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Abstract
A prominent feature of earthquakes is their empirical laws, including memory (clustering) in time
and space. Several earthquake forecasting models, such as the epidemic-type aftershock sequence
(ETAS) model, were developed based on these empirical laws. Yet, a recent study [1] showed that
the ETAS model fails to reproduce the significant long-term memory characteristics found in real
earthquake catalogs. Here we modify and generalize the ETAS model to include short- and
long-term triggering mechanisms, to account for the short- and long-time memory (exponents)
discovered in the data. Our generalized ETAS model accurately reproduces the short- and
long-term/distance memory observed in the Italian and Southern Californian earthquake catalogs.
The revised ETAS model is also found to improve earthquake forecasting after large shocks.

1. Introduction

Earthquakes pose a serious threat to human life and property and as such attracted the attention of many
scientists. Yet, the understanding and the forecasting of earthquakes are limited. Predicting earthquakes by
using a diagnostic precursor via some observable signal has not produced a reliable prediction scheme
[2–4]. Indeed, the current earthquake predictability is based on the known seismic laws. The distribution of
earthquake magnitudes is exponential and follows the Gutenberg–Richter law (N(m) ∝ 10−bm, where N is
the number of earthquakes of magnitude m and b ≈ 1) [5]. The number of earthquakes triggered by a
mainshock increases exponentially with its magnitude (Utsu law) [6]. In addition, the rate of triggered
events decays as a power law with time (Omori law) [7].

An operational earthquake forecasting scheme has been developed and applied to forecast earthquake
sequences based on the empirical laws, including the clustering of earthquakes in space and time [3];
space–time earthquake clustering can be attributed to the triggering of earthquakes [8]. This clustering
stimulated the development of a series of earthquake forecasting models based on a branching process, such
as the epidemic-type aftershock sequence model (ETAS) [9, 10], and the short-term earthquake probability
model (STEP) [11]. The ETAS model combines the Gutenberg–Richter, Utsu, and Omori laws into a
Hawkes (point) process in a way that every past earthquake (above a certain magnitude) triggers other
earthquakes according to the same laws. Previous studies and many retrospective analyses [12, 13] have
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proved that clustering models, such as the ETAS model, provide better forecasts than other models; still,
these models cannot explain some central earthquake features [14–17], and many statistical physics features
of seismic activity have not yet been fully understood [18].

Temporal and spatial memory (correlations) exists widely in many natural systems [19–21], including in
earthquake activity. For example, Livina et al [22] identified the short-term memory of successive
inter-event times in real earthquake catalogs using a conditional probability method. They found a strong
short-term memory in which a short (long) inter-event time tends to follow a short (long) inter-event time.
Other correlation detection methods, such as the detrended fluctuation analysis [23], have also been applied
to detect the memory of inter-event times [24]. The empirical short-term memory between successive
inter-event times in real catalogs has been found to be reproduced by the ETAS model, only for a narrow
range of model parameters [25]. Recently, a new measure has been [1] introduced, called ‘lagged’
conditional probability, to explore long-term memory, both in successive and non-successive inter-event
times and distances [1]. This analysis has resulted in a memory measure versus (time or distance) lag for
which a crossover between two distinct behaviors has been found: a slowly decaying power law at short
scales (time or distance) and a significantly faster decay (that may be exponential) at long scales [1]. This
behavior, discovered in real catalogs, could not be reproduced by the ETAS model. More specifically, the
model’s analysis resulted in the memory without the crossover that was observed in the real catalogs [1]; the
model’s memory is weaker (stronger) in short (long) time scales than the real catalogs. The value of the
power law exponent depends on the productivity parameter α, which is associated, in the model, with the
Utsu law. Earthquakes can trigger more correlated events with a larger α, resulting in enhanced earthquake
memory. Therefore, based on the empirical finding [1] of crossover in the memory behavior, here we
introduce into the ETAS model two productivity parameters, large and small, α1 and α2, for short and long
time scales. We show here that this revised ETAS model reproduces the observed double power law behavior
of memory, as well as the crossover observed in the real data. Moreover, we show that the revised model
significantly improves the forecasting performance of earthquake events.

