) to generate H̃, that is, H̃ = Eour

(
X̃, S, A|W

)
. It

is remarkable that, our novel MI maximization mechanism amounts to the binary cross entropy loss shown
in equation (6). Such theory has been proved in previous works [22], and also fits with our mechanism,
although the details of our model differ from theirs. By minimizing the loss of equation (6) based on the
designed GCN, i.e. equation (3), we obtain the node representations which capture the fine-grained global
information of networks. Based on such node representations, the community structures are identified by
directly applying a clustering algorithm on it, such as k-means. Algorithm 1 shows the pseudocode of
UCDMI.

3.4. Complexity analysis
The time complexity of UCDMI depends on the operation of convolution in GCN and the calculation of
the Jaccard similarity. Concretely, according to [46], the time complexity involved in GCNs is O(|E|). It
means that the time complexity of the convolution operation increases linearly with the number of edges.

In terms of calculating the Jaccard similarity, the complexity of calculating two sets X and Y with n
elements is O(n log n). For calculating the similarity of nodes in complex networks, we measure the
similarity between target nodes and their corresponding neighboring nodes. Let davg denote the average
degree of a node. Then, the calculation of the Jaccard similarity between a pair of nodes has the complexity
O(|E|davg log davg), where |E| represents the number of edges. Thus, the overall time complexity of UCDMI
is O(|E|davg log davg).

4. Experiments

In this section, we first introduce the datasets, baseline methods, and parameter setting involved in this
paper. Then, we compare the performance of our proposed UCDMI with other baseline methods on
community detection. Moreover, we also provide some further investigation, i.e. ablation study, parameter
analysis, and visualization to understand the effectiveness of the proposed strategies.

4.1. Datasets and evaluation metrics
4.1.1. Datasets
Several widely used and standard networks are analyzed to verify the effectiveness of our proposed methods.
A summary of these networks is presented in table 1, and the detailed information of these methods is
introduced as follows.

Polbooks network5: Polbooks network reflects the sales relationship of political books on Amazon,
where the nodes represent the books sold on Amazon, and each edge between two nodes means that the
two books are purchased by the same customer. Since the attributes of nodes in this network are not
provided, we use the vectors extracted from the adjacency as such attributes.

5 http://www-personal.umich.edu/ mejn/netdata/.
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Table 1. The tested attributed networks for the experiments.

Dataset Nodes Edges Communities Features

G1 Polbooks 105 441 3 105
G2 Cora 2708 5429 7 1433
G3 Citeseer 3327 4732 6 3703
G4 Pubmed 19 717 44 378 3 500
G5 Parliament 451 11 646 2 108
G6 Wiki 2405 17 981 17 4973
G7 Synthetic 30 000 117 600 8 1

Cora network6: Cora network is built based on the citation relationship between machine learning
papers, where the nodes represent published papers, and edges denote the citation relationship between two
papers.

Citeseer network6: Citeseer network is also built based on the citation relationship between scientific
papers, where the nodes represent published papers, and edges denote the citation relationship between two
papers.

Pubmed network6: Pubmed network describes the citation relationships between diabetes-related
scientific papers in Pubmed database, where the nodes represent published papers, and edges denote the
citation relationship between two papers.

Parliament network7: Parliament network is a bill co-signer network where the nodes denote French
parliament members. If two parliament members jointly sign a bill, there is an edge between them.

Wiki network8: Wiki network describes the links between webpages, where the nodes represent
webpages and edges mean the links between webpages.

Synthetic network9: Synthetic network is the benchmark generated by Elhadi and Agam [47], and all
the settings of parameters come from [48].

4.1.2. Evaluation metrics
To evaluate the performance of UCDMI and baselines in community detection, we adopt three typical and
wildly used metrics: normalized mutual information (NMI), clustering accuracy (ACC), and macro
F1-score (F1). The higher the value of these metrics, the better the performance of community detection.

4.2. Parameter setting and baselines
In UCDMI, taking the efficiency into account, the node representation dimension d is set to 128, and the
number of layer in the GCN is set to 1. For the parameter α, which balances the contribution of the
proposed aggregation strategy, we set α = {0.2, 0.3, 0.5}. The parameter analysis is given in section 4.5.

To fairly evaluate the performance of UCDMI when dealing with community detection on attributed
networks, we compare our proposed method with three kinds of community detection methods, and the
parameters of these methods are consistent with the source papers. Concretely, there are methods that only
use node attributes, methods that only use network structure, and methods that use the both. We list these
baseline methods as follows.

(a) Methods that only use node attributes: k-means [37] and spectral clustering [20] (Spectral-a) methods
which detect community structures only based on node attributes;

(b) Methods that only use network structure: spectral clustering (spectral-s) that uses the adjacency of
networks as its inputs, DeepWalk [33], and DNGR [34];

(c) Methods that use both the network structure and attributes: community embedding framework
(ComE) [17], adversarially regularized graph autoencoder (ARVGE) [44], probabilistic generative
model (vGraph) [43], deep attention embedded graph clustering (DAEGC) [25], DGI [22], and
unsupervised GCN-based method for community detection (GUCD) [42].