2. Materials and methods

2.1. Data
The Italian earthquake catalog is complete [26] for events with magnitudes above 3 and includes 8854
events from 1981 to 2017; the earthquake rate is 0.67 events per day. A catalog is ‘complete’ when all events
above the specified magnitude are included in it. The Southern California catalog is complete [27] for
events with magnitudes above 3 and includes 13 586 events from 1981 to 2018; the earthquake rate is 0.98
events per day.

2.2. The revised ETAS model
In the ETAS model, seismic events are assumed to involve a space–time stochastic point process [9, 10].
Each event above a magnitude M0 is selected independently from the Gutenberg–Richter distribution
(where b = 1). The conditional rate, λ, at location (x, y) at time t is given by

λ
(
x, y, t|Ht

)
= μ(x, y) +

∑
ti<t

k (Mi) g (t − ti) f
(
x − xi, y − yi, Mi

)
, (1)

where Ht is the history process prior to t, ti are the times of the past events, and Mi are their magnitudes.
μ(x, y) = μ0u(x, y) is the background intensity at location (x, y), where u is the spatial probability density
function (PDF) of background events, which is estimated by the method proposed by Zhuang [28, 29]; μ0 is
the background rate of the entire region. We represent the total number of the past events as n − 1. The
dependence of the triggering ability on magnitude is given by the Utsu law as

k(Mi) =

⎧⎨
⎩

A exp(α1(Mi − M0)) if i > n − h10−bM0

A exp(α2(Mi − M0)) if i � n − h10−bM0 ,
(2)

where A is the occurrence rate of earthquakes at zero lag. In equation (2), we introduce two productivity
parameters, α1 and α2 (α1 � α2). When α1 = α2, equation (2) reduces to the original ETAS model.
h10−bM0 is the crossover number of events with the magnitude threshold M0; h is a parameter that can be
estimated from the data. The ith historical event has a larger rate to trigger the nth event (due to the larger
α1), when the number of events between the ith and nth events is smaller than h10−bM0 . Note that we
consider here a regional size (like Italy) model where the spatiotemporal clustering sequences below the
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crossover are mostly unmixed with other remote sequences. The parameter h may be different when dealing
with a much larger area size.

The function g (t − ti) follows the Omori law as

g(t − ti) =

(
1 +

t − ti

c

)−p

, (3)

where c and p are the Omori law parameters. The spatial clustering of aftershocks is implemented by
introducing a spatial kernel function f

(
x − xi, y − yi, Mi

)
[29] as

f
(
x − xi, y − yi, Mi

)
=

q − 1

πζ2

(
1 +

(x − xi)2 + (y − yi)2

ζ2

)−q

, (4)

where ζ = D exp [γm (Mi − M0)] indicates that the distances between triggering and triggered events
depend on the magnitudes of the triggering events. q, D and γm are the estimated parameters.

We chose the parameters of the original ETAS model (ETAS1) for Italy based on refs [25, 30] as follows:
μ = 0.2, α1 = α2 = 1.5, p = 1.13, c = 0.007, A = k/c = 6.26, and the critical parameter n = Ac

p−1
β

β−α1
, i.e.,

it is smaller than 1 (β = ln(10)). The spatial parameters were chosen to be q = 2.0, D = 0.03 (in units of
‘degree’), and γm = 0.48, and were estimated based on the method described in references [28, 29]. The
parameters of the revised ETAS model (ETAS2) were chosen to be A = 3.35, α1 = 2.0, α2 = 1.5, and
h = 2 × 105 (the crossover h10−bM0 = 200 for the magnitude threshold M0 = 3.0); the other parameters are
the same as for the ETAS1 model.

2.3. N-test
The N-test [31] compares the total number of observed earthquakes (Nobs), within the spatial size,
magnitude, and time interval, to the expected total number of target earthquakes predicted by the
forecasting model (Nforecast).

3. Results

We first define the earthquake inter-event time interval as τ i = ti+1 − ti (in days); this is the time interval
between two consecutive earthquake events above a certain magnitude threshold. Similarly, an inter-event
distance ri is defined as the distance (in km) between the epicenters (i.e., the projections of hypocenters on
the surface) of events i + 1 and i, where both are above a certain magnitude threshold. We calculate the
inter-event times and distances with the magnitude threshold M0 = 3.0(Mw) for Italy’s seismic catalog,
which is known to be complete for earthquake magnitudes above 3.0 [26] (see materials and methods); this
catalog spans 37 years, from 1981 to 2017. We then propose the ‘lagged’ conditional cumulative distribution
function (CDF) method based on the ‘lagged’ conditional PDF [1] as follows. First, all inter-event times
(distances) are sorted into ascending order and then divided into three equal quantiles. The first quantile,
Q1, contains the smallest 1/3 inter-event times (distances), and the third quantile, Q3, contains the largest
1/3 inter-event times (distances). The conditional CDF of inter-event times (distances) is defined as
C(τ k|τ 0) (C(rk|r0)), where τ 0 (r0) belongs to Q1 or Q3, and τ k (rk) is the lagged kth inter-event time that
follows τ 0 (r0). This method generalizes previous studies that used lag 1 (k = 1) [22], thus revealing the
long-range memory empirical laws of earthquake catalogs. To demonstrate the empirical long-term
memory, we show, in figures 1(a) and (b), the lagged conditional CDFs C(τ 50|τ 0) and C(r50|r0) using a high
lag number k = 50, for the first and third quantiles, Q1 and Q3, for the Italian catalog. It can be seen that
the lagged conditional CDFs of Q1 are significantly different from those of Q3 (see figures 1(a) and (b)).
This implies the existence of memory (correlations) also for a large number of lags. For the randomly
shuffled catalogs that do not contain memory, both lagged conditional CDFs of Q1 and Q3 are identical to
the unconditional CDF (indicated by the dashed black curves in figures 1(a) and (b)). Thus, the real
catalogs exhibit memory, even for large k lags, as found earlier [1].

We next test the memory in the ETAS model by simulating earthquake records for the region of Italy
(34◦ N–48◦ N, 6◦ E–20◦ E), based on the thinning method [10, 32]. The original and our revised ETAS
models are called here ETAS1 and ETAS2, respectively. In ETAS2, we introduce the productivity parameter
α1 for small lag-index k (short time scale), and the smaller productivity parameter α2 for large lag-index k
above a crossover value (long time scale). See the data and methods section for more details regarding the
model. We generate 50 realizations of synthetic events greater than or equal to magnitude 3 for the time
window of 13 500 days (same as the time length of the real catalog) for the synthetic catalogs of ETAS1 and
ETAS2. The earthquake rates are 1.11 ± 0.06 and 0.74 ± 0.09 events per day for ETAS1 and ETAS2,
respectively. The higher rate indicates more aftershocks generated for ETAS1 than ETAS2 in the entire
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Figure 1. Lagged conditional CDF of (a) inter-event times τ k and (b) inter-event distances rk for lag-index k = 50 (where the
magnitude threshold is M0 = 3.0) for the real catalog of Italy. The maximum gap S between the two lagged conditional CDFs
(the first and third quantiles, Q1 and Q3) is indicated by the blue double arrow between the two dotted blue lines. The value of
0 � S � 1 represents the memory. (c), (d) Same as (a), (b) but for the (revised) ETAS2 model simulated catalog. (e), (f) Also
same as (a), (b) but for the (original) ETAS1 model. The dashed black curves indicate the CDFs for all quantiles (all inter-event
series).