4.3. Results of community detection
The NMI, ACC, and F1-score of UCDMI and other baseline methods on benchmark networks are reported
in tables 2 and 3. There are several key observations. Compared with baseline methods, UCDMI achieves
relatively good results on all experimental datasets. Specifically, compared to methods that use either node

6 https://github.com/tkipf/gcn/tree/master/gcn/data.
7 https://github.com/abojchevski/paican/tree/master/data/parliament.
8 https://github.com/karenlatong/AGC-master.
9 http://networkrepository.com/SYNTHETIC.php.
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Table 2. Results of community detection by UCDMI and other baseline methods in G2, G3, and G4. The
best results are recorded in bold. Results show that our proposed method is better than other baselines.

Methods Input
G2 G3 G4

NMI ACC F1 NMI ACC F1 NMI ACC F1

k-means Attributes 0.167 0.347 0.254 0.170 0.385 0.305 0.291 0.573 0.574
Spectral-a Attributes 0.151 0.363 0.256 0.212 0.462 0.337 0.325 0.599 0.586
Spectral-s Structure 0.195 0.342 0.302 0.118 0.259 0.295 0.147 0.496 0.471
DeepWalk Structure 0.316 0.467 0.381 0.131 0.390 0.305 0.167 0.619 0.471
DNGR Structure 0.373 0.492 0.373 0.180 0.326 0.442 0.154 0.454 0.179
ComE Both 0.366 0.438 0.435 0.250 0.441 0.448 0.300 0.415 0.552
ARVGE Both 0.450 0.638 0.627 0.261 0.544 0.529 0.206 0.582 0.230
vGraph Both 0.345 0.287 0.305 0.103 0.293 0.294 0.224 0.260 0.332
DAEGC Both 0.528 0.704 0.682 0.397 0.672 0.636 0.266 0.671 0.659
DGI Both 0.457 0.651 0.566 0.431 0.672 0.655 0.288 0.608 0.599
GUCD Both 0.323 0.505 0.568 0.274 0.545 0.527 0.269 0.631 0.604
UCDMI Both 0.573 0.732 0.715 0.441 0.694 0.649 0.307 0.692 0.688

Table 3. Results of community detection by UCDMI and other baseline methods in G5, G6, and G7. The
best results are recorded in bold. Results show that our proposed method is better than other baselines.

Methods Input
G5 G6 G7

NMI ACC F1 NMI ACC F1 NMI ACC F1

k-means Attributes 0.042 0.365 0.151 0.206 0.261 0.121 0.043 0.199 0.172
Spectral-a Attributes 0.043 0.376 0.171 0.015 0.168 0.020 0.178 0.261 0.148
Spectral-s Structure 0.067 0.361 0.088 0.185 0.242 0.145 0.242 0.329 0.176
DeepWalk Structure 0.603 0.741 0.254 0.351 0.429 0.318 0.012 0.142 0.117
DNGR Structure 0.327 0.289 0.425 0.276 0.299 0.197 0.382 0.276 0.332
ComE Both 0.477 0.516 0.584 0.359 0.337 0.273 0.482 0.414 0.453
ARVGE Both 0.657 0.746 0.519 0.308 0.274 0.357 0.317 0.468 0.399
vGraph Both 0.482 0.618 0.424 0.274 0.326 0.276 0.410 0.465 0.387
DAEGC Both 0.548 0.741 0.255 0.241 0.296 0.254 0.482 0.327 0.319
DGI Both 0.562 0.633 0.478 0.457 0.461 0.401 0.429 0.443 0.405
GUCD Both 0.618 0.729 0.624 0.321 0.385 0.304 0.419 0.438 0.271
UCDMI Both 0.729 0.821 0.731 0.466 0.468 0.398 0.574 0.533 0.498

Table 4. Ablation study of some modules in UCDMI: (1) MI optimization based on the whole network
(basic), (2) adding the Jaccard similarity (+Ja), and (3) using the proposed new MI maximization
mechanism (+Fg). The NMI, ACC, and F1-score are used to evaluate the performance of community
detection. The best results are recorded in bold.

Framework
Cora Citeseer Pubmed

NMI ACC F1 NMI ACC F1 NMI ACC F1

Basic 0.457 0.651 0.566 0.431 0.672 0.655 0.288 0.608 0.599
Basic + Ja 0.514 0.700 0.639 0.437 0.687 0.638 0.293 0.615 0.604
Basic + Ja + Fg (our) 0.573 0.732 0.715 0.441 0.694 0.649 0.297 0.692 0.688

attributes or network structure, our UCDMI achieves an obvious improvement. It demonstrates that the
usefulness of both kinds of information of networks in community detection, and the rationality of
UCDMI when simultaneously using such information to learn high-quality node representation. Moreover,
as for methods that use both the network structure and attributes, we find UCDMI consistently
outperforms these methods. The main reason is that UCDMI can better utilize the information of
networks. In particular, ARVGE only captures the information of 2-hop neighboring nodes, while our
UCDMI can exploit the global information without being restricted by k-order neighbors.