period. The rate of the real catalog is 0.67 events per day. Figure S1 (https://stacks.iop.org/NJP/23/042001/
mmedia) shows the epicenter map and longitude-time plot of the catalogs for the time window. Figures 1(c)
and (d) show the lagged conditional CDFs C(τ 50|τ 0) and C(r50|r0) for the catalogs simulated by ETAS2.
Note that there are substantial differences between the CDFs of Q1 and Q3, where these differences are
common both for the real (figures 1(a) and (b)) and for the ETAS2 simulated catalogs (figures 1(c)
and (d)). In contrast, the CDFs of Q1 and Q3 of the original ETAS1 model almost completely overlap, for
both inter-event times and distances (figures 1(e) and (f)), in contrast to the observed CDFs. This
demonstrates the existence of stronger memory in ETAS2 and, in contrast, much weak memory in ETAS1.
Figure S2 shows that the memory of ETAS1 is even weaker when the rate of aftershocks is similar to that of
ETAS2.

To quantify the memory based on the lagged conditional CDF, the maximum gap S (indicated by a
double arrow in figure 1) between the lagged conditional CDFs of the first and third quantiles is calculated.
It follows that S is theoretically bounded between 0 (complete overlap between the CDFs or PDFs of Q1 and
Q3) and 1 (complete separation) where larger S indicates stronger memory. We next calculate the memory
measure for the real Italian catalog as a function of the lag index k for inter-event times and distances,
respectively (in figure S3). We also consider here the larger complete magnitudes with thresholds
M0 = 3.5, 4.0. We rescale the memory measure S(τ k|τ 0) by a factor 10aM0 , which represents the dependence
of memory on the magnitude threshold [1] (i.e., F(x) = S(x)10aM0) where the lag-index, k, is rescaled by
x = k10bM0 , to account for the Gutenberg–Richter law. The curves S(x) of all cases collapse into a single
curve F(x) after the rescaling (figure 2). It is seen that the rescaled memory measure F(x) of the Italian
catalog decays slowly for small x (lags) and faster for large x (lags), both for inter-event times and
inter-event distances, as seen in figures 2(a) and (b). Figures 2(c) and (d) depict the corresponding scaling
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Figure 2. The rescaled memory measure, S, (y axis) as a function of k10bM0 (x axis) for (a) inter-event times and (b) inter-event
distances for the real Italian catalog. Colors and symbols represent different magnitude thresholds, M0. (c), (d) Same as (a), (b)
but for the simulated catalog of the newly developed ETAS2 model. (e), (f) Same as (a), (b) but for the original ETAS1 model.
The memory measure S is averaged over 50 independent realizations, and the error bars show the 90% confidence intervals.
Dashed black lines are fitted power law curves. The values of the exponents are given in table 1.

Table 1. Estimated parameters (mean ± std), a exponent in the scaling
factor 10aM0 and power law exponents of the scaling function, γ1, γ2 for
the interevent times and distances for the real catalog of Italy, ETAS1 and
ETAS2 models. For the models, the error bars show the standard
deviations for 50 realizations.

Parameters Real ETAS1 ETAS2

Time a 0.09 ± 0.01 0.21 ± 0.03 0.07 ± 0.02
γ1 0.19 ± 0.01 0.49 ± 0.11 0.24 ± 0.05
γ2 0.88 ± 0.05 0.50 ± 0.22 1.08 ± 0.23

Distance a 0.24 ± 0.02 0.48 ± 0.05 0.22 ± 0.03
γ1 0.21 ± 0.01 0.62 ± 0.12 0.32 ± 0.06
γ2 1.11 ± 0.07 0.21 ± 0.24 0.94 ± 0.26

measures for the new ETAS2 model, and it is clear that it reproduces the two power law behaviors of the real
catalogs (figures 2(a) and (b)) and the associated crossover of the scaling curves. Moreover, the crossovers
are close to xc ≈ 105.0, for both the real catalog and our developed ETAS2 model. Immediately after large
shocks, the crossover point (lag) corresponds to a time of the order of 40 days (see figures S4 and S5).

The scaling function behaves as F(x) ∼ x−γ1 for x < xc and F(x) ∼ x−γ2 for x � xc. These two exponents
(γ1, γ2) and the parameter a are summarized in table 1, showing that the new ETAS2 model reproduces
quite accurately the scaling exponents of the real catalog. In contrast, the original ETAS1 model basically
exhibits a power law behavior but with only a single exponent, without a crossover, and thus fails to
reproduce the observed memory characteristics of the data (see figures 2(e) and (f)). The flat in large k
indicates that the inter-event distances are completely uncorrelated in figure 2(f). We also calculate the
memory measure for the real and simulated catalogs of Southern California (see figures S6 and S7 and
table S2). The results indicate that the new ETAS2 model reproduces quite well the scaling function of the
real catalogs, in contrast to the ETAS1 model. An earthquake catalog could, in principle, be incomplete after
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Figure 3. Forecasting test for the L’Aquila earthquake sequences. (a) Locations of the L’Aquila earthquake sequences within 30
days after the mainshock. The red triangle represents the mainshock (Mw = 6.3), and the yellow triangles and dots represent the
events after the mainshock (magnitude above M0 = 3.0). Triangles indicate earthquakes with magnitude above 5.0. (b)
Cumulative number of earthquakes as a function of days after the L’Aquila mainshock. (c) Fraction of the earthquakes within a
radius R centered at the mainshock’s epicenter, within 30 days after the L’Aquila mainshock. The models’ means are averaged
over 500 independent realizations where the green and blue shadowed areas indicate the 90% confidence intervals for the ETAS1
and ETAS2 models.

a large shock as a result of: (a) coda waves, (b) the inefficiency of the seismic network to detect weak and
frequent events, and (c) the overlapping of aftershock seismograms [33–36]. To test whether the crossover
could be due to incompleteness, we have produced incomplete catalogs based on refs [34–36]. Figure S8
shows that the synthetic incomplete catalog based on the ETAS1 model cannot reproduce the crossover
observed in the real data and in the ETAS2 model. This suggests that our results are not due to the possible
incompleteness of earthquake catalogs. Moreover, the crossover is not reproduced as observed in the real
data for ETAS1 using extensive set of model’s simulations covering a wide range of ETAS1 model
parameters in figures S11–13. In all of these the resulting crossover is significantly weaker than the observed
one.

Next we test and compare the forecasting performance of the ETAS1 and ETAS2 models. We perform
the N-test [31] (see materials and methods), which compares the total number of earthquakes forecasted by
the model with the total observed number of earthquakes over the entire region; we apply this test to the
L’Aquila (Italy) earthquake (magnitude 6.3) that occurred on April 6, 2009 [37]. Figure 3(a) presents the
locations of earthquakes above magnitude threshold 3 that occurred within one month after the L’Aquila
mainshock. The cumulative number of earthquakes increased immediately after the L’Aquila mainshock
(red circles in figure 3(b)). Figure S9 shows the non-cumulative number of earthquakes as a function of
time. Notably, the original ETAS1 model forecast many fewer events compared to the real catalog, while the
forecast of the revised ETAS2 is very similar to the real events. Indeed, the ETAS1 model is known to
severely underestimate the number of earthquakes immediately after large shocks [37], while overestimating
the number of earthquakes at long-term periods. The suggested remedy is to increase the α-value after large
shocks [37–42]. However, this increase of the α-value is not consistent with the α-value evaluated based on
the entire Italian catalog. The reason is that ETAS1 model with large α-value overestimates the cumulative
number of earthquakes in the long time period (see figure S10) and furthermore cannot reproduce the
observed crossover of memory in the Italian catalog (see figures S11–13).