Besides, UCDMI achieves better performance compared with DGI which also considers the global
information by utilizing the strategy of MI maximization. This is because DGI implements such
maximization based on the whole graph, which ignores the finer substructures of networks and learns
relatively coarse node representations. In contrast, UCDMI deals with finer substructures by implementing
the MI maximization based on more fine-grained subnetwork, which enables it to better learn node
representations and improves the performance of community detection.
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Figure 3. NMI values with respect to the parameter α and the embedding dimension d on three networks. The best results are
always obtained when α > 0, which demonstrates the effectiveness of using the Jaccard similarity to guide the aggregation.

Figure 4. The comparison of community structures detected by our UCDMI and DGI on Polbooks. Different shapes of nodes
denote different ground-truth communities, and communities detected by UCDMI and DGI are colored differently. UCDMI is
able to better detect the community structure in the network, while DGI additionally divides v5, v50, v67, and v85 into incorrect
communities.

4.4. Ablation study
Two components, the Jaccard similarity and new MI maximization mechanism play significant roles in
helping our model the better learn node representations and detect high-quality community structures of
networks. Thus, we carry out an ablation study experiment to evaluate the contributions of these two
components. In particular, ‘basic’ means the model that implements MI optimization based on the whole
network. ‘+Ja’ denotes adding the Jaccard similarity to the model, and ‘+Fg’ represents the adoption of the
new MI maximization mechanism based on the fine-grained subnetworks.

As shown in table 4, we find that using the Jaccard similarity to evaluate the importance between nodes
for guiding the aggregation clearly improves the performance of community detection. This reveals that it is
necessary to adjust the weight of nodes in the aggregation of features according to their importance.
Moreover, by comparing the penultimate row and the second row of table 4, we find that the proposed new
MI maximization mechanism performs better than the existing MI maximization strategy. This
demonstrates the effectiveness of maximizing the MI between local node representations and more
fine-grained subnetwork representation.
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4.5. Parameters analysis
Next, we analyze the influence of two key parameters in our proposed method: the embedding dimension
(controlled by d), and the coefficient of Jaccard similarity (controlled by α). As shown in figures 3(a)–(c),
the experimental performance is improved by increasing the dimension d. Moreover, through the study of
figures 3(d)–(f), we observe that the experimental performance obtained for α > 0 are always better than
for when α = 0. Such phenomena further demonstrates the effectiveness of using the Jaccard similarity to
guide the aggregation. Moreover, we find a slight decline in experimental performances when adjusting α

beyond a certain value. After a careful investigation, we found that increasing the value of α magnifies the
differences between neighboring nodes. When the difference is magnified to a certain extent, the
information of some neighboring nodes will be ignored, thus leading to a performance decline. It indicates
that our proposed aggregation strategy can effectively distinguish the importance of different neighboring
nodes.

4.6. Visualization
To better understand the effectiveness of our proposed UCDMI, we visualize the community detection
results of UCDMI and DGI on Polbooks, respectively. Based on the comparison of results between UCDMI
and DGI, we expect to demonstrate the effectiveness of the proposed aggregation strategy and the new MI
maximization mechanism. The results of visualizations are presented in figure 4, where the ground-truth
communities are denoted by different shapes, while the communities detected by experiments are
represented by different colors.

As we can see from figure 4, UCDMI exhibits three communities in Polbooks network. It is worth
noticing that there are two communities, colored by red and yellow, that are almost detected correctly by
our UCDMI. In comparison, four nodes, i.e. v5, v50, v67, and v85 have been divided incorrectly into
communities by DGI. Based on some careful investigations, we find that these nodes reside in the edge of
the communities (called bride nodes). They often share more Jaccard similarity, such as v67, to nodes in the
community where they belong. Thus, our proposed UCDMI, which uses Jaccard similarity to guide the
aggregation, can effectively utilize such characteristic and detect high-quality communities. Besides, we find
that UCDMI can detect communities where nodes within the same communities are closely connected,
which is consistent with the definition of the community structure. We can conclude that the proposed
aggregation strategy and the new MI maximization mechanism are able to preserve the more fine-grained
global information, e.g. the information of community structures, and are suitable for community
detection.

5. Conclusion

In this paper, we propose a novel method based on MI maximization for community detection in attributed
networks. To increase the contribution of more important nodes in the aggregation process, we design a
new aggregation of GCN which can distinguish the importance between nodes by measuring the Jaccard
similarity of nodes. To exploit the fine-grained global information of networks, we develop a novel MI
maximization mechanism to maximize the MI between the local node representations and global
subnetwork representations. Some experiments demonstrate the effectiveness of our proposed method in
community detection and it achieve better results than state-of-the-art baseline methods.
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