We also test the quality of the forecast in space (figure 3(c)) and find that our revised ETAS2 model
outperforms the original ETAS1, resulting in an increased number of events, which makes its performance
closer to real observations. The spatial clustering of aftershocks can cause a large fraction of events within a
short distance. Aftershocks generally occur within a 100 km radius from the mainshock’s epicenter. We find
that 98% of the events in Italy within 30 days after the L’Aquila mainshock were within a radius of R = 100
km (figure 3(c)). We find that 94% and 86% of the events (from 500 independent realizations) of the ETAS1
and ETAS2 models, respectively, occur within a 100 km radius within one month after the main shock. The
fractions in the real data and the ETAS2 are similar to each other.

We also test the forecasts after the six largest shocks (Mw � 6) that occurred in Italy from 1981–2017.
Figures 4(a), (b) and (c) show the results for the total number N of earthquakes after the mainshock for 1 d,
15 d and 30 d respectively. For almost all of these six major earthquakes, the observed number of
earthquakes (red dots) falls within the 90% confidence interval for the new ETAS2 model forecasting. The
exception is event L5 (figures 4(b) and (c)), which occurred around the city of Norcia on October 26, 2016.
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Figure 4. Forecasting test after the six largest shocks of Mw � 6 in Italy that occurred between 1981 and 2017: L1 (1997 Umbria
and Marche), L2 (2009 L’Aquila), L3 (2012 Emilia) and L4–6 (2016 Amatrice–Norcia). Total number of events after the
mainshock within (a) 1 d, (b) 15 d, and (c) 30 d after the mainshock. Fraction of the earthquakes within a 100 km radius from
the mainshock epicenter within (d) 1 d, (e) 15 d and (f) 30 d after the mainshock. The ETAS1 and ETAS2 models’ results are
presented as averages over 500 realizations where the error bars indicate the 90% confidence intervals.

This is because an even larger earthquake (L6, magnitude 6.6 in comparison to magnitude 6.1 of the L5
event) hit Norcia later, leading to more aftershocks four days after L5. We also show in figures 4(d)–(f) the
fraction of earthquakes within a 100 km radius around the mainshock’s epicenter and within different
numbers of days from the mainshock. The results indicate that the observed fraction of earthquakes (red
dots) falls within the narrower error bars of the proposed ETAS2 model, while the observations fall outside
the error bars of the ETAS1 model, despite the larger error bars of this model (figures 4(d)–(f)). We thus
conclude that the new ETAS2 model’s forecasting performance is significantly better than that of the ETAS1
model. Similarly improved forecasting performances of the ETAS2, after large shocks in Southern
California, are shown in figure S14.

4. Conclusions

Here we study the long-term memory by considering the lagged conditional probabilities of interevent
times and distances in real and synthetic earthquake catalogs. We suggest that the spatiotemporal clustering
of aftershock sequences dominates the memory in inter-event times and distances that are smaller than the
crossover. While above the crossover, the clustering and memory behavior substantially decreases. This is
incorporated into the ETAS model. Our results suggest that the memory of the ETAS model actually
depends on the aftershock productivity parameter α. Following the observed catalogs [1], we revised the
ETAS model to include two productivity parameters, α1 and α2, for short and long time scales. We show
that the revised ETAS model suggested above not only reproduces the memory characteristics (scaling
function) of the real catalog but also exhibits significantly better forecasting skills in comparison to the
original ETAS model. According to the Utsu law, the aftershock rate depends on the magnitude of the
mainshock. The two α-values of the revised ETAS model indicate that the Utsu relation for long-term
triggering is not same as for short-term triggering. For lag index smaller than the crossover lag, a large
earthquake tends to trigger many more events. The triggering ability is substantially reduced for lags above
the crossover lag. This may imply a possible earthquake generating mechanism that depends on the stress
conditions established by historical events [43, 44]. Our results imply that the stress conditions depend
more on the near recent events (below the crossover number) and less on the far events (above the
crossover number). The fundamental reason for the crossover dependence on number of earthquake events
could be that this number is proportional to the energy released from faults. Our methods may be also
relevant for other fields like in the studies of sleep disorder and epileptic seizures [45, 46].
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